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Reliable profile and profile gradient estimates are of utmost importance for many different

physical models in fusion science, e.g. transport modeling or mode stabilization. Fitting profiles

to a collection of results from different diagnostics defines basic work in plasma physics. The

fitting results often crucially depend on the functional representation of the profile. In particular,

the estimation uncertainty of the profile and, even worse, the estimation of the profile gradient

and its uncertainty is closely coupled with the provided profile flexibility. This is one reason why

profile gradient uncertainties are usually not estimated. Profile flexibility to allow for a form-

free description of the data often competes with profile reliability. The estimation reliability

decreases with increasing number of degree of freedom provided. The problem of the proper

choice of the functional representation of the profile is hampered by measurement errors of

the usually pointwise measurements of profiles and by lack of information in profile segments.

Severe complications arise from systematic deviations due to inconsistent diagnostics.

The aim is to have a robust technique to allow for a reasonable balance between flexibility

and reliability. Flexibility is frequently obtained by using non-parametric profile functionals,

e.g. linear interpolation between pointwise estimations or cubic or B-splines. The reliability of

the profile estimates is determined by the data uncertainties as well as the supported degree of

freedoms (DOF). The balance between fitting the significant information content in the data and

avoiding noise fitting poses a major problem. In the framework of Bayesian probability theory

the competition between flexibility and reliability is tackled in a natural way by marginalizing

of (integrating out) all model parameters including the DOF. The result is a marginal poste-

rior probability distribution of the quantity of interest which implicitly considers penalization

of DOF. Implicit penalization of DOF together with a comprehensive physical and statistical

(including systematic errors!) description of sets of diagnostics in the framework of Integrated

Data Analysis (IDA) [1] allows for a proper balance between profile flexibility and reliability.

Frequently, reliability is obtained by either providing a family of tailored parametric func-

tionals or piecewise polynomial functions combined with modified hyperbolic tangent func-

tions (tanh) at the plasma edge. For sufficient flexibility support we propose to use exponential

splines. Consider a set of function values f
i

given at E support points ξ
i

(pivots). The exponen-
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tial spline function S
i

�
x � in the interval ξ

i � x � ξ
i � 1

is then given by
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The auxiliary functions ψ
i

and φ
i

contain a stiffness parameter λ
i

on the support 
 ξ
i � ξi � 1 � and

are given by the hyperbolic functions

ψ
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The coefficients α � β � γ � δ are determined from the requirement of continuity of function, first

and second derivatives at the pivotal points ξ
i
. The system can be closed by setting at the end

points either the second derivatives to zero or the first derivatives to given values. In the present

work the gradients in the plasma center and outside of the SOL are set to zero. In the limiting

cases of λ � 0 and λ � ∞ the exponential spline becomes a cubic spline and a polygon, respec-

tively. It allows for less curvature regularization compared to the cubic spline which is known

to over-smooth the pedestal region and more flexibility than a linear interpolation scheme. The

parameters of the exponential-spline, amplitudes f
i
, pivot positions ξ

i
and stiffness parameters

λ
i

as well as the number of spline pivots E are marginalized. The probabilistic marginalization

of the nuisance parameters is the main ingredient which allows to be as flexible as necessary

to describe the data as well as robust in the sense that the noisy data are not overfitted. Details

about the exponential-spline approach within the framework of Bayesian probability theory and

a systematic exploration of the method can be found in [2, 3].
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Figure 1: Ion temperature profile and profile gradient of #54285 of W7-AS.

To demonstrate the approach, data of a study of the neoclassical predictions for the radial

electric field Er in the stellarator Wendelstein 7-AS were reanalyzed [4]. Data from a set of
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diagnostics consisting of Thomson scattering (TS) (Te � ne), neutral particle analyzer (NPA), H-

beam (T
i
), and Li-beam (T

i � ne) were used. The left panel of figure 1 shows an estimate of the

T
i

profile and its uncertainty. The solid line and the error bars represent the mean value and the
�

1 standard deviation of the profile posterior probability distribution calculated using a Markov

Chain Monte Carlo (MCMC) sampling technique. The shape of the exponential spline is close

to linearity for r � 13 cm and r � 17 cm, and close to a cubic spline in between. The error bars

depict a large variability close to the plasma center and at the plasma edge where the data are

sparse. The right panel of figure 1 shows an estimate of the T
i

profile gradient calculated from

the MCMC samples of the analytic derivative of the exponential spline. The gradient profile

is well determined at the linear region where the number of data is large. The gradient error

bars are larger close to the plasma center and in the plasma edge region where the data are

sparse. Due to the methodologically inherent competition between flexibility and reliability the

approach provides a reliable tool for gradient estimation.

Although the gradient of the exponential spline at r � 0 and at r � 20 cm was constrained to

be zero, there is enough flexibility to have non-zero gradients in the closest neighborhoods. Ad-

ditional physical constraints have to be applied to consider power balance in the plasma. Figure
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Figure 2: Profiles of ion and electron temperature, and electron density simultaneous sampled

from a joined posterior probability distribution.

2 shows profiles for T
i
, Te and ne where the ion and electron pressure profiles were constrained to

be monotonically decreasing. Such hard constraints as well as any other physical consideration

can be easily incorporated into the MCMC approach. In addition to the monotonicity constraint,

an empirical soft constraint was applied considering power balance in the plasma. A detailed

comparison of various physically motivated constraints on profiles and combinations of profiles

will be given in [3]. The combined analysis of the profiles T
i
, Te and ne within the IDA approach

allows straightforwardly to estimate derived physical quantities, e.g. the radial electric field Er

and the electron-ion energy exchange term Q
ei

. The left panel of figures 3 depicts the Er profile
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Figure 3: Radial electric field and electron-ion energy exchange term.

calculated from the diffusion equation for Er (equation (1) in [4]) and the right panel shows the

Q
ei

profile. The marginal posterior probability distributions for both derived profiles are sum-

marized by their mean values (solid line) and standard deviations (error bar). Numerically, they

are calculated from the mean and variance of the samples of Er

�
r � and Q

ei

�
r � calculated using

the MCMC samples of the profiles T
i
, Te and ne summarized in figure 2. The difference of the

T
i
and Te profiles result in a Q

ei

�
r � profile which deviates marginally significant from zero only

at about r � 10 cm and r � 14 cm.

In conclusion, the non-parametric exponential-spline approach for profile and profile gradient

estimation provides a robust method for a useful balance between flexibility and reliability.

Uncertainties of profiles and gradients is readily derived from data uncertainties. The DOF

is determined by the significant information content of the data. Profiles of derived physical

quantities including their uncertainties are readily estimated within the probabilistic approach.
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