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Motivation for this talk BEFDA

In the DT phase, ~50 g T injected/400 s pulse
Mobilisable tritium inventory limit (safety) - 350g

700m?2 Be first wall and start-up limiter modules
100m?2 W divertor dome and baffle region

50m?2 Carbon Fibre Composite (CFC) for the
divertor strike point tiles

Carbon plasma facing components known
to cause trapping of hydrogenic atoms for
~18 years (and tritium for ~15)

ITER plasma facing materials mix
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Outline and aims BEEFDA

O Challenge of operating with CFC and tritium mix

O Growing body of experimental data on tritium retention with carbon
and improvements in understanding of the underlying physics

 Current status of research into tritium removal schemes; efficiency
and applicability

O Integration of tritium removal into ITER operations



D/T retention linked to C transport BEFDA

 C3D, puffed into outer divertor
d Tile analysis (SIMS/IBA) to track C13

0 EDGE2D/NIMBUS used to model C13
trajectories in background plasma
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» DIT trapped in aC:H codeposited « Reasonable agreement with redeposition

layers = . at inner divertor — EXB drifts, SOL
» Understanding C erosion and
flows, ELMs all play arole

redeposition mechanisms is key
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Be transport will impact C erosion EEFDA

* >80% of wall area in ITER is beryllium

* Eroded Be will transport to divertor (as ions)

= modify erosion and co-deposition

U Preliminary modelling using local erosion &
deposition model ERO (still many open questions)

L Model assumptions validated against TEXTOR

C13 injection experiments
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—

0.5g — 6.49gT/400s shot

nnnnnnnnnnnnnnnnnnnnnnnn



EU Plasma-Wall Interactions Task Force

Clear need for T removal schemes BEFDA
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O Strategies for T removal essential if CFC targets in DT phase

0 Removal efficiency must be 80% - 98%



aC:H co-deposits form in tile gaps BEFDA

» All ITER plasma facing components will be castellated ITER mock-up
« >2,000,000 Gaps in ITER (typ. 0.5-1mm x 10mm)

* Increases plasma exposed areas by factor 2 - 5

CFC target (90,000 monoblocks): 50 m?2 — 215 m?
W baffle & dome (1.2M rods): 100 m? — 460 m?
Be main wall (300,000 tiles): 680 m? — 1290 m?

2cm W rods in divertor baffle and dome

d C,H, molecules and radicals form a:C:H co-deposits deep in gaps — how much
and how deep is on-going research

CFC tile segments from JET Mk1 divertor,
6mm gaps

Retention in gaps twice that on plasma-facing
surfaces (protected from re-erosion)

*

* *
*
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Potential for significant T inventory BEFDA

D areal density at poloidal side face
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« Extrapolation to ITER based on I'; from B2-EIRENE
modelling (Kukushkin, 2005):
= 0.5 -5gT/400s shot

* Maybe other factors, however:

O strong function of gap width
O carbon source (local or remote)
L period of exposure
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BLEFDA
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D/T retention in CFC bulk
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Conventional T-recovery schemes BEFDA

 Tritium operation in JET required tritium recovery before manned vessel entry
 Traditional conditioning schemes (but able to evaluate effectiveness with tritium)

Time T Efficiency Recovery
(h) release | (recovery/inventory) | (gT/h/150m?)
(9)
D, tokamak discharges with S/P 7 5.5 45%, 2
sweep
Flushing with D, (1 — 10 Pa) 4 0.1 2% 0.06
D, GDC/ECRH 5 <0.04 <1% <0.02
Baking (135 °C) under vacuum 24 0.006 <1% <0.001
Flushing with N, (350 Pa, 150°C) 8 ~0.15 3% 0.05
Flushing with air (100kPa) 2000 | 1.85 30% 0.002

O Efficiencies much less than 80 — 98% that is required for ITER
= Need to develop new T removal schemes

L Must address all sources of retention and be compatible with ITER operation




T-removal through oxidation BLEFDA
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e Tritium trapped in aC:D/T co-deposits =
« Oxidation an obvious candidate for detritiation through the reaction :

aC:D/T + O - CO, + DTO:D,0O:T,0

* In-situ — no need for vessel entry
* Volatile products pumped from vessel
« Several schemes under investigation:

O Baking in O,
d ECR or ICR p-wave plasma in O, or He/O, mix
O DC Glow discharge cleaning in He/O, mix

e Studies on-going in both laboratory and tokamak environments and both
laboratory produced and tokamak co-deposited films



O, baking efficient, but at high T,

BLEFDA
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Treatment

Original surface
300°C, air, 2h
300°C, air, 10h
550°C, air, 1h

1000°C,
vacuum, 1h
357°C, 0.3mb O,
(TEXTOR)

D
Content
(1020m-2)

121

35
2.4

7
6

Removal
efficiency
(%)

70
98
94
95

Removal rate
(gT/h/150m?)

1.6
0.45
4.3
4.3

0.03

O Molecular chemistry — O, penetrates all regions of deposition but ....

 Low D removal efficiency below ~300°C (cf ITER wall bakeout temp 240°C)
« High O, pressure needed for high removal efficiency
o Co-deposit not fully removed — becomes flaky and peels off

= Inhibited O penetration and release of volatiles due to carbide
formation with impurities? WC and BeC may form in ITER ...

« 0O,/0, mix effective at <200°C and low pressure but damage to bulk CFC

seems to be too high

-
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O-Plasma — effective at room temp BEFDA
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He/O GDC in the tokamak environment EHEFDA

Asdex TEXTOR Asdex Upgrade:
Upgrade

49h, 25g removed, 7x1018 C-at/s

0,/(0,+He) 204 . 0% — 100%, = vg ~ 1.4x10%7 C-at m?s!

chamber pressure 6.4x10"mb | 0-5x10"mb _

discharge current 3x1.8A 4x15A TEXTOR:

discharge voltage 600 V 400 V 3h, 5.2g removed, 2x10*° C-at/s

RF assistance 120 W = vg ~ 5.7x10Y7 C-at m2s!

« CO and CO, dominant l.e.|0.075 - 0.3g T/h over 150m?

 T,O 30 times higher than He GDC
» Production saturates at low O %

 Tokamak and Lab studies less
clear on removal from tile gaps

 O+/O may penetrate several mm
into sufficiently wide gaps

O No removal from shadowed areas:
a:C:H coated samples behind first wall,
deep in divertor untouched

O or boronised regions:
B-coated sample coupons and boron
coated co-deposited tiles unaffected

- Impact of WC, BeC in ITER?

= Castellation and tile gap
design may be important for ITER
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Impurities in aC:H reduce efficiency =~ HEFDA

 Tokamak produced aC:H co-deposits on W
substrate efficiently cleaned in He/O discharge

Fully removed with 6.25 hours lab GDC ' Similar ve to tokamak GDC
[(~2.5x1018 m-2s-1, 8mbar, 20% O, in He

d v for tokamak co-deposits up
to factor 10 less than for
laboratory produced

0 80% co-deposit eroded during
first 20% of plasma exposure

= effect of impurities in co-deposit building up at surface?
* W, Be will mix with aC:H in ITER
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Collateral damage and recovery OK ~ HEEEFDA

Not all injected O, is pumped out « Some O retained in metal oxides
of the vessel during GDC
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Alternative chemistry may have a role

B LEFDA
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N, injection into Asdex Upgrade sub-divertor
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« Synergistic interaction of H and N
at surface — peaks at ~ 75%:25%

 Erosion rates high in H,/N, plasmas

ve up to 1um/hour for lab deposits

iIn ECR plasma
less than O, but not optimised

No significant N retention
Effect not seen with Ar (laboaratory studies)

e ‘Scavenging’ proposed as one mechanism

— moping-up of reactive radical pre-cursors

erosion rate (nm/s)

« But also alternative explanations -
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T-removal through ‘photonic cleaning’ HEIEFDA
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 aC:H co-deposits have poor thermal conductivity compared to substrates
(CFC, Be, W)

» Surface heat flux leads to rapid temperature rise in co-deposit = ablation or
chemical ‘bond-breaking’

 Two ‘photonic cleaning’ schemes under investigation:

0 LASER
O Flash-lamp

* Requires vessel access, but can operate in high magnetic fields and in
vacuuo, inert gas or atmospheric conditions

e Studies on-going in both laboratory and tokamak environments and both
laboratory produced and tokamak co-deposited films
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Laser cleaning of TEXTOR tile EEFDA

030 |- @ TEXTOR (air)
0.25 | @ Graphite
020 | i

Ah (um) /shot

Galvo-scanning fibre laser developed for JET

» Energy density threshold for removal

m Textor (A | * Threshold factor 5 lower for co-deposit
compared to graphite — selective removal

25+05 * No difference between active and inert

015 - 054025 ]
0,10 |

gas environment

 Trials conducted in JET BeHF
» Co-deposit easily removed but only 10%
T released = micro-particulate?

_ Farschungszentrum Jdlich ". @j
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Flash-lamp cleaning of tritiated aC:H  BEEEFDA

O Photon flux from 500J, 140us flash-lamp
—3 6MW . _Trials now cpnducted .using f_Iqsh-Iamp
in JET berylium handling facility

O Rep. rate 5Hz

U Focused using semi-elliptical cavity —

d Footprint ~30cm?2 @ 30mm
=375MWm-2, 6J/cm?

« Aim to clean thick, tritiated co-deposit
from inner divertor CFC tile

JET 2004 trial showed engineering
feasibility of flash-lamp technology
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Cumulative tritium release

Q Build-up of Ni at surface — explanation for

« Total T release ~9ug.
» Decreasing efficiency with number of pulses

* 40% of T inventory & 70-90 um co-deposit,
removed (off gas & SEM)

+ Position 1
| | | - Plosition 2 —

0.075g T/h over 150m?2

500 1000 1500 2000 2500 3000
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O 7um de-tritiation at surface of treated zone

— Consistent with FE calcs of bulk
heating above 700K

roll-over of tritium release/pulse? (similar
results for Be on other treated tiles)
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Big ‘toolbox’ needed for ITER BLEFDA

* No single T-removal scheme likely to be sufficient — let’s not close any doors

* Integration of different schemes on different timescales will probably be
required — the ‘good housekeeping’ approach

No ‘Good %T Possible technique
Action | housekeeping’ | removal/
mitigation
During the shot 39 3g = 1.8¢ 40% N2 Scavenging
Optimisation of fuelling
End of shot &/or 39 1.8g = 1.1g 40% D-only phase (20%)
inter-shot Disruption cleaning
D-only discharges
D uW-plasma
Overnight 30g 11g = 9g 20% D uW-plasma
(10 hours) D, flush
Weekends 150g 459 = 309 35% O2/He or N, uW-plasma
(2 days) and D-uW recovery
Monthly 4509 90g = 45¢g 50% O,/He or N, pW-plasma
(9 days) O./He GDC (fields off?)
and D-uW recovery
Annual 3.6kg | 350g = 35¢g 90% Photonic-cleaning by flash-
(4 months) lamp or laser (RH entry)

0 Example of T-removal integrated into ITER operating schedule
O Extrapolated from predicted/measured T-removal rates allowing for future optimisation
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Concluding remarks EEFDA

0 Challenge of long term tritium retention with carbon known for at least 18 years
but efforts to diagnose, model and resolve only expanding in last few years

O Considerable way to go before models providing reliable estimates for tritium
retention with carbon in ITER are available

U Several T-removal schemes now being investigated but all have drawbacks — no
easy solutions. Much more effort needed to provide ITER with reliable technology

O Even if DT phase of ITER does not include CFC, co-deposit removal required to
ensure carbon not present in vessel

O T-retention does not vanish in an all-metal ITER — trapping with intrinsic BeO or in
a-damaged W may not be trivial (e.g. 0.2g/400s shot)

O T-removal schemes for an all metal ITER (and future devices) may be
necessary — and may be more difficult — but little or no effort yet



