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Outline

• Introduction 
• Technical results

– Temporal behavior of chemical erosion suppression
– D retention in, and release from, Be- rich codeposits
– Response of Be/C to thermal transients
– Be/W formation conditions

• Summary of possible mixed-material 
implications for ITER
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PISCES-B has been modified to allow exposure of 
samples to Be seeded plasma
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P-B experiments simulate
Be erosion from ITER wall,
subsequent sol transport 
and interaction with W baffles
or C dump plates, as well as
investigation of codeposited
materials using witness plates



A small beryllium impurity concentration in the 
plasma drastically suppresses carbon erosion 

-50 V bias, 200ºC, Te = 8 eV, ne =  3 e 12 cm-3
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Be-rich surface layers form during exposure 
and shield underlying carbon from erosion
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• ITER is expected to have 1-10% Be impurity 
concentration in the divertor plasma



Erosion suppression exhibits a 
temporal evolution (τBe/C)

• Understanding the temporal 
behavior is critical to 
determining the 
fundamental mechanisms 
responsible for erosion 
mitigation

• PMI modeling codes should 
be able to reproduce 
temporal behavior to 
provide confidence (D. Borodin 
will describe this)
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Evolution of a Be/C mixed-material surface

• Incident Be ions react with C target atoms forming Be2C
• The presence of Be in the surface of the carbon target reduces 

chemical erosion of the surface
• Once all surface carbon is bound as Be2C, the Be2C layer 

thickness saturates
• Subsequent Be ion bombardment enriches the surface with Be 

that is easier to erode (compared to the Be in Be2C)
• Primary species eroding from the target and being codeposited

with deuterium is Be
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In-situ XPS analysis shows carbidic bonding

• Virtually all C in the surface is bound in carbidic 
bonds after mitigation of chemical erosion
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Be doping seems to act like B doping, 
inhibiting chemical erosion
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• Graphite dopants can alter 
the balance between 
hydrogenation steps that 
lead to thermal chemical 
erosion [Roth JNM 266-269(1999)51.]

• In-situ Be seeding (Be2C 
surface formation) may 
also affect chemical 
sputtering term
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In-situ Be doping of graphite exhibits similar 
behavior to boron doping of graphite

Temp (K)

Time (sec)

• Dopant increases retention
• Dopant shifts hydrogenic release 

to lower temperature
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Solid line Be seeding
Dashed line no Be seeding

From A. Schenk JNM 220-222(1995)767 (B doping).
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Be2C layer thickness saturates

• Be layer observed after 
~3E22 Be+/m2 (i.e 1600 s) 
accounts for virtually all 
incident Be

• Be layer after 1E23 Be+/m2

(i.e 4800 s) accounts for 
only ~30% of incident Be

• τBe/C under these plasma 
exposure conditions would 
be ~ 2000 sec
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Be first shuts down C chemical erosion, then 
subsequent Be re-erodes from surface

– Be oven opens at t = 0 sec.

– Be ions arriving at t < 50s 
shut down chemical erosion 
by forming Be2C surface layer 
[Baldwin JNM 2006 available on-line]

– Be2C surface thickness 
saturates after carbide forms 
50s in this exposure [Baldwin JNM 
2006]

– Once Be2C is formed, 
subsequent Be arriving (T > 
50 s) is more easily eroded 
and begins coating windows
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WPM samples show collection of beryllium-rich
codeposits during Be seeding runs

• t = 0 sec codeposited layer 
begins to form on Ta witness 
plate (100 nm in depth scale)

• Only a small amount of C is 
initially collected (90 – 100 
nm depth scale)

• Almost pure Be (little O) 
continues to be deposited until 
discharge terminates (0 nm 
depth scale, surface of 
codeposited film)
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Chemical erosion suppression time (τBe/C) depends on several 
variables that can be varied almost independently
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PISCES chemical erosion mitigation time scaling 
predicts suppression between ELMs in ITER

τBe/C
scale [s] = 1.0x10-7 cBe

-1.9±0.1 Ei
0.9±0.3 Γi

-0.6±0.3 exp((4.8±0.5)x103/Ts)

From D. Nishijima et al., PSI17.
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• Surface temperature effects reaction rate
• Be plasma concentration effects arrival 

rate at surface
• Ion energy effects erosion rate
• Ion flux impacts through redeposition
• Type of graphite does not seem to play a 

significant role (ATJ vs. CFC) (R. Pugno poster)

• Scaling law using these variables has been 
developed to allow extrapolation to ITER 
conditions (τBe/C

ITER ~ 6 msec) 
[cBe = 0.05, Ei = 20 eV, Ts = 1200 K and Γi = 1023 m-2s-1]
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Faster mitigation time results in less C content in 
witness plate codeposits

Carbon target : 300ºC target exposure Carbon target : 700ºC target exposure

U C S D
University of California San Diego

R. Doerner, PFMC-11 Workshop, Greifswald, Oct. 10, 2006 

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

100500

 

 

co
m

po
si

tio
n 

(%
)

Depth (nm)

 Be%
 C%
 O%
 Ta%

0 20 40 60 80 100 120

0

10

20

30

40

50

60

70

80

90

100

100500

 Be%
 C%
 O%
 Ta-%

 

 

A
to

m
ic

 %

Depth (nm)

More C is detected in codeposits during lower C target temperature exposure 
(possibly due to a combination of lower chemical erosion yield and/or 
quicker beryllium carbide layer formation at higher temperature)



T accumulation in ITER is dominated by 
codeposited material

• Impurity content in Be 
codeposits impacts D retention 
level

• Surface temperature during 
codeposition has a more 
pronounced effect on retention

• Be codeposits will be in line-of-
sight of erosion location

• Role of oxygen (i.e. BeO) in 
codeposits still needs to be 
determined

ITER bake

D/C

From Baldwin et al. JNM 337-339(2005)590.
Refs. 2, 10 & 11 therein
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T retained in Be rich codeposits can be more 
easily removed during divertor bakeout

• Although more hydrogen 
isotopes are retained during 
lower surface temperature Be
codeposition, they are more 
easily desorbed (role of oxygen 
needs to be determined)

• ITER can bake divertor to 375°C 
(after coolant drain)

• Oxygen bake may not be 
needed to remove fuel atoms 
from codeposits
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Thermal transient experiments:
Motivation for positive pulse biasing

• PISCES has shown that Be plasma impurities suppress 
carbon target erosion at temperatures up to 1000°C

• ITER will experience large temperature excursions (up to 
3800°C) at the carbon dump plates during periodic ELMs

• Will the thin, surface Be, Be/C layers survive such dramatic 
temperature excursions?

• It is possible to simulate the large temperature excursions 
associated with ITER ELMs in PISCES-B using positive 
sample biasing during plasma discharges.
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Large power loads can be drawn to P-B 
sample during positive biasing
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• During 1.5 MW/m2 power 
pulse graphite surface 
temperature rises to 
~2000°C (by pyrometers)

• Bulk graphite temperature 
rise at back of sample 
~20°C during 0.1 s. pulse 
(thermocouple)

• Surface temperature rise is 
limited by power supplies 
(IPP has supplied a new 
power supply as part of US-
EU collaboration)



Transient surface heating promotes Be2C 
formation leading to shorter mitigation times
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[from R. Pungo et al., PSI17]

• Pulsing surface temperature  
to the 1200°C range results 
in faster chemical erosion 
suppression
– Be2C disassociates at 

~2200°C at 1 atm
– Beryllium boiling point = 

2471°C at 1 atm
• D retention during transient 

surface heating also 
increases by ~50% both 
with and without Be plasma 
seeding
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Tungsten beryllides (Be/W) have very recently 
become a big mixed-material concern

• Be2W, Be12W and Be22W are 
all stable beryllides with 
significantly lower melting 
temperature than W

• Possibility for a major 
malfunction was realized 
(fortuitously?) during 
PISCES Be seeding 
experiments, where the W 
crucible holding molten Be 
experienced melting during 
operation at only ~1200ºC
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R. P. Doerner et al., J. Nucl. Mater. 342(2005)63.



Tungsten beryllide (BexW) formation may 
plague hot W plasma facing components
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• Be2W and Be12W appear 
preferred (Be22W not seen)

• Beryllides only form in 
high temperature W 
surfaces (> 600°C)

• Be diffusion rate into W 
becomes significant above 
~800°C

• At high temperature, Be 
availability (high vapor 
pressure of Be) on the 
surface can limit growth 
rate

Measurements from SNLL (PSI-17)
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Plasma conditions play a dominant role in 
determining the Be availability on the surface
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• At high surface temperature, 
Be sublimation may prevent 
significant beryllide formation

• Sputtering at higher incident 
ion energies also tends to 
prevent significant beryllide
formation

• Higher incident plasma flux 
tends to push energy, and 
temperature, necessary to 
limit beryllium availability to 
larger values

fBe Γplasma(1–Rf)  = YD-BeΓplasma(1–Rd) + fBeYBe-BeΓplasma(1–Rd) +Γevap(1–Re) + Dbulk

(solid lines) (dashed lines)
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How might mixed materials impact ITER?
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• Due to elevated temperature of C dump 
plates, carbides will likely form and limit 
C erosion

• Be deposition on W baffles will likely not 
result in significant beryllide formation 
(TW ~ 400°C)

• If a full C divertor were employed, carbide 
formation on regions of the baffles, where 
the temperature is lower, would take 
longer, resulting in more C erosion and 
thereby more hard-to-remove tritium

• If a full W divertor were used, beryllide 
formation near the strike points could be a 
concern (perhaps an issue for the JET 
ITER-like wall experiments)

• Beryllide formation in ITER may be a 
concern on the W cassette liner ‘louvers’ 
(that are designed to be hot surfaces)
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