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Abstract
A 3-dimensional model for the numerical simulation of transport in the edge

plasma of modern fusion devices is developed. The model is based on Braginskii
set of equations which are solved with the help of a Monte Carlo method by 3-
dimensional plasma transport code E3D. Multiple Coordinate System Approach
and Interpolated Cell Mapping technique used in E3D allow to avoid artificial nu-
merical cross-field transport due to a high anisotropy of Braginskii equations in
case of general magnetic configurations including ergodic regions. The complete
self-consistent set of fluid equations (equations for the density, parallel momen-
tum, ion and electron temperatures) has been successfully implemented in E3D.
Stabilization method for iterating coupled momentum and density equations is dis-
cussed.

1 Introduction
Present generation of fusion experiments - both for tokamaks and stellarators - requires
the development of advanced theoretical models. The aim of this work is to develop
a general 3-dimensional model for the numerical simulation of transport of the edge
plasma in modern fusion devices. An important point here is accurate description of
regions with complex (eventually ergodic) topology of the magnetic field lines. Such
structures are expected both in tokamaks (e.g. in TEXTOR during ergodic divertor
operation [[2]] or in DIII-D with additional coils[[1]]) and in stellarators. Transport
model is based upon the Braginskii hydrodynamic set of equations [[3]]. In our earlier
work, [[4, 5]], heat conductivity equations only have been solved for a 3D geometry.

1



Here, these equations have been complemented by a continuity and momentum con-
servation equations. Peculiarities of the Monte Carlo method for the solution of these
last two equations are described below.

2 Solution of Braginskii equations by a Monte Carlo
method

One of the main problems in the numerical solution of Braginskii equations is the
anisotropy of transport along and across magnetic field: corresponding transport co-
efficients differ by a factor of 10

���
10
	
, which makes the system numerically stiff.

In our case of general magnetic geometry we introduce a coordinate system linked to
the magnetic field lines in order to separate parallel and perpendicular transport and,
therefore, to avoid possible numerical diffusion. Here “numerical diffusion” means
numerically induced contribution of (very large) parallel transport to transport in per-
pendicular direction. It is easy to see that if we choose a coordinate system ( 
 ��� 
 �
� 
 � )
with 
 � aligned to the field line ( ������
������ ��� ��� ��� � �"!�#%$�& ) there is a
contribution of the parallel transport in the element ' �(�

of the diffusion tensor only.
On the other hand, contribution of the perpendicular transport to the parallel transport
is negligible.

This coordinate system is non-periodic, i.e. in the general case it is impossible to
construct a mesh which would match itself exactly after a toroidal period. Therefore
some kind of interpolation is necessary, which, again, can lead to the contribution of
parallel transport in perpendicular direction.

It should be noted that the usage of several coordinate systems called Local Mag-
netic Coordinate Systems (LMCS) is also possible. The number of LMCS depends on
the problem solved, e.g., for the case of ergodic magnetic field layer, the scope of a
single system should be at least well below the Kolmogorov length.

There are two direct ways to avoid the problem of matching mentioned above:
first, to construct a special irregular mesh which matches itself approximately; second,
to solve the problem with the help of Monte-Carlo method using an Interpolated Cell
Mapping procedure to join the non-matching ends of the coordinate system (see [[4]]
and references there for details). Here, we treat the second possibility only.

All Braginskii equations have the following convection-conduction form,)+*)-,/. �0 1 )) 
 � 0 132 ' �54 )+*) 
 4 .76 � *-8 �:9 .7; *-< (1)

Therefore, they can be solved with the help of a random walk procedure. Here, 6 � is
convection velocity, 1 is the metric determinant and '/�54 is the diffusion tensor appro-
priate for a generalized “fluid quantity”

*
, '3�54=��>?'A@ 1 �?4CBEDF'HG . '%@JILKM�FK�4ON , where1 �54 �QPR��
 �TS �UPR��
 4VS . Explicit form of equations (1) in local magnetic coordinates is

given in [[4]].
Electron and ion energy equations can be solved by this method efficiently due to

the optimized coordinates introduced in [[5]], which remove the limitation of parallel
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step by the parallel scale of the magnetic field. Solution of the “dynamic” part of the
system (continuity and momentum equations) is not so straightforward.

First of all, in contrast to the temperature, parallel momentum can be both, positive
and negative. Therefore, it has to be modelled by random walks of two species of parti-
cles, positive and negative momentum carriers. Representing pressure gradient, which
is, generally, polluted by noise in Monte-Carlo calculations, by local sources of posi-
tive and negative momentum carriers, unlimited growth of the total amount of particles
must be prevented by adding into equations for momentum carriers conditional sinks.
Denoting densities of positive and negative carriers with WYX and W[Z , respectively, the
same sink term, ;]\ �_^
` WaX[W[Z[$ PbWaX�B3W[Z=B3Wac �_^ S , is added into equations for both carri-
ers. Here ;d\ �_^]` is a sink rate, Wac �e^ is some limiting density and WLf are carrier densities
from the previous iteration. These sinks cancel each other in the momentum equation
and, therefore, affect only momentum carrier densities but not the momentum density
itself.

Second, solution of coupled momentum and density equations by means of simple
successive iterations requires a method which enforces stability. Let us analyze a ho-
mogeneous linearized 1D problem at the infinite interval using von Neumann method.
The unperturbed parallel velocity is assumed to be zero (therefore, the most severe
problem which appears near stagnation points is considered). Thus, perturbation of the
momentum density is gYGihkj � W+l 6 , where 6 is the velocity perturbation. The unper-
turbed density, W+l , and temperatures are assumed constant, mLnLBom � �pj �Rq �\ �prOstWvu , ,
were q \ is a sound speed. The linearized 1D set of equations is) W)w, � . W l )) 
 6 �) 6)-, . 'yx ) �) 
 � 6 � . q �\W l ) W) 
 � (2)

where W is density perturbation and ' x is parallel velocity diffusion coefficient due to
the viscosity. Using Fourier analysis of the perturbed quantities over the coordinate,W � 6{zp|O}U~ P ��� 
 S , equation set (2) is transformed to) W)-, � . ��� W l 6 � (3)) 6)-, B � � ' x 6 � . ��� q �\W+l W < (4)

This set is solved by subsequent integrations of each equation at each iteration (”time
step” � , ). Let W c and 6 c be density and velocity perturbations after j time steps.
The recurrence relation in matrix form is2 W c X �6 c X � 8 ��� � . ��� W+lV� ,. �����L��^d�-� x �]x . � � q �\ � , � xJ� 2 W c6 c 8 !:��� 2 W c6 c 8 �

(5)

where � x ��P�� . � x�S $ D � � ' x I , and � x � |�}�~ P . � � ' x � , S . Stability of iterations is
determined by eigenvalues of matrix � which are defined by the characteristic equation
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� |�� P�� .7�w� S ��� where � is a unit matrix,� � .���~ P�� S � B � |�� P�� S � � � . P���B��]x .�� S � B��]x��p� � (6)� � � � q �\ � , � x < (7)

Iterations are stable, if � � � ��� � . In our case this condition meansq �\ � , P�� . �]x S $d'%x¡  � P��CB7�]x S < (8)

Estimating ' x£¢ q �\ � � , where � � is ion-ion collision time, and taking into account that� � � x � � , instability is obtained if � ,%¤ � � . This is a very restrictive condition
which requires an extremely large number of iteration steps.

In order to overcome this difficulty in a steady state problem, under-relaxation fac-
tors, � �¦¥ ^ � � and � ��¥ x � � , are introduced for the density and velocity,
respectively. Namely, instead of using (5) new values of density and velocity are taken
in the form § ^ n�¨E� ¥ §y©�ªe«=BEP�� . ¥ S §o¬ , where §o¬ is the new value of § without
the under-relaxation. Introducing this modification into the recurrence relation (5),
stability analysis described by equations (6) through (8) remains the same up to a re-
placement of � x and � with �]¬x � ¥ x B�P�� . ¥ x�S � x and � ¬­�¦P�� . ¥ ^ S P�� . ¥ x�S � ,
respectively. Therefore, iterations are stable as long as P�� . ¥ ^ S P�� . ¥ x�S � , � � � �which practically removes the limitation on the iteration time step � , because factorP�� . ¥ ^ S P�� . ¥ x�S can be made small. On the other hand, this factor should not be
too small because this would, again, increase the number of iterations: contribution of
the first iteration to the final result decays as |O}U~ P . P�� . ¥ S�®{S where ® is the total
number of iterations, and iterations converge when this contribution is negligible small.
Therefore, optimum values of under-relaxation factors are such that they allow � , of
the order of the profile relaxation time.

Under-relaxation factors allow also to reduce the variance. Denoting the variance
at single iteration step with ¯ � , presenting the under-relaxation factor as

¥ �{� . �t$O°
where °²± � and assuming that statistical errors at different iterations are statis-
tically independent, the variance for an infinite number of iterations is obtained as¯ �³ �µ´ ���¶ �� Z �(·�¸_�(¶º¹¼» ´ ��(¶ <

Practically, it is sufficient to make such a number of it-
eration steps, ® , that the variance from the first iteration decays to the level of ¯ ³ ,
i.e. ¯ � |O}U~ P . P�� . ¥ S(®{S �p¯ �³ . This relation gives the optimum number of iterations
for a given under-relaxation factor, ® � ¶ �A½_¾
¿ P � ° S � ��O¸À� Z-Á ¹-½_¾
¿ÃÂ �� Z-Á]Ä < Practical
realization of the under-relaxation in Monte Carlo algorithm assumes that the distri-
bution of quantity § given by the density of test particles at the end of iteration step
is replaced with the under-relaxated distribution (see above). Such a procedure means
that the re-discretization of quantity § has to be performed after each iteration. In a
3D case, this re-discretization procedure introduces the numerical cross-field transport
due to the averaging within the parameter mesh-cells. Effective numerical diffusion
coefficient is K � $d� , where K is a perpendicular size of the mesh cells. If the iteration
time step � , is large enough (e.g. comparable with the optimum step which is of the
order of profile relaxation time), this numerical diffusion is negligible small.
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3 Conclusions
Stabilization method for iterating coupled momentum and density equations has been
implemented in the 3D fluid Monte-Carlo code E3D. The results of the first run for the
unperturbed DIII-D magnetic configuration using

¥ ^ � ¥ x �Å� < Æ]Æ are in qualitative
agreement with 2D calculations. The convergence time for this run was around 24
hours on 64 processors at the PC cluster at MPI Greifswald which is a practically
acceptable time. Thus, the complete self-consistent set of fluid equations (equations for
the density, parallel momentum, ion and electron temperatures) has been successfully
implemented in E3D.
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