

Overview of the JET ITER-like Wall Project

Guy Matthews (Project Leader for ITER-like Wall) on behalf of the Project Team PFMC-11 Greiswald October 2006

Outline

- 1. Introduction
- 2. Scientific goals
- 3. R&D overview
- 4. Material configuration
- 5. Engineering issues
- 6. Protection and Control
- 7. ILW project status

An untested compromise hence JET's ITER-like Wall Project

PWI is now a main focus for the EU fusion programme

Introduction

All W divertor & Be wall selected

- Minimises risk of C contamination
- C strike point tiles could come later (option 2)

JET Machine Parameters		
Major radius:	3.1 m	
Plasma volume :	80-100m3	
Plasma current:	\leq 5 MA	
Magnetic field:	≤ 4Tesla	
NBI:	≤ 35MW + ICRH EP1+2	
Pellets for ELM control:	50Hz	
Tritium and Beryllium capability		

1. Operation with a Be main chamber wall

- a) Be first wall erosion/migration in all ITER scenarios
- b) Be melting behaviour
- c) Fuel retention in bulk Be tiles (surface and bulk)
- d) Be interaction with oxygen (background, leaks, venting)

2. Operation with a full W divertor (and Be first wall)

- a) Compatibility with ITER-scenarios
- c) W-mechanical stability under repetitive power loads
- d) Alloying of Be with W and affect on W- erosion
- e) W melt layer flow, melt layer loss and stability
- f) T-retention

Need fast shutdowns to remove samples at least once per year

Scientific Goals

Example: Long range transport and T-retention

W-coating R&D for JET 2D CFC (Details in talk by R.Neu)

Led by IPP Garching (H.Maier, R.Neu) 14 industrial coatings produced, (CEA, ENEA, IPP, MEdC, TEKES) CVD (4, 10, 200 μ m), PVD (4, 10 μ m), VPS (200 μ m)

200 μm VPS and 10 μm CSMII met test requirements

Cautionary note:

There is tendency focus failure modes but remember that a 3μ m marker stripe has survived 80,000s operation in JET over the whole inner divertor and much of the outer divertor – M.Mayer PSI 2006

W-Coating Tile 6

Bulk W tile 5 R&D (Talk by T.Hirai)

Bulk lamella concept (FZJ): 6mm lamellas in 4 poloidal stacks, toroidally isolated, with dedicated contact points to the supporting structure (minimise EM forces)

Evaporated Beryllium Coatings on Cast Inconel (C.Lungu and T.Hirai)

Aim: maximum coverage of the wall with low-Z (Be) material

> 8 µm Be coating on Inconel cladding, upper dump plate tile carriers
 > Max. heat load in JET: 0.5 MW/m² in 20 s ⇒ 10 MJ/m²

Development of Be Erosion Markers (C.Lungu and M.Rubel)

To measure erosion < $10\mu m$

10

Sputtering yield for Beryllium Coatings on Cast Inconel

GA-Be & Romanian(ROM)-Be coatings show increased Y_{Be} 's at higher E_{ion} compared to Poly Crystalline(PC)-Be.

D.Nishijima, J.Hanna, R.Doerner

11

PISCES

Main Wall

Limiters and primary protection \Rightarrow bulk Be IWGL moved in 3cm from present W-Coated CFC Be coated inconel Recessed ≥ 1 cm

Divertor Configuration

200µm VPS on CFC

0,1,3,4,6,7,8 - also main chamber lost alpha diagnostics

10µm CSMII with Mo interlayer on CFC

5a, B & C – also all main chamber CFC such as shinethrough areas

Bulk W inertially cooled Tile 5 (LBSRP)

NDT of production W coatings

R&D on IR based NDT using lock-in thermography or flashlamps failed to predict coating failures – conclusion is that coatings must be challenged in HHF facility.

200µm VPS on CFC

Objective is 100% cyclic high heat flux testing of all production tiles using JUDITH 2 (FZJ)

10µm CSMII with Mo interlayer on CFC Up to 10% to be tested in GLADIS (IPP)

Technical Objectives for the Main Wall

- 1. Eddy forces consistent with existing supports and JET OIs
- NBI shinethrough energy handling ≥ 64MJm⁻² (20s pulse) (i.e. double present - only possible for normal bank)
- 3. Limiter energy and power handling \geq current CFC design
- 4. Low risk of cracking / fragmentation
- 5. Weight of tile assemblies \leq 10kg for remote handling
- 6. Minimum Cost

	CFC	Ве
Resistivity	10μΩm	0.08 μΩm
Temperature limit	~ 2700°C (ablates)	1289°C (melts)

Shutdown Objectives

- Total shutdown time (excluding unrelated work) \leq 46 weeks
- Upgrade main boom lifting capability (bulk W divertor) to 100kg

Extension of short boom to increase efficiency

> 4000 tiles to remove & replace

Engineering issues

How technical goals have been met

Example: Wide Outer Poloidal Limiter

- ⇒ Eliminate bolt holes (power)
- ⇒ Optimised profile (power)
- ⇒ Large format tiles (power)
- ⇒ Single helicity (power)
- ⇒ Interlocking carriers (tolerance)
- ⇒ S65J HIP Be (mechanical)

- ⇒ Segmented construction (eddy)
- ⇒ Castellation (thermal fatigue)
- ⇒ Vacuum cast In 625 carriers
 - (strong, high resistivity + low cost)

Choice of Beryllium Grade

Brush Wellman S65C VHP is reference material for ITER ILW will use S65J HIP

 4 tons of JET S65 Be scrap is being recycled into new S65J HIP blocks for ILW

Structural analysis of tiles

In contrast to CFC tiles forces are dominated by eddy rather than halo current forces

Designed for 6MA, 4T disruptions dB/dt = 100T/s

Inner Wall Guard Limiter

Pins allow thermal expansion of Be

Limiting Eddy Forces

Central tile block has to be large to cope with ridge <

→ Eddy forces reduced to acceptable level by cuts

Steps, gaps and field line penetration

Reference case:10s pulse, 40mm thick tile (semi-infinite)

Surface melts at 1289°C

Cold start (200°C) heat flux to melt = $6MW/m^{-2}$ Hot start (400°C) heat flux to melt = $4MW/m^{-2}$

CFC is 2-3 times better

Castellation depth chosen so root at 2*yield stress when surface melts

Edge exposure **a** = step due to tolerance + field line penetration

ILW Design Rule is Edge Exposure < $40 \mu m$

Face and Edge Exposure (4 MW/m2 x 10 sec step)

Analysis assumes $Sin\theta$ rule for power

Some say this pessimistic \Rightarrow **Need for validated alternatives**

Dealing with gaps and steps

Internal castellations:

Smallest possible ~ 0.35mm by EDM

Be is acid etched to remove surface damage, Cu and Zn but we need to maintain the gap tolerance ⇒R&D collaboration with BW Slice to slice: Shingled

Operational flexibility

Tile profiles designed (by POG) to handle a wide range of equilibria $q_{95} = 2.2-11.4$ and varying mismatch to limiter curvature

Selection of PROTEUS equilibria for tile shape check by CEA

New upper dump plate configuration

W-coated NBI shinethrough areas (10 μm)

Current drive efficiency \propto NBI ShineThrough power (AT scenarios)

Objective of ILW to double ST energy handling (60MJ/m²)

- > Only possible with W-coated CFC on normal bank
- Tangential bank falls short of objective but situation is complex

Coating lifetime due to NBI sputter is OK but W-source may be a problem

Inner Wall - NBI shinethrough areas

Engineering issues

ITER-like Antenna

Beryllium ICRH septum tiles will be installed in 2007 ⇒ Prevents eddy heating by RF

Outstanding issues for ILW and ITER

Plasma Control / Machine Protection

CFC PFCs have a benign limit in JET (bloom)

- No longer true with Be wall
- W coatings form droplets when they melt due to surface tension

Potential for damage from:

- Steady state plasma power and energy
- NBI shine through
- ICRH and LH generated hot spots
- ELMs and disruptions

A gentle introduction to what it will be like in ITER

Plasma Control / Machine Protection

To work near the limits we need:

- Phased programme build up slowly/carefully
- Calibration of new JET Operating Instructions using new TC array
- Real time control/protection systems

ILW Project Status

- CFC and Be manufacturing contracts are on schedule
- Tender evaluation completed for all Article 7 contracts
 ⇒ 16 months after official ILW start (20 contracts, >1500 drawings)
- EP2 Shutdown start date now Nov. 2008
 ⇒ Duration ~ 1 year (including NBI etc.)
- Current main foci for ILW Team:
 ⇒ Final design reviews and "For Manufacture Drawings"
 ⇒ Detailed planning with company input of the manufacturing phase

JET Operating Team + EFDA-JET CSU +

UKAEA, United Kingdom

IPP Garching, Germany

FZ Juelich, Germany

Tekes, Finland

VR , Sweden

SCK-MOL, Belgium

ENEA, Italy

CEA, France

Med-C, Romania

Thanks also to: Brush Wellman, USA PISCES Team, USA