
ITER performance of scaled ASDEX Upgrade discharges

G. Tardini, L. D. Horton, O. Kardaun, C. F. Maggi, A. G. Peeters,

G. V. Pereverzev, A. C. C. Sips, J. Stober,

and the ASDEX Upgrade Team1

MPI für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching, Germany

1 Introduction

Several approaches can be employed to predict the fusion performance of the ITER burn-

ing plasma. Scaling laws have been derived on a common database of discharges from

the existing tokamak devices, delivering an estimate for the energy confinement in ITER.

Those fits have been extended and refined progressively.

The most commonly used empirical scaling for conventional H-mode plasmas is IPB98(y,2)

[1]. In the past decade new parameter ranges have been explored and alternative scenar-

ios have been developed, aiming in particular to an optimum compromise between long

pulse operation and high performance, within the constraints of the auxiliary heating

capability. Moreover, several experimentss have highlighted different dependences of the

energy confinement time on plasma parameters than assumed so far, in particular the β

dependence [2] [3] [4] , which is only partly explained by errors-in-variable regression [5].

Theory based fluid models, validated on exixsting tokamaks [6], have been applied in

order to simulate ITER discharges in terms of dimensionless physics [7] [8]. It should be

noted that the predicted fusion performance is strongly sensitive to the density and tem-

perature values at the top of the pedestal, which can be predicted only with significant

uncertainties, and to the model’s stiffness [8] [9].

The approach of this work is to scale existing ASDEX Upgrade discharges to ITER di-

mensions, following some assumptions on dimensionless parameters and the shape of the

kinetic profiles. For this purpose the ASTRA transport code is used [10]. The calculations

are benchmarked with existing predictions of the fusion power and fusion gain for several

ITER scenarios. Results for extrapolated ASDEX Upgrade discharges are shown both for

conventional as well as improved H-mode scenarios, for several Greenwald density frac-

tions and βN,th values. Finally, the main dependences of the fusion gain are highlighted

in the framework of the IPB98(y,2) scaling law.

2 Scaling setup and assumptions

Some assumptions have been made to scale ASDEX Upgrade experiments up to ITER.

The choice is, of course, not unique. The toroidal field, the equilibrium boundary and

the impurities’ concentration are taken from the ITER-FEAT design [1]. The parameter

q95 is changed with respect to the ITER target to be the measured value in the selected
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ASDEX Upgrade discharges. The plasma current is hence determined. The experimental

density profile shape is kept. A factor multiplies the profile as to obtain a volume average

density of a given Greenwald fraction in the ITER plasma, the reference being 85 %. Elec-

tron and ion temperature profiles are assumed to be equal in ITER due to the fast heat

exchange among species. Although fusion α particles heat mainly electrons, the rapid heat

exchange between ions and electrons adjusts heat transport to be carried mainly by the

channel most affected by turbulence. In present day devices one can roughly assume the

channel with higher central temperature to carry most of the heat flux in the core plasma.

So we choose the ITER temperature profiles to be proportional to the ASDEX Upgrade

profile with the highest central temperature. In fact, temperature gradient lengths for

ions and electrons are usually quite close to each other in H-mode plasmas. The scaling

factor for the temperature profiles is determined by βN,th being a given fraction of the

value achieved in the ASDEX Upgrade discharge. The deuterium and tritium concen-

trations are assumed to be equal. The impurity concentration is taken from the ITER

design: Be 2 %, Ar 0.12 % [8] and He 4.3 %, which is within the range considered in

[8]. As a result, the volume averaged Zeff is approximately 1.65 in all simulations. The

radiation model from [11] i used. Finally, we assume the confinement time of the ITER

discharge to be τ
IPB98(y,2)
E × HH98(y,2), choosing HH98(y,2) to be the measured value of the

ASDEX Upgrade discharge. When evaluating the fusion gain we neglect the correction

to the total power arising from charge exchange processes and orbit losses in the scaling

law. Beam-target fusion is not included either.

3 Scaling of ASDEX Upgrade discharges

We have simulated ITER discharges with the ASTRA code for different scenarios, using

the designed geometry, impurity concentrations and reference kinetic profiles. The equi-

librium is computed self-consistently. The fusion power calculated with ASTRA agrees

always obtained with the quoted value within less than 10 %. For scenario 4 (advanced

with plasma current 9 MA), the reference simulation appears to have a different assump-

tion for impurities, leading to Zeff=2.17 and to higher radiation power. Otherwise, the

small discrepancies are likely to be due to slightly different impurity profile shape or

plasma equilibrium, for instance the total volume is not perfectly matched.

With the assumptions discussed in Section 2, ASDEX Upgrade discharges have been

scaled to ITER. We have selected # 17847, a standard H-mode discharge with high den-

sity and q95 close to the value 3 foreseen for the ITER reference scenario, and # 17870,

an improved H-mode with good confinement properties. The kinetic profiles, shown in

Fig. 1, are fits between different diagnostics over stationary time intervals. The most

relevant plasma parameters are summarised in Table 1. T is the temperature with higher
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Figure 1. Measured density and temperature profiles of ASDEX Upgrade discharges. (a)

#17847. (b) #17870.

AUG # q95 βN βN,th HH98(y,2) ne
T (0)
<T>

ne(0)
<ne>

n̄e

nGW
ρ⋆ ν⋆

17847 3.06 2.10 1.98 0.95 10.5 1.98 1.21 0.73 2.0 10−3 3.6

17870 3.80 2.63 1.96 1.32 5.09 2.17 1.66 0.40 2.5 10−3 0.39

Table 1: Experimental plasma parameters of the ASDEX Upgrade discharges # 17847

and #17870

value on-axis. Greenwald density fractions of 70 % and 85 % are input for the standard

H-mode, 50 % and 70 % for the improved H-mode. The value of βN,th is varied to be 80

%, 100 % and 120 % of the ASDEX Upgrade measured value, respectively. In Table 2

the simulation results are presented. The Greenwald fraction and the ratio βN,th/β
AUG
N,th

are varied in the first and second column, respectively. The resulting fusion power, fusion

gain, stored energy, bootstrap fraction and loop voltage are presented. It should be noted

that the volume averaged density is used, so the scaling factor for the density profile is

higher.

The βN,th dependence is the most striking: as βN,th increases, Q is strongly reduced,

although the fusion power grows. This is due to the strong power degradation of the

IPB98(y,2) scaling. In fact, the increase of the kinetic profiles demands additional power

more than linearly: Pfus + Paux ≈

(

Wkin/τ
P
E

)3.23
, where τP

E := τ
IPB98(y,2)
E P 0.69 has no

power dependence. In particular, working at given βN,th the positive scaling of the plasma

current is cancelled, since Wkin ∝ βth ∝ βN,thIpl. Within this approach, relying on the

IPB98(y,2) scaling law, one cannot improve both Pfus and Q, but only look for the best

compromise.

Quantitatively, the scaling of the standard H-mode is compatible with previous predic-

tions, with Q between 5 and 10. The fusion power is usually higher than in the reference.

The bootstrap current ranges between 10 % and 25 % of the total plasma current, simi-

larly to present day devices.
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Scaled n̄e

nGW

βN,th

βAUG
N,th

Pfus Paux Q Wkin < T > < ne > Ibs

Ipl
Vloop

[MW] [MW] [MJ] [keV] [1019 m−3] [V]

17847 0.85 0.80 407 21.2 19.2 306 8.07 9.34 0.169 0.195

17847 0.85 1.00 635 84.6 7.51 382 10.1 9.33 0.209 0.120

17847 0.85 1.20 864 208. 4.16 459 12.1 9.32 0.250 0.075

17847 0.70 0.80 405 49.4 8.20 304 9.74 7.67 0.163 0.153

17847 0.70 1.00 601 158. 3.79 385 12.3 7.70 0.211 0.100

17847 0.70 1.20 780 346. 2.26 461 14.7 7.69 0.253 0.065

17870 0.70 0.80 180 0 ∞ 203 9.55 5.22 0.169 0.080

17870 0.70 1.00 269 10.9 24.8 254 11.9 5.21 0.212 0.059

17870 0.70 1.20 356 45.3 7.87 304 14.3 5.21 0.255 0.039

17870 0.50 0.80 162 15.2 10.7 201 13.3 3.71 0.166 0.069

17870 0.50 1.00 221 54.2 4.07 252 16.6 3.71 0.208 0.040

17870 0.50 1.20 272 123. 2.21 302 19.9 3.71 0.251 0.024

Table 2: Fusion performance of the ITER-scaled discharges # 17847 and #17870 for

different Greenwald fractions (first column) and βN,th. (second column). Vloop is computed

neglecting beam current drive.

The improved H-mode has better performance. This is due mainly to the good confine-

ment, as HH98(y,2) ≈ 1.3. It is worth noting that the IPB98(y,2) scaling was constructed

on a database of standard H-mode discharges. Further simulations of scaled improved H-

mode discharges with different HH98(y,2) are expected to clarify the extent of the improved

performance of ITER hybrid scenarios and the need of refined scaling laws.
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