Max-Planck-Institut für Plasmaphysik

Characterization and **erosion** of metal-containing carbon layers

Martin Balden

Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching, Germany

Materials Research Division (MF)

Outline

Introduction

- Importance of mixed layers
- Why are we interested in metal-containing amorphous carbon layers (a-C:Me)?

Characterization

- Which material systems are investigated?
- How are specimens produced?
- Which characterization techniques are applied to obtain which material property?

Chemical erosion by hydrogen impact

- Total erosion yield of carbon: IBA
- Chemical erosion yield (CD₄): QMS

Conclusion

Introduction

Plasma-facing materials: ITER design (Mix)

SEM

JET: ITER-like wall project

110-13: Matthews, Hirai, Neu, Lungu, P06, P50-52

Introduction: Mixed materials & doping

Chemical erosion of carbon by hydrogen

source term: re-deposited C layers containing tritium

waterial mix (Be, W, C, steels, ...) ⇒ erosion / deposition

mixed layers: properties

- composition
- thermal stability

- ...

wicrostructure

Reduction of chemical erosion by doping

C rich

(18: Doerner)

Introduction: Metal-containing carbon films

to simulate mixed layers

when magnetron sputtered metal-containing carbon films

well characterized <u>model materials</u>

♦ laboratory erosion studies on a-C:Me films

♦ focused on W + C (additional: Ti, V, Zr)

P30 Galilea

Introduction: Investigation strategy

Investigation of mixed layers

composition, distribution in depth, lateral homogeneity, impurities, crystallinity, chemical state, film morphology

- characterization on
 - atomic level
 - nanometer scale
 - micrometer scale

\$ chemical erosion

- substitution with the second s
- + total erosion yield: MeV ion beam analysis (weight loss; in-situ)
- + chemical erosion yield: mass spectrometry

Outline

Production and Characterization

Production of a-C:Me layers

- metal-doped amorphous carbon layers:
 - magnetron sputter deposition dual source, 300 K
 - single and triple layers on graphite or Si

 - superior the erosion superior superior the erosion superior the erosion superior the erosion
 - 0.2-2 µm
- no surface-substrate influence

- dopant (W, Ti, V, Zr)
- concentrations (0 20 %)
- annealing: 500-1300 K (0.25 & 2 h) (e.g. carbide formation, diffusion)

composition, homogeneity, morphology

Composition, distribution & impurities (RBS)

Layer morphology (SEM, AFM)

- homogeneous, columnar growth
- structures size triggered by substrate roughness
- no change in columnar growth by dopant

 no significant changes by annealing

Outline

Chemical bonding of metals and crystallinity

Local atomic environment (XAS: EXAFS)

EXAFS: Extended X-ray absorption fine structure

Photo electrons

Interference / Oscillations ⇒ EXAFS

Information about the local atomic environment of the absorbing atom (Neighboring atoms N, distance R, disorder σ)

Local atomic environment (XAS: EXAFS)

Doping with Ti, V & Zr

- "as-deposited": amorphous / disorder - non-metallic state
- carbide structure already at 1100 K (qualitative ⇒ quantitative)

Exception W-doping:

- "as-deposited": higher order
- annealed: only slight changes

Crystallinity of layers (XRD): annealing

Crystallinity of W-doped layers (XRD)

- already "as-deposited" show peak
- sub-carbide (W₂C)
 instead of carbide (WC)
 more pronounced
 after annealing
- grain size: ~ 2 nm (always)
 (estimation with Scherrer's formula)

Crystallinity of W-doped layers (XRD)

- already "as-deposited" show peak
- sub-carbide (W₂C)
 instead of carbide (WC)
 more pronounced
 after annealing
- grain size: ~ 2 nm (always)
 (estimation with Scherrer's formula)

Annealing at 1700 K

♦ WC → larger grains
>20 nm

Outline

Chemical erosion

Erosion Experiments: High Current Ion Source

Experimental setup

- mono-energetic mass-separated ion beam:
 30 eV, 200 eV, 1 keV D (D₃⁺)
- flux: ~10¹⁹ D/m²s
- temperature controlled (RT-1450 K)

Experimental procedure

- annealing to 1100 K
 ⇒ carbide grains: W 2 nm, other 4-8 nm
- D bombardment of a-C:Me
 - D energy: 30 eV / 200 eV
 - temperature: fixed RT / ~750 K 3 7 × 10²³ D/m² two types of measurements

 4-7 × 10²¹ D/m² per step, total <10²³ D/m²

Concept of Erosion Yield

Metal-containing amorphous carbon films (a-C:Me)

Erosion conditions Structure of a-C:Me

Erosion yield (Y)

- total amount of eroded C
 total erosion yield Y_{IBA}
 Y_{Chem} + Y_{Phys}
- produced CD₄
 chemical erosion yield Y_{CD4}

analysis of gas phase by mass spectrometry (QMS)

$$Y = rac{\sum C_{removed}}{\sum D_{incident}}$$

Influence of doping on produced hydrocarbons expected

⇒ reflected in amount of produced CD₄

Results: Erosion Yield IBA / QMS

Results: Erosion Yield IBA / QMS

- Y_{hot} > Y_{RT} (well known)
- Y_{CD4} always smaller than $Y_{IBA} \Rightarrow less CD_4$ produced compared to 1 keV at T_{max}

Comparison Erosion Yield IBA / QMS

Total erosion yield Y_{IBA}: Effect of doping

Carbon erosion yield

- reduced total erosion for all doped samples
- reduction most prominent at high temperatures and 30 eV (for Ti only 5 %)
- reduction changes with metal content / type
- metal erosion observed for 200 eV
 - comparable to yields for carbides

Comparison Erosion Yield QMS / IBA

- Y_{CD4}/Y_{IBA} < 1 for pure C
 ♥ more C_xD_y / radicals
- ratio always higher for a-C:Me compared to C
- 200 eV: Y_{CD4}/Y_{IBA} ≤ 1
 ⇔ more C_xD_y / radicals
- 30 eV: Y_{CD4}/Y_{IBA} ≥ 1 ⇔ more CD₄ production

compare to published factors (1.2 - 4)

Temperature dependence of chemical erosion (QMS)

Doping with W (V, Ti, Zr)

- mass- & energy-separated ion beam (30 & 200 eV/D)
- detection of volatile erosion species (CD₄)
- CD₄ production yield
 - strong reduction
 at elevated temperatures
 - enhancement at RTtotal yield reduced

Temperature dependence of chemical erosion (QMS)

Doping with W (V, Ti, Zr)

- mass- & energy-separated ion beam (30 & 200 eV/D)
- detection of volatile erosion species (CD₄)
- CD₄ production yield
 - strong reduction
 at elevated temperatures
 - enhancement at RT
 - **\$** total yield reduced
 - distribution of erosion products changed

Temperature dependence of 200 eV D

Ratio of QMS signal: Temperature dependence

Ratio mass 18 / mass 20:

- indicator of CD₃ or cracking of heavier C_xD_y
- changes of ratio
 change in distribution
 of erosion species

200 eV:

- only methane at T_{max}
- C: comparable to 1 keV
- doping:
 - changes at high T

30 eV:

- mainly methane at RT
- doping:
 - ⇔ changes at high T

Conclusion

- production and characterization of nano-structured metal-containing amorphous carbon films (0 – 20 at% Me) as model for mixed re-deposited layers
- chemical erosion strongly affected by doping
 - total erosion yield drastically reduced

 (factor of ~10 at elevated temperatures; at RT at least factor of 3)
 - doping changes distribution of erosion species
 to more CD₄ production (30 eV)
- ⇒ <u>using only the signature of one species leads to wrong erosion yields</u> (e.g. spectroscopic investigations on strongly polluted surface), but CD₄ is may be still indicator for variations

Discussion / Questions

Contributors:

Ch. Adelhelm,

E. de Juan Pardo, J. Roth,

S. Lindig, A. Herrmann, B. Cieciwa, I. Quintana Alonso, B. Dubiel, E. Welter ...

Deuterium retention

Deuterium content determined by NRA

- fixed erosion condition
- fluence 3 $7 \times 10^{23} \text{ D/m}^2$