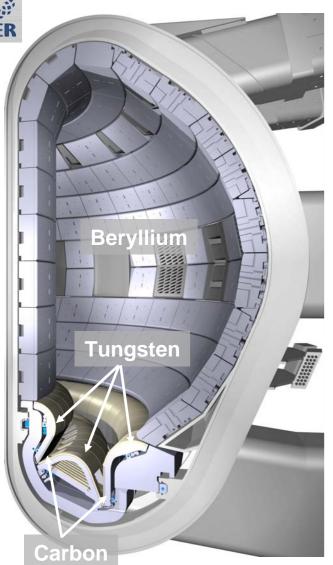


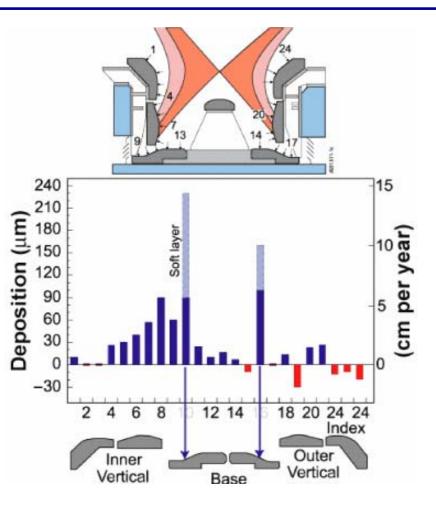
Tritium retention in next step devices and the requirements for mitigation and removal techniques

<u>G Counsell</u>¹, P Coad¹, C Grisolia², C Hopf³, W Jacob³, A Kirschner⁴, A Kreter⁴, K Krieger³, J. Likonen⁵, V Philipps⁴, J Roth³, M Rubel⁶, E Salancon³, A. Semerok⁷, FL Tabares⁸, A Widdowson¹


¹EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK
 ²Association EURATOM-CEA, CEA/DSM/DRFC Cadarache, 13108 St.Paul lez Durance, France
 ³Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching, Germany
 ⁴Institut für Plasmaphysik, Forschungszentrum Jülich, Association EURATOM-FZJ
 ⁵Association EURATOM-TEKES, VTT Processes, PO Box 1608, 02044 VTT, Espoo, Finland
 ⁶Alfvén Laboratory, Royal Institute of Technology (KTH), Association EURATOM-VR, 100 44 Stockholm, Sweden
 ⁷CEA Saclay, DEN/DPC/SCP/LILM, Bat. 467,91191Gif sur Yvette, France
 ⁸Association Euratom/Ciemat. Laboratorio Nacional de Fusión. 28040 Madrid, Spain

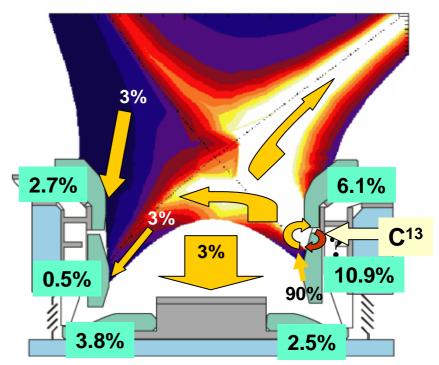
Motivation for this talk

- In the DT phase, ~50 g T injected/400 s pulse
- Mobilisable tritium inventory limit (safety) 350g
- □ **700m² Be** first wall and start-up limiter modules
- □ 100m² W divertor dome and baffle region
- 50m² Carbon Fibre Composite (CFC) for the divertor strike point tiles
- Carbon plasma facing components known to cause trapping of hydrogenic atoms for ~18 years (and tritium for ~15)


ITER plasma facing materials mix

- □ Challenge of operating with CFC and tritium mix
- Growing body of experimental data on tritium retention with carbon and improvements in understanding of the underlying physics
- Current status of research into tritium removal schemes; efficiency and applicability
- □ Integration of tritium removal into ITER operations

D/T retention linked to C transport



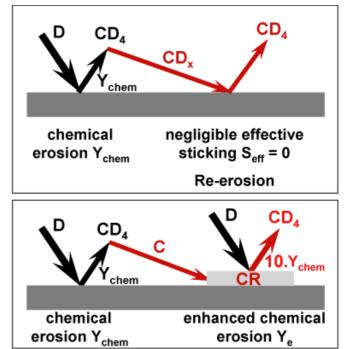
- D/T trapped in aC:H codeposited layers ⇒
- Understanding C erosion and redeposition mechanisms is key

 \Box C¹³D₄ puffed into outer divertor

□ Tile analysis (SIMS/IBA) to track C¹³

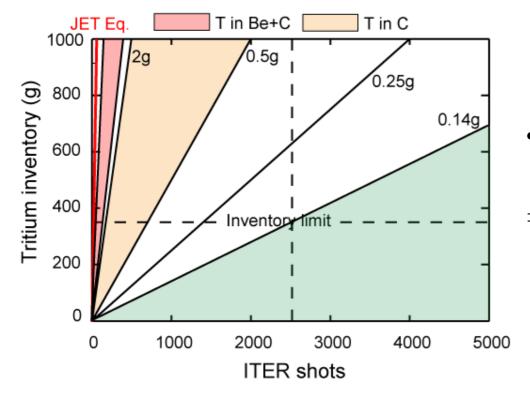
EDGE2D/NIMBUS used to model C¹³ trajectories in background plasma


 Reasonable agreement with redeposition at inner divertor – EXB drifts, SOL flows, ELMs all play a role



Be transport will impact C erosion

- >80% of wall area in ITER is beryllium
- Eroded Be will transport to divertor (as ions)
 ⇒ modify erosion and co-deposition
- Preliminary modelling using local erosion & deposition model ERO (still many open questions)
- Model assumptions validated against TEXTOR C¹³ injection experiments


 Be concentration in plasma plays key role
 Balance of inc. Be coverage on target (dec. C erosion) and inc. C erosion due to Be flux
 For a range of Be conc., T/C and T/Be ratios

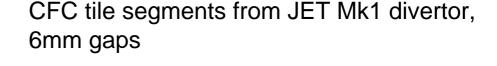
⇒ 0.5g – 6.4gT/400s shot

Clear need for T removal schemes

- Acceptable ITER operation ~2500 shots before maintenance period
- \Rightarrow Long term T retention/shot must be < 0.14g/400s shot

- □ Strategies for T removal essential if CFC targets in DT phase
- ❑ Removal efficiency must be 80% 98%

aC:H co-deposits form in tile gaps


- All ITER plasma facing components will be castellated
- >2,000,000 Gaps in ITER (typ. 0.5-1mm x 10mm)
- Increases plasma exposed areas by factor 2 5

CFC target (90,000 monoblocks): W baffle & dome (1.2M rods): Be main wall (300,000 tiles): $50 \text{ m}^2 \rightarrow 215 \text{ m}^2$ $100 \text{ m}^2 \rightarrow 460 \text{ m}^2$ $680 \text{ m}^2 \rightarrow 1290 \text{ m}^2$

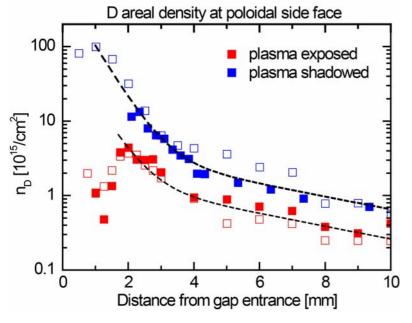
 \Box C_xH_y molecules and radicals form a:C:H co-deposits deep in gaps – how much

ITER mock-up

W rods in divertor baffle and dome

2cm

Retention in gaps twice that on plasma-facing surfaces (protected from re-erosion)



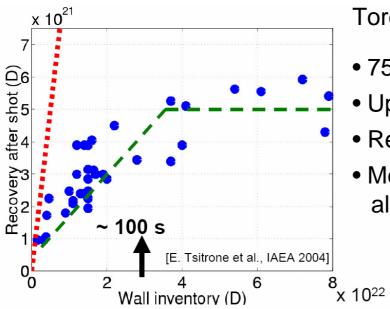
and how deep is on-going research

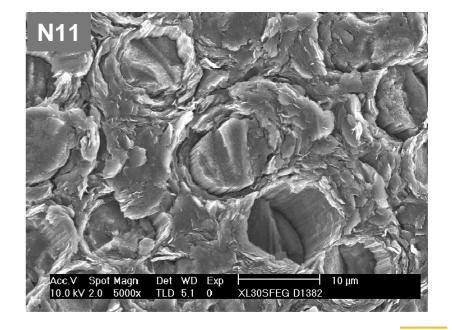
Potential for significant T inventory

TZM castellated monoblocks exposed to plasma for 200s in TEXTOR

□ D retention fall-off dependent on Γ_D and T_{tile}
 □ D_{gap} ~ 0.4% - 4% of Γ_D, between low and high Γ_D at T_{tile} ~200- 260°C
 □ Factor 10 decrease in D_{gap}, 30 → T_{tile} → 200°C

- Extrapolation to ITER based on Γ_D from B2-EIRENE modelling (Kukushkin, 2005):
 ⇒ 0.5 5gT/400s shot
- Maybe other factors, however:
 - strong function of gap width
 - carbon source (local or remote)
 - period of exposure




D/T retention in CFC bulk

ToreSupra:

- 75-85% D retention in short shots (<30s)
- Up to 100% D retention in long shots (>100s)
- Retention in short shots easily recovered by He glow
- Measurements of C erosion suggest co-deposition alone may not explain retention
 - \Rightarrow more than 1 mechanism?

Ma:

- Retention in bulk CFC being considered for high fluence conditions
- Lab studies indicate D retention to several μm in bulk
- **D** inventory \propto fluence^{0.5}
- Calc. suggest this may initially exceed co-deposition in Tore Supra

 \Rightarrow could affect choice of CFC for ITER

Conventional T-recovery schemes

- Tritium operation in JET required tritium recovery before manned vessel entry
- Traditional conditioning schemes (but able to evaluate effectiveness with tritium)

	Time (h)	T release (g)	Efficiency (recovery/inventory)	Recovery (gT/h/150m ²)
D ₂ tokamak discharges with S/P sweep	7	5.5	45%	2
Flushing with D_2 (1 – 10 Pa)	4	0.1	2%	0.06
D ₂ GDC/ECRH	5	<0.04	<1%	<0.02
Baking (135 °C) under vacuum	24	0.006	<1%	<0.001
Flushing with N ₂ (350 Pa, 150°C)	8	~0.15	3%	0.05
Flushing with air (100kPa)	2000	1.85	30%	0.002

■ Efficiencies much less than 80 – 98% that is required for ITER

 \Rightarrow Need to develop new T removal schemes

Must address all sources of retention and be compatible with ITER operation

T-removal through oxidation

- Tritium trapped in aC:D/T co-deposits \Rightarrow
- Oxidation an obvious candidate for detritiation through the reaction :

 $aC:D/T + O \rightarrow CO_x + DTO:D_2O:T_2O$

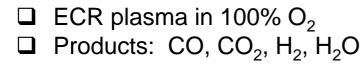
- In-situ no need for vessel entry
- Volatile products pumped from vessel
- Several schemes under investigation:

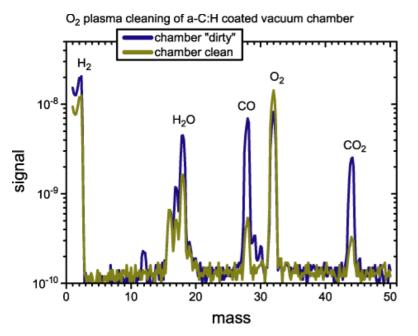
 \Box Baking in O₂

- \Box ECR or ICR μ -wave plasma in O₂ or He/O₂ mix
- **D** DC Glow discharge cleaning in He/O_2 mix
- Studies on-going in both laboratory and tokamak environments and both laboratory produced and tokamak co-deposited films

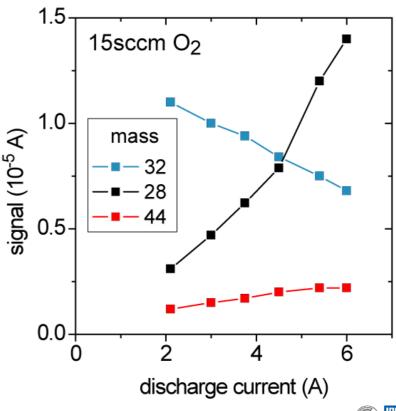
O₂ baking efficient, but at high T_{wall}

	Treatment	D Content (10 ²⁰ m ⁻²)	Removal efficiency (%)	Removal rate (gT/h/150m ²)
	Original surface	121		
	300°C, air, 2h	35	70	1.6
A CARLES AND A CARL	300°C, air, 10h	2.4	98	0.45
	550°C, air, 1h	7	94	4.3
a strange of the strange of the	1000°C,	6	95	4.3
800µm	vacuum, 1h 357°C, 0.3mb O ₂ (TEXTOR)			0.03


□ Molecular chemistry – O_2 penetrates all regions of deposition but


- Low D removal efficiency below ~300°C (*cf* ITER wall bakeout temp 240°C)
- High O₂ pressure needed for high removal efficiency
- Co-deposit not fully removed becomes flaky and peels off
 ⇒ Inhibited O penetration and release of volatiles due to carbide formation with impurities? WC and BeC may form in ITER ...
- O₃/O₂ mix effective at <200°C and low pressure but damage to bulk CFC seems to be too high

O-Plasma – effective at room temp



He/O₂ mixture:

• v_E limited by He ion flux at high %O₂ $\Rightarrow v_E$ saturates above few %O₂ Erosion rate, v_E

- \bullet increases with $\rm T_{surf} \Rightarrow {\bf chemical\ reactions}$
- and with bias volts
 ⇒ collisions
- \Rightarrow 2 step process: surface damage by ion bombardment then chemical erosion

He/O GDC in the tokamak environment EU Plasma-Wall Interactions

	Asdex Upgrade	TEXTOR
O ₂ /(O ₂ +He) chamber pressure discharge current discharge voltage RF assistance	2% 6.4 x 10 ⁻³ mb 3 x 1.8 A 600 V	0% – 100% 0 – 5 x 10 ⁻³ mb 4 x 1.5 A 400 V 120 W

- CO and CO₂ dominant
- T_2O 30 times higher than He GDC
- Production saturates at low O %

□ No removal from shadowed areas:

a:C:H coated samples behind first wall, deep in divertor untouched

□ or boronised regions:

B-coated sample coupons and boron coated co-deposited tiles unaffected

- Impact of WC, BeC in ITER?

Asdex Upgrade:

49h, 25g removed, 7x10¹⁸ C-at/s $\Rightarrow v_{E} \sim 1.4x10^{17}$ C-at m⁻²s⁻¹

TEXTOR:

3h, 5.2g removed, $2x10^{19}$ C-at/s $\Rightarrow v_E \sim 5.7x10^{17}$ C-at m⁻²s⁻¹

i.e. 0.075 - 0.3g T/h over 150m²

- Tokamak and Lab studies less clear on removal from tile gaps
- O+/O may penetrate several mm into sufficiently wide gaps

 \Rightarrow Castellation and tile gap design may be important for ITER



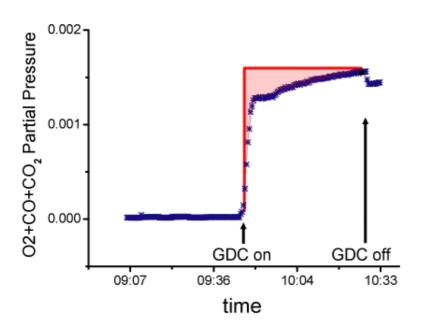
Impurities in aC:H reduce efficiency

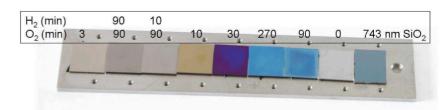
 Tokamak produced aC:H co-deposits on W substrate efficiently cleaned in He/O discharge

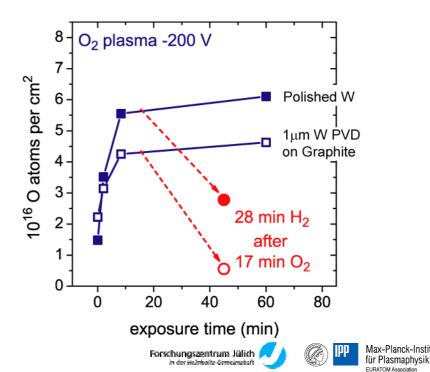
Fully removed with 6.25 hours lab GDC $\Gamma_i \sim 2.5 \times 10^{18} \text{ m}^{-2} \text{s}^{-1}$, 8mbar, 20% O_2 in He

- \Box Similar v_E to tokamak GDC
- v_E for tokamak co-deposits up to factor 10 less than for laboratory produced
- 80% co-deposit eroded during first 20% of plasma exposure

\Rightarrow effect of impurities in co-deposit building up at surface?

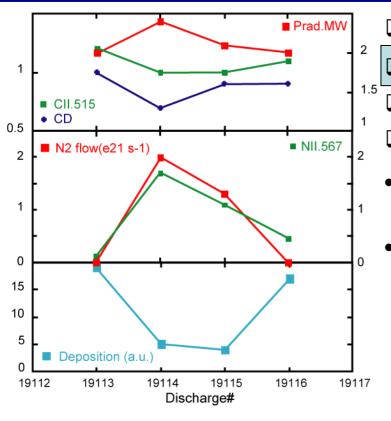

• W, Be will mix with aC:H in ITER


Collateral damage and recovery OK


Not all injected O_2 is pumped out of the vessel during GDC

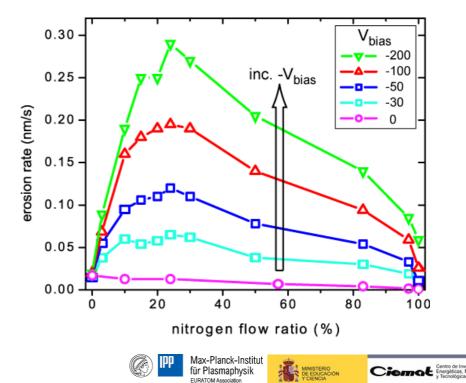
• Some O retained in metal oxides

- O retention higher at larger V_{bias} \Rightarrow opportunity for optimisation
- H₂ discharge effective at removing oxides



- TEXTOR Recovery: 66h H₂ GDC, 0.5h He GDC & boronisation
- Asdex Upgrade Recovery: 72h baking at 150°C, 10h He GDC & boronisation)

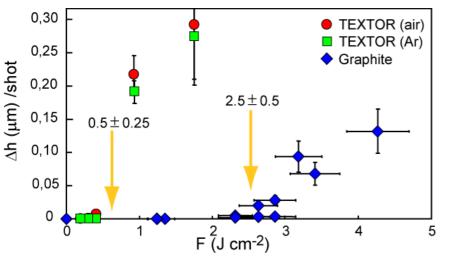
Will recovery extrapolate to BeO?


Alternative chemistry may have a role

- Synergistic interaction of H and N at surface – peaks at ~ 75%:25%
- Erosion rates high in H₂/N₂ plasmas
 ν_E up to 1µm/hour for lab deposits in ECR plasma less than O, but not optimised

- **1** N₂ injection into Asdex Upgrade sub-divertor
- Factor 5 reduction in aC:H net co-deposition rate
- No significant N retention
- □ Effect not seen with Ar (laboaratory studies)
 - 'Scavenging' proposed as one mechanism – moping-up of reactive radical pre-cursors
- But also alternative explanations -

T-removal through 'photonic cleaning'


- aC:H co-deposits have poor thermal conductivity compared to substrates (CFC, Be, W)
- Surface heat flux leads to rapid temperature rise in co-deposit ⇒ ablation or chemical 'bond-breaking'
- Two 'photonic cleaning' schemes under investigation:


LASERFlash-lamp

- Requires vessel access, but can operate in high magnetic fields and in vacuuo, inert gas or atmospheric conditions
- Studies on-going in both laboratory and tokamak environments and both laboratory produced and tokamak co-deposited films

Laser cleaning of TEXTOR tile

Galvo-scanning fibre laser developed for JET

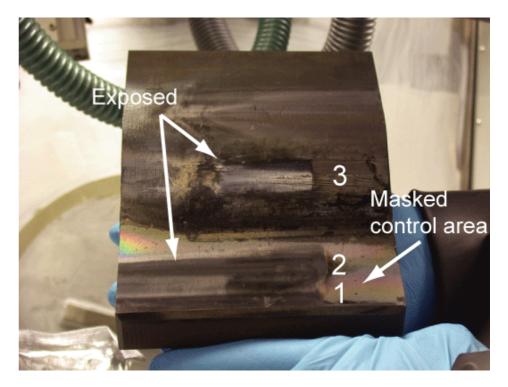
- Energy density threshold for removal
- Threshold factor 5 lower for co-deposit compared to graphite selective removal
- No difference between active and inert gas environment

- Trials conducted in JET BeHF
- Co-deposit easily removed but only 10% T released ⇒ micro-particulate?

Flash-lamp cleaning of tritiated aC:H

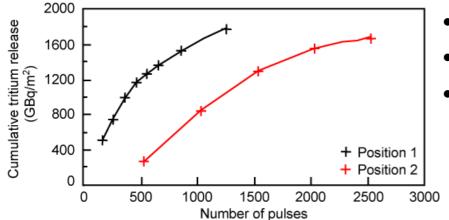
□ Photon flux from 500J, 140µs flash-lamp

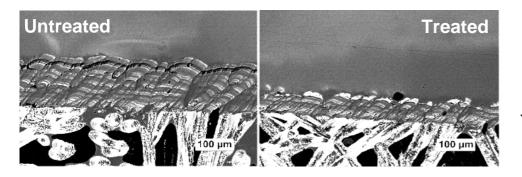
⇒3.6MW

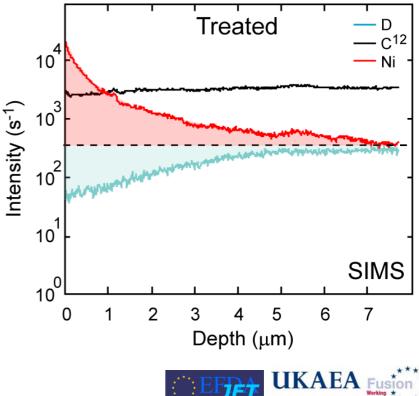

- Rep. rate 5Hz
- □ Focused using semi-elliptical cavity –
- □ Footprint ~30cm² [@] 30mm

 \Rightarrow 375MWm⁻², 6J/cm²

JET 2004 trial showed engineering feasibility of flash-lamp technology


- Trials now conducted using flash-lamp in JET berylium handling facility
- Aim to clean thick, tritiated co-deposit from inner divertor CFC tile


1st demonstration of T-removal


- Total T release ~9μg.
- Decreasing efficiency with number of pulses
- 40% of T inventory & 70-90 μm co-deposit, removed (off gas & SEM)

 \Rightarrow 0.075g T/h over 150m²

 $\hfill\square$ 7µm de-tritiation at surface of treated zone

- → Consistent with FE calcs of bulk heating above 700K
- ❑ Build-up of Ni at surface → explanation for roll-over of tritium release/pulse? (similar results for Be on other treated tiles)

Big 'toolbox' needed for ITER

- No single T-removal scheme likely to be sufficient let's not close any doors
- Integration of different schemes on different timescales will probably be required – the 'good housekeeping' approach

	No Action	'Good housekeeping'	%T removal/ mitigation	Possible technique
During the shot	3g	$3g \Rightarrow 1.8g$	40%	N ₂ Scavenging Optimisation of fuelling
End of shot &/or inter-shot	3g	1.8g ⇒ 1.1g	40%	D-only phase (20%) Disruption cleaning D-only discharges D μW-plasma
Overnight (10 hours)	30g	$11g \Rightarrow 9g$	20%	$D \mu W$ -plasma D_2 flush
Weekends (2 days)	150g	$45g \Rightarrow 30g$	35%	O_2/He or $N_2 \mu W$ -plasma and D- μW recovery
Monthly (9 days)	450g	$90 extrm{g} \Rightarrow 45 extrm{g}$	50%	O_2 /He or $N_2 \mu$ W-plasma O_2 /He GDC (fields off?) and D- μ W recovery
Annual (4 months)	3.6kg	350g ⇒ 35g	90%	Photonic-cleaning by flash- lamp or laser (RH entry)

Example of T-removal integrated into ITER operating schedule

□ Extrapolated from predicted/measured T-removal rates allowing for future optimisation

- Challenge of long term tritium retention with carbon known for at least 18 years but efforts to diagnose, model and resolve only expanding in last few years
- Considerable way to go before models providing reliable estimates for tritium retention with carbon in ITER are available
- Several T-removal schemes now being investigated but all have drawbacks no easy solutions. Much more effort needed to provide ITER with reliable technology
- Even if DT phase of ITER does not include CFC, co-deposit removal required to ensure carbon not present in vessel
- T-retention does not vanish in an all-metal ITER trapping with intrinsic BeO or in α-damaged W may not be trivial (e.g. 0.2g/400s shot)
- □ T-removal schemes for an all metal ITER (and future devices) may be necessary and may be more difficult but little or no effort yet