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Abstract. On the basis of the electromagnetic energy balance equation, a quasi-exact analytical 
evaluation of the electron cyclotron (EC) absorption coefficient is performed for arbitrary 
propagation (with respect to the magnetic field) in a high-temperature (Maxwellian) plasma. The 
calculation makes use of Bateman's expansion for the product of two Bessel functions, retaining 
the lowest order contribution. The integration over electron momentum can be carried out 
analytically, fully accounting for finite Larmor radius effects in this approximation. On the basis 
of the analytical expressions for the EC absorption coefficients of both the extraordinary and 
ordinary mode thus obtained, (i) for the case of perpendicular propagation simple formulae are 
derived for both modes and (ii) a numerical analysis of the angular distribution of EC absorption 
is carried out, along with an assessment of the accuracy of asymptotic expressions existing in 
literature. 

 
Introduction. To evaluate the electron cyclotron (EC) wave absorption coefficient 
is advantageous to make use of the electromagnetic energy balance, as this approach 
yields the absorption coefficient in a compact form wherefrom the effects of both the 
wave polarization and the finiteness of the (electron) Larmor radius are evidenced [1]. 
With reference, in particular, to the Larmor radius effects, described by Bessel 
functions the argument of which is just the Larmor parameter ⊥⊥= pNb ω  (the bar 
denotes that the frequency ω  and the perpendicular (to the magnetic field) momentum 

 are normalized, respectively, to ⊥p cω  e mc , and  is the perpendicular refractive 
index), one usually proceeds to a series expansion of the relevant Bessel functions in 
powers of b , retaining the lowest significant order terms [1]. Alternatively to this 
series expansion, one can make use of Bateman's expansion for the product of two 
Bessel functions [2], such a procedure having been employed to evaluate the EC 
absorption on the basis of the (numerical) solution of the dispersion relation [3]. Here, 
starting from the electromagnetic energy balance equation, we make use of Bateman's 
expansion to obtain quasi-exact analytical evaluation of the EC absorption coefficient. 
A numerical analysis of the analytical results thus obtained is also performed, along 
with an assessment of the accuracy of the asymptotic expressions for the EC 
absorption coefficient obtained by Robinson [4] and Trubnikov [5]. 

⊥N

Quasi-exact analytical evaluation of the EC absorption coefficient. 
Starting from the expression of the absorption coefficient obtained on the basis of the 



electromagnetic energy balance equation [1, Eq.(2.2.16)], we proceed as follows: i) 
the electron distribution function is assumed to be a (relativistic) Maxwellian; ii) the 
wave-polarization effects are evaluated in the cold plasma-limit [1]; iii) the integration 
over the perpendicular (to the magnetic field) component of the (electron) momentum 
p is readily carried out by means of the δ -function occurring in the anti-Hermitian 
part of the dielectric tensor and connected with the (relativistic) EC resonance 
condition, ωγ /),( |||||| npNpp −−⊥ =0 (where γ is the Lorentz factor; p again is 
normalized to  and the subscripts mc ⊥  and ||  denote, respectively, perpendicular and 
parallel to the magnetic field;  is the parallel refractive index; and  is the 
harmonic number); iv) as for the 

||N n

||p -integration, on making the change of variable 
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1) t(-1 ≤≤ , one can express the resulting t -integration in terms of derivatives of the 
function 
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with , the variable 2 /mc Tμ ≡ ( )nx N⊥  being related to the effects of finite Larmor 
radius (FLR); v) the integral (2) is carried out by making use of (the first form of) the 
Bateman's expansion [2], 
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Retaining the first term of the expansion is accurate to within a few percent for 

%
. In particular, one should note that the first term in (4) covers FLR effects 

up to the second order of a power series expansion for small argument of the Bessel 
functions, i.e., the FLR corrections in (4) have to do with FLR effects of fourth (and 
higher) order. The evaluation of the absorption coefficient based on using the first 
term of (4) is referred to as quasi-exact (QE). In this approximation the evaluation of 
the integral (2) yields 
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The inequalities occurring in (5), respectively, characterize the propagation at large 
(upper entry) and small (lower entry) angles to the magnetic field. 
    As a result, one thus obtains the quasi-exact expression of the absorption coefficient 
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where  is related to the normalization of the (relativistic) 
Maxwellian, while  is connected with the wave-polarization effects along 
with FLR effects and can be expressed as the sum of a number of integral terms each 
of which in turn can be written in terms of derivatives of the integral (2). For arbitrary 
propagation direction the expression for  is rather cumbersome; therefore, 
only its limiting form for  perpendicular (
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for the O -mode, this result being the same as the one obtained on solving the 
corresponding dispersion relation [3], and 

⎭
⎬
⎫
⎥
⎦

⎤
+

+

+⎢⎣
⎡−

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+== ++⊥+⊥

⊥

n
n

nn
n

n
n

X
nX

n

L
x

n

JJnA
x

JnA
xN

g
NP

ω

ωωω
π

)1(2
1

2)1(
)(

)0( 2/32/1

2

2/1
2

3)(||
)(

     (8) 

   

 ( ) ( )2/52/1
2

2/32/32/1
2

2/1 2
32

++++−+ +
+
+

−+≡ nnnnnnn JJJ
n
nJJJnL  (9) 

 
for the X -mode. In (7), (8) and (9), the argument of the Bessel functions is 

2/122)( )( ω−= ⊥ nNx i
n ,  is the perpendicular (cold) refractive index of mode i , 

respectively, and  is given by the expression on the right-hand side of Eq.(3.1.14b) 
of [1] with 

)(iN⊥

⊥A
.ω→n  In the limit of small FLR effects for which a lower-order series 

expansion of the Bessel functions is adequate, results (6)-(9) reduce to the well-known 
results [1]. 
Numerical analysis. For the case of perpendicular propagation, the quasi-exact 
(QE) absorption coefficient for both the O  and X -mode (cf. Eqs.(6)-(9)) is shown in 
Fig.1a as a function of electron temperature , for eT 5=ω , along with the asymptotic 



results obtained by Robinson [4] and Trubnikov [5], as well as the exact result [6]. The 
relative error of the different approximations with respect to the corresponding exact 
value of the absorption coefficient is shown in Fig.1b. In particular, from Fig.1b it 
appears that (i) the QE result is quite accurate for both modes, underestimating the 
exact result by less than ; (ii) for  between and  Robinson's asympotic 
result underestimates the exact value of the absorption coefficient of the 

%1 eT 25 keV90
X -mode by 

less than , whereas for the -mode, it overstimates the exact value by less than 
about  for  between 15  and (more than) ; (iii) Trubnikov's asymptotic 
result is more (less) accurate than the corresponding Robinson's result for the O -mode 
(

%10 O
%25 eT keV100

X -mode); (iv) both Trubnikov's and Robinson's asymptotic treatment tend to 
overstimate the absorption by more than  for temperature %25 15eT keV<

%
, i.e., for 

temperature for which the absorption is weak, cf. Fig.1a. 
    As for the propagation at an arbitrary angle with respect to the magnetic field, the 
QE result for the angular distribution of the absorption at 5=ω  is shown in Fig.2a for 
the X -mode, for electron temperatures keVTe 30=  and , along with the 
corresponding asymptotic results obtained by Robinson [4] and Trubnikov [5], (see 
also Ref. [7]). The curves labelled “QE” refer to the absorption coefficient  
(normalized to ) as obtained from the numerical solution of the (quasi-exact) 
dispersion relation [3]. The relative deviation of both the QE result and the asymptotic 
results with respect to the “QE” result  is shown in Fig.2b. The analogous numerical 
analysis for the O -mode is given in Fig.3. In particular, for the 

keV40

kIm2
cp cωω /2

X -mode, from Fig.2b 
it appears that (i) the QE analytical absorption coefficient obtained from the 
electromagnetic energy balance is practically identical to the one obtained by solving 
numerically the dispersion relation; (ii) for almost perpendicular propagation, i.e., for 
the angular range 

%
 where the absorption is strongest, the accuracy of 

Robinson's asymptotic result is better than  for  and better than 
Trubnikov's approximation (see also Fig.1b); (iii) over most of the angular 
range, namely, for 10

% %
, Trubnikov's asymptotic result is better than 

Robinson's, the accuracy of the former being better than , whereas Robinson's 
result becomes quite inaccurate specifically for propagation at small angles, typically, 
for 

%
. Turning now to the O -mode, from Fig.3a it appears that the characteristic 

non-monotonous angular distribution of the -mode absorption is accounted for by 
both the QE and “QE” evaluation, as well as by Robinson's asymptotic treatment. 
Trubnikov's asymptotic result, instead, understimates the -mode absorption 
significantly, with the only exception of perpendicular propagation, cf. Fig.1b, and 
fails to reproduce the non-monotonous behaviour of the angular distribution [7]. As it 
appears from Fig.3b, (i) the QE absorption coefficient again agrees very well with the 
“QE” value obtained from solving the dispersion relation [3]; (ii) Robinson's 
asymptotic evaluation is accurate by better than about  over most of the angular 
range, with the exception of the propagation at small angles ( ), for which it 
overestimates the -mode absorption by more than . 
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Concluding remarks. In conclusion, the quasi-exact (QE) analytical result 
presented here provides an excellent approximation to the EC absorption coefficient of 
a Maxwellian plasma. Notwithstanding the lower accuracy of both Robinson's and 
Trubnikov's asymptotic results compared to the QE treatment, the noticeable 
advantage of these asymptotic expressions for the absorption coefficient is that they 
are free from the sum over harmonics [7], as present in the QE absorption coefficient. 
Since, overall, Robinson’s asymptotic form is a quite reasonable approximation to the 
EC absorption coefficient in most of the parameter range of importance for evaluating 
the total EC wave power flux (effectively, a better one than Trubnikov's form), this 
form can be expected to be a useful starting point for calculating the effective EC 
wave power loss from a large hot plasma (cf. [8]). This fact has been confirmed by 
solving the radiative transfer equation for fusion plasma parameters, showing in 
particular that applying this approach calculation times are reduced typically by two 
orders of magnitude with respect to using the QE form (and to the “QE” approach)  
[9].  
 
Figure captions 

 
FIGURE 1A.  The (normalized) quasi-exact (QE) absorption coefficient of both the X -mode (full 
line) and O -mode (dashed line) (QE-curves), for perpendicular propagation, Eqs. (6)-(9), as a function 
of the electron temperature , for  and eT 1.0)/( 2 =cp ωω .5)/( =≡ cωωω  Also shown are the 
exact result (E-curves) and the asymptotic results of both Robinson (R-curve) and Trubnikov (T-curve). 

 
FIGURE 1B.  Relative error EEA ααα /)( −≡Δ  of the absorption coefficient of both X  (full 
curve) and  (dashed curve) -mode (the subscripts “A” (=QE, R and T) and “E” are the same as the 
labels in Fig.1a). 

O

 
FIGURE 2A.  Quasi-exact (QE) absorption coefficient of the X -mode as a function of the angle of 
propagation with respect to the magnetic field, for ,  1.0)/( 2 =cp ωω 5)/( =≡ cωωω  and 

electron  temperatures  (dashed curve) and  (full curve). Also shown is the 

absorption coefficient  (normalized to ), “QE”-curve, as given by the solution of the 
dispersion relation, as well as the asymptotic results of both Robinson (R-curve) and Trubnikov (T-
curve). 

keVTe 30= keV40
kIm2 cp cωω /2

 
FIGURE 2B.  Relative deviation of both the QE results and Robinson’s and Trubnikov’s asymptotic 
results for the absorption coefficient of the X -mode with respect to the “QE” result, for the same 
parameters as Fig.2a. 

 
FIGURE 3A.  The same as Fig.2a for the -mode. O

 
FIGURE 3B.  The same as Fig.2b for the -mode (Trubnikov’s asymptotic result being omitted). O
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