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Motivation (I)

• Stationary temperature profiles on 
short time scales (τeq << ∆tDischarge)

• Typical heat fluxes q = 10-20 
MW/m2.

• Safety margin about 40% (CuCrZr)
• The sensitive component is inside 

the target …
• But the surface temperature is 

measured.
• Correlation to the temperature inside 

the bulk by solving the heat 
conduction equation.

• The machine protection is as good 
as 
– the temperature measurement 

and 
– the thermal model of the target.

W7-X target tile (cross section)
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Motivation (II) – Real life

Surface temperature distribution on CFC NB 31

• What is the temporal behavior of the surface temperature under heat load?
• How effects the microscale (few 10 µm) temperature distribution the 

macroscale (mm) measurements?

•

Sub-millimeter temperature pattern
30 µm spatial resolution, MWIR. 

Pulsed experiments (10J, 1 ms) Gladis - high heat flux tests
(LWIR, visible)

Remote distance microscope
CCD – image, ∆ x ≈ 100µm
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Outline

• Surface temperature distribution and heat flux
– Fine grain graphite (FGG) - the ‚simple‘ case
– Carbon fiber composite (CFC) – intrinsic structured
– layer effects (due to plasma interaction)

• Conclusions



12. 10. 2006 PFMC 2006, A. Herrmann 5/18

Surface effects are detected by response on heat loads

• Pulsed heat load: 
– ELMs, disruptions
– laser pulse (welding laser)

• Probes
– AUG target tile Upper divertor

(FGG)
– NB 31 – W7-X

• To do:
– Compare measured and expected 

(analytical solution) T-evolution.
– Calculate the heat flux (2D, 

THEODOR).

AUG S8, A1

Experimental details:
Herrmann, A., et al., Investigation of infrared 
emission from carbon microstructure on a 30 
micron spatial scale. Physica Scripta, 2004. T 111
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Surface temperature evolution – EK 98 

• Instantaneous temperature jump 
(∆T ~ qs).

• The shifted analytic solution fits 
well to the measured T evolution.

• Qualitatively the same behavior 
with and without plasma 
exposure.

• Sophisticated polishing can 
reduce the surface effect 
(Hildebrandt PSI 2006).

• The contribution of the initial T-
jump is more and more negligible 
as the surface temperature 
increases.
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Thermal model for heat flux calculation

• The calculated heat flux depends 
on the thermal model.

• Pure bulk thermal data:
– Overestimation of the heat 

flux on short time scales.
– Compensated by negative 

heat flux at the end.
• Calculated energy is o.k.

More details: 
Herrmann, A., Limitations for Divertor Heat Flux Calculations of Fast Events in Tokamaks. EPS 2001
Andrew, P., et al., Thermal effects of surface layers on divertor target plates. JNM, 2003. 313.
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CFC structure effects

• The thermal behavior of CFC is 
expected to be more complicated.

• Two or more thermal components 
(depending on CFC structure).

• Typical dimensions are in the sub 
millimeter range (fiber bundle size).

• Hot spots are observed.
• The hot spot pattern is fixed (over a 

number (~100) of load cycles; H. 
Greuner et. al, SOFT 2006).

• What is the expected (intrinsic) 
surface temperature variation?

• What is the effect of the small scale 
hot spots on large scale 
temperature measurements?

During After   - heat pulse

Carbon fibre composite
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Intrinsic temperature modulation on CFC

• Fiber embedded in carbon (FGG) -
filler

• Volume fraction 50% (NB31 30% for 
pitch fibers).

• Heat capacity of the fiber equal to 
filler.

• Heat pulse 1 ms 20 MW/m2.
• Heat conductivity of the fiber adjusted 

to get the ‘averaged’ CFC data.

• The heat is transported by the fiber.
• CFC heat diffusivity:

temperature (@ 0.5 ms)
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For more sophisticated models see PEGASUS, PHEMOBRID, S. Pestchanyi, B. Bazylev) 
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Surface temperature difference

t~

• Filler and fiber follows √t dependence.
• The surface temperature difference is 

given by the thermal parameters: 

• ‘Late’ during the heat pulse: the 
temperature difference becomes 
smaller. Limit when the lateral heat flux 
becomes comparable to the heat flux 
to the surface:

• Same temporal decay after the end of 
the heat pulse.
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CFC in reality (no plasma effect) 

CFC (NB31) • Laser flash experiments
• 10 ms – 30 J (10 MW/m2)
• 710µs time resolution

start 7 ms afterend
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Temperature evolution at different CFC parts

• CFC temperature pattern is more 
complex than expected from two 
components.

• Filler and fiber shows the T-jump at 
the start of the heating.

• Additional components with bad heat 
contact are found.

• Different types of hot spots are found.
– thermally equilibrated. Dominated 

by heat transmission to the bulk.
– Not yet in equilibration after 10 

ms. Slow temperature decay.
– The filling factor is 2-10%

• Heat flux calculation for the filler and 
fiber results in 10MW/m2.

• The hot spot temperature is limited by 
heat conduction not by radiation!
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Structure effect on measured temperature

Compare the real fiber temperature with the measured (mixed) temperature

• CFC consists of minimum 3 
components.

• Fiber, filler, hot spots
• The hot spot fraction is 10 %
• Volume fraction 50 %
• The filler and hot spot contribution is 

heat flux dependent:
– Fiber :
– Filler : 
– Hot spot:

2/6/ −=∆ MWmKqT s
2/8/ −=∆ MWmKqT s
2/50/ −=∆ MWmKqT s

• Measurement error increases with:
• Heat flux.
• Decreasing wavelength.

• CFC structure is stable in time and can be characterized.
• T correction possible.
• The temperature is overestimated.
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Plasma effects

ASDEX Upgrade divertor tile (outer SP) - SEM

10 cm

ToreSupra limiter

• Plasma effects?
– Modification of the bulk surface by particle implantation/redeposition.
– Layer deposition.

• Can changes of the thermal properties of the system target cooling structure 
be detected?

• Can we learn something on surface effects?
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Plasma effects – simple model

• Thermal model for the target (bulk with surface effects)
• Add a layer on it.
• Calculate the surface temperature evolution for different thermal parameter sets 

(κ = 110 – 22 W/m/K; ρc = 0.1, 1, 10 MJ/m3/K, α-1 =  ).
• Calculate the heat flux with the standard model (thermal model for the target).
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Layer in good contact

• Heat capacity varied by a factor of 
100.

• Heat conductivity by a factor of 5.
• Main effect is in the rise time.
• The layer results in a temperature 

increase in addition to the T-jump.
• The heat flux is overestimated by 

about 1 MW/m2. 

• The more probable case of a layer 
with reduced heat conduction and 
lower heat capacity has the lowest 
impact on the calculation.
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Layer with bad heat contact (Flakes ?)

~ t

~ √t

• Bad heat contact results in an 
over estimation of the heat load.

• Make use from power balance 
estimations.

• Use power steps to identify thin 
isolated layers.

• See the talk of X. Courtois
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Conclusions

• All effects overestimate the surface temperature!!!
• Detection of surface modifications needs additional information:

– Temporal behavior (load changes)
– Power balance (input – radiation)

• Carbon materials show an intrinsic temperature increase of about

• Temperature at the CFC surface is more structured:
– Filler and fiber with moderate temperature difference.
– Hot spots with large temperature excursions (but small size)

• The effect on the measured temperature is about 10% and can be 
corrected.

• Layers as found in the high heat load region (AUG, JET) have a small 
impact on the temperature increase.

• Isolated layers may result in significant errors (heat flux).
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