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Abstract. The propagation of non-Gaussian beams is described in terms of the beam tracing asymptotic 
technique. The need to study non-Gaussian beams emerges in scenarios involving injection of waves in 
the plasma where the beams entering the plasma are not Gaussian or modify during the propagation in 

the plasma. The sequence for tracing arbitrary beams is established, involving the formulation of the 
decomposition of arbitrary electric field profiles into Gaussian-Hermite modes and the generalization 

of the beam width parameter. The effect of the phase-shift of the modes is analyzed within beam tracing 
and included in the description of the beam. We apply the above to the propagation of multi-mode 

beams in a simplified plasma geometry, where a comparison with an exact solution is possible.  
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INTRODUCTION 

The propagation of EC waves in plasmas is described by Maxwell equations, a full 
solution of which is in general very hard. In case the wavelength is small compared to 
the scale length of inhomogeneity of the plasma, a simplification is achieved by using 
asymptotic methods: geometrical optics (ray tracing), complex eikonal (quasi-optics) 
or paraxial WKB (beam tracing). The state of the art in applications is mainly based 
on the simple, lowest-order Gaussian beams. However, the beam that enters the 
plasma might not always be Gaussian e.g. due to deformation of a steering mirror by 
extreme heat load, or it could be set up on purpose for reduction of the power density 
on the diamond window of the launching system. In this work, the beam tracing 
method is applied to the propagation of non-Gaussian beams and the sequence for 
tracing arbitrary beams is described. The simplified description through characteristic 
parameters (eg. width) is retained by generalizing the parameters existing for Gaussian 
beams. As an application, the propagation of a multimode EC beam in simplified 
geometry is studied, with a validation of the results based on the exact solution. 

REVIEW OF ASYMPTOTIC METHODS 

The pioneer asymptotic method is geometrical optics [1], where the wave field is 
described by the eikonal form E=Aeiκs, with s the eikonal (k=κ“s) and κ=ωL/c for the 
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short wavelength limit. For each ray one can determine the wave field by Hamiltonian 
ODEs, obtained by exploiting an asymptotic expansion of the solution sought, 
A=ÊiAik-i

, and separating terms of different order. The zero-order terms result to the 
ray equations 
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where the dispersion relation plays the role of the Hamiltonian. The 1st-order gives the 
amplitude evolution along the ray  
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where γ is the absorption coefficient. A limitation of ray tracing is that wave 
phenomena (eg. diffraction) are not taken into account, and in situations where these 
cannot be neglected, e.g. for focused beams, the result is inconsistencies near foci or 
caustics. Methods that refine geometrical optics, taking into account wave effects, 
have been developed. The complex eikonal method [2,3] considers a complex phase 
s=s+iφ , with the imaginary part related to the beam profile. The corresponding 
complex solutions can be obtained by two different approaches (for more details see 
[2,3]). A significant simplification is achieved by using the pWKB beam tracing 
method [4], where the electric field has the same form as in quasi-optics but the 
amplitude expansion contains the intermediate order k-1/2  
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The function Φmn(ξ1,ξ2)=Hm(ξ1)Hn(ξ2)e-δijξιξj/2 describes the transverse beam profile in 
a system of dimensionless coordinates (τ,ξ1,ξ2) associated with the beam, where τ is 
along and (ξ1,ξ2) are across the propagation, which can be identified as a geometrical-
optics ray. Around the reference ray, the complex phase of the wave field is expanded 
in Taylor series and the coefficients are determined by an ODE emerging from the 
terms of order κ-1 in Eq. (3) 
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The coefficients αβ αβs =Re(s )  relate to the curvature radius (∂R-1) while αβ αβφ =Im(s )   
relate to the beam width (∂W-2). The amplitude transport equation is similar to ray 
tracing, however here absorption is calculated on the central ray but refers to the 
whole beam. Based on the above, the general solution for the electric field is 
expressed as superposition of partial solutions 
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The advantages of beam tracing over the other asymptotic methods are worthy. With 
respect to ray tracing, diffraction is taken into account with a less number of 
equations. In comparison with quasi-optics, the beam is described by ODEs instead of 
PDEs and always in real space, which makes applications more straightforward. 



SEQUENCE FOR TRACING NON-GAUSSIAN BEAMS 

The sequence for the analysis of non-Gaussian beams amounts to first assigning 
proper initial conditions to all the beam-tracing variables, and then solve for the 
reference ray, the wave-front curvature and the beam width, as well as for the 
amplitude of each mode. For the first step, no difficulty appears as the beam-tracing 
variables are calculated on the reference ray and thus are common for all modes. For 
the initial amplitudes Cmn|τ=0, the initial field is decomposed into a series of Gaussian-
Hermite modes E(ξ1,ξ2)|τ=0=ÊmnCmn|τ=0Φmn(ξ1,ξ2), where the expansion coefficients are 
the initial amplitudes 
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As an example, we consider the decomposition of a real electric field with a 1-D 
square profile. For this case, Cn|τ=0 is non-zero only for even values of n. In Fig. 1(a) 
we show the profile of the square beam, reconstructed according to the results of a 
decomposition using N=50 modes. The approximation is very successful, and 
increasing the number of modes makes it even better. In Fig.1(b) the coefficients of 
the even modes are plotted as a function of the indices 2n. The higher-order modes 
(n>25) have very small coefficients and do not play an important role. 

 
FIGURE 1.  (a) Profile of the square beam, reconstructed according to the results of a decomposition 

using N=50 modes. (b) Coefficients of the even modes as a function of the indices 2n.  
 

For the solution of the beam tracing equations and the amplitude transport, the 
formalism in [4] is mainly followed. An issue here is that the equations for the 
amplitudes are not the same for all modes, because the absorption coefficient depends 
on the wave-vector which is different for each mode, kmn=k-dΘmn/dτ“τ, with k the 
wavenumber on the reference ray. Another issue is that the formalism [4] has met 
successful application to the case of a Gaussian beam, however for arbitrary beams a 
generalization is needed [5]. This results to a new form for the phase shift 
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where μ,ν,  are functions of τ (more on the relation between μ,ν,  and the choice of 
beam coordinates is presented in [5]).  



PARAMETERIZATION OF ARBITRARY BEAMS 

A Gaussian beam can be described by few parameters, the most important of which 
are the width and the curvature radius. The width is usually defined as the distance 
from the maximum where a decrease of a factor of 1/e in the amplitude occurs, and the 
curvature radius is the radius of the spherical curve defined by the wavefront. In the 
case of non-Gaussian beams, these definitions usually fail in properly describing the 
beam and it is necessary to revise. This can be done by generalizing the parameters 
already defined for Gaussian beams, based on the moments of the electric field 
distribution, 2m n m nx y x y E(x,y) dxdy

∞
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D symmetric matrix ŵ, which is in general non-diagonal [6]. However, an "aligned" 
coordinate system can be found where ŵ is diagonal, ŵ2=[δijwqi
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0>2 the generalized width per direction. For the case of a superposition of 

the lowest-order Gaussian (main mode) and a sum of higher-order modes, 
E=E00+ÊmnEmn, the width matrix in the frame (ξ1,ξ2) is diagonal and normalized to the 
principal (Gaussian) widths. The 1st-order moment for ξ1 is 
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where rmn=Cmn/C00 is the ratio of the amplitude of the mode (m,n) over the main mode 
and θmn=Θmn-Θ00-arg(rmn) is the total phase-shift of the mode (m,n). The result for ξ2 
can be obtained by interchanging m with n and k with l. The second order moment for 
ξ1 and accordingly for ξ2 by interchange, is 

( ) ( )mn kl nl mn kl m,k+2 m,k-2 mn mn m,2 n,0
2 mnkl mn
1 2

mn
mn

r r δ cos θ -θ m(m-1)δ + k(k-1)δ 2 r cosθ m(m-1)δ δ
ξ 1

1 r

+
= +

+

∑ ∑

∑
. (9) 

NON-GAUSSIAN EC PROPAGATION IN A PLASMA SLAB 

We study the perpendicular cold-plasma propagation of a multimode EC beam in a 
simplified geometry (slab). The plasma is confined within -α≤x≤α and magnetized 
along z, and all the plasma properties are functions only of x. The beam is launched at 
x0=α in the negative direction {kx0<0, ky0=kz0=0}, with electric field the superposition 
of a Gaussian (0,0) and a higher-order mode (m,n). The analytic solution of the beam 
tracing equations for this problem has been obtained in [7]. The simplification here is 
that the dispersion relation reduces to a quadratic form H=(Dijkikj-1)/2 (i,j=x,y,z) with 
a diagonal dispersion tensor D=[δijDij

M] (M=O,X refers to the wave polarization). The 
Hamiltonian does not depend on y,z and thus ky, kz remain constant, while kx is fully 
determined by the dispersion relation, so the only ray-tracing equation of interest is the 
one for dx/dτ 
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In this context, τ is a function only of x and the beam coordinates are y/Wy, z/Wz, with 
Wy,Wz the Gaussian widths. The Gaussian widths are expressed in terms of the initial 
widths and curvatures 
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and the generalized width in the ξ1-direction reads 
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with the result being interchangeable for ξ2. The only cases where θmn has an effect on 
w are (m,n)=(1,0),(2,0),(0,1),(0,2). In all the other cases, the generalized width is 
proportional to the principal width (r_{mn} does not vary along the propagation in the 
absence of absorption), increases with (m,n) and does not depend on θmn. In the 
simulations, we use a=1m, ω/2π=140GHz ($1st O or 2nd X), ωp

2/ω2=0.9-0.4(x/α)2, 
W0=3.02cm and R0=-82cm. We specify rmn in terms of the ratio of the power density 
of the mode over the total power density, εmn=|rmn|2/(1+|rmn|2). In Fig. 2 the generalized 
widths are compared to the Gaussian ones for O-mode propagation and (a) 
(m,n)=(2,1), (b) (m,n)=(0,2), (in both cases εmn=0.1). In Fig. 2(a), wq is constantly 
larger from Wq in both directions. The two widths in this case are actually 
proportional, because the generalized width does not depend of the phase shift. In the 
case of Fig. 2(b), the width in the y-direction coincides with Wy because m=0, while in 
the other direction the effect of the phase shift is obvious.  

 
FIGURE 2.  The generalized widths in comparison with the Gaussian ones for O-mode propagation 

and (a) (m,n)=(2,1), (b) (m,n)=(0,2)  (in both cases εmn=0.1). 
 

In Fig. 3(a) the evolution of θmn is shown for both O- and X-mode with (m,n)=(0,2), 
εmn=0.1. The variation is significant in both cases. The phase shift exhibits a different 



behaviour for the two cases, which is due to the dielectric tensor and the Gaussian 
widths having different functional forms. The problem of wave propagation 
considered above is addressed in simplified plane geometry that allows a direct 
solution of the electric field without resorting to asymptotic techniques. The numerical 
implementation is done by the code ECPROP [8], which calculates the propagation for 
nearly perpendicular injection in cold plasma. In Fig. 3(b) the results of our code are 
compared to ECPROP, and the agreement between the results is very good. Notice 
here that using Eq. (7) without generalizations, the disagreement is significant. 

 
FIGURE 3.  (a) Total phase-shift for O-, X-mode with (m,n)=(0,2). (b) Generalized width in the z-
direction, as calculated by NGBT (based also on the formalism of [4]) and ECPROP, for O-mode with 
(m,n)=(0,2) and εmn=0.2. 

CONCLUSIONS 

The propagation of non-Gaussian beams was formulated in terms of the pWKB 
beam-tracing asymptotic method. The need to study non-Gaussian beams emerges 
from the fact that, in ECRH/ECCD scenarios, the beams entering the plasma might not 
always be Gaussian or might be modified in the plasma. We applied the method to the 
propagation of the simplest non-Gaussian EC beam in a plasma slab. The results were 
benchmarked against the code ECPROP and good agreement was found in all cases. 
The work presented here opens the way for the construction of a theory for the 
description of modifications in the beam profile due to localized, asymmetric or 
inhomogeneous absorption. 
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