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1 Modeling acoustic modes and zonal flows in the framework of MHD
As in Ref. [1] small electrostatic perturbations about a static MHD equilibrium are

studied. In this work the notation of Refs. [2] is used. For electrostatic perturbations
∂~B/∂ t = 0, so that from Faraday’s law the perturbed electric field ~E1 is the gradient
of a potential Φ1. Therefore, Ohm’s law for the perturbation electric field may be writ-
ten as ~E1 = −∇Φ 1 = ~B0 × ∂t

~ξ , where ~ξ is the MHD displacement vector. Three scalar
perturbation functions related to ~ξ are used: the normal displacement ξ s = ~ξ · ∇ s, and
the two components varying in the magnetic surface s = const, η = −F ′

t
~ξ · (∇θ − ι ∇φ ),

and µ =
√

gF ′
t
~ξ · (∇φ + ι ∇θ ). Because of ~B0 · ∇Φ 1 = 0, the potential of the perturbed

electric field is a surface function, i.e. Φ1 = Φ1(s). Equating the component of ~E1 along
∇ s×~B0 shows that 0 = ∇ s×~B0 · ∇Φ 1 = (∇ s×~B0) · (∂t

~ξ ×~B0) = B2
0 ∂tξ s, i.e. ξ s ≡ 0. With

this result, taking the component of ~E1 along ∇ s shows that Φ1,s = −η . Since Φ1 is a
surface function, η must also be a surface function, η = η (s), with the assumptions
made here, i.e. for electrostatic perturbations. With a time dependence exp(iω t), the
MHD equation of motion reduces to −ρ0ω2 ~ξ = −∇ p1, and the pressure equation to
p1 = −γ p0 ∇ ·~ξ . Taking the component of the equation of motion along ~B0, a magnetic
DE is obtained for ∇ ·~ξ , −ρ0ω2 √

g ~ξ ·~B0 = γ p0
√

g~B0 · ∇ (∇ ·~ξ ). Its integrability condi-

tion is
〈√

g ~ξ ·~B0

〉

= 0, where 〈•〉 =
∫ ∫ •dθ dφ. With V ′ = 〈√g〉 the following relation is

obtained from this integrability condition for the perturbation function µ, which appears
only in the fluid-compression term, 〈µ〉 = −(IF ′

p − JF ′
t )V

′ η/(IF ′
t + JF ′

p).
The CAS3D MHD stability code [2] was used to study these electrostatic perturba-

tions. Two equilibrium cases given in Sec. 2 are investigated with respect to two physi-
cal situations: i) the stationary divergence-free flows or zonal flows in Sec. 3 obtained
from ω = 0 and ii) finite frequencies of acoustic modes in Sec. 4.

2 Equilibria
The so-called Cyclone DIII-D base case parameter set [3,4] represents local pa-

rameters from an ITER-relevant DIIID-D high confinement (H-mode) shot (# 81499 at
time t = 4000 ms). Similar to Ref. [3], this shot was reconstructed as a circular-cross-
section model equilibrium. The ion temperature and electron density profiles given
in Fig. 5 of Ref. [4] determine the equilibrium pressure profile p0 = 2 ne Ti in Fig. 1
and the equilibrium mass density ρ0 = mp ne in Fig. 2 (ρ0(0) ≈ 10−7 kg/m3 in a hydro-
gen plasma). These profiles were used for the configurations studied here. With the
pressure profile of Fig. 1 and an axis-value of p0(0) = 96132 N/m2, an average β of
〈β〉 = 0.01956 results (VMEC in its fixed-boundary version [5]). In the reconstruction,
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Figure 1: Normalized equi-
librium pressure versus
normalized toroidal flux.
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Figure 2: Normalized equi-
librium mass density ver-
sus norm. toroidal flux.
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Figure 3: ι = 1/q in
CYCLONE-BASE case
(red) and W7-X (black).
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Figure 4: W7-X high-mirror standard case: Flux-surface cross-
sections at 〈β〉= 0.0205 as obtained from the 3d MHD-equilibrium
code VMEC. Aspect ratio A ≈ 10, plasma volume Vplasma ≈ 30 m3,
volume averaged equilibrium magnetic field 〈B〉 ≈ 1.86 T.
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Figure 5: CYCLONE-B
surfaces at 〈β〉 = 0.02.
A ≈ 2.8, Vplasma ≈ 19 m3,
〈B〉 ≈ 2.1 T.
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Figure 6: CYCLONE-BASE: For the divergence-
free displacements, the ratio of |~ξ |2 and |~ξ⊥|2
(thick-dotted line) equals the Pfirsch-Schlüter term
1+2/ι 2 (dashed line) in the vicinity of the magnetic
axis. Computation parameters: CAS3D, 1501 ra-
dial grid points, harmonics: 1 for η and 7 for µ in
the N = 0 mode family, γ = 5/3.
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Figure 7: CYCLONE-BASE: Frequencies
ω2 of acoustic modes in units of inverse
µ0ρ0(0) versus norm. toroidal flux. Win-
sor formula (Eq. (1), solid), new estimate
(Eq. (2), m=1, n=0, dashed), CAS3D (dot-
ted). Colors for the magnitude of ξ⊥, per-
turbation with strongest ξ⊥ is at ×. Com-
putation parameters: same as in Fig. 6.
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q(0) = 1.04, q(a/2) = 1.4, q(0.95a) = 3.8, compare Fig. 3. In the reconstructed equilib-
rium (compare Fig. 5, R0 = 1.951 m, a = 0.702 m, A ≈ 2.8), the plasma current is IP =

0.796 MA, so βN = (〈β〉a2)/IP = 1.23, if 〈β〉 is given in %, and the plasma current in MA.
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Figure 8: ξ|| Fourier amplitudes
of acoustic modes; top frame:
CYCLONE-BASE, µ0ρ0(0)ω2 = 0.014,
Wkin(ξ⊥)/Wkin = 0.713 (marked × in
Fig. 7); bottom frame:
W7-X variant, µ0ρ0(0)ω2 = 0.001,
Wkin(ξ⊥)/Wkin = 0.12 (marked × in
Fig. 10). Colors: n = 0 black, n = −5
red, n =−10 green, n = 5 blue, n =−15
orange.

The W7-X standard high-mirror case is described
by the boundary data given in Table IV of Ref. [2]
(last entry), here scaled to R00 = 5.5 m, and B0 ≈
2 T. The flux-surface cross-sections at the begin-
ning, a quarter of, and half of one of the five iden-
tical field-periods are shown in Fig. 4, the low-
shear rotational transform profile in Fig. 3.

3 Zonal flows
ω2 = 0 yields incompressible displacements ~ξ ,

i.e. ∇ ·~ξ = 0. Thus the structure of these eigenvec-
tors is equivalent to the structure of divergence-
free flows and, also, to the current density. For
these displacements, evaluation of |~ξ |2/|~ξ⊥|2 and
of the Pfirsch-Schlüter factor 1+2/ι 2 is compared
in Figs. 6 (CYCLONE-BASE), and 9 (W7-X). The
results show the correspondence to the Pfirsch-
Schlüter factor in the CYCLONE case and the re-
duction of the parallel flow equivalent to the re-
duction of the parallel current density in the W7-X
case.

4 Acoustic-mode frequencies
In Ref. [1] a large-aspect-ratio tokamak result for the frequency of the lowest node-

number axisymmetric acoustic oscillation is given, Eq. (1). The generalization of this
formula to a large-aspect-ratio general geometry, in magnetic coordinates, character-
ized by its differential volume

√
g and the geometry of its flux surfaces in terms of |∇ s|2

is found to be Eq. (2). The spectrum of the acoustic-mode frequencies vs. flux surface
label as obtained with CAS3D is shown in Figs. 7 and 10. Some low-node oscilla-
tions are highlighted together with their corresponding estimates in general geometry,
Eq. (2). The Winsor estimate is also indicated.

ω2
Winsor =

2γp0

ρ0R2
0

(1+0.5ι 2) (1)

ω2mn
new =

2γp0

ρ0

π2

√
g2

00

[

m2
√

g2
mnB2

00

F ′
t

2|∇ s|200

+2(mι +n)2 F ′
t

2

B2
00

]

(2)

Nearly quantitative co-
incidence between the
Winsor and the new esti-
mates is observed in the
CYCLONE case, they,
however, quantitatively fail
at low aspect ratio, see
Fig. 7. The perturbations
computed with CAS3D may be classified Geodesic Acoustic Mode (GAM), if ξ⊥ > ξ||,
and sound mode in the case where the flow along ~B dominates. In Fig. 7, the GAM
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Figure 9: W7-X: For the divergence-free dis-
placements, the ratio of |~ξ |2 and |~ξ⊥|2 (thick-
dotted line) is approximately constant and
everywhere well below the Pfirsch-Schlüter
term 1 + 2/ι 2 (dashed line). Computation
parameters: CAS3D, 201 radial grid points,
harmonics: 1 for η and 56 for µ in the N = 0
mode family, γ = 5/3.
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Figure 10: W7-X: Frequencies ω2 in units
of inverse µ0ρ0(0) of acoustic modes versus
normalized toroidal flux. Winsor (solid), new
[dashed for (1,0); dot-dashed for (0,-5), dot-
ted for (1,-5)], CAS3D [red for (1,0), green
for (0,-5), blue for (1,-5) and black dotted
for all]. Perturbation with Wkin(ξ⊥)/Wkin = 0.12
(marked ×); perturbation with Wkin(ξ⊥)/Wkin ≈
0 (marked +). Computation parameters:
same as in Fig. 9.

with strongest ξ⊥ is located at s = 0.78, it has a frequency of 53 kHz and is essentially
m = 3, see top frame of Fig. 8, compare [7]. Note that in Ref. [7] the dimensionless factor
√

2γ(1+Te/Ti) is absent in the estimate of the GAM frequency, the correct form is given
in Eq. (3) of Ref. [6]. In keeping with the results obtained for the stationary flows, the
W7-X case indicates strongly reduced frequencies for the (m,n)=(1,0) mode as com-
pared to the Winsor model, see Fig. 10. Further modes (mirror-type, helical-type) are
also indicated and are nearly quantitatively described by the generalized large-aspect
ratio formula. The largest ξ⊥-values are found for the essentially m = 1 perturbations,
see Fig. 8 for the mode at 14 kHz, but with ξ|| > ξ⊥, these modes are sound polarized
rather than of the GAM-type. In summary, a reduction is seen of (i) the acoustic-mode
frequency as compared to the Winsor estimate and (ii) the |~ξ |2/|~ξ⊥|2 term for station-
ary flows as compared to the Pfirsch-Schlüter factor. The mechanism is different in
the two cases studied here. The Shafranov-shift may be responsible for the reduction
in the Cyclone B case (low aspect ratio, circular cross-section, significant Shafranov-
shift). The geometry may be responsible in the W7-X case (high aspect ratio, reduced
Shafranov-shift, 3-d geometry).
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