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PISCES-B has been modified to allow exposure of
samples to Be seeded plasma
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A small beryllium impurity concentration in the
plasma drastically suppresses carbon erosion
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Be-rich surface layers form during exposure
and shield underlying carbon from erosion
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 ITER is expected to have 1-10% Be impurity
concentration in the divertor plasma
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Erosion suppression exhibits a
temporal evolution (tgec)
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« Understanding the temporal
behavior is critical to
determining the
fundamental mechanisms
responsible for erosion
mitigation

e PMI modeling codes should
be able to reproduce
temporal behavior to
provide confidence (o. Borodin

will describe this)
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Evolution of a Be/C mixed-material surface
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Incident Be i1ons react with C target atoms forming Be,C

The presence of Be in the surface of the carbon target reduces
chemical erosion of the surface

Once all surface carbon is bound as Be,C, the Be,C layer
thickness saturates

Subsequent Be ion bombardment enriches the surface with Be
that is easier to erode (compared to the Be in Be,C)

Primary species eroding from the target and being codeposited
with deuterium Is Be
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Incident Be i1ons react with C target atoms forming Be,C

The presence of Be in the surface of the carbon target reduces
chemical erosion of the surface

Once all surface carbon is bound as Be,C, the Be,C layer
thickness saturates

Subsequent Be ion bombardment enriches the surface with Be
that is easier to erode (compared to the Be in Be,C)

Primary species eroding from the target and being codeposited
with deuterium Is Be
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In-situ XPS analysis shows carbidic bonding

 Virtually all C in the surface is bound in carbidic
bonds after mitigation of chemical erosion
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Incident Be i1ons react with C target atoms forming Be,C

The presence of Be in the surface of the carbon target reduces
chemical erosion of the surface

Once all surface carbon is bound as Be,C, the Be,C layer
thickness saturates

Subsequent Be ion bombardment enriches the surface with Be
that Is easier to erode (compared to the Be in Be,C)

Primary species eroding from the target and being codeposited
with deuterium Is Be
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Be doping seems to act like B doping,
Inhibiting chemical erosion
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In-situ Be doping of graphite exhibits similar
behavior to boron doping of graphite
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Incident Be i1ons react with C target atoms forming Be,C

The presence of Be in the surface of the carbon target reduces
chemical erosion of the surface

Once all surface carbon is bound as Be,C, the Be,C layer
thickness saturates

Subsequent Be ion bombardment enriches the surface with Be
that is easier to erode (compared to the Be in Be,C)

Primary species eroding from the target and being codeposited
with deuterium Is Be
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Be,C layer thickness saturates

UW-Madison RBS spectra of P-B
samples exposed to unseeded and Be-
seeded plasma
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Be layer observed after
~3E22 Be*/m? (i.e 1600 s)
accounts for virtually all
Incident Be

Be layer after 1E23 Be*/m?
(i.e 4800 s) accounts for
only ~30% of incident Be

Tge/c Under these plasma
exposure conditions would
be ~ 2000 sec
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Evolution of a Be/C mixed-material surface
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Incident Be i1ons react with C target atoms forming Be,C

The presence of Be in the surface of the carbon target reduces
chemical erosion of the surface

Once all surface carbon is bound as Be,C, the Be,C layer
thickness saturates

Subsequent Be 1on bombardment enriches the surface with Be
that Is easier to erode (compared to the Be in Be,C)

Primary species eroding from the target and being codeposited
with deuterium Is Be
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Be first shuts down C chemical erosion, then
subsequent Be re-erodes from surface

Eeryllium erosion from C target (a.u)

Beryllium erosion from C taroet (a.u)
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Be oven opens at t = 0 sec.

Be ions arriving at t < 50s
shut down chemical erosion

by forming Be,C surface layer
[Baldwin JNM 2006 available on-line]

Be,C surface thickness
saturates after carbide forms

50s in this exposure Baidwin inm
2006]

Once Be,C is formed,
subsequent Be arriving (T >
50 s) is more easily eroded
and begins coating windows
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Incident Be i1ons react with C target atoms forming Be,C

The presence of Be in the surface of the carbon target reduces
chemical erosion of the surface

Once all surface carbon is bound as Be,C, the Be,C layer
thickness saturates

Subsequent Be ion bombardment enriches the surface with Be
that Is easier to erode (compared to the Be in Be,C)

Primary species eroding from the target and being codeposited
with deuterium Is Be
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WPM samples show collection of beryllium-rich
codeposits during Be seeding runs

Carbon target : 700°C target exposure e =0 sec codeposited layer
begins to form on Ta witness
plate (100 nm in depth scale)
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Chemical erosion suppression time (tg.c) depends on several
variables that can be varied almost independently
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PISCES chemical erosion mitigation time scaling
predicts suppression between ELMs In ITER

Lo/ [S] = 1.0X107 g 19401 E0.9403 [+06%0.3 exp((4.8+0.5)x103/T,)

From D. Nishijima et al., PSI17.
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Surface temperature effects reaction rate

Be plasma concentration effects arrival
rate at surface

lon energy effects erosion rate
lon flux impacts through redeposition

Type of graphite does not seem to play a
significant role (ATJ vs. CFC) (r. pugno poster)

Scaling law using these variables has been
developed to allow extrapolation to ITER

conditions (tgec'TER ~ 6 msec)
[cy, =0.05, E, =20 eV, T, =1200 K and /7 = 102 m2s?]
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Faster mitigation time results in less C content in
witness plate codeposits

composition (%)

Carbon target : 300°C target exposure Carbon target : 700°C target exposure
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More C is detected in codeposits during lower C target temperature exposure
(possibly due to a combination of lower chemical erosion yield and/or
quicker beryllium carbide layer formation at higher temperature)
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T accumulation in ITER Is dominated by
codeposited material

_ . T A e Impurity content in Be
C J1C ayer ] . . .
- e 1 bgek i codeposits impacts D retention
| sssnsnsnansnnnnnnnnnnnnn M ayereraf[11]: : : Ievel
Present
1r data _
o _ PIScEs |« Surface temperature during
5 °F E ERR: codeposition has a more
i ol 10\ causey & pronounced effect on retention
i TPE 1 Walsh [2] |
% Causey & TPE . . . .
i Walsh [2] 1 » Be codeposits will be in line-of-
Present TPE[] ) h f . | .
— data —
3:— PISCES @ )3 sight ot erosion location
1 | L | I I i AR R
400 600 800 400 800 * Role of oxygen (i.e. BeO) in
Temperature (K) codeposits still needs to be
From Baldwin et al. JINM 337-339(2005)590. determined
Refs. 2, 10 & 11 therein
LX: R. Doerner, PFMC-11 Workshop, Greifswald, Oct. 10, 2006 W




T retained in Be rich codeposits can be more
easily removed during divertor bakeout
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Thermal transient experiments:
Motivation for positive pulse biasing

PISCES has shown that Be plasma impurities suppress
carbon target erosion at temperatures up to 1000°C

ITER will experience large temperature excursions (up to
3800°C) at the carbon dump plates during periodic ELMs

Will the thin, surface Be, Be/C layers survive such dramatic
temperature excursions?

It is possible to simulate the large temperature excursions
associated with ITER ELMs in PISCES-B using positive
sample biasing during plasma discharges.
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Large power loads can be drawn to P-B
sample during positive biasing

e During 1.5 MW/m? power
pulse graphite surface
temperature rises to
~2000°C (by pyrometers)

e Bulk graphite temperature
rise at back of sample
~20°C during 0.1 s. pulse
(thermocouple)

o Surface temperature rise Is
limited by power supplies
(IPP has supplied a new
power supply as part of US-
EU collaboration)

\-
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CD Intensity (target-background)

Transient surface heating promotes Be,C
formation leading to shorter mitigation times

 Pulsing surface temperature

g0 B moas to the 1200°C range results

O et ot} in faster chemical erosion
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Surface temperature during heat pulse ~ 1200°C
[from R. Pungo et al., PSI17]
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Tungsten beryllides (Be/W) have very recently
become a big mixed-material concern
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Be,W, Be,;,W and Be,,W are
all stable beryllides with
significantly lower melting
temperature than W

Possibility for a major
malfunction was realized
(fortuitously?) during
PISCES Be seeding
experiments, where the W
crucible holding molten Be
experienced melting during
operation at only ~1200°C
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Tungsten beryllide (Be, W) formation may
plague hot W plasma facing components
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Be,W and Be;,W appear
preferred (Be,,W not seen)

Beryllides only form in
high temperature W
surfaces (> 600°C)

Be diffusion rate into W
becomes significant above
~800°C

At high temperature, Be
availability (high vapor
pressure of Be) on the
surface can limit growth
rate
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Plasma conditions play a dominant role in
determining the Be availablility on the surface

fBe plasma(l Rf) = DBe plasma(l Rd) +fBeY (1- Rd) + (1_Re) * Dok

Be- Be plasma evap
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How might mixed materials impact ITER?
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Due to elevated temperature of C dump
plates, carbides will likely form and limit
C erosion

Be deposition on W baffles will likely not
result in significant beryllide formation
(T ~ 400°C)

If a full C divertor were employed, carbide
formation on regions of the baffles, where
the temperature is lower, would take
longer, resulting in more C erosion and
thereby more hard-to-remove tritium

If a full W divertor were used, beryllide
formation near the strike points could be a
concern (perhaps an issue for the JET
ITER-like wall experiments)

Beryllide formation in ITER may be a
concern on the W cassette liner ‘louvers’
(that are designed to be hot surfaces)
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