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3-d linear MHD for acoustic modes and zonal flows
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1 Modeling acoustic modes and zonal flows in the framework of MHD

As in Ref. [1] small electrostatic perturbations about a static MHD equilibrium are
studied. In this work the notation of Refs. [2] is used. For electrostatic perturbations
aﬁ/at =0, so that from Faraday’s law the perturbed electric field El is the gradient
of a potential ®,. Therefore, Ohm’s law for the perturbation electric field may be writ-
ten as E, = —~@ ; = By x d,€, where € is the MHD displacement vector. Three scalar
perturbation functions related to f are used: the normal displacement &= = F: -Os, and
the two components varying in the magnetic surface s= const, n = —F/ f (@ -y ),
and p = ,/gF/ £. (@ +1@ ). Because of By @ , = 0, the potential of the perturbed
electric field is a surface function, i.e. ®, = ®,(s). Equating the component of El along
Osx By shows that 0= Osx By @ ; = (Osx By) (0, x By) = B3 9,E5, i.e. £3=0. With
this result, taking the component of E; along s shows that ®,,s= —n. Since ®, is a
surface function, n must also be a surface function, n = n(s), with the assumptions
made here, i.e. for electrostatic perturbations. With a time dependence exp(iw t), the
MHD equation of motion reduces to —pow2 f = —L[p;, and the pressure equation to
P =Y Py - f Taking the component of the equation of motion along I§o, a magnetic
DE is obtained for 0-&, —pyw? /g€ -By =y py /8B, - O(0-£). Its integrability condi-
tion is <\/§§-I§O> =0, where (o) = [ [«dB dg. With V' = (, /g) the following relation is
obtained from this integrability condition for the perturbation function pu, which appears
only in the fluid-compression term, (u) = —(IF; —JF )V’ n /(1K +JF).

The CAS3D MHD stability code [2] was used to study these electrostatic perturba-
tions. Two equilibrium cases given in Sec. 2 are investigated with respect to two physi-
cal situations: i) the stationary divergence-free flows or zonal flows in Sec. 3 obtained
from w = 0 and ii) finite frequencies of acoustic modes in Sec. 4.

2 Equilibria

The so-called Cyclone DIII-D base case parameter set [3,4] represents local pa-
rameters from an ITER-relevant DIIID-D high confinement (H-mode) shot (# 81499 at
time t = 4000 ms). Similar to Ref. [3], this shot was reconstructed as a circular-cross-
section model equilibrium. The ion temperature and electron density profiles given
in Fig. 5 of Ref. [4] determine the equilibrium pressure profile p; =2ne T, in Fig. 1
and the equilibrium mass density p, = my, ne in Fig. 2 (py(0) ~ 10~7 kg/m? in a hydro-
gen plasma). These profiles were used for the configurations studied here. With the
pressure profile of Fig. 1 and an axis-value of py(0) = 96132 N/m?, an average [ of

(B) = 0.01956 results (VMEC in its fixed-boundary version [5]). In the reconstruction,
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Figure 1: Normalized equi- Figure 2: Normalized equi- Figure 3: 1 = 1/q in
librium pressure versus librium mass density ver- CYCLONE-BASE  case
normalized toroidal flux. sus norm. toroidal flux. (red) and W7-X (black).
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Figure 4: W7-X high-mirror standard case: Flux-surface cross- Figure 5: CYCLONE-B
sections at (3) = 0.0205 as obtained from the 3d MHD-equilibrium  surfaces at (B) = 0.02.
code VMEC. Aspect ratio A~ 10, plasma volume V¢, ~ 30 m®, A~ 2.8, V.. ~ 19 m?,

volume averaged equilibrium magnetic field (B) ~1.86 T. (B) ~21T.
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Figure 7: CYCLONE-BASE: Frequencies

Figure 6: CYCLONE-BASE: For the divergence- @’ Of acoustic modes in units of inverse
free displacements, the ratio of |£|2 and [€, |2 HoPo(0) versus norm. toroidal flux. Win-
(thick-dotted line) equals the Pfirsch-Schliiter term ~ SOr formula (Eq. (1), solid), new estimate
1+2/12 (dashed line) in the vicinity of the magnetic ~ (EQ- (2), m=1, n=0, dashed), CAS3D (dot-
axis. Computation parameters: CAS3D, 1501 ra- t€d). Colors for the magnitude of ¢, per-

dial grid points, harmonics: 1 for n and 7 for w in ~ turbation with strongest ¢, is at x. Com-
the N = 0 mode family, y = 5/3. putation parameters: same as in Fig. 6.

norm. toroidal flux s
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g(0) =1.04, q(a/2) = 1.4, q(0.95a) = 3.8, compare Fig. 3. In the reconstructed equilib-
rium (compare Fig. 5, Ry = 1.951 m, a= 0.702 m, A= 2.8), the plasma current is I, =
0.796 MA, so By = ({B)a?)/1p = 1.23, if (B) is given in %, and the plasma current in MA.
The W7-X standard high-mirror case is described

by the boundary data given in Table 1V of Ref. [2] 150 °
(last entry), here scaled to Ry, = 5.5 m, and By ~ 100
2 T. The flux-surface cross-sections at the begin-
ning, a quarter of, and half of one of the five iden-
tical field-periods are shown in Fig. 4, the low-
shear rotational transform profile in Fig. 3.

50

amplitude [a.u.]

3 Zonal flows

w? = 0 yields incompressible displacements z“
le. O E’ = 0. Thus the structure of these eigenvec-
tors is equivalent to the structure of divergence-
free flows and, also, to the current density. For

amplitude [a.u.]

poloidal harmonic m

Figure 8: EH Fourier amplitudes
of acoustic modes; top frame:

these displacements, evaluation of |€|2/|€, |2 and
of the Pfirsch-Schliiter factor 1+2/12 is compared
in Figs. 6 (CYCLONE-BASE), and 9 (W7-X). The
results show the correspondence to the Pfirsch-
Schliter factor in the CYCLONE case and the re-
duction of the parallel flow equivalent to the re-
duction of the parallel current density in the W7-X

CYCLONE-BASE, H,p,(0)w? = 0.014,
Wi (&) /Wi, = 0.713 (marked x in
Fig. 7); bottom frame:
W7-X variant, pop(0)w? = 0.001,
Wi (&) /W, = 0.12 (marked x in
Fig. 10). Colors: n= 0 black, n= -5
red, n=—-10green, n=5blue,n=-15
orange.

case.

4 Acoustic-mode frequencies
In Ref. [1] a large-aspect-ratio tokamak result for the frequency of the lowest node-
number axisymmetric acoustic oscillation is given, Eq. (1). The generalization of this
formula to a large-aspect-ratio general geometry, in magnetic coordinates, character-
ized by its differential volume /g and the geometry of its flux surfaces in terms of 082
is found to be Eg. (2). The spectrum of the acoustic-mode frequencies vs. flux surface
label as obtained with CAS3D is shown in Figs. 7 and 10. Some low-node oscilla-
tions are highlighted together with their corresponding estimates in general geometry;,
Eq. (2). The Winsor estimate is also indicated.
Nearly quantitative co-
incidence between the
2YPo

Winsor and the new esti- 2 2
- = 1+ 0.5 1
mates is observed in the “Wincor poR%( ) @
2 Q2 2
ﬁc\)(vf/:ebzl\l Eua(;\%faeéiv;refﬁil w2, = AP g 7./ %m0 +2(mi + n)Zi )
new -
X y Po VO | FRZI0s3, B%

at low aspect ratio, see
Fig. 7. The perturbations
computed with CAS3D may be classified Geodesic Acoustic Mode (GAM), if & > EH,

and sound mode in the case where the flow along B dominates. In Fig. 7, the GAM
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Figure 10: W7-X: Frequencies w? in units

Figure 9: W7-X: For the divergence-free dis-  of inverse pyp,(0) of acoustic modes versus
placements, the ratio of |€|2 and |F1|2 (thick- normalized toroidal flux. Winsor (solid), new
dotted line) is approximately constant and [dashed for (1,0); dot-dashed for (O,-5), dot-
everywhere well below the Pfirsch-Schliiter ted for (1,-5)], CAS3D [red for (1,0), green
term 1+ 2/1% (dashed line). Computation for (0,-5), blue for (1,-5) and black dotted
parameters: CAS3D, 201 radial grid points, for all]. Perturbation with W,;,(& | ) /W, = 0.12
harmonics: 1 for n and 56 for p inthe N=0 (marked x); perturbation with W; (€ ) /W, ~
mode family, y =5/3. 0 (marked +). Computation parameters:
same as in Fig. 9.

with strongest & | is located at s= 0.78, it has a frequency of 53 kHz and is essentially
m= 3, see top frame of Fig. 8, compare [7]. Note that in Ref. [7] the dimensionless factor
V2Y(1+Te/T,) is absent in the estimate of the GAM frequency, the correct form is given
in Eq. (3) of Ref. [6]. In keeping with the results obtained for the stationary flows, the
W?7-X case indicates strongly reduced frequencies for the (m,n)=(1,0) mode as com-
pared to the Winsor model, see Fig. 10. Further modes (mirror-type, helical-type) are
also indicated and are nearly quantitatively described by the generalized large-aspect
ratio formula. The largest &  -values are found for the essentially m= 1 perturbations,
see Fig. 8 for the mode at 14 kHz, but with EH > &, these modes are sound polarized
rather than of the GAM-type. In summary, a reduction is seen of (i) the acoustic-mode
frequency as compared to the Winsor estimate and (ii) the \é’\z/mz term for station-
ary flows as compared to the Pfirsch-Schluter factor. The mechanism is different in
the two cases studied here. The Shafranov-shift may be responsible for the reduction
in the Cyclone B case (low aspect ratio, circular cross-section, significant Shafranov-
shift). The geometry may be responsible in the W7-X case (high aspect ratio, reduced
Shafranov-shift, 3-d geometry).
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