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Abstract

Hybrid linear systems are a class of hybrid systems where the continuous time evolu-
tion is governed by a set of first order linear ordinary differential equations and the jump
dynamics are described by a set of first order linear difference equations. Switched linear
systems are a subclass of hybrid linear systems with a continuous evolution of the system
states. Due to the large number of physical applications, control of hybrid and switched
linear systems has received considerable attention over the past years. This dissertation
provides novel contributions to the control of such systems and extends some existing
results in this area. This work focuses on different problems regarding stability and
stabilization of switched linear systems and optimal control of hybrid linear systems.

The major part of this thesis concerns stability and stabilization of switched linear
systems. The results are primarily presented in terms of conditions for stability of
autonomous switched systems. Then, stabilization methods aim at designing a local
state feedback for each mode of a controlled switched system to satisfy the stability
criteria for the closed loop system modes. Parts of these results rely on the concept
of common left eigenvectors and left eigenstructure assignment. To this end, several
techniques for eigenstructure assignment in the context of linear systems are developed.
Afterwards, these techniques are employed for characterizing exponential stability and
for stabilization of a class of switched linear systems with state dependent switching and
certain restrictions on the switching manifolds. In addition, they are used for quadratic
stabilization of a class of controlled switched linear systems with arbitrary switching
signals where the open loop constituent matrices share an invariant subspace to which
a common quadratic Lyapunov function can be associated. Another stability approach
makes use of the Kalman-Yakubovic-Popov lemma to demonstrate quadratic stability
of a class of switched linear systems. This class is characterized by arbitrary switching
between two modes, where the difference of the constitute matrices is of rank m ≥ 1, and
to which a symmetric transfer function matrix can be associated. These results extend
existing results in quadratic stability of rank-1 difference switched linear systems.

The thesis also addresses problems in linear quadratic control of hybrid linear systems.
In these problems, cost functions are quadratic, the final time and the number and
sequence of switches are given. Constraints are specified by linear (in-)equalities in the
state space. Switching between different dynamics may either occur at fixed or free
time instances. A parameterization method with respect to initial and end points of
each interval in a generalized time domain is employed. Numerical solutions for such
problems are suggested.
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Zusammenfassung

Hybride lineare Systeme sind eine Klasse von hybriden Systemen, bei denen die kontinu-
ierliche Zeitentwicklung durch einen Satz von linearen Differentialgleichungen erster Ordnung,
und die Sprungdynamik durch einen Satz von linearen Differenzengleichungen erster Ordnung
beschrieben werden. Geschaltete lineare Systeme sind eine Unterklasse von hybriden linea-
ren Systemen mit einer stetigen Zeitentwicklung der Systemzustände. Aufgrund der großen
Anzahl physikalischer Anwendungen erfuhr die Regelung von hybriden und geschalteten linea-
ren Systemen in den letzten Jahren beträchtliche Aufmerksamkeit. Diese Dissertation stellt
neue Beiträge zur Regelung solcher Systeme vor und erweitert einige vorhandene Ergebnisse
in diesem Bereich. Diese Arbeit konzentriert sich auf verschiedene Aspekte der Stabilität und
Stabilisierung geschalteter linearer Systeme sowie der optimalen Regelung hybrider linearer
Systeme.

Der größte Teil dieser Arbeit betrifft die Stabilität und Stabilisierung von geschalteten li-
nearen Systemen. Die Darstellung der Ergebnisse bezieht sich in erster Linie auf Bedingungen
für die Stabilität autonomer geschalteter linearer Systeme. Stabilisierungsverfahren zielen dann
auf den Entwurf einer lokalen Zustandsrückführung für jeden Modus eines geregelten geschal-
teten linearen Systems, um die Stabilitätskriterien für die Modi des geschlossenen Regelkreises
zu befriedigen. Teile dieser Ergebnisse beruhen auf dem Konzept gemeinsamer linker Eigen-
vektoren und der Zuweisung linker Eigenstruktur. Zu diesem Zweck werden mehrere Verfahren
zur Zuweisung der Eigenstruktur von linearen Systemen entwickelt. Anschließend werden diese
Techniken zur Charakterisierung exponentieller Stabilität und zur Stabilisierung einer Klasse
von geschalteten linearen Systemen mit zustandsabhängigem Schalten unter bestimmten Ein-
schränkungen bezüglich der Schaltmannigfaltigkeiten eingesetzt. Darüber hinaus werden sie
zur quadratischen Stabilisierung einer Klasse von beliebig schaltenden linearen Systemen ein-
gesetzt, in der die Dynamikmatrizen des offenen Kreises einen invarianten Untervektorraum
gemeinsam haben, der mit einer gemeinsamen quadratischen Lyapunov-Funktion assoziiert
werden kann. Ein weiterer Stabilitätsansatz nutzt das Kalman-Yakubovic-Popov-Lemma, um
quadratische Stabilität einer Klasse von geschalteten linearen Systemen zu zeigen. Diese Klas-
se wird von beliebigem Schalten zwischen zwei Modi gekennzeichnet, für welche die Differenz
der Dynamikmatrizen von Rang m ≥ 1 ist, und mit denen eine symmetrische Übertragungs-
funktionsmatrix assoziiert werden kann. Diese Ergebnisse erweitern vorhandene Ergebnisse zur
quadratischen Stabilität geschalteter linearer Systeme, bei denen die Differenz der Dynamik-
matrizen Rang 1 aufweist.

Die Dissertation befasst sich auch mit der linear quadratischen Regelung von hybriden
linearen Systemen. Hierbei sind die Kostenfunktionen quadratisch, der Zeithorizont und die
Anzahl und Reihenfolge des Schaltens gegeben. Einschränkungen sind durch lineare (Un-)
Gleichungen im Zustandsraum gegeben. Die Zeitpunkte des Schaltens zwischen unterschiedli-
chen Dynamiken können entweder vorgegeben oder frei sein. Ein Parametrierungsverfahren in
Bezug auf Ausgangs- und Endpunkte der einzelnen Intervalle eines generalisierten Zeitbereichs
wird verwendet. Numerische Lösungen werden für solche Aufgaben vorgeschlagen.
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Chapter 1. Introduction and literature review 1

Chapter 1

Introduction and literature review

1.1 Hybrid and switched linear systems

After over two decades of research, many problems concerning control of hybrid
and switched systems still remain unsolved. These problems are important as many
physical systems have hybrid features. Examples can be found in mechanical, chemical,
biological, network systems, etc. Hybrid systems combine multiple dynamics. Typically,
such systems involve switches between different flows, between flows and jumps, or only
switches between different discrete dynamics. The switching rule is often governed by
an external signal or characterized by state space constraints. The external signal can
be caused by different sources. The most common type of this signal depends on time
or states. When the dynamics of a hybrid system is linear, we call the system a hybrid
linear system.

Control of hybrid and switched linear systems are particularly interesting from two
points of view. First, these systems inherit some properties of standard linear systems.
Second, the switching nature of these systems gives rise to nonlinear behaviors. Thus,
the control approaches developed for these systems borrow concepts from both linear and
nonlinear control theory. Numerous examples of these systems can be found in physical
systems. To gain more intuition about the models of switched and hybrid linear systems,
we now illustrate some applications.

(i) Boost converter: Each electrical circuit may have switching nature due to exis-
tence of electrical switches, diodes, transistors, or capacitors; see Julius and Van der
Schaft (2002), Heemels et al. (2009), Sira-Ramirez (1989), and Schiffer et al. (2012).
The following example has been selected from Heemels et al. (2009).

An established example in power systems which behaves as a hybrid system is
a DC-DC boost converter. Power converters are widely used in variable speed DC
motor drives, computer power supplies, cell phones, and cameras (Heemels et al.,
2009). The boost converter can generate an output voltage which is greater than
the input voltage. The circuit of a DC-DC converter is depicted in Figure 1.1.1.
This model consists of a load R, a capacitor C, an inductor L, a flyback diode D,
and a switch S. The input voltage is denoted by u := E and the voltage of two
sides of the capacitor C is denoted by vc(t). Rc and RL are the series resistors for



2 1.1. Hybrid and switched linear systems

the capacitor and the inductor, respectively. The switching period Ts for the switch
S is given. The duty cycle α(t) ∈ [0, 1], that is, the ratio of the activation duration
of on mode for switch S to the period Ts, is considered as the external input. When
the switch S is open, depending on the voltage of two sides of the flyback diode D,
this diode may function in on or off modes. Now, assuming x(t) = [iL(t) vc(t)]

> as
the state variables of the boost converter, depending on the status of the diode D
and the switch S, three operation modes for this system can be investigated. This
model can be written in the form of

ẋ(t) = Aσ(t,x)x(t) +Bσ(t,x)u σ(t, x) ∈ L := {1, 2, 3}, (1.1)

where Ai and Bi for i ∈ L are specified as follows:

1) In the first mode the switch S is closed and the entire current iL passes through
the switch S, thus iL > 0 or [1 0] x > 0. In this case, the matrix A1 and the
vector B1 are given by

A1 =

−RLL 0

0 −1
(R+Rc)C

 , B1 =

 1
L

0

 . (1.2)

The system works in this mode until time reaches to t = (n− 1 +α)Ts, where
n ∈ N. Then the system switches to mode 2).

2) In this mode the switch S is open and the flyback diode is on. Then, iL > 0
or [1 0]x > 0, and the data are computed to be

A2 =

−1
L

(
RL + RcR

R+Rc

)
−1
L

R
R+Rc

R
C(R+Rc)

−1
C(R+Rc)

 , B2 =

 1
L

0

 . (1.3)

The system can have two transitions from this mode. If iL = 0 or [1 0]x = 0
holds, then the system switches to mode 3). Otherwise, after spending time
up to t = nTs the system switches to mode 1).

3) In this mode the switch S is open and the flyback diode is off. It implies that
iL = 0 or [1 0]x = 0, and

A3 =

0 0

0 −1
(R+Rc)C

 , B3 =

0

0

 . (1.4)

The system stays in this mode until the time instance t = nTs. Afterwards,
the system switches to mode 1).

As will be explained in Section 1.2, the model of the boost converter (1.1) is in the
form of a controlled switched linear system. The switching rules depend on both
the states and time.
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RL

Rc

iL(t)

R

Figure 1.1.1: A DC-DC boost converter (Heemels et al., 2009).

(ii) Mobile multi-agent systems with switching topology: This example has
been selected from Olfati-Saber and Murray (2004). In multi-agent systems, each
agent exchanges information with some other agents called its “neighbors”. This
communication defines a network topology. The network topology is often repre-
sented by a directed graph G = (V,E,A), where V = {v1, . . . , vn} denotes the set
of nodes associated to the n agents, E ⊆ V × V is the set of edges which cor-
responds to the communication between agents, and A = [aij] with non-negative
entries is the n×n adjacency matrix (Ren and Beard, 2007). The network may have
a switching topology perhaps due to the agents’ changing positions or existence
of obstacles between the agents. In this case, one can associate a directed graph
Gk ⊆ Γ corresponding to each new topology, where Γ is a set of finite collections
of digraphs with n nodes and k belongs to an index set L := {1, . . . , �} ⊂ N with
� := |Γ|. Then, the states of the network evolve with different dynamics, which
can be expressed by a switched linear system in the form of

ẋ = −Lσ(t,x)x, (1.5)

where σ : R × R
n → L is a switching signal which specifies the active network

topology. The matrix Lk = [lk,ij]n×n with k ∈ L is called the Laplacian of the
graph Gk, which is defined by

lk,ij =

⎧⎪⎪⎨
⎪⎪⎩

n∑
p=1, p �=i

ak,ip j = i,

−ak,ij, j �= i.

Note that for two different agents i, j ∈ {1, . . . , n} which are not neighbors in Gk,
we have ak,ij = 0 for each k ∈ L. The aim of the consensus algorithm consists in
characterizing a communication routine such that all states exponentially converge
to the same variable, namely

x1(∞) = x2(∞) = · · · = xn(∞) =
1

n

n∑
i=1

xi(0). (1.6)
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v1 v2

d1
d2 d∗00

Figure 1.1.2: Schematic of the moving objects before, during, and after collision (Goebel
et al., 2009).

Now, note that (1.5) defines a switched linear system, where switching signal de-
pends on time and state variables.

(iii) Collisions: The system dynamics of two moving particles may change instantly
when a collision between them occurs. More precisely, the collision may lead to
sudden changes on the velocities of the mobile objects. Examples of such collisions
are billiard balls and bouncing balls (Goebel et al. (2009), Lygeros (2004) and
Brogliato (1999)). We now illustrate the following example taken from Goebel
et al. (2009).

Consider two particles which are moving towards each other with constant speeds
v1 and v2; see Figure 1.1.2. For simplicity, let’s assume that the diameters of both
particles are zero. The states of this system can be considered as x = [d� v�]�,
where d = [d1 d2]

� and v = [v1 v2]
� represent the positions and the velocity of the

two particles, respectively. The system dynamics are specified by Newton’s second
law as

ẋ =

⎡
⎢⎢⎢⎢⎢⎣
ḋ1

ḋ2

v̇1

v̇2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
d1

d2

v1

v2

⎤
⎥⎥⎥⎥⎦ := Ax. (1.7)

Note that the system dynamics evolves in accordance with (1.7) whenever x ∈
C := {x : d1 ≤ d2}. A collision occurs when the positions of the particles are the
same and v1 ≥ v2. In a collision time instance, positions of the particles remain
the same, that is, d+ = d, while the velocities can be derived by the momentum
equation

m1v
+
1 +m2v

+
2 = m1v1 +m2v2, (1.8)

and the energy dissipation equation

v+1 − v+2 = −ρ(v1 − v2), (1.9)

where m1 and m2 are the masses of the particles and the constant 0 < ρ < 1
is called restitution coefficient. Thus, the model of this system for the points
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V1:on/off

V2:on/off

T1

T2

w downstream processing
v2

v1
v1,max

v1,min

v2,max

v2,min

Figure 1.1.3: Schematic of the chemical process plant (Simeonova et al., 2006).

belonging to the collision set specified by D = {x : d1 = d2, v1 ≥ v2} reads

⎡
⎢⎢⎢⎢⎢⎣

d+1

d+2

v+1

v+2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

m1−m2ρ
m1+m2

m2(1+ρ)
m1+m2

0 0

m1(1+ρ)
m1+m2

m2−m1ρ
m1+m2

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

d1

d2

v1

v2

⎤
⎥⎥⎥⎥⎥⎦ := Gx. (1.10)

Consequently, we observe that the model of this system can be represented in the
form of

H :

{
ẋ = A x x ∈ C,

x+ = G x x ∈ D.
(1.11)

We talk extensively about stability and optimal control of hybrid systems of this
form in Chapter 6.

(iv) Chemical process systems: Many chemical process plants can include hybrid
or switching effects. For example, opening and closing of valves in a plant may
suddenly change inputs, outputs, or states of the system. Different scenarios of
interconnection of tank systems are introduced in the literature; see Raisch et al.
(1999) or Simeonova et al. (2006). The following example has been selected from
Simeonova et al. (2006).

The chemical plant depicted in Figure 1.1.3 is a simplified version of the bench-
mark chemical plant (Simeonova, 2008). The tank T1 is a batch chemical reactor
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which is followed by the buffer tank T2. This system operates automatically and
includes four successive operation modes: filling with the raw material, production
by the chemical reaction, discharging (i.e., harvesting of the final product),
cleaning and waiting for the next operation. Although the control reacts in a
discontinuous way, the final product must be delivered in a continuous way to
the downstream processing stage. To this end, there is an intermediate buffer
tank T2 between the batch reactor and the downstream processing plant, which
is discontinuously fed from the reactor, but continuously withdrawn. The states
of the system are v1, the volume of T1, and v2, the volume of T2. Four operation
modes for this system can be investigated as follows:

1) This mode refers to the condition that the valve V1 is closed (off) and V2 is
considered to be open. The initial volume of V1 equals v1,max and the initial
volume of T2 equals v2,min. The material in T1 is discharging with the output
flow rate r[m3/h], and T2 is being fed with the input flow rate r[m3/h], and
is discharging with the output flow rate w[m3/h]. Defining x = [v1 v2]>, the
dynamics can be written as follows: v̇1

v̇2

 =

 −1 0 0

1 −1 0


 r

w

q

 := B1u. (1.12)

This mode lasts until the volume of the tank T1 reaches to a minimum value
v1,min. Then, the plant switches to mode 2).

2) This mode refers to the condition that the valves V1 and V2 are both closed
(off). Thus, V1 is in standby. The material in T2 is discharging with the
output flow rate w[m3/h]. Then, the dynamics is written as follows: v̇1

v̇2

 =

 0 0 0

0 −1 0


 r

w

q

 := B2u. (1.13)

Mode 2) lasts for a certain amount of time p2[h], decided by the operator.
Then, the plant operates in mode 3).

3) This mode refers to the case that the valve V1 is open (on), and V2 is closed
(off). Then, T1 is filled with the raw material with the flow rate q[m3/h],
and T2 is discharging with the output flow rate w[m3/h]. The dynamics then
reads  v̇1

v̇2

 =

 0 0 1

0 −1 0


 r

w

q

 := B3u. (1.14)

This mode lasts until the volume of T1 reaches the maximum value v1,max.
Then, the plant switches to mode 4).
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4) This mode refers to the case that both V1 and V2 are closed (off). Only T2
is discharging with the output flow rate w[m3/h]. Then, the system dynamics
can be written as follows: v̇1

v̇2

 =

 0 0 0

0 −1 0


 r

w

q

 := B4u. (1.15)

Mode 4) lasts for certain amount of time p4[h]. Then, the plant goes again
to mode 1), and the cycle continues.

Now, consider that the dynamics of the overall system can be represented as a
switched linear system of the form

ẋ = Bσ(t,x)u σ(t, x) ∈ L := {1, 2, 3, 4}, (1.16)

where σ(t, x) : R×R2 → L represents the switching signal which depends on time
and the states of the system.

1.2 Model of hybrid and switched linear systems

As the previous physical applications suggest, a hybrid linear system can be represented
by the following general model:

H :

{
ẋ = Aσ(t,x) x+Bσ(t,x) u x ∈ C,
x+ = Gσ(t,x) x+Hσ(t,x) v x ∈ D,

(1.17)

where

σ(t, x) ∈ L := {1, . . . , `}, (1.18)

indicates the switching signal between different dynamics (Ai, Bi, Gi, Hi) for i ∈ L. In
this model, C ⊆ Rn and D ⊆ Rn denote the flow and jump sets, respectively. Note
that from the model (1.17), different models of switched linear systems can be derived
by restricting the parameters, as will be stated in the following.

(i) If D = ∅ and C = Rn, then (1.17) is converted to a continuous switched linear
system. If σ(t, x) = σ(t), that is, the switching signal is only a function of time,
then a switched linear system with arbitrary time-dependent switching signal
results. If σ(t, x) = σ(x), that is, the switching signal is only a function of the
states, then a switched linear system with state dependent switching results. If
the control input is not identically equal to zero, that is, Bi 6= 0 for some i ∈ L,
then we refer to the system as a controlled switched linear system. Otherwise, we
refer to the system simply as a switched linear system. Note that throughout this
thesis, we do not consider the switching signal as a control input.
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(ii) If C = ∅ and D = Rn, then we will arrive at a discrete time controlled switched
linear system. Again, if the switching signal σ is only a function of time, a discrete
time controlled switched linear system with arbitrary switching signal results, and
if it is only a function of the states, a discrete time controlled switched linear
system is obtained. If the control input is identically zero for all modes, then we
simply refer to the system as a discrete switched linear system.

From the above statements, we can argue that switched linear systems form a subclass
of hybrid linear systems. In this dissertation we discuss different problems associated
with stability of continuous switched linear systems and optimal control of hybrid linear
systems. Then, depending on the class of switched and hybrid systems, we study the
following solutions of these systems.

a) For a (controlled) switched linear system with arbitrary switching signal, we
assume a finite number of switching within a finite time interval occurs. Therefore,
solutions of such systems are unique for each initial condition and are always ab-
solutely continuous, implying that such solutions are continuous and differentiable
almost everywhere. Moreover, these solutions follow the direction of vector field
almost everywhere. Thus, for switched linear systems with arbitrary switching
signals we consider the Caratheodory solutions. For illustration of Caratheodory
solutions, see Appendix A.6.2.1 and Cortes (2008).

b) Solutions of a (controlled) switched linear system with state dependent switching
are always absolutely continuous. However, in this case a trajectory of the
switched system can slide on switching manifolds, and thus may not follow the
direction of vector field almost everywhere. For this reason, for switched linear
systems with state space constraints, we consider the Filippov solutions. For the
definition of the Filippov solutions, see Appendix A.6.2.2, Filippov (1988), and
Cortes (2008). It is worth mentioning that Filippov solutions may not be unique
for switched linear systems with state dependent switching; see Cortes (2008).

c) Solutions of a hybrid linear system can exhibit jumps. Therefore, such solutions
are absolutely continuous within flow evolutions, while they are not necessarily
continuous during jumps; see Goebel et al. (2012). Thus, for a hybrid linear system
due to the discontinuity of its solutions and the different nature of flow and jump
dynamics, we investigate the notion of generalized time domain for the domain of
state variables in the hybrid system (1.17). The generalized time domain consists
of two elements as a subset of R≥0 × N0, where N0 = N ∪ {0}. The first element
in the product indicates the actual time, whereas the second ingredient in the
product counts the jump events. For system modelling and general solutions in a
generalized time domain, see Goebel et al. (2012). Similar to item b), solutions of
a hybrid linear system may not necessarily be unique.

In this dissertation, we tackle three different problems regarding control of hybrid and
switched linear systems: stability and stabilization of switched linear systems, and opti-
mal control of hybrid linear systems. We now briefly elaborate these problems and point
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out some of the previous results related to these topics. For different stability and stabi-
lization problems in the contexts of discrete time linear time varying and switched linear
systems one can refer to, for example, Lin and Antsaklis (2009); Ahmadi et al. (2014);
Daafouz et al. (2002); Barabanov (2005); Wirth (2005b) and the references therein.

1.3 Stability of switched linear systems

The stability problem for switched linear systems is perhaps the most well studied topic
in the context of switched linear systems. The primary motivation for studying the sta-
bility problem for a switched linear system perhaps stems from the fact that Hurwitz
stability of constituent matrices is not sufficient for stability of the associated switched
linear system; see Example 3.2.1 and the references therein. On the other hand, it has
also been found that even if all matrices of a switched linear system are unstable, one
might be able to construct a routine of switching, such that some or all trajectories
of the switched linear system exponentially converge to zero (Wicks et al., 1998). Re-
search on the stability problem has given rise to many notions such as common quadratic
Lyapunov function (Shorten and Narendra, 2003; Wulff, 2005), single Lyapunov func-
tion (De Schutter and Heemels, 2004), multiple Lyapunov functions (Branicky, 1998),
converse Lyapunov theorem (Wirth, 2005a), average dwell time (Hespanha and Morse,
1999), common piecewise linear Lyapunov functions (Molchanov and Pyatnitskiy, 1989),
copositive Lyapunov functions for a class of rank-1 difference positive switched systems
with arbitrary number of subsystems (Fornasini and Valcher, 2010), etc. In the follow-
ing, we briefly represent those approaches which are most closely related to the results
in this thesis.

1.3.1 Common Quadratic Lyapunov function (CQLF)

The existence of a common quadratic Lyapunov function guarantees exponential stability
of a switched linear system both under arbitrary and state dependent switching; see,
e.g., Griggs et al. (2010). Moreover, it is known that quadratic stability exhibit robust
properties in terms of perturbations of constituent matrices and discretization of switched
linear systems; see Rossi et al. (2011) and Shorten et al. (2007). The quadratic stability
problem for a switched system with arbitrary switching signal can be stated as follows:

Problem 1.3.1. Consider the switched linear system

ẋ = Aσ(t)x(t) σ(t) ∈ L := {1, . . . , `}, (1.19)

where all matrices Ai for i ∈ L are Hurwitz and σ is the switching signal between the
Ai’s. Find conditions on the real matrices Ai ∈ A := {A1, . . . , A`} such that the switched
system (1.19) is quadratically stable, that is, there exists a common quadratic Lyapunov
function V (x) = x>Px with P = P> > 0 such that

A>i P + PAi < 0 ∀i ∈ {1, . . . , `}. (1.20)
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Note that (1.20) is a linear matrix inequality (LMI) and a common Lyapunov solution
P can be computed numerically. It is known that a set of Hurwitz matrices similar to

1) set of upper (lower) triangular matrices (Shorten and Narendra, 1998),

2) set of pairwise commuting matrices (Narendra and Balakrishnan, 1994),

3) set of matrices which belong to solvable Lie Algebraic conditions (Liberzon et al.,
1999; Agrachev and Liberzon, 2001),

4) set of real diagonalizable matrices which any pair of them share at least (n − 1)
right eigenvectors (Shorten and Cairbre, 2001),

are classes of matrices that a common quadratic Lyapunov function for the associated
switched linear system exists. Now, we point out two other important results which are
related to the stability concepts introduced in Chapters 4 and 5 of this thesis.

1) Rank-1 difference switched systems: One of the well-known results in the
context of quadratic stability is expressed by the next theorem.

Theorem 1.3.1. (See Shorten and Narendra (2003)) Consider the switched linear
system

ẋ =

(
A− σ(t)

bc

d

)
x σ(t) ∈ {0, 1}, (1.21)

where A ∈ Rn×n is Hurwitz, b ∈ Rn, c> ∈ Rn, and d > 0 is a scalar. Then, the
following statements are equivalent:

a) The switched system (1.21) is quadratically stable,

b) The transfer function g(s) = c(sI − A)−1b+ d is strictly positive real,

c) The matrix A
(
A− bc

d

)
has no real negative eigenvalue.

The proof of this theorem uses the Kalman-Yakubovic-Popov lemma proposed
for strictly positive real systems to guarantee the existence of a CQLF (Shorten
and Narendra, 2003). This result has been proven and extended to the class of
complex matrices separately by Laffey (2009) and King and Nathanson (2006).

2) Two dimensional switched systems: For a pair of two dimensional matrices,
existence of a CQLF is expressed by the following result:

Theorem 1.3.2. (See Shorten and Narendra (2002)) Suppose in Problem 1.3.1 ` =
2, and A1, A2 ∈ R2×2 are Hurwitz. Then the switched system (1.19) is quadratically
stable if and only if the matrices A1A2 and A1A

−1
2 do not have any real negative

eigenvalue.

Stability of second order switched systems including two subsystems under singular
perturbations has been considered by El Hachemi et al. (2011).

Despite much effort similar results for matrices with higher dimensions have only
been derived recently (Kouhi et al., 2013a).
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1.4 Stabilization of switched linear systems

The stabilization problem for switched linear systems has been studied from diverse
points of view. Some research considers stabilization of the switched system (1.19)
with Hurwitz constituent matrices, by restricting the rate of the switching signal. More
precisely, when all matrix constituents are Hurwitz, it is shown that if the switching
events are sufficiently far apart in time, then the switched linear system will be stable.
This concept is well-known as stability with average dwell time. Finding a reasonable
upper bound for the average dwell time has been investigated in Hespanha and Morse
(1999), Solo (1994), Geromel and Colaneri (2006), and Chesi et al. (2012). Some other
research assumes that the matrices Ai for all i ∈ L in (1.19) are not necessarily stable,
and they look for a switching law that makes the switched system exponentially stable
(Wicks et al., 1998; Feron, 1996). In this dissertation, however, we follow a standard
approach for quadratic stabilization of a controlled switched linear system using local
state feedback for each mode, similar to Cheng (2004) and De Schutter and Heemels
(2004). This problem for a controlled switched system with arbitrary switching signal
can be stated as follows:

Problem 1.4.1. Consider the controlled switched system

ẋ = Aσ(t) x(t) +Bσ(t) u(t) σ(t) ∈ L := {1, . . . , `}. (1.22)

Find a local state feedback u = Kσ(t)x such that the resulting closed loop switched
system

ẋ =
(
Aσ(t) +Bσ(t)Kσ(t)

)
x, (1.23)

is quadratically stable, that is, there exists a common quadratic Lyapunov function
V (x) = x>Px with P = P> > 0 such that

(Ai +BiKi)
>P + P (Ai +BiKi) < 0 ∀i ∈ L. (1.24)

Note that (1.24) is not an LMI due to the existence of the coefficient PBiKi in the
inequality, where both P and Ki are unknown parameters. Nevertheless, one can convert
this inequality to the LMI form as follows; see De Schutter and Heemels (2004). First
by pre-multiplying by P−1 and post-multiplying by P−1, we get

(P−1A>i + P−1K>i B
>
i ) + (AiP

−1 +BiKiP
−1) < 0 ∀i ∈ L. (1.25)

Thus with the assumptions X := P−1 and Yi := KiP
−1, we can rewrite (1.25) as

XA>i + AiX + Y >i B
>
i +BiYi < 0 ∀i ∈ L. (1.26)

Now, it is evident that (1.26) is an LMI and can be solved numerically. However,
numerical methods do not provide any insight into the feasibility of such LMI’s. For
this reason, finding sufficient conditions on Ai and Bi for all i ∈ L under which the
solvability of these LMI’s is guaranteed, is a crucial problem. Several articles dealing
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with this problem have been published, e.g., Cheng (2004); Sun and Zheng (2001). For
example, in Cheng (2004) a necessary and sufficient condition for stabilization of second
order controlled switched linear systems with single input has been explored.

In this dissertation, we consider stabilization of a class of controlled switched linear
systems where all open loop matrices Ai’s, i ∈ L, share a right invariant subspace
with appropriate dimension to which a common quadratic Lyapunov function can be
associated. Satisfying some rank conditions with respect to Bi’s, for this class we
show that quadratic stabilization can be achieved if sufficient number of input channels
are available. Moreover, we demonstrate that this approach can be employed for
stabilization of a class of controlled switched systems, where their open loop matrices
have invariant subspaces which have sufficiently small distances, and a certain form of
Riccati inequalities for the matrices associated with these invariant subspaces hold.

The concept of common controlled invariant subspaces has been previously considered
in the context of linear parameter varying and switched linear systems, often for stability
of a system in a subspace of the state space or for mode decoupling; see, e.g., Balas et al.
(2003), Yurtseven et al. (2010), Haimovich and Braslavsky (2010), and Blanchini (1999).
Furthermore, it has also been used for determining a sequence of stabilizable controlled
switched linear systems (Sun and Zheng, 2001). For these purposes, algorithms have
been developed to compute a largest common controlled invariant subspace of a switched
system for a subspace of x ∈ X ⊆ Rn and u ∈ U. The largest common invariant subspace
for such a switched linear system can be computed by an iterative algorithm using fixed
point theory; see, e.g., Tsatsomeros (2001) and Julius and Van der Schaft (2002).

1.5 Optimal control of hybrid linear systems

Optimal control problems for hybrid systems are recognized as challenging mathematical
problems. In such problems, one often associates several cost values each of which
corresponds to a part of a trajectory evolving with a given dynamics. Then, the objective
is to minimize the sum of these costs over a fixed or free time interval, and fixed or free
switching time instances. For such optimal control problems, the maximum principle
for hybrid systems holds; see Sussmann (1999); Caines et al. (2006); Azhmyakov et al.
(2007); Liberzon (2011); Passenberg et al. (2011). In one of the early works by Sussmann
(1999), a general condition for the maximum principle for hybrid systems including fixed
switching sequences and free switching time instances has been proposed. In Caines
et al. (2006) the concept is generalized to a setting with guard conditions. Typically,
such algorithms extend the classical maximum principle by additional requirements on
the switching manifolds known as transversality conditions. Despite the sound theory,
computational difficulties arise even in a setting with quadratic costs for hybrid linear
systems (Riedinger et al., 1999; Azhmyakov et al., 2009; Xu and Antsaklis, 2004).

Linear quadratic regulator (LQR) problems for hybrid and switched linear systems,
similar to optimal control problems for the general form of hybrid systems, may have
fixed or free switching times, and fixed or free switching sequences; see, for instance,
Problem 6.5.1 as a possible scenario. Several results dealing with these problems exist
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in the literature (Xu and Antsaklis, 2004; Azhmyakov et al., 2009). For instance, in Xu
and Antsaklis (2004), an efficient numerical algorithm for the LQR problem with free
switching times is obtained by introducing a parameterization in terms of switching
times.

Some other research provides numerical solutions for optimal control of systems
which are closely related to hybrid linear systems. For example, in the context of
piecewise linear systems, Rantzer and Johansson (2000) suggests lower and upper
bounds to the optimal cost by formulating a semi-definite and a convex programming
problem. Analytic expressions for sub-optimal solutions to an LQR problem for LTI sys-
tems with state space and input constraints have been reported in Johansen et al. (2002).

1.6 Organization of the thesis

In Chapter 2, we study different approaches concerning left eigenstructure assignment
for multi-input systems, pole placement for single input systems, and partial pole
placement for single- and multi-input systems. This chapter can be viewed as the basis
for the upcoming results on the stability and stabilization of switched linear systems
in Chapter 3 and Chapter 4. Moreover, this chapter extends the result by Kouhi and
Bajcinca (2011a) on left eigenstructure assignment.

In Chapter 3, we study exponential stability and stabilization of switched linear
systems with state dependent switching signals. In these problem settings, we assume
certain restrictions on the geometry of switching manifolds. This chapter extends parts
of the results by Kouhi and Bajcinca (2011b) on exponential stability and stabilization
of switched linear systems. Our techniques use the concept of common left eigenvectors
and left eigenstructure assignment introduced in Chapter 2.

In Chapter 4, we apply the concept of common eigenvectors and left eigenstructure
assignment for stability and stabilization of switched linear systems under arbitrary
switching. Our approach for stabilization investigates a local state feedback design
for each subsystem of a controlled switched system. The main result in this chapter
discusses stabilization of a controlled switched system whose open loop constituent
matrices share an invariant subspace to which a common quadratic Lyapunov function
can be associated. We then use the left eigenstructure assignment technique for
imposing a number of desired left eigenvectors that are perpendicular to the common
invariant subspace, thereby guaranteeing quadratic stability of the closed loop matrices
of subsystems. Moreover, we discuss robust stability of a switched linear system when
its Hurwitz matrices share (n− 1) real left eigenvectors. This chapter extends the result
by Kouhi and Bajcinca (2011c) on quadratic stability and stabilization of switched
linear systems.

In Chapter 5, we extend the results by Shorten and Narendra (2003) on quadratic
stability, and Shorten et al. (2009) concerning weak quadratic stability of switching



14 1.6. Organization of the thesis

systems with two modes and rank-1 difference matrices. We show that their results
can be extended to switched systems with rank m ≥ 1 difference matrices, provided
that a symmetric transfer function matrix can be associated with the pair of matrices.
Moreover, we use this approach for computing a set of control inputs which stabilize a
class of controlled switched linear systems. Parts of these results have been published
in Kouhi et al. (2013a) and Kouhi et al. (2014).

In Chapter 6, we briefly study the stability problem for hybrid linear systems. We
show that their stability is equivalent to stability of switched linear systems, if bilinear
transformations for converting discrete evolutions to continuous dynamics are used.
The main results of this chapter, however, are related to the optimal control of hybrid
linear systems. We investigate two problem configurations. In the first scenario, the
class of hybrid linear systems is specified by a single flow and a single jump dynamics,
and state space constraints are represented by polyhedral sets. For this system, we
consider an optimal control problem with a fixed sequence of switching occurring
at fixed time instances. Our solution algorithm determines upper and lower bounds
for the overall cost function of this problem. In the next scenario, we consider an
optimal control problem for hybrid linear systems including multiple flow dynamics
with fixed sequence of switching, such that switches can take place at free time
instances. This result solves a problem related to maximum principle for hybrid linear
systems. Parts of the results in this chapter have been published by Kouhi et al. (2013b).

In Chapter 7, we provide the conclusions.

In Appendix A, some necessary definitions and existing concepts are given to make
this dissertation necessarily self-contained.



Chapter 2. Left eigenstructure assignment 15

Chapter 2

Left eigenstructure assignment

2.1 Introduction

Eigenstructure assignment for multi-input systems and pole placement for single-input
systems using static state feedback are old topics in the control systems theory. From a
classical point of view, pole placement for a single input system is often used to assign
some or all eigenvalues of a linear system to stabilize the closed loop system, and/or to
improve the rate of convergence of system solutions (Kailath, 1980; Saad, 1986). For
multi-input systems, due to more freedom on control inputs, eigenstructure assignment
has given rise to different problem formulations. For example, right eigenstructure
assignment is used to shape the solutions of a linear system (Wonham, 1967; Liu
and Patton, 1998), and left eigenstructure is used for disturbance attenuation (Choi,
1998a,b). In this chapter, however, our motivation is not to provide new results in this
sense, nor to be involved fundamentally in different eigenstructure assignment methods
for LTI systems. Although some of the techniques introduced in this chapter can be
used for control of a linear system, some others essentially may not make sense for this
purpose. In fact, the current chapter should be viewed as an introduction for the results
of the upcoming chapters on stabilization of controlled switched linear systems.

Our main interest in this chapter is how to exploit the potential of control inputs for
assigning as many desired left eigenvectors as possible using state feedback, such that
the closed loop system is stable. It should be mentioned that this aim is different from
conventional left eigenstructure assignment proposed in the literature, including Choi
(1998a,b) and the references therein.

2.2 Left eigenvector assignment

First, we present left eigenstructure assignment for single input systems. Then, in the
next part we extend this to multi-input systems.
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2.2.1 Single-input systems

Consider a single input controllable LTI system given by the state space representation

ẋ = Ax+ bu, (2.1)

where x ∈ Rn and u ∈ R are the state vector and the control input, respectively. Suppose
we aim at designing a state feedback u = kx, where k is a row vector, for assigning a
desired left eigenvector w ∈ Cn and its corresponding eigenvalue λ1 ∈ C<0 to the closed
loop system, where C<0 denotes the open left half plane. Then, by a simple computation
we have

w∗(A+ bk) = λ1w
∗ =⇒ k = −w

∗(A− λ1I)

w∗b
for w∗b 6= 0. (2.2)

The left eigenvector w appears nonlinearly in the closed loop system matrix Acl = A+bk
as

Acl =

(
I − bw∗

w∗b

)
A+ λ1

bw∗

w∗b
. (2.3)

Note that the matrix I−bw∗/w∗b in (2.3) has one eigenvalue equal to 0 with correspond-
ing left eigenvector c1 := w, and n − 1 eigenvalues equal to 1 with corresponding left
eigenvectors ci such that c>i b = 0 for i ∈ {2, . . . , n}. Now, a natural problem arising from
the gain (2.2) and the closed loop description (2.3) is to explore the proper selection of
w and λ1 such that k> ∈ Rn and Acl is a Hurwitz matrix (Kouhi and Bajcinca, 2011a).

Lemma 2.2.1. (Simon and Mitter, 1968) The characteristic polynomial of the closed
loop system (2.3) is given by

det (λI − Acl) = (λ− λ1)
w∗adj(λI − A)b

w∗b
= (λ− λ1)(λn−1 + β1λ

n−2 + · · ·+ βn−1), (2.4)

where the coefficients βi for i ∈ {1, . . . , n− 1} are in the form of

βi =
w∗(aiI + ai−1A+ ai−2A

2 + · · ·+ Ai)b

w∗b
, (2.5)

and ai for i ∈ {1, 2, . . . , n} are the coefficients of the characteristic polynomial of A,
i.e., p(λ) = det(λI − A) = λn + a1λ

n−1 + · · ·+ an−1λ+ an.

Proof: The characteristic polynomial of the closed loop system matrix Acl is computed
as follows:

det(λI − A− bk) = det(λI − A)det[I − (λI − A)−1bk]

= p(λ) det
[
I − (λI − A)−1bk

]
= p(λ)

[
1− k(λI − A)−1b

]
= p(λ)

[
1 +

w∗(A− λ1I)(λI − A)−1b

w∗b

]
= p(λ)

[
w∗(λI − A− λ1I + A)(λI − A)−1b

w∗b

]
= (λ− λ1)

w∗adj(λI − A)b

w∗b
.



Chapter 2. Left eigenstructure assignment 17

b

(a1 I + A)b
Ω

Figure 2.2.1: The interior of the colored region, denoted by Ω, is the proper region for
selection of a desired left eigenvector w, when n = 2.

Note that in deriving the last line we used the fact

p(λ)(λI − A)−1 = det(λI − A).(λI − A)−1 = adj(λI − A);

see also AppendixA.2 and Kailath (1980). On the other hand, the Resolvent formula
(Kailath, 1980) for the adjoint matrix is given by

adj(λI − A) = An−1 + (λ+ a1)A
n−2 + · · ·+

(λn−1 + a1λ
n−2 + · · ·+ an−1)I

= λn−1I + λn−2(a1I + A) + · · ·+ (an−1I + · · ·+ a1A
n−2 + An−1). (2.6)

Pre-multiplying equation (2.6) by w∗ and post-multiplying by b, and dividing it by w∗b
leads to the formulation (2.5).

Now, consider that deriving a simple statement for stability of Acl from the polyno-
mial (2.4) based on the Routh-Hurwitz stability criteria is not straightforward. There-
fore, we will study this problem in more detail in the sequel. However, in the cases when
n = 2 or n = 3, and λ1 and consequently w are real, we can get particularly simple
illustrative results. For instance, with n = 2, λ1 ∈ R<0, and w ∈ R

2, stability of Acl is
equivalent to have

β1 =
w�(a1I + A)b

w�b
> 0. (2.7)

This inequality holds if the inner-products of w with b, and w with (a1I +A)b share the
same sign. Hence, the set of all desired left eigenvectors w that makes β1 > 0 can be
specified geometrically, as illustrated by the shaded area Ω in Figure 2.2.1. If n = 3,
λ1 ∈ R<0, and w ∈ R

3, then in addition to (2.7), we require

β2 =
w�(a2I + a1A+ A2)b

w�b
> 0. (2.8)

Again, the two expressions β1 > 0 and β2 > 0 with respect to the parameter w
characterize a region in the three dimensional state space. This region can be computed
geometrically (Kouhi and Bajcinca, 2011b).
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2.2.1.1 Closed loop stability

To solve the problem of selecting a suitable w which stabilizes the closed loop matrix
Acl for the general case, we use the linear transformation z = Tx. Then, the closed loop
system ẋ = (A+ bk)x is converted to the form

ż = (Ac + bckc)z, Ac = T−1AT, bc = T−1b, and kc = kT. (2.9)

Consider now the particular case where Ac and bc are in controllable canonical form

Ac =



0 1 0 . . . 0
0 0 1 . . . 0
. . . . .
. . . . .
. . . . .
0 0 0 . . . 1
−an −an−1 −an−2 . . . −a1


, bc =



0
0
.
.
.
0
1


. (2.10)

Note that for any controllable pair (A, b) this transformation matrix T exists, and is
given by

T = Φc(A, b)Φ
−1
c (Ac, bc), (2.11)

where Φc(A, b) and Φc(Ac, bc) are the controllability matrices of the original and of the
transformed systems, respectively. Now, referring to (2.4), the closed loop characteristic
polynomial for the closed loop matrix Ac,cl = Ac + bckc reads

det(λI − Ac,cl) = (λ− λ1)
w∗cadj(λI − Ac)bc

w∗cbc
,

where wc = [wc,1 . . . wc,n]> is the left eigenvector for the matrix Ac,cl corresponding to
the eigenvalue λ1. On the other hand, one can observe that the closed loop matrix Ac,cl

is also in canonical form

Ac,cl =



0 1 · · · 0

0 0 · · · 0

...
...

...
...

0 0 · · · 1

λ1w∗c,1
w∗c,n

−w∗c,1+λ1w∗c,2
w∗c,n

· · · −w∗
c,(n−1)

+λ1w∗c,n

w∗c,n


.

As bc in (2.10) has only one non-zero element, for computing w∗cadj(λI − Ac)bc we only
require to compute the n’th column of adj(λI−Ac). Note that w∗cbc = w∗c,n 6= 0 indicates
that w∗c,n 6= 0. Thus, the characteristic polynomial of Ac,cl equals

det(λI − Ac,cl) =

= λn +
1

w∗c,n

(
w∗c,(n−1) − λ1w

∗
c,n

)
λn−1 + · · · − 1

w∗c,n
λ1w

∗
c,1

=
1

w∗c,n
(λ− λ1)

(
w∗c,nλ

n−1 + w∗c,(n−1)λ
n−2 + · · ·+ w∗c,2λ+ w∗c,1

)
. (2.12)
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The last equation reveals the fact that the characteristic polynomial of Ac,cl does not de-
pend on the variables a1, a2, . . . , an, but it is determined by the parameters wc,1, . . . , wc,n,
and λ1. Therefore, a left eigenvector wc which stabilizes Ac,cl can be characterized by
the coefficients of the following stable polynomial

hc(λ) = w∗c,nλ
n−1 + w∗c,(n−1)λ

n−1 + · · ·+ w∗c,2λ+ w∗c,1. (2.13)

On the other hand, from the transformation Ac,cl = T−1AclT , it is simple to show that
w = (T ∗)−1 wc. Thus, after finding an appropriate wc from (2.13), we can compute a
vector w which stabilizes Acl = A+ bk (Kouhi and Bajcinca, 2011a). In the case, when
λ1 is not real, for having a real feedback gain k the eigenvalues of the closed loop matrix
Acl must come in complex conjugate pairs. This implies that hc(λ) must have the form
of hc(λ) = w∗c,n(λ− λ∗1)hc,1(λ), where hc,1(λ) is a polynomial with real coefficients.

When λ1 and wc are restricted to be real, several contributions in the literature
are available that specify simple sufficient conditions for stability of polynomials in the
form of (2.13); for example, the results by Craven and Csordas (1998) and Dimitrov
and Peña (2005). Now, we stress one of these results in the next lemma.

Lemma 2.2.2. (See Dimitrov and Peña (2005)). Let γ be the unique real root of the
polynomial γ3−5γ2 +4γ−1 = 0, namely γ = 4.0796. If the coefficients of the polynomial
hc(λ) defined by (2.13) are all positive real and the following conditions hold

wc,iwc,i+1 ≥ γwc,i−1wc,i+2 ∀i ∈ {2, . . . , n− 2}, (2.14)

then hc(λ) is Hurwitz.

For other results on stability of polynomials, see Katkova and Vishnyakova (2008)
and the references therein.

2.2.1.2 Pole placement

In this section, we show that (2.11) and (2.12) can be additionally used for pole place-
ment; see Kouhi and Bajcinca (2011a). To this end, consider a controllable linear system
(2.1), and let {λ1, . . . , λn} be a set of numbers including complex conjugate pairs. We
wish to design a state feedback law u = kx, with k> ∈ Rn, which assigns the desired
eigenvalues λi for all i ∈ {1, . . . , n} to the closed loop matrix Acl = A+ bk. We perform
the following algorithm for achieving this goal.

a) Obtain an appropriate canonical left eigenvector wc corresponding to λ1 from the
following relationship

1

w∗c,n

(
w∗c,nλ

n−1 + w∗c,(n−2)λ
n−1 + · · ·+ w∗c,2λ+ w∗c,1

)
= (λ− λ2) . . . (λ− λn). (2.15)

b) Obtain the transformation matrix T defined in accordance with (2.11).
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c) Obtain the desired feedback gain from

k = −w
∗
cT
−1(A− λ1I)

w∗cbc
. (2.16)

Note that (2.16) results by inserting the equation w = (T ∗)−1 wc into (2.2).

2.2.1.3 Single shift eigenvalue

Consider again the (not necessarily controllable) linear system (2.1). Suppose the aim is
to design a state feedback u = kx that only shifts the real eigenvalue µ1 of the open loop
matrix A and replaces it by a real desired number λ1, while the other eigenvalues of A
remain unchanged. To this end, we choose the open loop left eigenvector w corresponding
to the eigenvalue µ1, that is, w>A = µ1w

>, to be the desired left eigenvector for Acl

corresponding to the desired eigenvalue λ1. Then, referring to the computation (2.2),
the formula for the appropriate feedback gain reads

k = −w
>(A− λ1I)

w>b
= −(µ1 − λ1)w>

w>b
for w>b 6= 0. (2.17)

The closed loop characteristic polynomial then will be computed by (2.4). On the other
hand, by following the same procedure on derivation of (2.4), one can argue that the
open loop characteristic polynomial p(λ) equals

p(λ) = (λ− µ1)
w>adj(λI − A)b

w>b
. (2.18)

Comparing (2.4) and (2.18), we conclude that except one eigenvalue, all other eigenval-
ues of the closed loop and open loop matrices are the same.

The single shift eigenvalue technique has been introduced by Simon and Mitter
(1968).

2.2.1.4 Partial pole placement

Consider now the linear system (2.1), with controllability of the system to be discussed
in the sequel. We want to study the problem of designing a state feedback u = kx that
only shifts the eigenvalues µ1, . . . , µm of the open loop matrix A, and replaces them by
the desired numbers λ1, . . . , λm for some 1 < m ≤ n, while keeping the other eigenvalues
of A, namely µm+1, . . . , µn, unchanged. To this end, we follow an algorithm introduced
by Saad (1986). Let us denote the real Schur decomposition of A> as

A> =
[
Q1 Q2

] [ L>1 ?

0 L>2

][
Q>1

Q>2

]
, (2.19)

where columns of T = [Q1 Q2] ∈ Rn×n consist of orthonormal vectors, L1 ∈ Rm×m, and
L2 ∈ R(n−m)×(n−m); see (Stewart, 2001) and Appendix A.2.9. As T is orthonormal, that
is, T−1 = T>, (2.19) reveals that eigenvalues of L1 are equal to m eigenvalues of A, and
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eigenvalues of L2 are the same as other n−m eigenvalues of A. Without loss of generality,
let us assume that the set of eigenvalues of L1 and L2 are given by {µ1, . . . , µm} and
{µm+1, . . . , µn}, respectively. Note that (2.19) implies the following relationships hold:

Q>1 A = L1Q
>
1 and Q>2 AQ2 = L2. (2.20)

Further, introducing the parametrization k = ηQ>1 , where η> ∈ Rm, we use the trans-
formation x = Tz and (2.20) to get the similarity condition

Acl := A+ bk ∼ T>AclT =

[
L1 +Q>1 bη 0

? L2

]
. (2.21)

This is an indication that the set of eigenvalues {µm+1, . . . , µn} in Acl remain unchanged,
as the eigenvalues of L2 are µm+1, . . . , µn. However, the eigenvalues µ1, . . . , µm can be
changed by means of the parameter η in the term L1 + Q>1 bη. Now, we can employ
our pole placement technique elaborated in Section 2.2.1.2 in the upper left block for
assigning the desired eigenvalues λ1, . . . , λm. To this end, define Lc,1 and bc,L1 to be the
canonical controllable form of L1 and Q>1 b, respectively. Then, we adopt the formula
(2.16) for computing η as

η = −w
∗
c,L1

T−1
L1

(L1 − λ1I)

w∗c,L1
bc,L1

, (2.22)

where TL1 = Φc(L1, Q
>
1 b)Φ

−1
c (Lc,1, bc,L1), and wc,L1 is the left eigenvector of the matrix

Lc,1 corresponding to the eigenvalue λ1. Note that η in (2.22) exists if the pair (L1, Q
>
1 b)

is controllable, or the controllability matrix Φc(L1, Q
>
1 b) has full rank. In fact, by the

definition of the controllability matrix, we have

Φc(L1, Q
>
1 b) = [Q>1 b L1Q

>
1 b . . . (L1)m−1Q>1 b]

= Q>1 [b Ab . . . Am−1b]. (2.23)

Therefore, if

rank
(
Q>1 [b Ab . . . Am−1b]

)
= m,

then partial pole placement is possible.

2.2.2 Multi-input systems

In this section, we generalize the results of single input systems to multi-input systems
in the form of

ẋ = Ax+Bu, (2.24)

where x ∈ Rn and u ∈ Rm are again the state and the control input vectors, respectively.
Let wi ∈ Cn for i ∈ {1, . . . ,m} be m linearly independent vectors including complex
conjugate pairs, and let λi ∈ C<0 for i ∈ {1, . . . ,m} be numbers coming in complex
conjugate pairs. Define W = [w1 . . . wm] and Λ = diag([λ1, . . . , λm]). Suppose we aim at
computing a state feedback u = Kx with K ∈ Rm×n, such that the closed loop matrix
Acl = A+BK has m assigned left eigenvectors given by the columns of W corresponding
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to m desired eigenvalues given by the diagonal entries of Λ. It is simple to show that
such feedback gain has the form

K = −(W ∗B)−1(W ∗A− ΛW ∗) for det(W ∗B) 6= 0. (2.25)

This design leads to the closed loop system matrix

Acl =
(
I −B(W ∗B)−1W ∗)A+B(W ∗B)−1ΛW ∗. (2.26)

Note that the columns of −(W ∗B)−1 and the rows of W ∗A− ΛW ∗ consist of conjugate
pairs of complex vectors and thus their multiplication, K defined by (2.25), is a real
matrix. The matrix I − B(W ∗B)−1W ∗ in (2.26) has m eigenvalues equal to 0 with
corresponding left eigenvectors ci := wi for i ∈ {1, . . . ,m}, and (n−m) eigenvalues equal
to 1 with corresponding left eigenvectors ci such that c>i B = 0 for i ∈ {m + 1, . . . , n}
(Kouhi and Bajcinca, 2011a). Now, we explore under which conditions the closed loop
description Acl given by (2.26) is Hurwitz.

Lemma 2.2.3. (See Kouhi and Bajcinca (2011a)). The characteristic polynomial of the
closed loop system matrix (2.26) is given by

det (λI − Acl) = det(λI − A)1−m det(λI − Λ)
W ∗adj(λI − A)B

det(W ∗B)
. (2.27)

Proof: Defining p(λ) = det(λI − A), the characteristic polynomial of the closed loop
system is computed as follows:

det(λI −A−BK) = det(λI − A)det[I − (λI − A)−1BK]

= p(λ) det
[
I − (λI − A)−1BK

]
= p(λ) det

[
I −K(λI − A)−1B

]
= p(λ) det

[
I + (W ∗B)−1(W ∗A− ΛW ∗)(λI − A)−1B

]
= p(λ) det

(
(W ∗B)−1

[
W ∗B + (W ∗A− ΛW ∗)(λI − A)−1B

])
= p(λ) det

(
(W ∗B)−1

)
det
(
[W ∗(λI − A) +W ∗A− ΛW ∗](λI − A)−1B

)
= p(λ)

det(λI − Λ).det (W ∗(λI − A)−1B)

det(W ∗B)

= p(λ)1−m det(λI − Λ)
det (W ∗adj(λI − A)B)

det(W ∗B)
,

where in deriving the third line of the proof, we used the general identity

det(In −XY ) = det (Im − Y X),

for any two matrices X ∈ Cn×m and Y ∈ Cm×n; see Appendix A.2.3.

Therefore, for closed loop stability, we propose the following corollary.

Corollary 2.2.1. Assume λi ∈ C<0 for all i ∈ {1, . . . ,m}, det(W ∗B) 6= 0, and
(A,B) is controllable. The closed loop matrix (2.26) is Hurwitz if and only if
det (W ∗adj(λI − A)B) has no zero in the closed right half plane.
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2.2.2.1 Closed loop stability having (n− 1) inputs

Although designing a convenient W which stabilizes the closed loop system matrix (2.26)
for a general m is not straightforward, we introduce a method for the case m = n − 1
and W ∈ Rn×(n−1), based on the results by Kouhi and Bajcinca (2011c). Suppose
the controller gain K ∈ R(n−1)×n in the form of (2.25) imposes a pre-specified set of
(n − 1) linearly independent common real left eigenvectors given by the columns of
W = [w1 . . . wn−1] and the corresponding negative real eigenvalues given by the diagonal
entries of Λ = diag([λ1, . . . , λn−1]) to the closed loop system matrix Acl = A + BK.
For the closed loop stability, we need to ensure that the last eigenvalue λn is negative
real. Note that λn must be real because a real matrix cannot have only one complex
eigenvalue with non-zero imaginary part. Now, let the characteristic polynomials of the
open and closed loop system (2.24) be denoted by p(λ) and q(λ), respectively, that is,

p(λ) = λn + a1λ
n−1 + · · ·+ an, (2.28)

q(λ) = λn + α1λ
n−1 + · · ·+ αn. (2.29)

It is a known fact that −α1 in (2.29) is equal to the sum of the closed loop eigenvalues,
and simultaneously is equal to the trace of Acl, that is,

tr(Acl) =
n∑
i=1

λi = −α1;

see Appendix A.2.6 and Kailath (1980). Hence, λn can now be computed as

λn = −α1 −
n−1∑
i=1

λi = tr(Acl)− tr (Λ) . (2.30)

Further, we compute tr(Acl) from (2.26)

tr(Acl) = tr(
(
I −B(W>B)−1W>)A+B(W>B)−1ΛW>)

= tr(A)− tr
(
B(W>B)−1W>A

)
+ tr

(
B(W>B)−1ΛW>) .

Using the identity tr(EF ) = tr(FE) for general matrices E and F , as well as the fact
that tr(A) = −a1 = −tr (a1/(n− 1) In−1) = −tr

(
a1/(n− 1) (W>B)−1W>B

)
, we have

tr(Acl) = −a1 − tr
(
W>AB(W>B)−1

)
+ tr

(
W>B(W>B)−1Λ

)
= −tr

(
W> (a1/(n− 1) In + A)B(W>B)−1

)
+ tr(Λ).

Consequently, recalling (2.30), we can derive a simple expression for λn

λn = −tr
(
W>(a1/(n− 1) In + A)B(W>B)−1

)
. (2.31)

In the sequel we provide an algorithm for designing a matrix W which satisfies λn < 0.
To this end, let θ ∈ Rn be a vector belonging to ker(B>), that is,

θ>B = 0, (2.32)
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and consider the parametrization

W> =W> + µθ>, (2.33)

where W is an arbitrary matrix in Rn×(n−1) and µ ∈ Rn−1 is an unknown vector which
must be determined. From the definition of θ, it is obvious that

(W>B)−1 = (W>B)−1.

Defining the matrix X ∈ Rn×(n−1) and the vector Y ∈ Rn−1 as

X =
(
a1/(n− 1) In + A

)
B(W>B)−1,

Y > = θ>
(
a1/(n− 1) In + A

)
B(W>B)−1, (2.34)

and substituting W> from (2.33) into (2.31), we get

λn = −tr
(
(W> + µθ>) (a1/(n− 1) In + A)B(W>B)−1

)
= −tr (W>X)− tr (µY >).

As θ, µ, and Y are vectors, we can write

tr(µY >) = tr(Y >µ) = Y >µ,

which leads to

λn = −tr (W>X)− Y >µ. (2.35)

Thus, the last equation indicates that the requirement λn < 0 is equivalent to have

Y >µ > −tr (W>X). (2.36)

Note that if we fix W , then X and Y will be known variables. Then, (2.36) represents
an inequality with µ as an unknown variable. This inequality indicates that the
inner-product of the known vector Y and the unknown vector µ must be greater
than the known scalar −tr (W>X). The set of vectors µ fulfilling such charac-
teristics indeed identifies a geometric cone in the space Rn−1. Now, sweeping over
all possibleW ∈ Rn×(n−1) would yield the region Ω ⊆ Rn×(n−1) of all desired matrices W .

In the following example, we explain how we can compute an appropriate W based
on the proposed algorithm.

Example 2.2.1. Consider the controlled linear system (2.24) with

A =

 3 −3 −7
0 −4 0
1 3 −5

 , B =

 1 1
1 0
2 2

 . (2.37)

A has eigenvalues at 2,−4,−4, and thus is not Hurwitz. Suppose we want to determine
a state feedback gain K ∈ R2×3 which assigns two eigenvalues at −2,−3, and makes
the closed loop matrix Acl = A + BK Hurwitz. To this end, we assume that the left
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eigenvectors corresponding to these two eigenvalues are columns of the matrix W =
[w1 w2], where w1, w2 ∈ R2 are unknown. Now, we use the parameterization (2.33). The
vector θ coming from (2.32) and an arbitrary vector W are given by:

W> =

[
1 1 1
1 0 1

]
, θ = [−2 0 1]>.

Then, from (2.34) the matrix X and the vector Y are computed as

X =

 −3 0.333
−1 1

3 −4

 , Y =
[

9 −4.667
]>
.

As −tr(W>X) = 6.6667, we can select µ> = [2 1] to satisfy the condition of inequality
(2.36). This leads to

W> =W> + µθ> =

[
−3 1 3
−1 0 2

]
,

K =

[
8 −7 −9

−6.667 4 8

]
.

The closed loop matrix then equals

Acl =

 4.333 −6 −8
8 −11 −9

3.667 −3 −7

 ,
which has the eigenvalues −2,−3, and −8.667.

2.3 Left eigenstructure assignment

In Section 2.2.2.1 we have discovered that finding a set of m desired left eigenvectors
which can stabilize the closed loop system matrix (2.26) under the feedback gain (2.25),
in general, is challenging. Therefore, we leave out this problem and slightly change our
strategy. In the new scheme, we reduce the number of desired left eigenvectors to m− 1
and increase the number of desired eigenvalues to n. Hence, we expect to establish both
left eigenvectors assignment and closed loop stability.

Consider again the linear system (2.24) with controllability to be discussed in the se-
quel. Imagine that the controller gain K is supposed to impose a prespecified set of m−1
linearly independent left eigenvectors with complex conjugate pairs given by the columns
of W = [w1 . . . wm−1] corresponding to m − 1 eigenvalues coming in complex conjugate
pairs given by the diagonal elements of Λ = diag([λ1, . . . , λm−1]), and to assign all other
eigenvalues to be equal to n−m+ 1 numbers λm, . . . , λn with complex conjugate pairs.
As we intend to accomplish left eigenvectors assignment and complete pole placement
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tasks, we combine the concepts elaborated in Section 2.2.2.1 and Section 2.2.1.4. To this
end, let B = [b1 . . . bj . . . bm] consists of columns bi corresponding to the channel ui in
the control input u> = [u1 . . . uj . . . um] for all i ∈ {1, . . . ,m}. We withdraw an input
channel bj from B, and define the new matrices B̄ ∈ Rn×(m−1) and ū ∈ Rm−1 as

B̄ = [b1 . . . bj−1 bj+1 . . . bm], ū = [u1 . . . uj−1 uj+1 . . . um]>. (2.38)

We then reformulate (2.24) in the form of:

ẋ = Ax+ B̄ū+ bjuj. (2.39)

We now consider the structure ū = K̄x and uj = kjx for the control inputs. Specifically,
we use the state feedback gain K̄ ∈ R(m−1)×n for assigning m−1 desired left eigenvectors
given by the columns of W and their corresponding eigenvalues λ1, . . . , λm−1, and use
kj for assigning the remaining eigenvalues λm, . . . , λn. Thus, if det(W ∗B̄) 6= 0, then
referring to (2.25) the controller gain K̄ can be computed as

K̄ = −(W ∗B̄)−1 (W ∗(A+ bjkj)− ΛW ∗) , (2.40)

yielding to the closed loop matrix

Acl =
[
(I − B̄(W ∗B̄)−1W ∗)A+ B̄(W ∗B̄)−1ΛW ∗]+

(
I − B̄(W ∗B̄)−1W ∗) bjkj. (2.41)

Defining

Â =
[
(I − B̄(W ∗B̄)−1W ∗)A+ B̄(W ∗B̄)−1ΛW ∗] ,

b̂ = (I − B̄(W ∗B̄)−1W ∗)bj, (2.42)

the closed loop matrix in (2.41) can be described by

Acl = Â+ b̂kj. (2.43)

Now, the problem of determining kj can be solved by the partial pole placement algorithm
for single input systems presented in Section 2.2.1.4. The real Schur decomposition
of Â> defines the transformation matrix T = [Q1 Q2], where Q1 ∈ Rn×(n−m+1) and
Q2 ∈ Rn×(m−1), as well as matrices L̂1 ∈ R(n−m+1)×(n−m+1) and L̂2 ∈ R(m−1)×(m−1),
satisfying: Q>1 Â = L̂1Q

>
1 and Q>2 ÂQ2 = L̂2. We assume in this description L̂2 has the

eigenvalues λ1, . . . , λm−1. The appropriate feedback gain kj then has the structure

kj = ηQ>1 , (2.44)

where η> ∈ R(n−m+1) is an unknown parameter. Let (L̂c,1, b̂c,L̂1
) be the controllable

canonical form of the pair (L̂1, Q
>
1 b̂). Then, computation of η can be achieved by adopting

(2.22). This leads to

η = −
w∗
c,L̂1

T−1

L̂1
(L̂1 − λ1I)

w∗
c,L̂1

b̂c,L̂1

, (2.45)

where TL̂1
= Φc(L̂1, Q

>
1 b̂)Φ

−1
c (L̂c,1, b̂c,L̂1

) and wc,L̂1
refers to the left eigenvector of L̂c,1

corresponding to the eigenvalue λ1. This is of course possible if Φc(L̂1, Q
>
1 b̂) has full

rank, or

rank
(
Q>1 [b̂ Âb̂ . . . Ân−mb̂]

)
= n−m+ 1.
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For notational simplicity, we define the matrix

Π = I − B̄(W ∗B̄)−1W ∗. (2.46)

Obviously Πk = Π for all k ∈ N and W ∗Π = 0. Therefore, recalling Â and b̂ from
(2.42), we have

Âkb̂ = Π(AΠ)kbj ∀ k ∈ {1, . . . , n−m},

and

Q>1 [b̂ Âb̂ . . . Ân−mb̂] = Q>1 [Πbj Π(AΠ)bj . . . Π(AΠ)n−mbj]

= Q>1 ΠΦc(AΠ, bj)

[
In−m+1

0

]
. (2.47)

In (2.47), Φc(AΠ, bj) is the controllability matrix of the pair (AΠ, bj). Now, for simplicity
assume that the matrix ΠA has a full set of (left) eigenvectors. We can therefore choose
a set of (n − m + 1) right eigenvectors of ΠA, collected in the columns of the matrix
V , which are orthogonal to the left eigenvectors given by the columns of W , that is,
W ∗V = 0. It is simple to check that the columns of V are also right eigenvectors of Â.
Note that the columns of Q1 and V form bases for the left and right Â invariant subspaces
corresponding to the same eigenvalues, respectively. This implies that rank(Q>1 V ) =
n−m+1. Furthermore, having the identities Q>1 ΠV = Q>1 V and rank(Q>1 V ) = n−m+1,
we can argue that rank (Q>1 Π) = n − m + 1. Therefore, we reach to the following
statement.

Lemma 2.3.1. Left eigenstructure assignment can be achieved whenever ΠA has a full
set of eigenvectors, det(W ∗B̄) 6= 0, and the pair (AΠ, bj) is controllable, that is,

rank Φc(AΠ, bj) = n. (2.48)

After designing the vector kj, the controller gain K̄ can be designed in accordance
with (2.40), leading to the design of a proper controller gain K.

As a result, the algorithm for left eigenstructure assignment reads as follows:

1) extract the channels bj and B̄, such that ΠA has full set of eigenvectors, the
condition (2.48), and det(W ∗B̄) 6= 0 are fulfilled.

2) compute the matrix Â and the vector b̂ from (2.42).

3) derive the transformation matrix T = [Q1 Q2], L̂1, and L̂2 from the real Schur
decomposition of Â>.

4) compute kj from (2.44) and (2.45).

5) compute K̄ from (2.40), and re-order the inputs ū = K̄x and uj = kjx in (2.39)
to find the control u = Kx.
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Now, we give an example to illustrate this algorithm.

Example 2.3.1. Consider the multi-input system (2.24) with

A =

 3 −3 −7
0 −4 0
1 3 −5

, B =

 1 1
1 0
2 2

 . (2.49)

The eigenvalues of A are located at 2,−4,−4. Suppose we want to assign the desired
left eigenvector W = [−1 1 1]> and its eigenvalue at Λ := λ1 = −2, as well as the
desired eigenvalues λ2 = −5 and λ3 = −6 to the closed loop matrix. We choose the
first control input corresponding to the first column of B, namely B̄ = [1 1 2]>, for
assigning W and its corresponding eigenvalue Λ = −2 as W>B̄ 6= 0. Then, the second
input channel corresponding to the second column of B, namely b2 = [1 0 2]>, is
responsible for partial pole placement. As rank Φc(AΠ, b2) = 3 and ΠA has full set of
eigenvectors, Lemma 2.3.1 implies that left eigenstructure assignment is possible. Based
on this knowledge, we compute the matrix Â and the vector b̂ as

Â =

 5 −5 −9
2 −6 −2
5 −1 −9

 , b̂ =

 0.5
−0.5

1

 .
Now, real Schur factorization of Â> gives us

Q>1 =

[
0.4082 0.8165 −0.4082
0.7071 0 0.7071

]
, Q>2 = [−0.5774 0.5774 0.5774],

and the matrices

L̂1 =

[
−4 0

4.6188 −4

]
, L̂2 = −2.

One can now compute the feedback gain k2 = [3 5 − 2] through equations (2.44)
and (2.45). Finally, we can use (2.40) to compute K̄ with Λ = −2, yielding the result
K̄ = [0.5 − 4.5 − 1] and

Acl =

 6.5 −2.5 −10
0.5 −8.5 −1
8 4 −11

 .
2.4 Conclusions

In this chapter, we have discussed:

a) pole placement and partial pole placement for linear single input systems,

b) left eigenvector assignment for single- and multi-input systems,

c) left eigenstructure assignment for multi-input systems in the sense that all eigen-
values and a number of left eigenvectors are assigned to the closed loop systems.

We also spoke about stability of closed loop systems, and explored the required control-
lability conditions for accomplishing the tasks in items (a-c). In the next chapters, we
utilize the benefits of these techniques for control of switched linear systems.
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Chapter 3

Switched linear systems with state
dependent switching

3.1 Introduction

Switched linear systems are a class of differential equations

ẋ = f(x) := Aσ(t,x)x σ(t, x) ∈ L = {1, . . . , `}, (3.1)

which feature discontinuous right hand side. Although in this equation the vector field
consists of a set of linear functions, the discontinuity on f makes the study of such
systems interesting. One of the challenges associated with switched linear systems is
indeed stability. It is known that Hurwitz stability of Ai for i ∈ L is not sufficient
for stability of the switched system (3.1), since nonlinear behaviors such as sliding
mode (Khalil, 2002) or fast switching phenomenon may cause instability. Therefore,
for gaining better insight into this problem, one can restrict the switching rules to two
scenarios, namely to state dependent switching and time dependent switching behaviors.
In the former problem setting the switching rule is specified by some switching manifolds
in the state space, while in the latter problem, in the most general case, the switched
system is allowed to arbitrarily switch between different modes over time.

In this chapter, we study a class of switched linear systems whose switching law is
governed by a given manifold in the state space. This class of systems can be viewed as
a particular class of hybrid linear systems with multiple linear vector fields, and state
dependent switching. Thus, due to the existence of different directions of the vector
field in different regions of the state space, Filippov solutions (see Appendix A.6.2.2 and
Cortes (2008); Filippov (1988)) are particularly of interest. We intend to study under
which conditions on switching matrices and switching constraints, Filippov solutions
exponentially converge to zero. Our approach in this chapter relies on the concept of
common left eigenvectors. The basic idea in our approach stems from the fact that if
all matrices in a switched system share a number of real left eigenvectors corresponding
to negative real eigenvalues, then Filippov solutions of the switched system converge
exponentially to an invariant subspace which is orthogonal to the common left eigenvec-
tors. Hence, if the switching manifold has a restrictive topology in the sense that it is
disjoint with that invariant subspace, then after passing some certain amount of time,
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D1

D2

Figure 3.2.1: Sliding mode on the switching surface.

no switching is expected to happen. Thus, the overall switched system is reduced to a
single linear LTI system after lasting finite time. Consequently, stability of the switched
system is guaranteed by Hurwitz stability of the subsystem matrices. We then combine
this concept and the left eigenstructure assignment techniques introduced in Chapter 2
for stabilization of controlled switched linear systems.

3.2 Exponential stability of switched linear systems

In this section, we consider the stability problem for switched linear systems with state
dependent switching laws. Our stability result is based on the concept of common left
eigenvectors. We first express our stability theory, and then discuss our stabilization
approach in the next section.

Consider the switched linear system

ẋ = Aσ(x) x(t) σ(x) ∈ L := {1, . . . , �}, (3.2)

where σ : R
n → L represents the switching signal between the constituent matrices

A = {A1, . . . , A�}. Further, assume that switching to a new dynamics can occur when
a trajectory of the switched system hits a given manifold (not necessarily consisting of
one part) in the state space defined by

M = {x ∈ R
n :M(x) = 0}. (3.3)

Our goal is to study exponential stability of such switched linear systems. We say the
switched linear system is exponentially stable if there exist numbers α ≥ 1 and β > 0
such that ‖x(t)‖ ≤ αe−βt‖x0‖ for any x0 := x(0) ∈ R

n; see, e.g. , Shorten et al. (2007).
Note that even when all matrices Ai for i ∈ L are Hurwitz, the switched system (3.2)
might be unstable. Figure 3.2.1 illustrates one possibility how instability may arise due
to the directions of the vector fields on the switching manifold in the boundaries of D1

and D2; see also Cortes (2008). In words, if the vector fields given by f1 := A1x and
f2 := A2x are pointing towards different regions in the neighborhood of the switching
manifold, then the Filippov set valued map, constructed by the convex hull of the vector
fields around the switching manifold, includes the switching manifold itself. This implies
that the trajectory slides on the surface of this manifold. Now, suppose that the switch-
ing manifold is stretched to infinity, and the vector fields are still pointing outwards with
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Figure 3.2.2: A trajectory of the switched system in Example 3.2.1.

respect to the switching manifold. Then, evidently some trajectories of the switched sys-
tem move along the manifold and diverge to infinity. Thus, the system becomes unstable.

Sliding on the switching manifold is not the only reason that may cause instability of
the switched system defined by (3.2). There are some other possibilities regarding this
issue. For instance, it is evident that existence of complex eigenvalues with non-zero
imaginary parts in linear systems leads to trajectories that “circle” around the origin.
Then, one can piece together several such systems, and construct some switching rule
which provides an unstable switched linear system even if the constituent systems are
stable. Here, we present such an example taken from De Schutter and Heemels (2004);
Branicky (1998).

Example 3.2.1. (See Branicky (1998)) Consider a switched linear system under state
dependent switching in the form of

Σ :

{
ẋ = A1x x1x2 ≤ 0,

ẋ = A2x x1x2 > 0,

where x = [x1 x2]
� and

A1 =

[ −1 10
−100 −1

]
, A2 =

[ −1 100
−10 −1

]
.

A1 and A2 have eigenvalues at −1 ∓ 31.62i, and thus both are Hurwitz. Furthermore,
on the switching manifold the vector fields of the two subsystems point in the same
direction, implying that no sliding mode behavior takes place. However, this switched
system is not stable. A trajectory of this system emerging from the initial condition
x0 = [1 1]� is depicted in Figure 3.2.2. The picture reveals that the trajectory goes
beyond all bounds.

For such reasons stability of switched linear systems has been considered as a non-
trivial problem for many years. In this chapter, we aim at establishing a new approach to
this problem based on the concept of common left eigenvectors. Our basic idea is inspired
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by the following simple fact. As a special case, suppose all matrices in A = {A1, . . . , A�}
are Hurwitz and share a set of m real left eigenvectors given by the columns of the
matrix W = [w1 . . . wm]. We will show that all solutions of such switched systems
converge exponentially to an invariant set defined by

Xn−m = {x ∈ R
n : W�x = 0}. (3.4)

Motivated by this fact, we consider the case where the switching manifold has a
restricted topology, that is, the invariant subspace Xn−m and the switching manifold are
disjoint, as illustrated by Figure 3.2.3. Then, we can intuitively deduce that the switched
system (3.2) is exponentially stable. This argument is stated and proved by the following
theorem.

Theorem 3.2.1. Consider the switched system (3.2) with the switching manifold defined
by (3.3). Assume that the matrices Ai for all i ∈ L are Hurwitz. Furthermore, suppose
the sets Xn−m and M defined by (3.4) and (3.3), respectively, are disjoint in the sense
that (Xn−m + εB)∩M = ∅, for some ε > 0 and with B being a closed unit ball. Then, if
all matrices Ai for i ∈ L share a set of real left eigenvectors given by the columns of W ,
the system (3.2) and (3.3) is exponentially stable.

Proof: Note that the following property

x ∈ Xn−m ⇒ W�ẋ = W�Aix = ΛiW
�x = 0 ∀i ∈ L

indicates that the set Xn−m is invariant for the switched system (3.2). Now, we demon-
strate that starting from each initial condition x0, the trajectory of the switching system
(3.2) reaches to the interior of the set (Xn−m + εB) in finite time. To this end, we need
to show that the distance between the trajectory and the invariant set decreases over
time. Let’s denote the distance between each point x and the invariant set Xn−m by
dist(x,Xn−m). As Xn−m represents a linear subspace of the state space, the projection
of a point x onto Xn−m, denoted by ProjXn−m

(x), equals

ProjXn−m
(x) = x−W (W�W )−1(W�x); (3.5)

switching
manifold

Xn−m

ε

Figure 3.2.3: The geometry of the invariant subspace Xn−m and the switching manifold.
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see Appendix A.8.1 and Boyd and Vandenberghe (2004). Notice the distance from a
point x to the subspace Xn−m is equal to the norm of the difference between the vector
x and its projection onto the subspace Xn−m. Thus, this distance is bounded by:

dist(x,Xn−m) =
∥∥∥x− ProjXn−m(x)

∥∥∥ =
∥∥∥W (W>W )−1(W>x)

∥∥∥
= (x>W (W>W )−1W>x)1/2 ≤ λmax

(
(W>W )−1

)1/2 ‖W>x‖. (3.6)

We show that ‖W>x‖ is always decreasing over time. Consider a time instance where
mode i is active. Since the columns of W consist of the set of left eigenvectors of Ai,
it follows that W>Ai = ΛiW

>, where the diagonal elements of Λi = diag ([λi1, . . . , λim])
are the corresponding eigenvalues of Ai. Then, one can write

d

dt

[
‖W>x‖2

]
=

d

dt
[x>WW>x] = x>A>i WW>x+ x>WW>Aix = 2x>WΛiW

>x.

Now, defining M = {1, . . . ,m}, we have

d

dt
[x>WW>x] = 2x>WΛiW

>x ≤ 2
(

max
j∈M
i∈L

λij

)
x>WW>x.

Let’s take λ0 = max
j∈M
i∈L

λij, then the last inequality indicates

‖W>x‖2 ≤ e2λ0t‖W>x0‖2 ⇒ ‖W>x‖ ≤ eλ0t‖W>x0‖.

Consequently, the following bound for dist(x,Xn−m) in (3.6) is attained

dist(x,Xn−m) ≤ λmax

(
(W>W )−1

)1/2
eλ0t ‖W>x0‖. (3.7)

As the inequality (3.7) is valid for all modes i ∈ L, it is also valid for the points
belonging to the switching manifold, where the vector fields in these points are obtained
by constructing the convex hull of the vector fields around them. Therefore, the
trajectory reaches the interior of the set Xn−m + εB in finite time, say t1. On the
other hand, as the vector field of the switched linear system is globally Lipschitz, x(t)
cannot have finite escape time. Now, as (Xn−m + εB) ∩ M = ∅, no switching takes
places after t1, and consequently the switched system (3.2) reduces to a linear system
ẋ = Aix, for some Ai ∈ A. By assumption each subsystem is exponentially stable, and
its convergence rate to the origin is not slower than −λ0. Hence, we can argue that the
overall switched system is exponentially stable.

In some situations, Theorem 3.2.1 can be used for testing stability of switched linear
systems for which no common quadratic Lyapunov function (see Problem 1.3.1 for a
definition) exists, as illustrated by the next example.

Example 3.2.2. (See also Kouhi and Bajcinca (2011b)) It is well known that no common
quadratic Lyapunov function for the switched system (3.2) exists, if there exist positive
definite matrices Ri = R>i , i ∈ L, satisfying

∑̀
i=1

(A>i Ri +RiAi) > 0; (3.8)
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see Boyd et al. (1994). Consider now an example adopted from De Schutter and
Heemels (2004) with matrices Ai and Ri, i ∈ {1, 2}, as follows:

A1 =

 −0.001 0 0
0.3 −1 −1
0 1 −1

 , A2 =

 −0.01 0 0
0.05 −1 −10

0 0.1 −1

 ,

R1 =

 0.02 0.01 −0.1
0.01 0.299 0.704
−0.1 0.704 2.470

 , R2 =

 0.08 0.025 0
0.025 0.212 −0.553

0 −0.553 1.971

 .
The matrices A1, A2, R1 > 0, and R2 > 0 satisfy inequality (3.8), as the eigenvalues of∑`

i=1(A>i Ri+RiAi) equal 0.002, 0.2735, 0.7768. Thus, no statement about the stability
of the switched system (3.2) based on the concept of a common quadratic Lyapunov
function is possible. However, by defining x = [x1 x2 x3]> and the switching manifold as

M = {x ∈ R3 : x2
2 + x2

3 − ax2
1 = −1, 0 < a < 10, a ∈ N},

the switched system (3.2) satisfies the following conditions:

(i) w = [1 0 0]> is a left eigenvector for both A1 and A2,

(ii) A1 and A2 are Hurwitz,

(iii) the switching manifold M and the space X2 + εB do not intersect with ε = 0.02
and

X2 = {x ∈ R3 : w>x = 0}.

Then, referring to Theorem 3.2.1, the switched system defined by (3.2) and (3.3) is
exponentially stable.

Example 3.2.3. (See Kouhi and Bajcinca (2011a)) Consider the case that n = 2 in
(3.2). Assume all matrices are Hurwitz and share a real left eigenvector w corresponding
to the eigenvalues λ1i for all i ∈ L. Then, exponential stability of the switched system
(3.2) is equivalent to quadratic stability of this system (for the definition of quadratic
stability, see Problem 1.3.1) and no restriction on the switching manifold is required. To
clarify this fact, it is evident that Ai’s share a real right eigenvector v corresponding to
the eigenvalue λ2i for i ∈ L, satisfying w>v = 0. Now, employing common quadratic
Lyapunov function as V (x) = x>Px with P = ww> + εvv> and a scalar ε > 0, we have

1

2

(
A>i P + PAi

)
= λ1iww

> +
1

2
ε(A>i vv

> + vv>Ai). (3.9)

Without loss of generality, assume w and v are normal. This implies that the transfor-
mation matrix T = [w v] is orthonormal, i.e., T> = T−1. As eigenvalues of a matrix
are not affected by exploiting a linear transformation, the matrix A>i P +PAi is negative
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definite if and only if T−1(A>i P + PAi)T is negative definite. On the other hand, we
have

1

2
T−1(A>i P + PAi)T =

[
λ1i

1
2
εv>Aiw

1
2
εv>Aiw λ2iε

]
. (3.10)

Having in mind that

trace

(
1

2
T−1(A>i P + PAi)T

)
= λ1i + ελ2i < 0,

the matrix 1
2
T−1(A>i P+PAi)T is negative definite if only if if its determinant is positive,

or

det

(
1

2
T−1(A>i P + PAi)T

)
= ελ1iλ2i −

1

4
ε2(v>Aiw)2 > 0. (3.11)

Notice λ1iλ2i = det(Ai); see Appendix A.2.6. Thus, for (3.11) to hold we require

ε < min
4det(Ai)

(v>Aiw)2
∀i ∈ L. (3.12)

We generalize the result of Example 3.2.3 to the class of switched systems including
(n− 1) common real left eigenvectors in the next chapter.

3.3 Exponential stabilization of controlled switched

systems

In this section, we combine the left eigenstructure assignment techniques presented in
Chapter 2 and the proposed idea on stability of switched linear systems in this chapter,
for stabilization of controlled switched linear systems. For this purpose, we use local
state feedbacks to impose common left eigenvectors to all constituent matrices of a
switched linear system. Analogous to the stability approach, the key requirement here
is that the switching manifold and the desired invariant subspace constructed by the
desired common left eigenvectors are disjoint. First, we describe the algorithm for single
input controlled switched systems. Afterwards, we discuss the problem of multi-input
controlled switched linear systems.

3.3.1 Stabilization of single-input controlled switched systems

Consider a single input controlled switched linear system with the switching manifold
M defined by (3.3), and the system dynamics given by

ẋ = Aσ(x)x(t) + bσ(x)u(t), (3.13)

where Aσ(x) ∈ Rn×n, bσ(x) ∈ Rn, and

Aσ(x) ∈ A = {A1, ..., A`}, bσ(x) ∈ B = {b1, ..., b`}. (3.14)

To stabilize the switched system (3.13), we use local state feedback design u = kσ(x)x
for σ(x) ∈ L. The following corollary, which is a direct consequence of Theorem 3.2.1,
is convenient for this purpose.
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Figure 3.3.1: Geometrical construction of the common left eigenvector.

Corollary 3.3.1. See Kouhi and Bajcinca (2011b). Assume local feedback gains ki for
all i ∈ L exist, such that the following conditions hold:

(i) Acl,i = Ai+biki are Hurwitz, and there exist a real vector w and numbers λi1 ∈ R<0

such that w�Acl,i = λi1w
� hold for all i ∈ L,

(ii) (Xn−1 + εB) ∩M = ∅ for some ε > 0, where Xn−1 = {x ∈ R
n : w�x = 0}.

Then, the switched system (3.13) is exponentially stabilizable.

Therefore, the objective of control design consists in imposing an appropriately se-
lected common left eigenvector w and its corresponding eigenvalues λi1 to the closed loop
matrices Acl,i = Ai + biki for all i ∈ L. To this end, one can adopt the formula (2.2)

ki = −w
�(Ai − λi1I)

w�bi
for w�bi �= 0. (3.15)

Constructing a proper common left eigenvector wi which fulfills the first condition of the
above corollary can be done, in principle, by following the procedure stated in Chap-
ter 2.2.1.1. Consider a polynomial in the form of (2.13) whose coefficients are elements
of wc,i instead of wc. Let Ωc be the whole set of appropriate left eigenvectors wc,i which
makes the polynomial to be stable. With slight abuse of notation, let’s define the set Ωi

as Ωi := (T�
i )−1Ωc, where Ti = Φci(Ai, bi)Φ

−1
ci (Aci, bci) for each i ∈ L. The desired set

of a common left eigenvector w, denoted by Ω, consists of all vectors that can ensure
stability of all Acl,i’s simultaneously for i ∈ L. Indeed, this set is specified by intersection
of the sets Ωi, that is, Ω = ∩�

i=1Ωi; see Figure 3.3.1. Furthermore, in order to guaran-
tee exponential stability of the switched system (3.13), due to the second condition of
Corollary 3.3.1, one has to pick an eigenvector w from Ω that additionally guarantees
the disjunction condition (Xn−1 + εB) ∩M = ∅. By illustration of two examples, let us
explain how we can determine such a left eigenvector.

Example 3.3.1. Consider the controlled switched system (3.13) with the data

A1 =

⎡
⎣ 3 −3 −7

0 −4 0
1 3 −5

⎤
⎦ , A2 =

⎡
⎣ 1 3 −5

2 −6 −2
7 1 −11

⎤
⎦ , b1 =

⎡
⎣ 1

1
2

⎤
⎦ , b2 =

⎡
⎣ 1

0
2

⎤
⎦ .

A2 is Hurwitz but A1 has an eigenvalue at 2, and thus is not Hurwitz (A1 and A2 are
adopted from Tsatsomeros (2001)). Defining x = [x1 x2 x3]

�, suppose the switching
manifold is given by

M = {x ∈ R
3 : −x1 + x2 + x23 = −2a, a ∈ N}.
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Assume we are interested in designing a control u = kσ(x)x for σ(x) ∈ {1, 2}, such that
the resulting switched system is exponentially stable. Using the transformation z = Tix,
with Ti = Φci(Ai, bi)Φ

−1
ci (Aci, bci) for i ∈ L := {1, 2}, given by

T1 =

 −72 −8 1
−8 2 1
−32 6 2

 , T2 =

 −4 7 1
−8 −2 0
20 17 2

 ,
the matrices Ai for i ∈ L are converted to control canonical forms; see Chapter 2.2.1.1.
Now, let’s denote a desired left eigenvector of the controllable canonical form of the ith

mode by wci = [wci1 wci2 wci3]> for each i ∈ L. For each i ∈ {1, 2}, the polynomial

hi(λ) = wci3λ
2 + wci2λ+ wci1

is Hurwitz when wc,ij > 0 for j ∈ {1, 2, 3}. On the other hand, recall from Chapter 2.2.1.1
that the relationship between the left eigenvectors w and wc,i corresponding to the closed
loop matrices Acl,i and Ac,cl,i (controllable canonical form of Acl,i), respectively, is given
by w = T−>i wci for each i ∈ L. Therefore, for computing an appropriate common left
eigenvector that stabilizes this switched system, we need to satisfy the following criteria:

T−>1 wc1 − T−>2 wc2 = 0,

wc,ij > 0 ∀ i ∈ {1, 2}, j ∈ {1, 2, 3}.
Define the vector w = [w1 w2 w3]>. To meet the condition (X2 + εB ∩M) = ∅ in
accordance with item (ii) of Corollary 3.3.1, we consider the following restrictions on
the elements of w: w1 + w2 = 0, −2w2 + w3 ≤ 0, w2 ≥ 0, and w3 ≥ 0. Having
these inequalities in hand, it turns out that the disjoint condition is satisfied. Now, the
problem associated with finding w can be approached by optimization technique. Let
us define the vectors w>c = [w>c1 w

>
c2], ψ1 = [0 −2 1], ψ2 = [0 −1 0], ψ3 = [0 0 −1],

ν = γ[1 1 1 1 1 1 0 0 0]>, and the matrices

R =

[
I3 − I3

1 1 0 0 0 0

][
(T>1 )−1 0

0 (T>2 )−1

]
, S =


−I6

ψ1(T>1 )−1 0 0 0

ψ2(T>1 )−1 0 0 0

ψ3(T>1 )−1 0 0 0

 .
Then, we introduce the following static optimization problem

minimize ‖wc‖2

subject to

{
Rwc = 0,

Swc ≤ −ν,
for some small γ > 0. Note that the variable ν is added to the problem to rule out
computation of the zero solution. Now, the optimization problem can be solved by
“fmincon” command in the MATLAB optimization toolbox. With γ = 0.01, the results
of this optimization problem are

wc1 =

 0.01
0.076
0.0135

 , wc2 =

 0.1213
0.0832
0.01

 , w =

 −0.0035
0.0035
0.0068

 .
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Figure 3.3.2: A trajectory of the switched system in Example 3.3.1.

We choose the corresponding eigenvalue to w to be λ1 = −2. Now, (3.15) gives us

k1 = [0.8077 − 1.7615 − 0.3308], k2 = [−4.3854 1.8021 5.0312],

leading to the closed loop matrices

Acl1 =

⎡
⎣ 3.8077 −4.7615 −7.3308

0.8077 −5.7615 −0.3308
2.6154 −0.5231 −5.6615

⎤
⎦ , Acl2 =

⎡
⎣ −3.3854 4.8021 0.0312

2 −6 −2
−1.7708 4.6042 −0.9375

⎤
⎦ .

Figure 3.3.2 depicts the trajectory of the system emerging from the point x0 = [3 3 3]� by
the assumption that initially the first mode is active. It can be seen that the trajectory
eventually converges to zero.

Example 3.3.2. Consider the controlled switched system (3.13) with the data

A1 =

⎡
⎢⎢⎣

3 −3 −1 1
0 −4 0 1
1 3 −5 1
1 1 0 0

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣

1 3 −5 2
2 −6 −2 0
7 1 −1 1
1 −1 2 0

⎤
⎥⎥⎦ , b1 =

⎡
⎢⎢⎣

1
1
2
0

⎤
⎥⎥⎦ , b2 =

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦ .

None of the matrices A1 and A2 are Hurwitz. Defining x = [x1 x2 x3 x4]
�, suppose the

switching manifold is given by

M = {x ∈ R
4 : −x1 + x2 +

1
2
x23 = −a, x4 = 0, a ∈ N}.

Assume we are interested in designing the control input in the form of u = kσ(x)x for
σ(x) ∈ {1, 2}, such that the resulting switched system becomes exponentially stable. By
using the transformations z = Tix, where Ti = Φci(Ai, bi)Φ

−1
ci (Aci, bci) for i ∈ L := {1, 2},

given by

T1 =

⎡
⎢⎢⎣

1 −6 4 1
−1 −14 2 1
2 −34 6 2

−20 6 2 0

⎤
⎥⎥⎦ , T2 =

⎡
⎢⎢⎣

−34 15 9 1
−38 −10 2 0
80 64 8 0
356 49 7 1

⎤
⎥⎥⎦ ,
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the matrices Ai for i ∈ {1, 2} are converted to controllable canonical forms; see Chap-
ter 2.2.1.1. Now, let’s pick a desired left eigenvector of the controllable canonical form
with the following entries: wci = [wci1 wci2 wci3 wci4]> for each i ∈ L. For having the
polynomial

hi(λ) = wci4λ
3 + wci3λ

2 + wci2λ+ wci1

to be Hurwitz, we employ Lemma 2.2.2. Sufficient conditions for stability of this poly-
nomial are stated by

wc,ij > 0 ∀i ∈ {1, 2}, j ∈ {1, 2, 3, 4},
wc,i2wc,i3 ≥ 4.0796 wc,i1wc,i4 ∀i ∈ {1, 2}.

On the other hand, w = T−>i wci for each i ∈ L is a common left eigenvector of the two
systems, thus

T−>1 wc1 − T−>2 wc2 = 0.

Define w = [w1 w2 w3 w4]>. To satisfy the condition (X2 + εB ∩M) = ∅ in accordance
with item (ii) of Corollary 3.3.1, we impose the following restrictions: w1 + w2 = 0,
w2 + w3 ≤ 0, w2 − w3 ≤ 0, and w2 ≥ 0. With these inequalities it turns out that
the disjoint condition is satisfied. For solving the problem for w, we again employ the
optimization technique. Let us define the vectors w>c = [w>c1 w>c2], ψ1 = [0 1 1 0],
ψ2 = [0 1 −1 0], ψ3 = [0 −1 0 0], ν = γ[1 1 1 1 1 1 1 1 0 0 0]>, and the matrices

R =

[
I4 − I4

1 1 0 0 0 0 0 0

][
(T>1 )−1 0

0 (T>2 )−1

]
, S =


−I8

ψ1(T>1 )−1 0 0 0 0

ψ2(T>1 )−1 0 0 0 0

ψ3(T>1 )−1 0 0 0 0

 .
The following static optimization problem now includes all the constraints

minimize ‖wc‖2

subject to



Rwc = 0,

Swc ≤ −ν,
−wc,12wc,13 + 4.0796 wc,11wc,14 ≤ 0,

−wc,22wc,23 + 4.0796 wc,21wc,24 ≤ 0.

Note that the vector ν is entered into the problem for excluding computation of zero
solution. Now, the “fmincon” command in the MATLAB optimization toolbox can solve
this optimization problem. The parameters of this optimization problem with γ = 0.01
are computed to be

wc1 =


0.0061
0.0061
0.0467
0.0061

 , wc2 =


0.7548
0.5810
0.1236
0.0141

 , w =


0.0129
−0.0129
0.0031
0.0013

 .
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One can then choose the eigenvalue associated to w to be λ1 = −2, and then use (3.15)
to compute the feedback gains

k1 = [−11.1744 0.3837 3.5930 − 0.9186], k2 = [−2.5202 − 6.4899 2.3283 − 2.2172].

Consequently, the closed loop matrices equal

Acl1 =


−8.1744 −2.6163 2.5930 0.0814

−11.1744 −3.6163 3.5930 0.0814

−21.3488 3.7674 2.1860 −0.8372

1 1 0 0

 ,

Acl2 =


−1.5202 −3.4899 −2.6717 −0.2172

2 −6 −2 0

7 1 −1 1

−1.5202 −7.4899 4.3283 −2.2172

 .
Note that Acl1 and Acl2 are both Hurwitz, but no common quadratic Lyapunov function
can be associated with them. This can be checked by using an appropriate LMI software.

3.3.2 Stabilization of multi-input controlled switched systems

Now, consider a multi-input controlled switched linear system with the switching mani-
fold M defined by (3.3), and the system dynamics given by

ẋ = Aσ(x)x(t) +Bσ(x)u(t), (3.16)

where Aσ(x) ∈ Rn×n, Bσ(x) ∈ Rn×m, and

Aσ(x) ∈ A = {A1, ..., A`}, Bσ(x) ∈ B = {B1, ..., B`}. (3.17)

The objective of the control design is to exponentially stabilize (3.16) by means of local
state feedbacks u = Kσ(x)x, where Kσ(x) ∈ Rm×n corresponds to the open loop system
(Aσ(x), Bσ(x)) for σ(x) ∈ L. For this target, we can again refer to the following corollary
which is a direct consequence of Theorem 3.2.1.

Corollary 3.3.2. Let Ki for all i ∈ L be local state feedback gains such that

(i) Acl,i = Ai+BiKi are Hurwitz, and there exist a matrix W∈ Rn×(m−1) and a diagonal
matrix Λ = diag([λ1, . . . , λm−1]) with real entries satisfying: W>Acl,i = W>Λ,

(ii) (Xn−m+1 + εB) ∩M = ∅ for some ε > 0, where Xn−m+1 = {x ∈ Rn : W>x = 0}.
Then, the switched system (3.16) is exponentially stabilizable.

We employ the algorithm described in Chapter 2.3 for achieving the criteria of Corol-
lary 3.3.2. Namely, we use (m− 1) inputs for assigning an appropriate set of left eigen-
vectors given by the columns of W = [w1 . . . wm−1] and their corresponding eigenvalues
given by the diagonal entries of Λ = diag([λ1, . . . , λm−1]). In addition, we use a single
input for assigning the remaining eigenvalues λm, . . . , λn. In summary this algorithm
works as follows:



Chapter 3. Switched linear systems with state dependent switching 41

(i) a set of linearly independent desired left eigenvectors given by the columns of
W = [w1 . . . wm−1] are selected in a manner such that (Xn−m+1 + εB) ∩M = ∅.

(ii) each Ki for i ∈ L splits into two parts, a matrix K̄i and a vector kij corresponding
to the channels B̄i = [bi1 . . . bij−1 bi(j+1) . . . bim] and bij, respectively. The separa-
tion is carried out in a way such that ΠiAi has a full set of eigenvectors and the
controllability matrices Φc(AiΠi, bij) have rank n, where Πi = I−B̄i(W

>B̄i)
−1W>

and det(W>B̄i) 6= 0 for all i ∈ L. Note that the index j is not fixed and can be
different for each i. Then, we compute the matrix Âi and the vector b̂i adopted
from (2.42) as

Âi =
[
(I − B̄i(W

>B̄i)
−1W>)Ai + B̄i(W

>B̄i)
−1ΛW>] ,

b̂i = (I − B̄i(W
>B̄i)

−1W>)bij. (3.18)

(iii) the transformation matrices Ti = [Qi1 Qi2] are acquired from the real Schur de-
composition of Â>i for all i ∈ L.

(iv) kij is computed by adopting (2.44) and (2.45) for each mode i ∈ L.

(v) K̄i is computed by adopting (2.40) for mode i, and the inputs ū = K̄ix and
uj = kijx in (2.39) are re-arranged to find the control u = Kix for each i ∈ L.

Now, we provide an example for this algorithm.

Example 3.3.3. Consider a controlled switched system with matrices A1 and A2 as
those in Example 3.3.1 with the switching manifold given by

M = {x ∈ R3 : −x1 + x2 + x3 = 2a− 1, a ∈ Z}.

The matrices B1 and B2 are

B1 =

 1 1
1 0
2 2

 , B2 =

 1 2
1 0
1 1

 . (3.19)

For stabilization of this switched system, we follow the steps of the above algorithm.
By looking at the equation of the switching manifold M, we decide W = [−1 1 1]> to
be the desired common left eigenvector. As (X2 + εB) ∩M = ∅ and det(W>Bi) 6= 0
for all i ∈ L and a sufficiently small ε > 0, the requirement of item (i) has already
been fulfilled. For both closed loop matrices Acl1 and Acl2, we choose the closed
loop eigenvalues corresponding to W to be λ1 = −2, and the other eigenvalues
to be λ2 = −5 and λ3 = −6. As all the data for the first subsystem is identi-
cal to those in Example 2.3.1, we can follow the entire procedure in this example for
finding the appropriate controllers. This gives us k12 = [3 5 −2] and K̄1 = [0.5 −4.5 −1].

In the second subsystem, we optionally take the first input for partial pole place-
ment, whereas the second input is used for assigning the left eigenvector W and its
corresponding eigenvalue λ2. According to this separation, let us define the vectors
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b21 = [1 1 1]> and B̄2 = [2 0 1]>. Define also Π2 similar to Π in (2.46) by signifying the
equation with index “2”. As rank Φc(A2Π2, b21) = 3 and Π2A2 has a full set of eigenvec-
tors, Lemma 2.3.1 implies that left eigenstructure assignment is possible. Based on this
knowledge, we compute the matrix Â2 and the vector b̂2 in accordance with (2.42)

Â2 =

 −5 9 1
−4 0 4

1 7 −5

 , b̂2 =

 3
1
2

 .
Now, computing the real Schur factorization of Â>2 defines the matrices Q21, Q22, L̂21,

and L̂22 with appropriate dimensions, satisfying Q>21Â2 = L̂21Q
>
21 and Q>22Â2Q22 = L̂22.

These matrices are numerically computed as

Q>21 =

[
0.4082 0.8165 −0.4082
0.7071 0 0.7071

]
, L̂21 =

[
−4 0

9.2376 −4

]
,

Q>22 = [−0.5774 0.5774 0.5774], L̂22 = −2.

Now, we use (2.44) and (2.45) to compute the appropriate state feedback for this mode,
leading to the gain k22 = [−0.9167 −1.5833 0.6667]. Finally, as W>B̄2 6= 0, we employ
(2.40) to obtain K̄2, yielding the gain K̄2 = [−6.9167 4.4167 6.6667]. Consequently,
the closed loop matrices of the both subsystems equal

Acl1 =

 6.5 −2.5 −10
0.5 −8.5 −1
8 4 −11

 , Acl2 =

 −7.75 4.25 3
−4.9167 −1.5833 4.6667
−0.8333 3.8333 −3.6667

 .
3.4 Conclusions

In this chapter, we proposed sufficient conditions for stabilization of a class of single- and
multi-input controlled switched linear systems under state dependent switching rules.
In this class, the switching signal is specified by a given manifold in the state space.
Our proposed approach investigates local state feedback design for each subsystem.
The left eigenvectors and eigenstructure assignment techniques for LTI systems are the
key tools for the design. On this basis, we showed that if all closed loop matrices of a
controlled switched linear system share a number of left eigenvectors, then all solutions
of the switched system converge to a known invariant subspace. The idea then lies in
the appropriate selection of the desired common left eigenvectors to ensure Hurwitz
stability of the closed loop matrices, and to avoid the situation that the common
invariant subspace and the switching manifold intersect. Apparently, the structure of
the switching manifold enforces a significant restriction in this technique. Thus, the
problem of selecting the desired common eigenvectors may include a lot of constraints
especially when the switching manifold has a complicated topology.
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Chapter 4

Switched linear systems with
arbitrary switching signals

4.1 Introduction

Despite many interesting results, the stability problem for switched linear systems with
arbitrary time-dependent switching signals still remains a challenging research topic.
Similar to stability theory for nonlinear systems, Lyapunov’s second theorem is the
essential tool for dealing with this problem. It turns out that if there exists a positive
definite function which decreases in time along the system solutions, then the switched
linear system is exponentially stable (Shorten et al., 2007). Such a function is called
a common Lyapunov function for the switched system. When the common Lyapunov
function is quadratic and satisfies separately the Lyapunov function properties for all
modes, it is called a common quadratic Lyapunov function (CQLF), and the switched
system is called quadratically stable. It is known that quadratic stability of a switched
system implies its exponential stability, and we will also give a short proof for this
fact in this chapter. As a matter of fact, referring to the converse Lyapunov theorem,
exponential stability for a switched linear system is equivalent to the existence of a
common Lyapunov function for such system; see Shorten et al. (2007) and the references
therein.

In this chapter, we study quadratic stability and stabilization (see Problems 1.3.1,
and 1.4.1) of several classes of switched linear systems. We show that if all constituent
matrices of a switched linear system are individually Hurwitz and share an (n − m)
dimensional right invariant subspace to which a common quadratic Lyapunov function
can be associated, and if a set of m common left eigenvectors perpendicular to this
invariant subspace exists, then the switched linear system is quadratically stable.
One direct consequence of this result is quadratic stability of switched systems whose
constituent matrices have (n − 1) common right eigenvectors (Shorten and Cairbre,
2001), or (n− 1) common real left eigenvectors (Kouhi and Bajcinca, 2011b). Moreover,
we discuss robust stability of switched linear systems, particularly for systems with
(n− 1) common real left eigenvectors.

In addition, we propose the notion of block similarity for controlled switched linear
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systems, and demonstrate that the quadratic stability problem for block similar matrices
is equivalent. This result may particularly be applicable for controlled switched systems
where the closed loop matrices can be transformed to block triangular form. Then,
we identify one such class, namely the class of controlled switched systems where the
open loop matrices share an invariant subspace with appropriate dimension to which a
common quadratic Lyapunov function can be associated. For this class, we utilize the left
eigenvectors assignment approach to design local feedbacks which make the controlled
switched systems quadratically stable. This result extends parts of the results by Kouhi
and Bajcinca (2011c), where (n− 1) inputs are assumed for stabilization of a controlled
switched linear system. We develop further this approach for stabilization of a controlled
switched system whose open loop matrices own (n−m) dimensional invariant subspaces
which are sufficiently close, and all matrices associated with the invariant subspaces
satisfy a certain form of Riccati inequalities instead of Lyapunov inequalities.

4.2 Quadratic stability of switched linear systems

We study quadratic stability of switched linear systems under arbitrary time-dependent
switching signals. Our switched linear system is defined as

ẋ = Aσ(t)x(t) Aσ(t) ∈ A := {A1, . . . , A`}, (4.1)

where x(t0) = x0 ∈ Rn and σ : R≥0 → L := {1, . . . , `} is a piecewise constant function
referred to as the switching signal between different modes, that is, ẋ = Aix(t) for i ∈ L.
Note that the only restriction on the switching is that a finite number of switching occurs
within each finite time interval. Given an initial condition x0, the Caratheodory solution
(see Appendix A.6.2.1) of the switched system (4.1) is unique and is given by

x(t) = eAσk (t−tk) . . . eAσ0 (t1−t0)x0, (4.2)

where tk > · · · > t2 > t1 are the switching time instances, t > tk, t1 > t0, and σj := σ(tj)
for all j ∈ {0, . . . , k}; see (Shorten et al., 2007). The uniqueness of the solution results
from the fact that at each time instance only one subsystem is active, and for any active
mode i ∈ L the vector field fi := Aix is locally Lipschitz. It is known that differential
equations with locally Lipschitz vector fields possess unique solutions (Coddington and
Levinson, 1955; Cortes, 2008).

Recall from Problem 1.3.1 that the switched linear system (4.1) is called quadratically
stable if and only if there exists a function V (x) = x>Px with P symmetric positive
definite, such that

A>i P + PAi < 0 ∀Ai ∈ A. (4.3)

Now, we attempt to prove that quadratic stability of switched linear systems implies
their exponential stability, a fact which was already explored and existed in the literature
(Shorten et al., 2007). To see this, assume that all matrices Ai for i ∈ L share a quadratic
Lyapunov function V (x) = x>Px. As A>i P + PAi < 0 for all i ∈ L, then there exists a
number γ > 0, such that

A>i P+PAi < −γI
⇒ V̇ (x) = x>(A>i P + PAi)x ≤ −γ‖x‖2.
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On the other hand, as P is symmetric positive definite, the following inequalities are
valid

λmin(P )‖x‖2 ≤ x>Px = V (x) ≤ λmax(P )‖x‖2. (4.4)

Therefore,

V̇ (x) =x>(A>i P + PAi)x ≤ −γ‖x‖2 ≤ −γ
λmax(P )

V (x)

⇒ V (x) ≤ V (x0)e−β(t−t0),

where β := γ/λmax(P ). Now, paying attention to (4.4), we can deduce

λmin(P )‖x‖2 ≤ V (x) ≤ V (x0)e−β(t−t0) ⇒ ‖x‖2 ≤ V (x0)

λmin(P )
e−β(t−t0).

This implies exponential stability of the switched linear system (4.1). Therefore, numer-
ous contributions offering sufficient conditions for the existence of a common Lyapunov
solution for a set of Hurwitz matrices have appeared in the literature, including Shorten
and Narendra (1998); Narendra and Balakrishnan (1994); Shorten and Cairbre (2001).
One of the established results in this context concerns this problem for a set of similar
matrices. The following lemma points out this result in detail.

Lemma 4.2.1. (See also Wulff (2005); Shorten et al. (2007)) Suppose in the switched
linear system (4.1), each Ai ∈ Rn×n is block similar to Āi ∈ Cn×n for i ∈ L, obtained by a
similarity transformation matrix S ∈ Cn×n. Then, there exists a real common Lyapunov
solution P = P> > 0 for all Ai, if and only if there exists a Hermitian common Lyapunov
solution P̄ = P̄ ∗ > 0 for all Āi, that is, Ā∗i P̄ + P̄ Āi < 0 for all i ∈ L.

Proof of sufficiency: As Ai is block similar to Āi for all i ∈ L by using a similarity
transformation S ∈ Cn×n, one can write

Āi = S−1AiS; (4.5)

see Appendix A.2.12. Now, suppose there exists a positive definite matrix P = P> such
that A>i P + PAi < 0. By pre-multiplying this inequality by S∗ and post-multiplying it
by S, the sign of the inequality does not change. Therefore, we have

S∗A>i PS + S∗PAiS < 0⇒ Ā∗i P̄ + P̄ Āi < 0 ∀i ∈ L,

where P̄ = S∗PS > 0 is Hermitian.

Proof of necessity: Suppose there exists a Hermitian P̄ > 0 such that Ā∗i P̄ + P̄ Āi < 0.
Then, by pre-multiplying this inequality by S−∗ and post-multiplying it by S−1, the sign
of this inequality does not change. Hence, we can write

S−∗Ā∗i P̄S
−1 + S−∗P̄ ĀiS

−1 < 0⇒ A>i (S−∗P̄S−1) + (S−∗P̄S−1)Ai < 0 ∀i ∈ L.
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Now, define P = Re (S−∗P̄S−1), and consider the function V (x) = x>Px for x ∈ Rn.
We show V (x) is indeed a CQLF for the switched linear system (4.1). As S−∗P̄S−1 is
Hermitian, P is symmetric. Moreover, for x ∈ Rn\{0} we have

V (x) = x>Px = x>S−∗P̄S−1x > 0,

V̇ (x) = x>(A>i P + PAi)x = x>(S−∗Ā∗i P̄S
−1 + S−∗P̄ ĀiS

−1)x < 0.

The first inequality implies that P > 0, and the second inequality implies that V (x) is
decreasing along the solutions of the switched system. Hence, V (x) satisfies the criteria
of a CQLF.

In the sequel, we aim at establishing conditions on the Ai’s, such that these matrices
share a Lyapunov solution. Our approaches rely on the concept of common eigenvectors
and invariant subspaces. To gain more intuition about our approach, we outline the
following principle. Consider the special case that all Hurwitz matrices in the switched
linear system (4.1) share a set of m linearly independent left eigenvectors given by the
columns of W = [w1 . . . wm] ∈ Cn×m corresponding to a set of eigenvalues given by the
diagonal elements of the matrix Λi = diag([λi1, . . . , λim]) for each i ∈ L. Notice when wj
for j ∈ {1, . . . ,m} is a left eigenvector of Ai corresponding to the eigenvalue λij, then
wj is also a left eigenvector of the matrix eAit corresponding to the eigenvalue eλijt. This
fact can be proved via exploiting the Taylor expansion of eAit

eAit = I + Ait+
(Ait)

2

2!
+ · · · . (4.6)

Then, by pre-multiplication of (4.6) by W ∗ and considering the identity W ∗Ai = ΛiW
∗,

we will have

W ∗eAit =

(
I + Λit+

(Λit)
2

2!
+ · · ·

)
W ∗ = eΛitW ∗.

Further, pre-multiplying (4.2) by W ∗, the following property holds

W ∗x(t) = eΛσk (t−tk)eΛσk−1
(tk−tk−1) . . . eΛσ0 (t1−t0)W ∗x0.

Suppose all eigenvalues λij for i ∈ L and j ∈ {1, . . . ,m} have negative real parts, that
is, Re (λij) < 0. Assuming λ0 = max (Re(λij)) for i ∈ L and j ∈ {1, . . . ,m}, we can
write

‖W ∗x(t)‖ =‖eΛσk (t−tk)eΛσk−1
(tk−tk−1) . . . eΛσ0 (t1−t0)W ∗x0‖

≤ ‖eΛσk (t−tk)‖.‖eΛσk−1
(tk−tk−1)‖ . . . ‖eΛσ0 (t1−t0)‖.‖W ∗x0‖

≤ eλ0(t−tk).eλ0(tk−tk−1) . . . eλ0(t1−t0)‖W ∗x0‖ = eλ0(t−t0)‖W ∗x0‖.
This means that all solutions (4.2) converge exponentially to a set defined by

Xn−m = {x ∈ Cn : W ∗x = 0}, (4.7)

in the worst case with time constant −1/λ0. On the other hand, the following property

x ∈ Xn−m ⇒ W ∗ẋ = W ∗Aix = ΛiW
∗x = 0 ∀i ∈ L

indicates that the set Xn−m is invariant for the switched system (4.1).

We consider this principle as the initial step for developing our results in this chapter;
see also Kouhi and Bajcinca (2011b).
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4.2.1 Stability of switched systems with a common invariant
subspace

Motivated by the previous discussion, we now assume that all matrices in the switched
system (4.1) are Hurwitz and share m linearly independent left eigenvectors correspond-
ing to m eigenvalues with negative real parts. We explored that the solution starting
from an initial point x0 outside of Xn−m, defined by (4.7), exponentially converges to this
set. Now, as our switched system consists of linear flows, we hope quadratic stability of
the system inside the invariant subspace can imply quadratic stability of the switched
system in the entire state space. The correctness of this conjecture is established by
accomplishing the proof of the next theorem.

Theorem 4.2.1. Consider the switched linear system defined by (4.1). Let all Ai ∈ A
be Hurwitz, and share m linearly independent left eigenvectors given by the columns of
W = [w1 . . . wm] corresponding to the eigenvalues given by the diagonal entries of the
matrices Λi = diag([λi1, . . . , λim]) for all i ∈ L. Furthermore, suppose the columns of
V ∈ Cn×(n−m) are an orthonormal basis for the common invariant subspace of all Ai ∈ A,
namely Xn−m ⊂ Cn defined by (4.7), corresponding to the eigenvalues λi,m+1, . . . , λi,n for
i ∈ L, that is,

AiV = V Li, and W ∗V = 0, (4.8)

where Li ∈ C(n−m)×(n−m) for all i ∈ L. Moreover, assume that the systems ˙̄x = Lix̄
share a CQLF, that is, there exist a function V(x̄) = x̄∗Px̄ with P ∈ C(n−m)×(n−m) and
P = P∗ > 0, such that the following Lyapunov inequalities hold

L∗iP + PLi < 0 ∀ i ∈ L. (4.9)

Then, the switched linear system (4.1) is quadratically stable.

Proof: Let us define the reduced QR-factorization of W as

W = Q1R1, (4.10)

where R1 is an m×m upper triangular non-singular matrix and Q1 is an n×m matrix
which has orthonormal columns, that is, Q∗1Q = Im; see Appendix A.2.8. As the columns
of W contain the set of left eigenvectors of Ai, we can write

W ∗Ai = ΛiW
∗ ⇒ R∗1Q

∗
1Ai = ΛiR

∗
1Q
∗
1 ⇒ Q∗1AiQ1 = R−∗1 ΛiR

∗
1.

Since Λi is diagonal and its main diagonal elements have negative real parts, Im is a
common Lyapunov solution for the Λi’s for all i ∈ L. Then, referring to Lemma 4.2.1,
R−∗1 ΛiR

∗
1 also share a Lyapunov solution in the form of P1 = R1R

∗
1 for all i ∈ L. On the

other hand, it follows from

W ∗V = 0⇒ R∗1Q
∗
1V = 0⇒ Q∗1V = 0, (4.11)
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that the matrix T = [Q1 V ] is an orthonormal matrix, i.e., T ∗T = In. Considering the
transformed matrices Āi := T ∗AiT , each Ai ∈ A is similar to

Āi =

[
R−∗1 ΛiR

∗
1 0

Xi Li

]
,

where Xi := V ∗AiQ1 ∈ C(n−m)×m. It is inferred from Lemma 4.2.1 that Ai share a
Lyapunov solution if and only if Āi share a Lyapunov solution for all i ∈ L. Next, we
show that Āi share a Lyapunov solution in the form of

P̄ = 1
2

[
R1R

∗
1 0

0 εP

]
, (4.12)

where P satisfies the inequality (4.9) and ε > 0 is a scalar which must be properly
selected. In fact, we have

Ā∗i P̄ + P̄ Āi =

[
R1Re(Λi)R

∗
1

ε
2
X∗i P

ε
2
PXi

ε
2
(PLi + L∗iP)

]
. (4.13)

Note that R1Re(Λi)R
∗
1 < 0 because all Ai ∈ A are individually Hurwitz. Thus, the

matrix in (4.13) is negative definite if and only if its Schur complement with respect to
the upper left block, denoted by Si, is negative definite; see Appendix A.2.2. The Schur
complement,

Si = ε
2
(PLi + L∗iP)− ε2

4
PXi [R1Re(Λi)R

∗
1]−1X∗i P ∀i ∈ L, (4.14)

is negative definite for small ε, for instance with

ε = min
i∈L

(
λmax(PLi + L∗iP)

λmin(PXi [R1Re(Λi)R∗1]−1X∗i P)

)
. (4.15)

Thus, referring to Lemma 4.2.1 the existence of a common Lyapunov solution for Ai ∈ A
is guaranteed if we pick P = P> = Re(T P̄T ∗). Now, substituting P̄ from (4.12), we get

T P̄T ∗ = 1
2

[Q1 V ]

[
R1R

∗
1 0

0 εP

] [
Q∗1
V ∗

]
= 1

2
(WW ∗ + εV PV ∗) .

This means that the Lyapunov function has the form V (x) = x>Px, where

P = 1
2

Re (WW ∗ + εV PV ∗) . (4.16)

A different statement and proof of Theorem 4.2.1 has been presented in Bajcinca et al.
(2013).

4.2.1.1 Stability with (n− 1) common right eigenvectors

Now, consider that all matrices Ai ∈ A in the switched system (4.1) are Hurwitz and
share (n − 1) linearly independent right eigenvectors given by the columns of V =
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[v1 . . . vn−1] ∈ Cn×(n−1) corresponding to (n−1) eigenvalues given by the diagonal entries
of Λi = diag([λi2, . . . , λin]), satisfying

AiV = V Λi ∀i ∈ L. (4.17)

Then, they share a left eigenvector w corresponding to the eigenvalues λi1 with
Re(λi1)< 0 for all i ∈ L, satisfying the property

w∗V = 0.

Let us define the reduced QR-factorization of V as

V = Q2R2,

where R2 ∈ C(n−1)×(n−1) is an upper triangular non-singular matrix and Q2 ∈ Cn×(n−1)

has orthonormal columns, that is, Q∗2Q2 = In−1. As the columns of V contain a set of
eigenvectors of Ai ∈ A, we have

AiV = V Λi ⇒ AiQ2R2 = Q2R2Λi ⇒ AiQ2 = Q2(R2ΛiR
−1
2 ).

Note again that Λi to be diagonal with the entries located in the open left half plane
implies that In−1 is a common Lyapunov solution for Λi for each i ∈ L. Then, referring
to Lemma 4.2.1, R2ΛiR

−1
2 also share a Lyapunov solution in the form of P = R−∗2 R−1

2 for
all i ∈ L. Therefore, referring to Theorem 4.2.1, the switched system (4.1) has a CQLF
in the form of V (x) = x>Px with

P = 1
2

Re
(
ww∗ + εQ2 R

−∗
2 R−1

2 Q∗2
)

=

= 1
2

Re
(
ww∗ + εV

[
R−1

2 R−∗2 R−1
2 R−∗2

]
V ∗
)
, (4.18)

where ε is a scalar which can be computed with regard to (4.15).

Quadratic stability of a switched linear system when all its constituent matrices are
Hurwitz and share (n− 1) right eigenvectors has been previously shown by Shorten and
Cairbre (2001).

4.2.1.2 Stability with (n− 1) common real left eigenvectors

Now, consider that all Ai’s in the switched system (4.1) share (n−1) linearly independent
left eigenvectors wj ∈ Rn for all j ∈ {1, . . . , n−1} corresponding to the (n−1) eigenvalues
λi1, . . . , λi(n−1) for i ∈ L. Then, they share a right eigenvector vn corresponding to the
n-th eigenvalues λin for all i ∈ L, satisfying the property

w>j vn = 0 ∀j ∈ {1, . . . , n− 1}.

Now we plan to compute the analytical expression of the solutions of switched system
(4.1) given in (4.2) with respect to its eigenvalues and eigenvectors; see also Kouhi and
Bajcinca (2011c). To this end, consider the eigenvalue decomposition

Ai = ViΛ̂iW
>
i ∀i ∈ L, (4.19)

where Λ̂i = diag([λi1, . . . , λin]), Vi = [vi1 . . . vi(n−1) vn], and Wi = [w1 . . . wn−1 win].
We also assume that Vi and Wi have normal columns. Referring to our discussion in
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Section 4.2, the diagonal entries of eΛ̂σj are eigenvalues of eAσj for any j ∈ {0, . . . , k}.
Thus, we can write

eAσj (tj+1−tj) = Vσje
Λ̂σj (tj+1−tj)W>

σj
,

where by definition of eigenvectors, the following relationships must hold

w>r vσjs = 0, w>r vσjr = 1, w>r vn = 0, w>σjnvn = 1 ∀r, s ∈ {1, . . . , n− 1}, r 6= s.

Then, we have

W>
σj
Vσj−1

=


w>1
...

w>n−1

w>σjn

 [ vσj−11 . . . vσj−1(n−1) vn
]

=


1 0 . . . 0 0
0 1 . . . 0 0
...
0 0 . . . 1 0

w>σjnvσj−11 w>σjnvσj−12 . . . w>σjnvσj−1(n−1) 1

 .

Defining θjq := λσjq(tj+1 − tj) for each q ∈ {1, . . . , n} to simplify the notation, a part of
the expression (4.2) is computed as follows:

eAσj (tj+1−tj)eAσj−1 (tj−tj−1) =
(
Vσje

Λ̂σj (tj+1−tj)W>
σj

)(
Vσj−1

eΛ̂σj−1 (tj−tj−1)W>
σj−1

)
= (4.20)

= Vσj


eθj1 0 . . . 0 0
0 eθj2 . . . 0 0
...
0 0 . . . eθj(n−1) 0
0 0 . . . 0 eθjn




1 0 . . . 0 0
0 1 . . . 0 0
...
0 0 . . . 1 0

w>σjnvσj−11 w>σjnvσj−12 . . . w>σjnvσj−1(n−1) 1



×


eθ(j−1)1 0 . . . 0 0

0 eθ(j−1)2 . . . 0 0
...

...
0 0 . . . eθ(j−1)(n−1) 0
0 0 . . . 0 eθ(j−1)n

W>
σj−1

= Vσj


eθj1+θ(j−1)1 . . . 0 0

...
0 . . . eθj(n−1)+θ(j−1)(n−1) 0

eθjn+θ(j−1)1w>σjnvσj−11 . . . eθjn+θ(j−1)(n−1)w>σjnvσj−1(n−1) eθjn+θ(j−1)n

W>
σj−1

.
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Note that for consistency of notation, we assume tk+1 := t. Now, referring to (4.2) and
(4.19) the analytical solution of the switched linear system (4.1) equals

x(t) =
(
Vσke

Λ̂σk (t−tk)W>
σk

)(
Vσk−1

eΛ̂σk−1
(tk−tk−1)W>

σk−1

)
. . .
(
Vσ0e

Λ̂σ0 (t1−t0)W>
σ0

)
x0

= Vσk

(
eΛ̂σk (t−tk)W>

σk
Vσk−1

eΛ̂σk−1
(tk−tk−1)W>

σk−1
. . . Vσ0e

Λ̂σ0 (t1−t0)
) (
W>
σ0
x0

)
. (4.21)

Now, recalling (4.20), and considering the following computation

U : = eΛ̂σk (t−tk)W>
σk
Vσk−1

eΛ̂σk−1
(tk−tk−1)W>

σk−1
· · ·Vσ0eΛ̂σ0 (t1−t0)

=


eθk1+···+θ01 0 . . . 0

...
0 . . . eθk(n−1)+···+θ0(n−1) 0

κ1(t) . . . κn−1(t) eθkn+···+θ0n

 ,
where

κr(t) =
k∑
p=1

eθkn+···+θ(k−p+1)n+θ(k−p)r+···+θ0r(w>σk−p+1n
vσk−pr) ∀r ∈ {1, . . . , n− 1},

the analytical solution (4.21) reads

x(t) =
[
vσk1 . . . vσk(n−1) vn

]
U


w>1 x0

...
w>n−1x0

w>σ0nx0

 .
This leads to the more explicit form of the solution, given by

x(t) =
n−1∑
r=1

(w>r x0) eθkr+···+θ0r vσkr+

+

(
n−1∑
r=1

(w>r x0)κr(t) + eθkn+···+θ0n
(
w>σ0nx0

))
vn. (4.22)

The expression (4.22) reveals that the shape of the solution is determined by the right
eigenvectors of the k-th switching mode, while the speed of the solution is governed by
the eigenvalues of all switching modes. Further, we show that when all Ai are Hurwitz,
the solution x(t) eventually converges exponentially to zero. Defining

λ0 = max
i∈L

λ(Ai), ∆t = min
j∈{0,...,k−1}

(tj+1 − tj),

where k ∈ N, and considering that all eigenvalues of Ai ∈ A are real negative, and the
fact that ∆t > 0, we can derive the following upper bound for κr(t)

κr(t) ≤ eλ0(k∆t+(t−tk))

k∑
j=1

w>σk−j+1n
vσk−jr ≤ eλ0(k∆t+(t−tk))k ∀r ∈ {1, . . . , n− 1}.
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Define t̄ = k∆t+ (t− tk), and notice t→∞ if and only if t̄→∞ . As limt̄→∞ eλ0 t̄k = 0,
we must have

lim
t→∞

kr(t) = 0 ∀r ∈ {1, . . . , n− 1}.
This implies that the solution (4.22) converges exponentially to zero if all matrices Ai ∈ A
are Hurwitz, that is,

lim
t→∞

x(t) = 0.

The proof of exponential stability for this switched linear system can alternatively be
achieved, by the result of Theorem 4.2.1. Note that a switched linear system with
(n − 1) real common left eigenvectors share basically a real right eigenvector which
defines a common invariant subspace with dimension 1. Then, it immediately follows
from Theorem 4.2.1 that the switched system (4.1) is quadratically stable.

Now, we compute a CQLF for this class of switched linear systems. We follow the
proof of Theorem 4.2.1. Let us denote the normal real common eigenvector of Ai ∈ A
corresponding to λin by vn, and the reduced QR-factorization of W := [w1 . . . wn−1] as
W = Q1R1, where R1 ∈ R(n−1)×(n−1) is invertible and Q1 ∈ Rn×(n−1) has orthonormal
columns. Now, notice in this case, for using Theorem 4.2.1 we should assume Li = λin,
V = vn, and Λi = diag([λi1, . . . , λi(n−1)]). Let us define the orthonormal transformation
matrix T = [Q1 vn] and the transformed matrices Āi := T>AiT for i ∈ L. By definition,
each Ai is similar to

Āi =

[
R−>1 ΛiR

>
1 0

v>nAiQ1 λin

]
.

Next, we argue that Āi share a Lyapunov solution in the form of

P̄ = 1
2

[
R1R

>
1 0

0 ε

]
, (4.23)

where ε > 0 is a scalar. To this end, the Lyapunov equation for each Āi equals:

Ā>i P̄ + P̄ Āi =

[
R1ΛiR

>
1

ε
2

(
v>nAiQ1

)>
ε
2
v>nAiQ1 ελin

]
. (4.24)

The Schur complement of (4.24) with respect to the block R1ΛiR
>
1 reads:

Si = ελin − ε2

4
(v>nAiQ1)(R1ΛiR

>
1 )−1(v>nAiQ1)> ∀i ∈ L.

Obviously, Si is negative definite for small ε. For instance, with regard to (4.15) we can
select

ε = min
i∈L

(
2λin

(v>nAiQ1)(R1ΛiR>1 )−1(v>nAiQ1)>

)
.

Thus, referring to Lemma 4.2.1, we can choose a CQLF as V (x) = x>Px with P = P> =
T P̄T>. Now, substituting P̄ from (4.23), we get

P = T P̄T> = 1
2

[Q1 vn]

[
R1R

>
1 0

0 ε

][
Q>1

v>n

]
= 1

2
(WW> + εvnv

>
n ).
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This means that the Lyapunov function has the form

V (x) = 1
2
x>
(
WW> + εvnv

>
n

)
x = 1

2

n−1∑
i=1

(w>i x)2 + 1
2
ε(v>n x)2. (4.25)

This Lyapunov function is consistent with the one introduced in (Kouhi and Bajcinca,
2011c) which was derived by using a different approach. The particular case when the
dimensions of Ai are two, that is, n = 2, has been already studied in Example 3.2.3.

4.3 Robust Stability of switched linear systems

Consider again the switched linear system (4.1). This system features a discontinuous
vector field f : R≥0 × Rn → Rn in the form of

ẋ = Aσ(t)x =: f(t, x).

Such differential equations can be approximated by a convexified differential inclusion

ΣF : ẋ ∈ F (x) := co {Ax : A ∈ A} =
∑̀
i=1

γi Aix, (4.26)

where ∑̀
i=1

γi = 1, γi ≥ 0 ∀i ∈ L,

and co stands for the convex hull (Kouhi and Bajcinca, 2011c; Shorten et al., 2007).
Then, the solution (4.2) is contained in the set of Caratheodory solutions of the linear
differential inclusions (4.26). The set-valued map F (x) in (4.26) satisfies the so called
“basic conditions” as it is outer semi-continuous on Rn, and at any x ∈ Rn, F (x) is
compact and convex; see Teel and Praly (2000) and Appendix A.7. Now, we introduce
the notion of robust stability for switched linear system (4.1) based on the definition of
robust stability for differential inclusion (4.26).

Definition 4.3.1. (Teel and Praly, 2000; Cai et al., 2007; Clarke et al., 1997), A smooth
function V (x) is a robust Lyapunov function for the differential inclusion (4.26) if there
exist two increasing positive definite functions α1, α2 : [0,∞)→ [0,∞) satisfying

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (4.27)

max
f∈F (x)

〈∇V (x), f〉 ≤ −V (x). (4.28)

Definition 4.3.2. (Teel and Praly, 2000) The differential inclusion ẋ ∈ F (x) is said to
be robustly asymptotically stable if a continuous perturbation function δ : Rn → R≥0

with δ(x) > 0 for x ∈ Rn\{0} exists, such that the perturbed differential inclusion

ẋ ∈ Fδ(x)(x) := co F (x+ δ(x)B) + δ(x)B (4.29)

is asymptotically stable, where B denotes the closed unit ball in Rn.
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In Teel and Praly (2000) it has been shown that, in general, robust asymptotic
stability of a differential inclusion with F satisfying the basic conditions is equivalent
to the existence of a robust Lyapunov function. Specifically, it turns out that the
existence of a robust Lyapunov function is a sufficient and necessary condition for
robust exponential stability of (4.26); see also Appendix A.7.1.

Now, we aim at establishing conditions under which quadratic stability of a switched
linear system implies its robust stability in the sense of Definition 4.3.1 and Defini-
tion 4.3.2. Let us assume a CQLF, V (x) = x>Px with P = P> > 0, for the switched
system (4.1) exists such that the condition (4.28) also holds. This means

A>i P + PAi + P ≤ 0,

or, equivalently (
Ai + 1

2
I
)>
P + P

(
Ai + 1

2
I
)
≤ 0 ∀i ∈ L. (4.30)

This implies that all matrices Ai + 1
2
I share a weak Lyapunov solution. Furthermore,

we claim that (4.30) is sufficient for robust stability of the differential inclusion (4.26),
and the condition (4.27) automatically holds when the Lyapunov function is quadratic.
Indeed, for the CQLF V (x) = x>Px, convenient functions α1 and α2 are

α1(‖x‖) = λmin(P )‖x‖2, α2(‖x‖) = λmax(P )‖x‖2. (4.31)

Then, from the results by Teel and Praly (2000), the differential inclusion (4.26) is
robustly exponentially stable, provided that (4.30) holds.

Although the result by Teel and Praly (2000) provides simple criteria for robust
stability of differential inclusion (4.26), the perturbation bound δ, introduced by Def-
inition 4.3.2, will be characterized by the eigenvalues of P . Although many articles
concerning the computations of upper and lower bounds for eigenvalues of a Lyapunov
matrix P exists in the literature, this problem still undergoes more research (Lee, 1997).
That means we are not able to describe δ explicitly by the system parameters. Thus,
we do not involve ourselves for computing such a perturbation function in the general
case. Alternatively, we consider a special case of switched systems, where all constituents
Ai ∈ A share (n− 1) real left eigenvectors. For such a system, the structure of the Lya-
punov function allows us to find a perturbation bound δ(x) which is only represented by
the system parameters.

4.3.1 Robust stability with (n−1) common real left eigenvectors

We have shown so far, that the switched system (4.1) is quadratically stable if all matrices
Ai ∈ A are Hurwitz and share (n − 1) real left eigenvectors. In this part, we wish
to establish conditions under which this class of switched linear systems is robustly
exponentially stable. The next theorem illustrates this result.

Theorem 4.3.1. (Kouhi and Bajcinca, 2011c) Consider the switched system (4.1). Let
all Ai ∈ A be Hurwitz, and share (n− 1) real linearly independent left eigenvectors given
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by the columns of W = [w1 . . . wn−1], such that w>j wj = 1 for all j ∈ {1, . . . , n − 1}.
Then, for a continuous perturbation function δ : Rn → R≥0, the convexified linear differ-
ential inclusion represented by (4.26) is robustly exponentially stable if the eigenvalues
of Ai satisfy: λij < −1

2
for all i ∈ L and j ∈ {1, . . . , n}.

Proof: In Section 4.2.1.2 we showed that for a sufficiently small ε, V (x) = x>Px with
P = 1

2
WW> + 1

2
εvnv

>
n is a CQLF for the switched linear system (4.1). In other words,

the inequalities A>i P + PAi < 0 hold for all i ∈ L. Employing the same structure of
P , we need again to show that an ε exists, such that the differential inclusion (4.26) is
exponentially stable. To this end, we can basically follow the same lines of the previous
arguments, by taking into account that

λ
(
Ai + 1

2
I
)

= λ(Ai) + 1
2
, (4.32)

and the eigenvectors of Ai and Ai + 1
2
I are equal. Consequently, it turns out that by

referring to (4.15) and choosing

ε < min
i∈L

(
2(λin + 1

2
)

(v>nAiQ1)(R1(Λi + 1
2
In−1)R>1 )−1(v>nAiQ1)>

)
, (4.33)

V (x) is a robust Lyapunov function for the differential inclusion (4.26).

Note that P = 1
2
WW>+ 1

2
εvnv

>
n has one eigenvalue equal 1

2
ε and its other eigenvalues

are eigenvalues of 1
2
W>W . This can be verified by observing that

P vn = 1
2
εvn,

P W = W (1
2
W>W ).

The first relationship implies that vn is the eigenvector of P corresponding to the eigen-
value 1

2
ε, and the second one implies that P has an (n − 1) dimensional right invariant

subspace with columns of W as its basis. Thus, it follows from this relation that (n− 1)
eigenvalues of P are embedded in 1

2
W>W . As W has normalized columns and ε can be

choose sufficiently small, we can write

λmin(P ) = 1
2
ε, and λmax(P ) ≤ tr (1

2
W>W ) = 1

2
(n− 1); (4.34)

see also Appendix A.2.11. Now, we propose an upper bound for the uncertainty function
δ(x) such that despite its presence exponential stability of the perturbed differential
inclusion defined by (4.29) is ensured. Let’s denote the maximum singular value of Ai
by σmax(Ai) and introduce Lipschitz functions δi(x) for all i ∈ L as

δi(x) = ψi.‖x‖, where ψi :=
ε

4(n− 1)(σmax(Ai) + 1)
. (4.35)

We then choose the function δ(x) in (4.29) as

δ(x) = ψ.‖x‖, where ψ = min {ψ1, . . . , ψ`} . (4.36)
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The perturbed set valued map defined in (4.29) equals

Fδ(x)(x) =

{∑̀
i=1

γiAix+ ψ.‖x‖
((∑̀

i=1

.γiAi

)
+ I

)
B

}
,
∑̀
i=1

γi = 1, γi ≥ 0 ∀i ∈ L.

Considering (4.34), (4.30), and the definition of ψi in (4.35), for x 6= 0 we have

max
f∈Fδ(x)

〈∇V (x), f〉 = max
f∈Fδ(x)

〈2x>P, f〉

= max
v∈B

(∑̀
i=1

(
γix
>(A>i P + PAi)x

)
+ 2

∑̀
i=1

(
γi.ψ.‖x‖.x>P.(Ai + I)v

))

≤ −x>Px+ 2 max
v∈B

(∑̀
i=1

(
γiψi.‖x‖.‖x>P‖.‖(Ai + I)v‖

))

≤ −x>Px+ 2
∑̀
i=1

(γiψi.‖x‖.λmax(P ).‖x‖. (σmax(Ai) + 1))

≤ −x>Px+
1

4
ε.‖x‖.‖x‖

≤ −1

2
x>Px < 0. (4.37)

Furthermore, it follows from (4.37) that

V̇ (x) ≤ −1
2
x>Px = −1

2
V (x)⇒ V (x) ≤ V (x0)e−

1
2
t.

Now, using the inequality λmin(P )‖x‖2 ≤ x>Px and taking into account that 1
2
ε =

λmin(P ), we have

‖x‖2 ≤ 2
ε
V (x0)e−

1
2
t. (4.38)

This is a verification that exponential stability of the perturbed differential inclusion
(4.29) is attained.

Note that for this class of switched linear systems the robust Lyapunov function and
the upper bound for the parameter ε are explicitly represented by the system parameters.

4.4 Quadratic stabilization of switched linear sys-

tems

In the second part of the current chapter, we investigate stabilization of controlled
switched linear systems by exploiting the developed concepts in the first part. We con-
sider the controlled switched linear system

ẋ = Aσ(t)x+Bσ(t)u, (4.39)
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where σ : t → L := {1, . . . , `} is a piecewise constant switching signal, Ai ∈ Rn×n, and
we assume Bi ∈ Rn×m has full column rank for m ≤ n and for each i ∈ L. Our goal is
to design local state feedbacks u = Kσ(t)x such that the switched system

ẋ = (Aσ(t) +Bσ(t)Kσ(t))x, (4.40)

is quadratically stable under arbitrary switching signal, i.e., a common quadratic Lya-
punov function (CQLF) V (x) = x>Px with P = P> > 0 exists such that

(Ai +BiKi)
>P + P (Ai +BiKi) < 0 ∀i ∈ L. (4.41)

To develop our results concerning this problem, in the next step, we introduce the concept
of controlled block similar matrices for controlled switched linear systems.

4.4.1 Block similar controlled switched linear systems

In this part, we introduce the concept of similarity for controlled switched linear sys-
tems. For the definition of block similar controlled systems, see Appendix A.3.2 and the
reference therein.

Lemma 4.4.1. Suppose in the controlled switched linear system (4.39), each controlled
pair [Ai Bi] is block similar to [Āi B̄i] for i ∈ L, related by a real similarity transformation
matrix. Then, there exist real state feedback gains Ki ∈ Rm×n and a real matrix P =
P> > 0 such that the closed loop matrices Ai + BiKi satisfy the Lyapunov inequalities
(4.41), if and only if there exist feedback gains K̄i ∈ Rm×n and a real positive definite
matrix P̄ = P̄> > 0 such that (Āi + B̄iK̄i)

>P̄ + P̄ (Āi + B̄iK̄i) < 0 for all i ∈ L.

Proof of necessity: Since the controlled pairs [Ai Bi] are block similar to [Āi B̄i] for
each i ∈ L obtained by a real similarity transformation matrix, there exist a matrix L,
and invertible matrices N and M with appropriate dimensions such that

[Āi B̄i] = N−1[Ai Bi]

[
N 0
L M

]

⇒ Āi = N−1(AiN +BiL), B̄i = N−1BiM, (4.42)

see Appendix A.3.2. Now, suppose there exists a feedback gain Ki for each i ∈ L and
a symmetric positive definite matrix P such that (Ai + BiKi)

>P + P (Ai + BiKi) < 0.
Then, by pre-multiplying of this inequality by N> and post-multiplying it by N and
utilizing (4.42), we can write

N>(Ai +BiKi)
>PN +N>P (Ai +BiKi)N < 0

⇒
[
N>(Ai +BiKi)

>N−>
]
N>PN +N>PN

[
N−1(Ai +BiKi)N

]
< 0

⇒
[
Āi + B̄iM

−1(Ki − LN−1)N
]>
P̄ + P̄

[
Āi + B̄iM

−1(Ki − LN−1)N
]
< 0,

where P̄ = N>PN . By choosing K̄i = M−1(Ki − LN−1)N , we deduce

(Āi + B̄iK̄i)
>P̄ + P̄ (Āi + B̄iK̄i) < 0 ∀i ∈ L. (4.43)
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Proof of sufficiency: Suppose there exists a positive P̄ > 0 such that (Āi+ B̄iK̄i)
>P̄ +

P̄ (Āi + B̄iK̄i) < 0 for each i ∈ L. Then, by pre-multiplying of this inequality by N−>

and post multiplying it by N−1, the sign of the inequality does not change. Thus, we
have

N−>(Āi + B̄iK̄i)
>P̄N−1 +N−>P̄ (Āi + B̄iK̄i)N

−1 < 0

⇒ (Ai +BiM(K̄i +M−1L)N−1)>(N−>P̄N−1)

+ (N−>P̄N−1)(Ai +BiM(K̄i +M−1L)N−1) < 0.

Selecting Ki = M(K̄i +M−1L)N−1 , we have

(Ai +BiKi)
>(N−>P̄N−1) + (N−>P̄N−1)(Ai +BiKi) < 0. (4.44)

Now, take P = N−>P̄N−1.

Corollary 4.4.1. If [Ai Bi] for all i ∈ L are block similar to a real controllable pair
[A B], with the same invertible transformation matrix, then the switched system (4.39)
can be quadratically stabilized.

Proof: It follows from Lemma 4.4.1 that the quadratic stabilization problem for the
switched system (4.39) is equivalent to the stabilization problem for the LTI system
ẋ = Ax + Bu. It is well known that any controllable LTI system can be stabilized by
designing an appropriate state feedback u = Kx.

4.4.2 Stabilization and common invariant subspaces

In this part, we aim to use the left eigenvectors assignment technique for stabilization of a
class of controlled switched linear systems in the form of (4.39). As stated in Chapter 4.4,
we use local state feedbacks u = Kix for this purpose. Then, we choose a matrix
W = [w1 . . . wm] consisting of m linearly independent columns with complex conjugate
pairs to be the set of desired left eigenvectors for Acli = Ai + BiKi. These eigenvectors
correspond to m desired eigenvalues with complex conjugate pairs and negative real
parts given by the diagonal entries of the matrix Λ = diag([λ1, . . . , λm]). Recalling
Chapter 2.2.2 we can adopt the formula (2.25) for this purpose. This formula then reads

Ki = −(W ∗Bi)
−1(W ∗Ai − ΛW ∗) ∀i ∈ L. (4.45)

Such feedbacks are feasible if and only if det(W ∗Bi) for each i ∈ L is nonzero. Now,
suppose we impose an additional restriction on W . We would like W to meet the
condition W ∗V = 0, where V ∈ Cn×(n−m) has (n − m) linearly independent columns.
This gives rise to the question under which conditions the feedback gain of the form
(4.45) is feasible. Lemma 4.4.2 provides an answer to this question.

Lemma 4.4.2. (Bajcinca et al., 2013) Consider the matrices Bi for all i ∈ L in the
controlled switched linear system (4.39). Given V ∈ Cn×(n−m) with rank (V ) = n −m,
a matrix W ∈ Cn×m satisfying det(W ∗Bi) 6= 0 and W ∗V = 0 for all i ∈ L exists, if and
only if there exists a j ∈ L such that for all i ∈ L

rank (B>j QVBi) = m, (4.46)
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where QV := I − V (V ∗V )−1V ∗. Moreover, if (4.46) holds then one can choose

W = QVBj for a fixed j ∈ L. (4.47)

Proof of sufficiency: Choose an index j ∈ L such that (4.46) holds for all i ∈ L,
and select W = QVBj. Then, W ∗V = 0 follows immediately from the definition of
W . On the other hand, we have W ∗Bi = B>j QVBi for all i ∈ L. Thus, (4.46) implies
rank (W ∗Bi) = m.

Proof of necessity: Suppose there exists a W such that W ∗V = 0 and
rank (W ∗Bi) = m for all i ∈ L. It follows from W ∗QVBi = W ∗Bi that rank (QVBi) = m
for all i ∈ L. Now, fix an index j ∈ L. Due to the relationships W ∗V = 0 and
B>j QV V = 0, there must exist a non-singular M ∈ Cm×m such that W = QVBjM .
Consequently, the equality rank (W ∗Bi) = rank (M∗B>j QVBi) = m implies that
rank (B>j QVBi) = m for all i ∈ L.

Taking advantage of Lemma 4.4.2, by choosing W = QVBj the proposed control
gains (4.45) will take the form

Ki = −(B>j QVBi)
−1(B>j QVAi − ΛB>j QV ) ∀i ∈ L, ∃j ∈ L. (4.48)

Now, in the following theorem, we intend to express how using the left eigenvectors
assignment technique can be beneficial for stabilization of controlled switched linear
systems.

Theorem 4.4.1. Consider the controlled switched linear system defined by (4.39). Sup-
pose all Ai’s for i ∈ L share an (n−m) dimensional invariant subspace Xn−m ⊂ Cn. Let
the columns of V ∈ Cn×(n−m) with conjugate pairs of complex vectors be an orthonormal
basis for Xn−m, which by definition satisfy the property

AiV = V Li ∀i ∈ L, (4.49)

where Li ∈ C(n−m)×(n−m). Let all systems ˙̄x = Lix̄ share a CQLF, that is, there exists
a V(x̄) = x̄∗Px̄ with P = P∗ > 0 and x̄ ∈ Cn−m such that the following Lyapunov
inequalities hold

L∗iP + PLi < 0 ∀ i ∈ L. (4.50)

Moreover, assume the rank properties

rank (B>j QVBi) = m ∀i ∈ L, ∃j ∈ L, (4.51)

where QV = I−V V ∗, hold. Then the switched system (4.39) is quadratically stabilizable.

Proof: Our stabilization design method is based on the left eigenvectors assignment
algorithm. We choose a matrix W = [w1 . . . wm] consisting of m linearly independent
columns with conjugate pairs of complex vectors and the property W ∗V = 0, to be the set
of desired left eigenvectors. These left eigenvectors correspond to m numbers including
complex conjugate pairs and negative real parts given by the diagonal elements of the
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matrix Λ = diag([λ1, . . . , λm]) as the desired eigenvalues for the closed loop matrices
Acli = Ai+BiKi. The desired feedback gains then have the forms (4.45). Such feedbacks
are feasible if and only if det(W ∗Bi) is non-zero for each i ∈ L. Lemma 4.4.2 emphasizes
that feasibility of the feedbacks is equivalent to conditions (4.51) to hold. Moreover, a
desired W has the form W = QVBj for some j ∈ L, and the desired feedback gains will
be computed by (4.48). Making use of these feedback gains, the following properties are
established

W ∗Acli = ΛW ∗, AcliV = V Li, and W ∗V = 0. (4.52)

Now, referring to Theorem 4.2.1 we can state that the resulting switched system (4.40)
is quadratically stable. A similar idea for stabilization of controlled switched system has
been presented by Bajcinca et al. (2013).

Remark 4.4.1. One can combine the statements of Theorem 4.4.1 and Lemma 4.4.1
for weakening the requirement that the open loop matrices Ai must share an invariant
subspace. The weaker statement can be said: “Suppose each pair [Ai Bi] is block similar
to [Āi B̄i] related by a same real similarity transformation matrix, for i ∈ L. If the
pairs (Āi, B̄i) for all i ∈ L satisfy the criteria of Theorem 4.4.1, then the switched system
(4.39) can be stabilized by local state feedbacks design”.

Example 4.4.1. (See also Bajcinca et al. (2013)) Consider the controlled switched linear
system (4.39) with the data

A1 =

 3 −3 −7
0 −4 0
1 3 −5

 , A2 =

 1 3 −5
2 −6 −2
7 1 −11

 , B1 =

 1
1
2

 , B2 =

 1
0
2

 .
A2 has all eigenvalues with negative real parts, namely at −8,−4,−4, while A1 has two
eigenvalues with negative real parts and an eigenvalue in the right half plane, namely at
2,−4,−4. We intend to stabilize this controlled switched system. Using the algorithm
by Tsatsomeros (2001), we can realize that both A1 and A2 share a two dimensional
invariant subspace with an orthonormal basis given by the columns of V = [v1 v2], where

v1 = [−0.7071 0 − 0.7071]>, v2 = [−0.4082 − 0.8165 0.4082]>,

and (4.49) holds. The corresponding matrices L1 and L2 defined in accordance with
(4.49) equal

L1 =

[ −4 4.6188

0 −4

]
, L2 =

[ −4 9.2376

0 −4

]
.

Notice L1 and L2 share a Lyapunov solution, for instance, P = diag([1, 3]). Now,
we follow an algorithm represented in the proof of Theorem 4.4.1. We design local
feedback laws which assign a common left eigenvector to the closed loop matrices
Acl1 and Acl2. This desired left eigenvector resulting from (4.47) is computed to be
W = [−0.5774 0.5774 0.5774]>. As W>B1 and W>B2 are both non-zero, assigning W
as the desired left eigenvector is possible. Choosing the desired eigenvalue Λ = −2, the
state feedback gains K1 = [2 − 2 − 2] and K2 = [−6 6 6] are computed, leading to
the closed loop matrices

Acl1 =

 5 −5 −9
2 −6 −2
5 −1 −9

 , Acl2 =

 −5 9 1
2 −6 −2
−5 13 1

 .
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4.4.2.1 Stabilization for the case of (n − 1) dimensional common invariant
subspace

Consider the special case of the controlled switched linear system (4.39) where the di-
mension of the largest common invariant subspace introduced in Theorem 4.4.1 is (n−1)
and the system has a single control input. Then, the Ai’s for all i ∈ L share a real left
eigenvector w characterized by

w>V = 0. (4.53)

Note that the open loop matrices are not necessarily Hurwitz, because some eigenvalues
of Ai corresponding to the eigenvector w, denoted by µi1 for i ∈ L, might lie in the
right half plane. Therefore, for stabilization of this controlled switched system we prefer
to shift the eigenvalues µi1 to a point on the negative real axis, while maintaining the
other eigenvalues of the matrices Ai unchanged. For this purpose, we use the single shift
eigenvalue method elaborated in Chapter 2.2.1.3. Let us denote the desired eigenvalue
corresponding to the left eigenvector w by λ1, and define the vectors bi := Bi with i ∈ L
for keeping the notation consistent with the one previously introduced. Further, assume
w>bi 6= 0 for all i ∈ L. The convenient controller gains then turn out to have the forms

Ki = −(µi1 − λ1)
w>

w>bi
∀i ∈ L. (4.54)

Now with this control design, Theorem 4.4.1 ensures that the controlled switched system
(4.39) is quadratically stable.

Example 4.4.2. Consider again the controlled switched linear system defined in Exam-
ple 4.4.1. As explained in that example, both A1 and A2 share a 2 dimensional invariant
subspace. Consequently, they share also a left eigenvector w orthogonal to v1 and v2.
This eigenvector is computed as follows:

w = [−0.5774 0.5774 0.5774]>.

Now, we design local state feedback gains each of which only shifts a single eigenvalue
corresponding to the common left eigenvector w of the open loop matrices A1 and A2.
As w>B1 and w>B2 are both non-zero, the single shift eigenvalue procedure is possible.
Choosing the desired eigenvalue to be λ1 = −2, the same controller gains as the ones
derived in Example 4.4.1 result.

4.4.2.2 Stabilization based on (n− 1) common real left eigenvectors

In this part, we plan to incorporate the algorithm developed in Chapters 4.2.1.2 and
2.2.2.1 into our stabilization approach for stabilization of controlled switched linear sys-
tems with (n−1) control inputs. Our algorithm suggests to assign (n−1) real common left
eigenvectors given by the columns of W = [w1 . . . wn−1] ∈ Rn×(n−1) corresponding to the
desired real stable eigenvalues given by the diagonal elements of Λ = diag([λ1, . . . , λn−1])
to the closed loop matrices Acli for all i ∈ L. For the selection of such W , stability of
the closed loop matrices must be taken into account. For this purpose, we define new
variables W1, . . . ,W`, where Wi = [wi1 . . . wi(n−1)] for i ∈ L are a set of desired left eigen-
vectors for Acli, respectively. A common W is obtained whenever W := W1 = · · · = W`.
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We now employ feedback gains in the form of (4.45). For stability of each closed loop
subsystem, we need that the last eigenvalue of each Acli for i ∈ L, denoted by λin,
should also be real negative. It has been shown in Chapter 2.2.2.1 that this condition is
equivalent to

λin = −tr
(
W>
i (ai1/(n− 1) I + Ai)Bi(W

>
i Bi)

−1
)
< 0 ∀i ∈ L. (4.55)

We can determine a set of matrices Wi, denoted by Ωi, that satisfy the inequalities (4.55)
by using the parameterization method introduced in Chapter 2.2.2.1

W>
i =W>i + µiθ

>
i ∀i ∈ L,

and follow the algorithm proposed therein. Then, the desired set of W , denoted by Ω,
that simultaneously stabilizes all Acli for all i ∈ L, is obtained by intersection of all Ωi,
that is, Ω = ∩`i=1Ωi (see Kouhi and Bajcinca (2011c)). The next example illustrates
how this technique can be numerically executed.

Example 4.4.3. Suppose we intend to quadratically stabilize the controlled switched
linear system (4.39), with the data

A1 =

 3 −3 −7
0 −4 0
1 3 −5

 , A2 =

 1 3 −5
2 −6 −2
7 1 −11

 , B1 =

 1 1
1 0
2 2

 , B2 =

 1 2
1 0
1 1

 .
Let the columns of W1 = [w11 w12] and W2 = [w21 w22] be desired left eigenvectors for the
closed loop matrices Acl1 and Acl2, respectively. Note that two common left eigenvectors
given by the columns of W = [w1 w2] are obtained when W = W1 = W2. Now, we want
to compute a matrix W such that the closed loop matrices Acl1 and Acl2 constructed by
the state feedback gains in the form of (4.45) are Hurwitz. To this end, we first use the
parameterization

W>
i =W>i + µiθ

>
i i ∈ {1, 2},

where µi and θi are defined in Chapter 2.2.2.1. The parameters θi are computed directly
from the equations θ>i Bi = 0 for i ∈ {1, 2}

θ1 = [−0.8944 0 0.4472]>, θ2 = [−0.4082 − 0.4082 0.8165]>.

Note that this problem includes several unknown parameters, namely W1, W2, µ1, and
µ2. Therefore, for convenience we fix W1 and µ2 to be

W>1 =

[
1 1 2
1 0 2

]
, µ2 =

[
1
1

]
,

and compute W2 and µ1 afterwards. From the identity W>
1 = W>

2 , we conclude

W>1 + µ1θ
>
1 =W>2 + µ2θ

>
2

⇒W>2 =W>1 + µ1θ
>
1 − µ2θ

>
2 .
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This allows us to represent W>2 solely by the unknown parameter µ1 = [µ11 µ12]> as

W>2 =

[
1.4082− 0.8944µ11 1.4082 1.1835 + 0.4472µ11

1.4082− 0.8944µ12 0.4082 1.1835 + 0.4472µ12

]
.

Now, recall from the algorithm presented in Chapter 2.2.2.1 that for stability of the closed
loop matrices the following conditions must hold

−Y >1 µ1 − tr(W1X1) < 0, −Y >2 µ2 − tr(W2X2) < 0,

where variables Xi and Yi are defined as follows:

Xi =
(
ai1/(n− 1) I + Ai

)
Bi(W>i Bi)

−1,

Y >i = θ>i

(
ai1/(n− 1) I + Ai

)
Bi(W>i Bi)

−1,

for each i ∈ {1, 2}. X1 and Y1 are known parameters as W1 is given

X>1 =

[
−3 −1 3
1.4 1 −3.6

]
, Y >1 =

[
4.0249 −2.8622

]
.

X2 and Y2 are parameterized by µ1. Now, we find an appropriate µ1 via solving the
following optimization problem:

minimize ‖µ1‖2

subject to

{
−Y >1 µ1 − tr(W1X1) + γ ≤ 0,

−Y >2 µ2 − tr(W2X2) + γ ≤ 0,

where the positive number γ enters into the problem for ruling out computation of the
zero solution for µ1. In this example we assume γ = 0.2. Using the MATLAB command
“fmincon” we are able to find a solution for µ1, namely µ1 = [0.6600 − 0.4694]>. This
identifies

W> =

[
0.4096 1 2.2952
1.4198 0 1.7901

]
.

Now, we take the eigenvalues corresponding to the columns of W to be the diagonal
entries of Λ = diag([−2,−3]). Thus, the state feedback gains K1 and K2 are computed
to be:

K1 =

[
5.9656 −2.5458 −3.7658

−8.0274 2.3236 6.4696

]
, K2 =

[
−4.5586 2.9411 6.6617

−0.7727 −3.3458 0.0079

]
,

and the closed loop matrices are given by

Acl1 =

 0.9382 −3.2222 −4.2962
5.9656 −6.5458 −3.7658
−3.1236 2.5557 0.4075

 , Acl2 =

 −5.1040 −0.7506 1.6774
−2.5586 −3.0589 4.6617
1.6687 0.5953 −4.3305

 .
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The sets of eigenvalues of Acl1 and Acl2 are {−0.2,−2,−3} and {−7.4933,−2,−3},
respectively. This indicates that both matrices are Hurwitz and they share two left
eigenvectors given by the columns of the computed W .

Example 4.4.4. (Kouhi and Bajcinca, 2011c) For the case of n = 2 in the controlled
switched linear system (4.39), we can obtain a simple expressions for stability of the
closed loop matrices. Let’s denote bi := Bi for each i ∈ L, and wi := Wi, where wi is the
desired left eigenvector for the closed loop matrix Acli for each i ∈ L. We can choose λi1
any real negative number. Furthermore, recalling (2.8), we must have

λ2i = −w
>
i (ai1I + Ai)bi

w>i bi
< 0 ∀i ∈ L. (4.56)

The criteria (4.56) are met if the inner-products w>i bi and w>i (ai1I+Ai)bi have the same
sign. Define Ωi to be the set of all vectors wi that satisfy this condition. Then, the
set of a stabilizing common left eigenvector w = w1 = · · · = w`, denoted by Ω, can be
computed by Ω = ∩`i=1Ωi. The region Ωi can be represented geometrically similar to
what were illustrated in Figure 2.2.1.

4.4.3 Stabilization and perturbed invariant subspaces

In this part, we are interested in enlarging the class of controlled switched linear
systems that can be stabilized by left eigenstructure assignment approach. The core
of this section is to show that if all open loop matrices Ai’s with i ∈ L in (4.39) have
p := n − m dimensional invariant subspaces which are sufficiently close to each other,
we may still be capable of stabilizing the controlled switched system. This argument is
substantiated by accomplishing the proof of the next theorem. Before proceeding, we
refer the reader to Appendix A.2.13.1 and Truhar (1996) for the definition of “distance
between two invariant subspaces”.

Theorem 4.4.2. Define p = n−m. Suppose all Ai’s in the controlled switched system
(4.39) possess p-dimensional invariant subspaces Xi,p, such that the distance between Xi,p
and Xj,p is sufficiently small for each i, j ∈ L and i 6= j, that is, there exists a small
number δ ≥ 0 satisfying

dist (Xi,p,Xj,p) ≤ δ. (4.57)

Moreover, assume that an index j ∈ L and an orthonormal basis with conjugate pairs of
complex vectors, given by the columns of a matrix Vj ∈ Cn×p, for the invariant set Xj,p
exist such that

rank
(
B>j QVjBi

)
= m ∀i ∈ L, (4.58)

where QVj = I − VjV ∗j . For each i ∈ L and i 6= j, let the columns of Vi ∈ Cn×p be a
normal basis (not necessarily orthogonal) for Xi,p, satisfying

AiVi = ViLi, ‖Vi − Vj‖2 ≤
√

2p dist(Xi,p,Xj,p), (4.59)
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where ‖.‖2 indicates the induced 2-norm (see Appendix A.2.11). Then, if there exist
scalars γ1, γ2 > 0 and a Hermitian positive definite matrix P ∈ Cp×p, i.e., P = P∗ > 0,
such that the following Riccati inequalities hold

L∗iP + PLi + γ2
1P2 + γ2

2Ip < 0 ∀i ∈ L, (4.60)

and the number γ1γ2 is sufficiently large, the controlled switched system (4.39) can be
stabilized by local state feedback controller design.

Proof: The proof consists of two parts. In part A, we show that a Vi ∈ Cn×p exists, such
that its columns form a basis for the invariant subspace Xi,p and simultaneously satisfy
(4.59). In Part B we demonstrate that if (4.60) holds and γ1γ2 is sufficiently large, then
the controlled switched linear system (4.39) can be quadratically stabilized.

Part A: Fix a j ∈ L and an orthonormal matrix V := Vj ∈ Cn×p such that (4.58) holds.
Let’s define an orthonormal matrix Φi ∈ Cn×m such that its columns are perpendicular
to the space Xi,p. It is obvious that

Xi,p = {x ∈ Cn : Φi
∗x = 0} ∀i ∈ L. (4.61)

The projection of a vector vk, the k-th column of V for k ∈ {1, . . . , p}, onto the set Xi,p
equals

ProjXi,p(vk) = (In − ΦiΦi
∗)vk ∀k ∈ {1, . . . , p};

see Appendix A.8.1. Now, we define the following normal vectors

vik =
1

‖(In − ΦiΦi
∗)vk‖

(In − ΦiΦi
∗)vk ∀k ∈ {1, . . . , p}, (4.62)

and the collection of them as Vi = [vi1 . . . vip] for i ∈ L. We claim that Vi is defined, its
column vectors are linearly independent and form a basis for the set Xi,p for each i ∈ L.
To see this, first notice that the following identity is valid

(In − ΦiΦi
∗)[V 0] = (In − ΦiΦi

∗)[V Φi].

On the other hand, we should have rank([V Φi]) = n; otherwise, there must exist a
vector φi ∈ Cn such that φ∗i [V Φi] = 0, implying that both φ∗iV = 0 and φ∗iΦi = 0 must
hold. Next, referring to (4.61) the expression φ∗iΦi = 0 implies that φi ∈ Xi,p, and the
expression φ∗iV = 0 implies that φi is perpendicular to all vectors in the space Xj,p. But
this is impossible since the canonical angle between Xi,p and Xj,p is assumed to be small.
Now, we have

rank (Vi) = rank ((In − ΦiΦi
∗)V ) = rank ((In − ΦiΦi

∗)[V 0])

= rank ((In − ΦiΦi
∗)[V Φi]) = rank(In − ΦiΦi

∗) = p. (4.63)

Next, note that by the definition of vik in (4.62), we can deduce

min
k∈{1,...,p}

v∗kvik = min
vk∈{v1,...,vp}

max
νi∈Xi,p

v∗kνi ≥ min
v∈Xj,p

max
νi∈Xi,p

v∗νi = cos(θij), (4.64)
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where θij is the maximum canonical angle between two spaces Xi,p and Xj,p; see Ap-
pendix A.2.13.1. Let’s define ∆Vi := V − Vi for each i ∈ L with i 6= j. Then,

‖∆Vi‖2
2 = ‖V − Vi‖2

2 = σmax(∆Vi)
2 ≤ tr (∆V ∗i ∆Vi) ≤ p max

k∈{1,...,p}
(‖vk − vik‖2);

see Appendix A.2.11. Then, we have

‖∆Vi‖2
2 ≤ p max

k∈{1,...,p}
(‖vk − vik‖2) = p max

k∈{1,...,p}
(2− 2v∗kvik) =

= 2p
(

1− min
k∈{1,...,p}

(v∗kvik)
)
. (4.65)

Now, referring to (4.64) we can write

‖∆Vi‖2 ≤ 2p (1− min
v∈Xj,p

max
νi∈Xi,p

(v∗νi)) = 2p(1− cos(θij)), (4.66)

where θij is the greatest canonical angle between Xi,p and Xj,p. On the other hand, using
2sin2(θij/2) = 1− cos(θij), we deduce that

‖∆Vi‖2 ≤ 4p sin2(θij/2).

As θij < π/2, the inequality sin(θij/2) ≤ cos(θij/2) is valid. Hence,

‖∆Vi‖2 ≤ 4p sin(θij/2) cos(θij/2) = 2p sin(θij) = 2p dist (Xi,p,Xj,p) . (4.67)

Part B: Now, choosing appropriate matrices Vi for all i ∈ L with regard to the discussion
in Part A, we introduce our stabilization method. We choose the columns of W = QVBj

as the set of desired left eigenvectors corresponding to m desired eigenvalues coming
with complex conjugate pairs in the open left half plane given by the diagonal entries
of Λ = diag([λ1, . . . , λm]) for the closed-loop matrix Acli = Ai + BiKi. Referring to
Lemma 4.4.2, we can argue that W can be assigned to Acli if (4.58) holds. Then, the
desired controller gain Ki has the form (4.48). Next, define the reduced QR-factorization
W = Q1R1, where R1 is an m ×m upper triangular non-singular matrix and Q1 is an
n×m matrix which has orthonormal columns. Choosing the orthonormal transformation
matrix T = [Q1 V ], we can define a set of Ācli’s which are similar to Acli’s as follows:

Ācli = T ∗AcliT =

[
R−∗1 ΛR∗1 0
V ∗AcliQ1 V ∗AcliV

]
∀i ∈ L.

We take a common Lyapunov solution for Ācli, i ∈ L, in the form of

P̄ = 1
2

[
R1R

∗
1 0

0 εP

]
,

where P = P∗ ∈ Cp×p is defined in accordance with (4.60). The Lyapunov equation for
the transformed matrices Ācli equals

Ā∗cliP̄ + P̄ Ācli =

[
R1Re(Λ)R∗1

ε
2
Q∗1A

>
cliV P

ε
2
PV ∗AcliQ1

ε
2
(PV ∗AcliV + V ∗A>cliV P)

]
∀i ∈ L. (4.68)
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As R1Re(Λ)R∗1 < 0, (4.68) is negative definite if and only if Si < 0, where Si stands for
its Schur complement with respect to the upper left block as

Si = ε
2
(PV ∗AcliV + V ∗A>cliV P)− ε2

4
(PV ∗AcliQ1) (R1Re(Λ)R∗1)−1 (Q∗1A

>
cliV P). (4.69)

Following the proof of Theorem 4.4.1, for a sufficiently small ε > 0, the inequality Si < 0
is satisfied if and only if

PV ∗AcliV + V ∗A>cliV P < 0 ∀i ∈ L. (4.70)

We prove the last inequality holds if ‖∆Vi‖2 is sufficiently small. First, note that using
the feedback gain of the form (4.48), the identity

AcliV =
[
Ai −Bi(B

>
j QVBi)

−1(B>j QVAi − ΛB>j QV )
]
V

=
[
I −Bi(B

>
j QVBi)

−1B>j QV
]
AiV = AiV + EiV (4.71)

holds, where we have defined

Ei := −Bi(B
>
j QVBi)

−1B>j QVAi.

Now, recall that ∆Vi is defined as ∆Vi := V − Vi, where Vi is defined by (4.62). Thus,
the property (4.59) also holds. Consequently, the matrices Li for all i ∈ L in (4.59) are
defined and available. Now, suppose a suitable P can be determined such that (4.60)
holds. Then, part of the Lyapunov equation for this mode can be written in the form of

PV ∗AcliV = PV ∗(Ai + Ei)V

= P(V − Vi(V ∗i Vi)−1 + Vi(V
∗
i Vi)

−1)∗Ai(Vi + ∆Vi) + PV ∗EiV
= P(V ∗i Vi)

−1V ∗i AiVi + P(V − Vi(V ∗i Vi)−1)∗AiV + P(V ∗i Vi)
−1V ∗i Ai∆Vi + PV ∗EiV

= P(V ∗i Vi)
−1V ∗i ViLi + P(V − Vi(V ∗i Vi)−1)∗AiV + P(V ∗i Vi)

−1V ∗i Ai∆Vi + PV ∗EiV
= PLi + P(V − Vi(V ∗i Vi)−1)∗AiV + P(V ∗i Vi)

−1V ∗i Ai∆Vi + PV ∗EiV
= PLi + PFi,

where we have defined Fi as

Fi := (V − Vi(V ∗i Vi)−1)∗AiV + (V ∗i Vi)
−1V ∗i Ai∆Vi + V ∗EiV. (4.72)

Referring to (4.60), we can write

PV ∗AcliV + V ∗A>cliV P = PLi + L∗iP + PFi + F ∗i P <

− γ2
1P2 + PFi + F ∗i P − γ2

2Ip =

−
(
γ1P −

1

γ1

Fi

)∗(
γ1P −

1

γ1

Fi

)
+
[

1
γ21
F ∗i Fi − γ2

2Ip

]
.

The first summand of the above expression is clearly negative semi-definite. We will
show also when ∆Vi is small, the second summand is negative semi-definite. To this end,
for a small value of ‖∆Vi‖, we should show

1
γ21
F ∗i Fi − γ2

2Ip ≤ 0⇒ σmax(Fi) ≤ γ1γ2.
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On the other hand, referring to the definition of Fi in (4.72), σmax(Fi) is bounded by

σmax(Fi) ≤ σmax

(
(V − Vi(V ∗i Vi)−1)∗AiV + V ∗EiV

)
+ σmax

(
(V ∗i Vi)

−1V ∗i Ai∆Vi
)

≤ σmax

(
(V − Vi(V ∗i Vi)−1)∗AiV + V ∗EiV

)
+ σmax

(
(V ∗i Vi)

−1V ∗i Ai
)
‖∆Vi‖2.

Hence, if the norm of the perturbation ∆Vi is bounded by

‖∆Vi‖2 = σmax(∆Vi) ≤
γ1γ2 − σmax (V ∗(Ai + Ei)V − (V ∗i Vi)

−1V ∗i AiV )

σmax ((V ∗i Vi)
−1V ∗i Ai)

, (4.73)

then the switched system (4.39) is stable. Recalling (4.71), if γ1γ2 is sufficiently large so
that the inequalities γ1γ2 ≥ σmax (V ∗AcliV − (V ∗i Vi)

−1V ∗i AiV ) for all i ∈ L hold, and the
distances between the invariant subspaces Xi,p and Xj,p are less than or equal to some
δ ≥ 0, for instance,

dist (Xi,p,Xj,p) ≤ δ, δ :=
1

2p
min
i∈L
i6=j

(
γ1γ2 − σmax (V ∗AcliV − (V ∗i Vi)

−1V ∗i AiV )

σmax ((V ∗i Vi)
−1V ∗i Ai)

)2

, (4.74)

then (4.73) and (4.67) are satisfied. Therefore, quadratic stability of the closed loop
switched linear system (4.39) is deduced.

Example 4.4.5. Consider again the controlled switched linear system (4.39), with the
same matrices A1, B1, and B2 presented in Example 4.4.1. However, we assume that the
matrix A2 has been slightly perturbed in the form of

A2 =

 1 3 −5
2 −6 −2
7 1 −11

+ 10−4 ×

 1 2 −1
2 −1 −1
7 1 −2

 .
After finding the two dimensional invariant subspaces of matrices A1 and A2, we realize
that the two dimensional invariant subspaces X1,2 and X2,2 defined by

Xi,2 = {x ∈ C3 : Φi
∗x = 0} i ∈ {1, 2},

where

Φ1 = [−0.5774 0.5774 0.5774]>, Φ2 = [−0.5658+0.1148i 0.5660−0.1149i 0.5657−0.1148i]>,

corresponding to A1 and A2, respectively, have a fairly small distance dist(X1,2−X2,2) =
3.2314× 10−4. The orthonormal vectors given by the columns of V = [v1 v2] computed
in Example 4.4.1 form a basis for X1,2. Likewise, the vectors given by the columns of
V2 = [v21 v22] with v2k = (I3 −Φ2Φ2

∗)vk/‖(I3 −Φ2Φ2
∗)vk‖ for k ∈ {1, 2} form a normal

basis for X2,2. These vectors are numerically given by

v21 = [−0.7071 0 − 0.7071]>,

v22 = [−0.4084 − 0.8164 0.4084]>.

Furthermore, one can realize that

‖V − V2‖ = 2.8794× 10−4 <
√

4 dist(X1,2 −X2,2) = 0.0360.
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The matrices L1 and L2 with regard to (4.59) equal

L1 =

[
−4 4.6188
0 −4

]
, L2 =

[
−4.0003 + 0.0001i 9.2399 + 0.0003i

−0.0002 −3.9997 + 0.0001i

]
.

Moreover, with γ1 = 0.9487, γ2 = 1.0954, and the positive definite P = diag([1 3]),
we have that the inequalities (4.60) are valid. Furthermore, the parameter δ = 0.0198,
defined by (4.74), is greater than the distance between two subspaces X1,2 and X2,2.
Therefore, designing local state feedbacks that quadratically stabilize this controlled
switched linear system is possible. We achieve the design by assigning a common left
eigenvector to the closed loop matrices Acl1 and Acl2. The desired left eigenvector is
selected equal to the one given in Example 4.4.1. As W>B1 and W>B2 are both non-
zero, assigning such left eigenvector is feasible. Choosing again the desired left eigenvalue
Λ = −2, the state feedback gains K1 = [2 − 2 − 2] and K2 = [−6.0006 5.9997 6] are
attained, leading to the closed loop matrices

Acl1 =

 5 −5 −9
2 −6 −2
5 −1 −9

 , Acl2 =

 −5.0005 8.9999 0.9999
2.0002 −6.0001 −2.0001
−5.0004 12.9995 0.9997

 .
4.5 Robust control design with (n−1) control inputs

Now, we consider a perturbed controlled switched linear system

ẋ = Aσ(t) (x+ ∆1(t)‖x‖) +Bσ(t)u+ ∆2(t)‖x‖, (4.75)

where u ∈ Rn−1, ∆1(t) and ∆2(t) are the perturbation vector functions, and σ : t→ L :=
{1, . . . , `} is the switching signal. Our intention is to quadratically stabilize (4.75) by
using state feedback u = Kσ(t)x, in the case that, the 2-norms of the perturbation vectors
are sufficiently small. For this design, we can employ the feedback gains of the form (4.45)
with W ∈ Rn×(n−1). Referring to Chapter 2.2.2.1, Section 4.3.1, and Section 4.4.2.2, the
(n−1) desired eigenvalues of Ai+BiKi corresponding to the left eigenvectors given by the
columns of W can be selected as real numbers satisfying λj < −1

2
for j ∈ {1, . . . , n− 1}.

Then, one must additionally take care of the eigenvalue λin, which corresponds to the
right eigenvector vn of Ai +BiKi, for each i ∈ L. The condition λin < −1

2
modifies to

−tr
(
W> ((ai1 − 1

2
)/(n− 1)In + Ai

)
Bi(W

>Bi)
−1
)
< 0 ∀i ∈ L, (4.76)

where ai1 has been defined in Chapter 2.2.2.1. Moreover, referring to our discussion in
Section 4.4.2.2 and Chapter 2.2.2.1, having ‖∆1(t)‖2 ≤ ψ and ‖∆2(t)‖2 ≤ ψ, where ψ is
the upper bound for the perturbation defined in (4.35), are the required conditions for
guaranteeing stability of the perturbed switched system with this design. Then, referring
to (4.35) these conditions are equivalent to have: ε.In−1 ≤ W>W , (4.33) holds, and

‖∆j(t)‖2 ≤ min
i∈L

ε

4(n− 1) (σmax(Ai +BiKi) + 1)
∀j ∈ {1, 2}. (4.77)

Note that in this control design the upper bounds for ‖∆1(t)‖2 and ‖∆2(t)‖2 are a
priori known. An appropriate W can be found by employing the similar approaches
introduced in Section 4.4.2.2 and Example 4.4.3 to satisfy the conditions ε.In−1 ≤ W>W ,
(4.33), (4.76), and (4.77); see also Kouhi and Bajcinca (2011c).
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bi

(ai1 I + Ai)bi

((ai1 − 1/2)I + Ai) bi

Ω̂i

Figure 4.5.1: The interior of colored region, denoted by Ω̂i, is the proper region for
selection of a desired left eigenvector wi satisfying (4.79).

Example 4.5.1. In the case n = 2, for stabilization of the perturbed controlled switched
linear system (4.75), we require that the eigenvalues of Ai + BiKi satisfy

λi1 < −1

2
, λi2 < −1

2
∀i ∈ L. (4.78)

Let us denote b1 := B1, b2 := B2, and wi = Wi ∈ R
2 for consistency of notation with the

one used in Example 4.4.4. We can choose λi1 any real negative number less than −1/2.
Then, the set of a desired left eigenvector wi, denoted by Ω̂i, which satisfy

λi2 +
1

2
= −w

�
i ((ai1 − 1

2
)I + Ai)bi

w�
i bi

< 0 ∀i ∈ L, (4.79)

can be specified geometrically. As a result, in this example the set Ω̂i is a subset of
the set Ωi introduced in Example 4.4.4, that is, Ω̂i ⊂ Ωi. This has been illustrated in
Figure 4.5.1. The set of a common left eigenvector w = w1 = · · · = w� which satisfy
(4.79), denoted by Ω̂, is obtained by Ω̂ = ∩�

i=1Ω̂i; see also Kouhi and Bajcinca (2011c).

4.6 Conclusions

In this chapter we have studied the stability problem for the class of switched linear
systems whose subsystem matrices share a number of left eigenvectors and an invariant
subspace such that a common quadratic Lyapunov function can be associated to this
space. Particular cases include sets of Hurwitz matrices which share (n − 1) right
eigenvectors or (n− 1) real left eigenvectors.

Furthermore, several approaches for stabilization of the class of controlled switched
linear systems whose open loop matrices share such an invariant subspace have been
proposed. The stabilization techniques are based on the concept of left eigenstructure
assignment developed in Chapter 2.

We have also discussed the robust stability problem for convexified differential in-
clusions associated with switched linear systems. In particular, we have derived an
interesting result for robust stability of switched linear systems whose matrices share
(n− 1) real left eigenvectors.
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Chapter 5

Rank-m difference switched systems

5.1 Introduction

In this chapter, we introduce a tractable condition on pairs of Hurwitz matrices A1 and
A2, which guarantees existence of a common Lyapunov solution for them. While it turns
out that A1A2 having no real negative eigenvalue (spectral condition) is a necessary
condition for the existence of a common Lyapunov solution for A1 and A2 (Shorten
and Narendra, 2003), this condition is not sufficient. An example that this necessary
condition fails to be sufficient is as follows:

A1 =


−1.8 0.5 0.1 0.4

0.1 −1.8 0.1 0.9
0.1 0.7 0.6 −2.1
0.1 0.8 0.9 −1.8

 , A2 =


−1.8 0.1 0.9 0.3

0.2 −0.4 −1.7 0.3
−0.4 0.7 1.1 −2

0.4 0.6 0.8 −2.8

 . (5.1)

A1 and A2 are both Hurwitz, and the eigenvalues of the product A1A2 are
4.696, 0.6303 ± 1.5505i, 0.2333. Thus, no real negative eigenvalue for A1A2 exists.
However, by using a suitable software, it can be checked that no common solution
P = P> > 0 for the Lyapunov inequalities A>i P + PAi < 0, i ∈ {1, 2}, exists.

Therefore, we are interested to characterize a class of matrices that given above
spectral condition is also sufficient for the existence of such a solution. An initial result
in this direction has been given by Shorten and Narendra (2003), stating that any
two matrices which are Hurwitz, differ by a rank-1 matrix, and satisfy the spectral
condition possess a common Lyapunov solution. In the proof of this result, a transfer
function is associated with A1 and A2. This transfer function is demonstrated to be
Strictly Positive Real (SPR). Existence of a common Lyapunov solution for the pair
of matrices then results from the Kalman-Yakubovic-Popov (KYP) lemma (see Zhou
et al. (1996)) which is tight for the class of SPR systems. Despite much effort, it has
not been possible to extend this result to more general pairs of matrices until recently
(Kouhi et al., 2013a).

In this chapter, we introduce a new pair of matrices for which the above spectral
condition is both sufficient and necessary for having a common Lyapunov solution and
thus guaranteeing stability of the switched system ẋ = Aσ(t)x, σ(t) ∈ {1, 2}. These are
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pairs of stable matrices which are related by a symmetric transfer function matrix. For
developing the results, we follow a similar approach to the existing one for the class of
rank-1 difference matrices.

5.2 Symmetric transfer function matrices

Symmetric transfer function matrices can be found in many applications. For example,
symmetric transfer functions are ubiquitous in the study of electrical systems (Helmke
et al., 2006; Semlyen and Gustavsen, 2009), in systems with collocated sensors and actu-
ators (Yang and Qiu, 2002), and in chemical process plants (Shinskey, 1984; Hovd and
Skogestad, 1994; Kouhi et al., 2014). Due to this wide range of applications, numerous
results concerning control design for this class of systems exist in the literature; see,
e.g., Shinskey (1984); Hovd and Skogestad (1994); Xie et al. (2004); Fuhrmann (1983).
In this part, however, we study this class of systems solely from a mathematical point
of view. In fact, the mathematical properties of symmetric transfer function matri-
ces play an integral role for the stability theory of switched linear systems in this chapter.

We begin by exploring conditions on the matrix components of a state space
realization (A,B,C,D) characterizing a symmetric transfer function matrix
G(s) = C(sI − A)−1B + D. Lemma 5.2.1 represents a necessary and sufficient
condition for symmetric transfer function matrices with respect to Markov parameters,
while Lemma 5.2.2 establishes a link between the symmetry condition and similar state
space realizations. In Lemma 5.2.4 we introduce one of the important properties that
symmetric transfer function matrices exhibit.

Throughout this chapter we always assume that A ∈ Rn×n, B ∈ Rn×m has full
column rank, C ∈ Rm×n has full row rank, and D ∈ Rm×m for some m ≤ n.

Lemma 5.2.1. (See, e.g., Kouhi et al. (2013a)) The transfer function matrix G(s) =
C(sI − A)−1B +D is symmetric, that is, G(s) = G>(s) if and only if

D = D>,

CAiB = (CAiB)> ∀i ∈ {0, 1, . . . , n− 1}. (5.2)

Proof: Let’s define the characteristic polynomial of A as

det(λI − A) = λn + a1λ
n−1 + a2λ

n−2 + · · ·+ an.

Then, referring to (Kailath (1980), pp.67), the following identity holds

C(sI − A)−1B =
1

det(sI − A)
[sn−1(CB) + sn−2(CAB +a1CB)+

· · ·+ (CAn−1B +· · ·+ an−1CB)].

Hence, it is immediately evident that the condition (5.2) and the assumption D = D>

are necessary and sufficient for the transfer function matrix G(s) = C(sI − A)−1B +D
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to be symmetric.

We say that the dynamic systems ẋ = Ax and ẋ = (A − BD−1C)x, where matrices
A, B, C, and D satisfy the property of Lemma 5.2.1, are generators of the symmetric
transfer function matrix G(s) = C(sI − A)−1B +D; see Kouhi et al. (2013a).

Lemma 5.2.2. See Kailath (1980). Let (A,B,C,D) be a minimal realization of the
transfer function matrix G(s) = C(sI − A)−1B + D. Then G(s) is symmetric, if and
only if there exists a unique invertible matrix S> = S (not necessarily positive definite),
such that

A>S = SA, C = B>S, and D = D>. (5.3)

Proof of necessity: This proof can be found in Kailath (1980); Willems (1972). As
G(s) and

G>(s) = B>(sI − A>)−1C> +D>

are equal, the minimal state space realizations (A,B,C,D) and (A>, C>, B>, D>) are
similar. This implies that a non-singular unique matrix S exists such that

A> = SAS−1, C> = SB, B> = CS−1, and D> = D.

Therefore, A>S = SA and C = B>S. In addition, we have A>S> = S>A and C =
B>S>. This means that S is not unique, unless we have S = S>.

Proof of sufficiency: Suppose there exists a unique invertible symmetric matrix S,
such that (5.3) holds. Substituting C = B>S into G(s), and paying attention that in

G(s) = C(sI − A)−1B +D = B>(s S−1 − AS−1)−1B +D (5.4)

S−1, AS−1, and D are symmetric, symmetry of G(s) results. Note that (5.4) in fact
represents the descriptor form of G(s); see Knockaert et al. (2013).

As discussed in the introduction of this chapter, we are interested in developing
results for switched systems associated with symmetric transfer function matrices. The
basic question now is how to specify the class of matrix pairs A1 and A2, such that a
symmetric transfer function can be associated with them? The following lemma provides
a tool for specifying this class. Before proceeding, note that ⊗ denotes the Kronecker
product of two matrices; see Appendix A.2.4.

Lemma 5.2.3. (See also Kouhi et al. (2014)) Given two matrices A1 ∈ Rn×n and
A2 ∈ Rn×n with the controllable pair (A1, A1−A2), a symmetric transfer function matrix
G(s) = C(sI − A)−1B + D with the minimal realization (A,B,C,D) can be associated
with A1 and A2 such that

A1 := A and A2 = A−BD−1C, (5.5)
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if and only if the matrices

E1 := In ⊗ A1 − A1 ⊗ In and

E2 := In ⊗ A2 − A2 ⊗ In (5.6)

share a right eigenvector corresponding to a zero eigenvalue, say

vec(Y ) = [y11 . . . yn1 y12 . . . yn2 . . . y1n . . . ynn]>,

such that

Y =

 y11 y12 . . . y1n
...

... . . .
...

yn1 yn2 . . . ynn

 (5.7)

is symmetric and invertible, and (A1 − A2)Y is positive semi-definite.

Proof of necessity: Define A := A1. Suppose there exist matrices B, C, and D such
that G(s) = C(sI −A)−1B +D is symmetric, (A,B,C,D) is a minimal realization, and
A2 = A − BD−1C. Then, referring to Lemma 5.2.2 there exists a matrix S = S>, such
that

A>S − SA = 0, B>S = C. (5.8)

Replacing C from (5.8) into (5.5), we get

A2 = A−BD−1B>S ⇒ A2S
−1 = AS−1 −BD−1B>. (5.9)

Notice (5.8) reveals that AS−1 = S−1A>. This implies that AS−1 − BD−1B> is sym-
metric, and therefore from (5.9) we conclude that A2S

−1 is symmetric as well, that
is,

A2S
−1 − S−1A>2 = 0. (5.10)

Defining Y = S−1, both A and A2 satisfy the following Sylvester equations

AY − Y A> = 0, A2Y − Y A>2 = 0. (5.11)

For finding a solution of these equations, utilizing the Kronecker product notation and
the vectorization operator vec(Y ) = [y11 . . . yn1 y12 . . . yn2 . . . y1n . . . ynn]>, we can
reformulate (5.11) in the form of

(In ⊗ A1 − A1 ⊗ In) vec(Y ) = 0,

(In ⊗ A2 − A2 ⊗ In) vec(Y ) = 0; (5.12)

see Horn and Johnson (1990). It is obvious that (5.12) implies E1 = (In⊗A1−A1⊗ In)
and E2 = (In⊗A2−A2⊗In) share a right eigenvector corresponding to a zero eigenvalue,
where its associated matrix Y is symmetric and invertible, and (A1 −A2)Y = BD−1B>
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is positive semi-definite. Note that as both E1 and E2 are singular, they both have zero
eigenvalues.

Proof of sufficiency: Suppose E1 and E2 share an eigenvector corresponding to a
zero eigenvalue, say vec(Y ), such that the matrix Y = [yij] ∈ Rn×n defined by (5.7)
is symmetric and invertible (Note that the assumption for Y to be symmetric is not
restrictive. In fact, if X is a solution to A1X −XA>1 = 0, then (XA>1 )> = (A1X)> and
A1(X + X>) = XA>1 + (A1X)> = XA>1 + X>A>1 = (X + X>)A>1 . It follows that the
symmetric matrix (X +X>) is also a solution to the equation A1X −XA>1 = 0). Then,
taking A := A1, Y satisfies (5.11). This implies that the matrix (A−A2)Y is symmetric.
Suppose rank ((A− A2)Y ) = m. As (A− A2)Y is symmetric and by the assumption of
this lemma is positive semi-definite, its eigenvalue decomposition can be written as

(A− A2)Y = T>ΛT, (5.13)

where T> = T−1 ∈ Rn×n and Λ ∈ Rn×n is a diagonal matrix with exactly n −m zero
elements; see Appendix A.2.7. Therefore, there exists a diagonal matrix Λ1 ∈ Rm×n such
that Λ = Λ>1 Λ1. Consequently, we can write

(A− A2)Y = T>ΛT = (Λ1T )>(Λ1T ).

Defining S = Y −1, and

B = (Λ1T )>, C = B>S, and D = I, (5.14)

we have

A− A2 = (Λ1T )>(Λ1T )Y −1 = BD−1C

⇒ A2 = A−BD−1C, (5.15)

and G(s) = C(sI−A)−1B+D is symmetric. For proving that (A,B,C,D) is a minimal
realization of G(s), first note that

rank Φc(A,B) = rank
(
[B AB . . . An−1B]

)
≥ rank

(
[B AB . . . An−1B](In ⊗B>S)

)
= rank

(
[BB>S ABB>S . . . An−1BB>S]

)
= rank

(
[(A− A2) A(A− A2) . . . An−1(A− A2)]

)
= rank Φc(A,A− A2) = n,

where Φc is the controllability matrix; see Appendix A.3. On the other hand, rank of the
observability matrix Φo(C,A) equals

rank Φo(C,A) = rank Φc(A
>, C>) = rank Φc(A

>, SB)

= rank
(
[SB A>SB . . . (A>)n−1SB]

)
= rank

(
[SB SAB . . . SAn−1B]

)
= rank (S Φc(A,B)) = n;

see Appendix A.4. This implies that (A,B) is controllable and (C,A) is observable, and
thus (A,B,C,D) is a minimal realization of G(s).
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Remark 5.2.1. If the eigenvalues of A1 are λ1, . . . , λn, then the eigenvalues of E1

defined in (5.6) are λi − λj for all i, j ∈ {1, . . . , n}; see Horn and Johnson (1990).
Therefore, E1 has at least n zero eigenvalues. Likewise, such a property holds for E2.
However, this does not imply that E1 and E2 share an eigenvector corresponding to a
zero eigenvalue.

As a result, if two real matrices A1 and A2 are given and one wishes to check whether a
symmetric transfer function matrix can be associated with them, the following algorithm
can be utilized:

i) compute a common eigenvector vec(Y ), corresponding to a zero eigenvalue (if one
exists) of the matrices E1 := (In ⊗ A1 − A1 ⊗ In) and E2 = (In ⊗ A2 − A2 ⊗ In).

ii) compute Y by re-arranging vec(Y ). If Y is symmetric and invertible, and (A−A2)Y
is positive semi-definite, then associating a symmetric transfer function matrix with
A1 and A2 is possible.

iii) define A := A1, and compute the eigenvalue decomposition of (A − A2)Y . This
defines matrices T and Λ1 which satisfy (A− A2)Y = T>Λ>1 Λ1T .

iv) compute B, C, and D in accordance with (5.14).

The following example illustrates the steps of the algorithm.

Example 5.2.1. Consider the two matrices

A1 =

[
−1 0

5 −1

]
, A2 =

[
1.5 −1.3
7.5 −5

]
. (5.16)

The matrices E1 := (I2 ⊗A1 −A1 ⊗ I2) and E2 := (I2 ⊗A2 −A2 ⊗ I2) are computed as
follows:

E1 =


0 0 0 0
5 0 0 0
−5 0 0 0

0 −5 5 0

 , E2 =


0 −1.3 1.3 0

7.5 −6.5 0 1.3
−7.5 0 6.5 −1.3

0 −7.5 7.5 0

 . (5.17)

A common eigenvector vec(Y ) corresponding to a zero eigenvalue such that Y is sym-
metric exists and equals

vec(Y ) = [0 1 1 5]>.

The matrix Y resulting from re-arrangement of vec(Y )

Y =

[
0 1
1 5

]
,

is invertible and symmetric. Defining A := A1, we have that

(A− A2)Y =

[
1.3 4
4 17.5

]
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is positive definite. Next, from the eigenvalue decomposition of (A − A2)Y and using
(5.14), we compute

B =

[
−0.5892783 −0.9760897
0.1375708 −4.1810375

]
, C =

[
3.0839625 −0.5892783
0.6994109 −0.9760897

]
, D = I.

Therefore, we can associate a symmetric transfer function matrix with A1 and A2 as

G(s) = C(sI − A)−1B +D =
1

(s+ 1)2

[
s2 + 0.0102s+ 0.838 2.33− 0.546s

2.33− 0.546s s2 + 5.4s+ 9.162

]
.

Note that such a symmetric transfer function matrix associated with A1 and A2 is not
unique. For instance, in this example we can choose

B =

[
1 2
10 5

]
, C =

[
1 0.2
−1 0.4

]
, D =

[
2 0
0 0.667

]
.

This leads to the symmetric transfer function matrix

G(s) = C(sI − A)−1B +D =
1

(s+ 1)2

[
2s2 + 7s+ 6 5 + 3s

5 + 3s 0.667s2 + 1.333s+ 4.667

]
.

Symmetric transfer function matrices and SISO transfer functions share many prop-
erties. In particular, we note the following result which is shared by both system classes.

Lemma 5.2.4. (Kouhi et al., 2014) For any symmetric transfer function matrix G(s) =
C(sI − A)−1B +D with D = D>, the following equality holds

1

2
{G(jω) +G>(−jω)} = D − C(ω2I + A2)−1AB.

Proof: First, by considering the identity

(jωI − A)−1A = A(jωI − A)−1,

the following relationship holds

1
2
{(jωI − A)−1 + (−jωI − A)−1} =

= 1
2
(−jωI − A)−1 {(−jωI − A) + (jωI − A)} (jωI − A)−1

= −(−jωI − A)−1A(jωI − A)−1

= −(−jωI − A)−1(jωI − A)−1A

= −(ω2I + A2)−1A.

Therefore, as D = D> we can write

1

2
{G(jω) +G(−jω)} =

=
1

2
{D + C(jωI − A)−1B}+

1

2
{D + C(−jωI − A)−1B} =

= D +
1

2
C{(jωI − A)−1 + (−jωI − A)−1}B = D − C(ω2I + A2)−1AB.
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5.3 Strictly Positive Real systems (SPR)

Now, we describe the concept of strictly positive real systems, which plays a crucial role
in our stability analysis of switched linear systems. For this reason, in this section we
study some properties of such systems in the context of linear time invariant systems.

Definition 5.3.1. (See, e.g., Corless and Shorten (2010)) An m ×m rational transfer
function matrix G(s) = C(sI − A)−1B + D is said to be strictly positive real (SPR), if
there exists an α > 0 such that G(s) is analytic in the region of the complex plane which
includes all s for which Re(s) ≥ −α and

G(jω − α) +G>(−jω − α) ≥ 0 ∀ω ∈ R. (5.18)

The following characterization, inspired principally by Narendra and Taylor (1973),
provides a more convenient description of an SPR transfer function matrix.

Lemma 5.3.1. (Corless and Shorten, 2010) Given A Hurwitz, an m×m rational transfer
function matrix G(s) = C(sI − A)−1B +D is strictly positive real if and only if

G(jω) +G>(−jω) > 0 ω ∈ R, (5.19)

and

lim
ω→∞

ω2(m−p)det
(
G(jω) +G>(−jω)

)
> 0, (5.20)

where p = rank
(
G(∞) +G>(∞)

)
.

Now, we present some results concerning strictly positive real systems which have
symmetric transfer function matrices.

5.3.1 Symmetric SPR systems with nonsingular D

For symmetric transfer function matrices with invertible D, we have the following simple
result.

Theorem 5.3.1. (Kouhi et al., 2013a; Semlyen and Gustavsen, 2009) Given a Hurwitz
matrix A, the symmetric transfer function matrix G(s) = C(sI − A)−1B + D with
D = D> > 0 is SPR if and only if A(A−BD−1C) has no real negative eigenvalue.

Proof of sufficiency: Suppose A(A − BD−1C) has no real negative eigenvalue, we
demonstrate that G(s) is SPR. By continuity of det (ω2I + A(A−BD−1C)) with respect
to ω everywhere, we can write

det(ω2I + A(A−BD−1C)) > 0 (5.21)

⇒ det(ω2I + A2)det(I − (ω2I + A2)−1ABD−1C) > 0

⇒ det(ω2I + A2)det(I − C(ω2I + A2)−1ABD−1) > 0

⇒ det(ω2I + A2)det(D−1)det(D − C(ω2I + A2)−1AB) > 0.
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In the third line of the above expression we used the general identity

det(In −XY ) = det(Im − Y X);

see Appendix A.2.3. As A has no eigenvalue on the jω-axis, the identity

det(ω2I + A2) = det(jωI + A).det(−jωI + A),

implies that det(ω2I +A2) 6= 0. Thus, by continuity of det(ω2I +A2) with respect to ω
everywhere, we can deduce

det(ω2I + A2) > 0 ∀ω ∈ R.

On the other hand, the assumption on D to be positive definite implies that D−1 is also
positive definite and thus det(D−1) > 0. Consequently, by (5.21) we have that

det(D − C(ω2I + A2)−1AB) > 0 ∀ω ∈ R. (5.22)

Using the fact that G(jω) is symmetric, one can conclude from (5.22) and Lemma 5.2.4
that

det

(
1

2
{G(jω) +G>(−jω)}

)
> 0 ∀ω ∈ R. (5.23)

Furthermore, G(jω) +G>(−jω) is a Hermitian matrix, implying that its eigenvalues are
all real. Therefore, if for some frequency it fails to be positive definite, then there must
exist an ω = ω1 such that at least one eigenvalue of this matrix equals zero, that is,

det

(
1

2
{G(jω1) +G>(−jω1)}

)
= 0.

This is obviously in contradiction with (5.23).

Proof of necessity: Suppose G(s) is SPR. Then, from Lemma 5.3.1 and Lemma 5.2.4

det

(
1

2
{G(jω) +G>(−jω)}

)
> 0

⇒ det
(
D − C(ω2I + A2)−1AB

)
> 0 ∀ω ∈ R.

Using the fact det(ω2I+A2) > 0 for ω ∈ R, det(D−1) > 0, and following the computation
(5.21) in reverse, we have

det(ω2I + A(A−BD−1C)) > 0 ∀ω ∈ R.

This verifies that A(A−BD−1C) has no real negative eigenvalue.

Theorem 5.3.1 has been originally stated by (Semlyen and Gustavsen, 2009). One
advantage of using Theorem 5.3.1 is to replace the SPR condition expressed in terms
of conditions on transfer function matrices (over an infinite set of frequencies) with a
point condition expressed by the spectral condition (Kouhi et al., 2013a; Semlyen and
Gustavsen, 2009).
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5.3.2 Symmetric SPR systems with singular D

Now, consider the symmetric transfer function matrix G(s) with a singular matrix D =
D> ≥ 0. Our aim is to study under which conditions G(s) is SPR. Obviously, we can
not employ Lemma 5.3.1 as D may not be invertible. Therefore, we look for another
alternative eigenvalue condition.

Theorem 5.3.2. (Kouhi et al., 2014) Suppose A is Hurwitz. Then, a symmetric transfer
function matrix G(s) = C(sI − A)−1B + D with D = D> ≥ 0, and rank(D) = p ≤ m,
is SPR if and only if D − CA−1B > 0, and

M = A−1
(
A−1 + A−1B(D − CA−1B)−1CA−1

)
has no real negative eigenvalue and has exactly m− p eigenvalues equal to zero.

Proof: Theorem 5.3.2 can be proved by developing the ideas in Shorten et al. (2009)
presented in Kouhi et al. (2014). For an alternative proof see Bajcinca and Voigt (2013).

Proof of necessity: Suppose G(s) is SPR. Then, always equation (5.19) in Lemma 5.3.1
must hold. In particular for ω = 0, the following inequality is correct

1

2
{G(0) +G>(0)} > 0⇒ D − CA−1B > 0. (5.24)

Then, using Lemma 5.2.4 we can write

det
(

1
2
{G(jω) +G>(−jω)}

)
= det(D − C(ω2I + A2)−1AB) (5.25)

= det(D − CA−1B − C[(ω2I + A2)−1A− A−1]B)

= det
(
D − CA−1B + ω2CA−1(ω2I + A2)−1B

)
> 0.

As D − CA−1B is positive definite, det(D − CA−1B) > 0. Thus,

det
(
D − CA−1B + ω2CA−1(ω2I + A2)−1B

)
> 0

⇒ det(D − CA−1B).det
(
I + ω2(D − CA−1B)−1CA−1(ω2I + A2)−1B

)
> 0

⇒ det
(
I + ω2B(D − CA−1B)−1CA−1(ω2I + A2)−1

)
> 0

⇒ det
(
(ω2I + A2)−1

)
det
(
ω2I + A2 + ω2B(D − CA−1B)−1CA−1

)
> 0

⇒ ω2ndet
(
A2
) det

(
1
ω2 I + A−1 (A−1 + A−1B(D − CA−1B)−1CA−1)

)
det (ω2I + A2)

> 0

⇒ ω2ndet (A)2 det( 1
ω2 I +M)

det(ω2I + A2)
> 0

⇒ ω2n det( 1
ω2 I +M)

det(ω2I + A2)
> 0. (5.26)

Now, referring again to Lemma 5.3.1, the conditions (5.19) and (5.20) must hold. Notice,
as A does not have any eigenvalue on the jω axis, and with continuity of det(ω2I + A2)
everywhere in ω ∈ R, we have det(ω2I + A2) > 0. On the other hand, it is obvious that

lim
ω→∞

det(ω2I + A2) = ω2n. (5.27)
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Therefore, substituting ω by 1
ω

, the conditions (5.19) and (5.20) are equivalent to

det
(
ω2I +M

)
> 0 ∀ω ∈ R\{0}, (5.28)

lim
ω→0

1

ω2(m−p) det(ω2I +M) > 0. (5.29)

Now, choosing the parameter λ = −ω2, equations (5.28) and (5.29) lead to

det(λI −M) 6= 0 for λ ∈ R<0, (5.30)

lim
λ→0

1

λm−p
det(λI −M) 6= 0. (5.31)

This means M does not have any real negative eigenvalue and at most has m − p zero
eigenvalues. Furthermore, as rank(D) = p, there exists a matrix D⊥ ∈ Rm×(m−p) such
that DD⊥ = 0, and consequently

−CA−1BD⊥ = (D − CA−1B)D⊥.

Then, we have

MBD⊥ = A−1(A−1BD⊥ + A−1B(D − CA−1B)−1CA−1BD⊥)

= A−1(A−1BD⊥ − A−1B(D − CA−1B)−1(D − CA−1B)D⊥) = 0.

This fact implies that the columns of BD⊥ are eigenvectors of M . Therefore, M contains
at least m− p zero eigenvalues. As a result, it has exactly m− p zero eigenvalues.

Proof of sufficiency: Assuming that D − CA−1B > 0 and M has no real negative
eigenvalue and has exactly m−p zero eigenvalues implies that det(λI−M) = λ(m−p)q(λ),
with q(λ) 6= 0 for all λ ∈ R≤0. Consequently, det(ω2I + M) 6= 0 for all ω 6= 0. Due to
continuity of the determinant with respect to ω everywhere, we have det(ω2I +M) > 0
for all ω 6= 0, implying that (5.28) holds. With the similar argument, we can state that
(5.29) holds, and also we have det(ω2I + A2) > 0 as A is Hurwitz. Now, from (5.26),
(5.25) and the assumption D̄ = D − CA−1B > 0, it immediately follows that

det
(
G(jω) +G>(−jω)

)
> 0 ∀ ω ∈ R, (5.32)

lim
ω→∞

ω2(m−p)det
(
G(jω) +G>(−jω)

)
> 0. (5.33)

Now, we demonstrate that (5.32) implies G(jω) + G>(−jω) > 0. Indeed, G(jω) +
G>(−jω) is a Hermitian matrix, implying that its eigenvalues are all real and at ω = 0
is positive definite. Therefore, if for some frequency it fails to be positive definite, then
there must exist an ω = ω1 ∈ R such that at least one eigenvalue of this matrix equals
zero, that is,

det
(
G(jω1) +G>(−jω1)

)
= 0.

This is obviously in contradiction with (5.32). Now, the requirements of Lemma 5.3.1
are fulfilled and G(s) to be SPR is inferred.
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Remark 5.3.1. Note that if a state space realization of G(s) are represented by
(A,B,C,D) then a state space realization of G(1

s
) is represented by

(Ā, B̄, C̄, D̄) = (A−1,−A−1B,CA−1, D − CA−1B); (5.34)

see Shorten et al. (2008). Thus, the matrix M introduced in Theorem 5.3.2 is indeed
equal to

M = Ā(Ā− B̄D̄−1C̄).

Hence, Theorem 5.3.2 reflects the fact that G(s) is SPR if any only if the matrix
Ā(Ā − B̄D̄−1C̄) does not have any real negative eigenvalue and has exactly m − p
eigenvalues equal to zero.

5.4 Stability of a class of switched linear systems

We now present our results on the existence of a common quadratic Lyapunov function
for a certain class of switched linear systems, namely the class of switched systems that
a symmetric transfer function matrix can be associated with.

5.4.1 Quadratic stability

Consider the switched linear system

ẋ = (A− σ(t)BD−1C)x σ(t) ∈ {0, 1}, (5.35)

where σ is an arbitrary switching signal. We emphasize again that A ∈ Rn×n, B ∈ Rn×m

has full column rank, C ∈ Rm×n has full row rank, and D ∈ Rm×m for some m ≤ n.
Both matrices A and A− BD−1C are assumed to be Hurwitz. Exponential stability of
the switched system (5.35) is guaranteed if there exists a P = P> > 0 such that

A>P + PA < 0, (5.36)

(A−BD−1C)>P + P (A−BD−1C) < 0. (5.37)

We are interested to explore under which condition such a CQLF V (x) = x>Px exists.

Theorem 5.4.1. (Kouhi et al., 2013a) Given two Hurwitz matrices A and A−BD−1C
with (A,B) controllable and (C,A) observable, satisfying D = D> > 0 and

CAiB = (CAiB)> ∀i ∈ {0, 1, . . . , n− 1}, (5.38)

namely the LTI systems ẋ = Ax and ẋ = (A−BD−1C)x are generators of a symmetric
transfer function matrix. Then the switched system (5.35) is quadratically stable if and
only if A(A−BD−1C) has no real negative eigenvalue.
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Proof of necessity: Suppose that ẋ = Ax and ẋ = (A − BD−1C)x share a quadratic
Lyapunov function (CQLF). Then, by pre multiplying the inequality A>P +PA < 0 by
the non-singular matrix A−> and post multiplying it by A−1, we get

A−>P + PA−1 < 0. (5.39)

This means that ẋ = A−1x, ẋ = (A−BD−1C)x, and consequently the family of systems

ẋ = (ω2A−1 + (A−BD−1C))x (5.40)

share the CQLF V (x) = x>Px for all ω ∈ R, that is,[
ω2A−1 + (A−BD−1C)

]>
P+

P
[
ω2A−1 + (A−BD−1C)

]
< 0 ∀w ∈ R;

see also Shorten and Narendra (2003). Hence, it follows from Lyapunov’s second theorem
that the matrix ω2A−1 +(A−BD−1C) is Hurwitz for all ω ∈ R and thus is non-singular,
that is,

det
(
ω2A−1 + (A−BD−1C)

)
6= 0

⇒ det(A−1) det
(
ω2I + A(A−BD−1C)

)
6= 0 ∀w ∈ R.

As A−1 is Hurwitz the latter implies that

det
(
ω2I + A(A−BD−1C)

)
6= 0 ∀w ∈ R,

or equivalently that A(A − BD−1C) has no real negative eigenvalue. Note that for the
proof of necessity the symmetry conditions given in (5.38) are not demanded.

Proof of sufficiency: Recall from Theorem 5.3.1 that A(A − BD−1C) having no real
negative eigenvalue and the symmetry conditions stated in Theorem 5.4.1 imply that
G(s) = C(sI − A)−1B + D is SPR. Then, referring to the Kalman-Yakubovic-Popov
lemma (see Appendix A.4.1), there must exist a matrix P = P> > 0, a scalar α > 0,
and matrices L and W satisfying

A>P + PA = −L>L− αP, (5.41)

B>P +W>L = C, (5.42)

D +D> = W>W. (5.43)

Now, we show the function V (x) = x>Px is a Lyapunov function for both ẋ = Ax and
ẋ = (A−BD−1C)x. Notice that A>P +PA < 0 immediately follows from the equation
(5.41). Furthermore, (A − BD−1C)>P + P (A − BD−1C) < 0 also holds. To see that,
we have

(A−BD−1C)>P + P (A−BD−1C) =

= −αP − L>L− C>D−>(C −W>L)− (C −W>L)>D−1C

= −αP − (L−WD−1C)>(L−WD−1C) < 0, (5.44)
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Figure 5.4.1: The eigenvalues of G(jω) +G�(−jω) as a function of ω in Example 5.4.1.

where we used the identities (5.41), (5.42), and (5.43). This implies that V (x) is a CQLF
for the switched linear system (5.35). Hence, the proof of Theorem5.4.1 is completed.

Note that as A and A − BD−1C in Theorem5.4.1 are both Hurwitz, we have
det(A(A − BD−1C)) �= 0. This indicates that zero can never be in the spectrum
of A(A − BD−1C). Moreover, the next corollary is a direct result of the proof of
Theorem5.4.1.

Corollary 5.4.1. Given two Hurwitz matrices A and A − BD−1C with (A,B)
controllable, (C,A) observable, and the symmetric transfer function matrix
G(s) = C(sI − A)−1B + D, the switched system (5.35) is quadratically stable if
and only if G(s) is SPR.

Example 5.4.1. (Kouhi et al., 2013a) Consider the LTI systems

ẋ = A1x =

[ −2 0
0 −2

]
x, ẋ = A2x =

[ −1 −1
−0.5 −3

]
x,

where A1 and A2 are Hurwitz, and A1 − A2 has rank 2. Note that with A := A1,

B =

[
2 0
0 2

]
, C =

[ −0.5 0.5
0.5 1

]
, D =

[
1 0
0 2

]
,

we have that A2 = A− BD−1C. Furthermore, the transfer function matrix

G(s) = C(sI − A)−1B +D =

⎡
⎣ s+1

s+2
1

s+2

1
s+2

2(s+3)
s+2

⎤
⎦

is symmetric. In addition, it is easily verified that (A,B) and (C,A) are controllable
and observable, respectively.
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Figure 5.4.2: The minimum eigenvalue of G(jω) +G�(−jω) in Example 5.4.2.

The eigenvalues of the matrix G(jω) + G�(−jω) are depicted in Figure 5.4.1 as
functions of ω. It is evident from this figure that G(s) is SPR. Consequently, using the
KYP lemma, quadratic stability of the switched system (5.35) can be deduced.

Alternatively, a much simpler method of establishing the above conclusion is to use
the spectral condition presented in Theorem5.4.1. To this end, note that the eigenvalues
of the matrix product A(A − BD−1C) are 1.55 and 6.45, respectively. Consequently,
from our discussion, G(s) is SPR and the switched system ẋ = (A − σ(t)BD−1C)x is
quadratically stable for σ(t) ∈ {0, 1}.

Example 5.4.2. (Kouhi et al., 2013a) Consider now the following two LTI systems:

ẋ = A1x =

[ −1 0
5 −1

]
, ẋ = A2x =

[
1.7 −1.38
8 −5.2

]
x.

A1 and A2 are Hurwitz, A1 − A2 has rank 2, and with A := A1,

B =

[
1 2
10 5

]
, C =

[
1 0.2

−1 0.04

]
, D =

[
2 0
0 0.625

]
,

it follows that A2 = A−BD−1C. Moreover, the transfer function matrix associated with
A1 and A2 is symmetric

G(s) = C(sI − A)−1B +D =
1

(s+ 1)2

[
2s2 + 7s+ 6 5 + 3s

5 + 3s 0.625s2 + 1.25s+ 4.625

]
.

In addition, it is easily verified that (A,B) and (C,A) are controllable and observable,
respectively.

Figure 5.4.2 depicts a part of the minimum eigenvalue of G(jω) + G�(−jω) as a
function of ω. Clearly, the transfer function matrix is not SPR as the eigenvalue is less
than zero for some frequencies. In this case, the KYP lemma cannot be used to deduce
existence of a CQLF.
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Figure 5.4.3: Directions of the vector fields for the two subsystems in Example 5.4.3.

Alternatively, note that the eigenvalues of A(A − BD−1C) are −1.5,−1.5. Since
the eigenvalues are negative, it follows that G(s) cannot be SPR, and also that a
CQLF cannot exist. Consequently, the switched system ẋ = (A − σ(t)BD−1C)x is not
quadratically stable for all σ(t) ∈ {0, 1}.

Example 5.4.3. (Kouhi et al., 2013a) Now, consider the pair of matrices defined in
Example 5.4.2 and the associated switched system:

ẋ = Aσ(t)x(t) Aσ(t) ∈ {A−1
1 , A2}.

Since the matrix product has a real negative eigenvalue, it follows that the determinant
of ω2A−1

1 +A2 is zero for some finite ω and the vector fields of the systems ẋ = A−1x and
ẋ = (A−BD−1C)x consists of some points that the angles between the vector fields are
180◦ degree; see Figure 5.4.3. Roughly speaking, by switching sufficiently fast between
the vector fields associated with these matrices in the context of the above switched
system, one should arrive at a situation where the state does not converge to the origin
for an appropriate initial condition. To verify this, we use Floquet theory (Khalil, 2002)
under the assumption of periodic switching. Note that

eA
−1
1 t1eA2t2 = (I + A−1

1 t1 + · · · )(I + A2t2 + · · · ) ≈ I + A−1
1 t1 + A2t2

has an eigenvalue whose magnitude is greater than unity for small t1 and t2. For example,
with t1 = 0.0016 and t2 = 0.001 the eigenvalues of the product of the exponentials are
1.0001, 0.9933. Since one of the eigenvalues is greater than unity, we have an unstable
switching sequence.

5.4.2 Weak quadratic stability

Consider again the switched linear system (5.35), where A, B, C, and D are defined
in accordance with the assumptions stated in Section 5.4.1. In this part, we assume A
is Hurwitz, but A − BD−1C has all eigenvalues with negative real parts except some
eigenvalues to be equal to zero. We want to study under which conditions the switched
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system (5.35) possesses a weak CQLF in the sense that there exists a function V (x) =
x>Px with P = P> > 0, such that

A>P + PA < 0, (5.45)

(A−BD−1C)>P + P (A−BD−1C) ≤ 0. (5.46)

If such a CQLF exists, then all solutions of the switched system (5.35) are bounded.
For this problem we cannot directly exploit Theorem 5.4.1 due to the existence of the
equality sign in (5.46). In the next lemma we demonstrate that if (5.45) and (5.46) hold,
then A − BD−1C can have at most m eigenvalues equal to zero without having any
generalized eigenvector. In addition, A−BD−1C cannot have any eigenvalue on the jω
axis for ω 6= 0 provided that G(jω) = C(jωI − A)−1B +D is symmetric for all ω ∈ R.

Lemma 5.4.1. (Kouhi et al., 2014) If (5.45) and (5.46) for a symmetric positive
definite P hold, G(s) = C(sI − A)−1B + D is symmetric, A is Hurwitz, and D is
positive definite, then A − BD−1C cannot have any eigenvalue on the jω axis for
ω ∈ R\{0}. Moreover, A− BD−1C can have at most m eigenvalues equal to 0, and all
zero eigenvalues must have linearly independent eigenvectors.

Proof: Suppose A−BD−1C has a non-zero eigenvalue on the jω axis, that is, there exists
an eigenvalue jω1 with ω1 6= 0. Note that A being Hurwitz implies det(jω1I − A) 6= 0,
and D > 0 implies det(D−1) 6= 0. Then, we have

det
(
jω1I − (A−BD−1C)

)
= 0

⇒ det (jω1I − A) det
(
I + (jω1I − A)−1BD−1C

)
= 0

⇒ det(D−1)det
(
D + C(jω1I − A)−1B

)
= 0

⇒ det
(
D + C(jω1I − A)−1B

)
= 0, (5.47)

which implies that the matrix G(jω1) is singular. Let’s denote the complex eigenvector
corresponding to eigenvalue 0 of G(jω1) by v ∈ Cm. Similarly, we can show that the
matrix G(−jω1) = G>(−jω1) = G∗(jω1) is also singular and has a left eigenvector v∗

corresponding to the eigenvalue 0. Thus, recalling Lemma 5.2.4, the following holds:

1

2
v∗[G(jω1) +G>(−jω1)]v =

= v∗[D − C(ω2
1I + A2)−1AB]v = 0. (5.48)

On the other hand, similar to the situation discussed in the proof of necessity in
Theorem 5.3.1, a necessary condition for (5.45) and (5.46) to hold is that the ma-
trix ω2A−1 + (A − BD−1C) for ω 6= 0 is non-singular. Hence, by continuity of
det(ω2I + A(A − BD−1C)) with respect to ω and the fact that det(ω2I + A2) > 0,
we can deduce

det
(
ω2I + A(A−BD−1C)

)
> 0

⇒ det
(
ω2I + A2

)
det(D − C(ω2I + A2)−1AB) > 0

⇒ det

(
1

2
{G(jω) +G>(−jω)}

)
> 0.
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Now, continuity of the determinant with respect to ω indicates that G(jω) + G>(−jω)
is positive definite for all ω ∈ R\{0}, in particular for ω = ω1. However, this is a
contradiction with (5.48).

Now, we prove A−BD−1C can have at most m eigenvalues equal to 0. This proof is
similar to the proof given in Shorten et al. (2009). Since the inequality (5.46) holds, the
system ẋ = (A−BD−1C)x is stable, that is, the algebraic multiplicity and geometric mul-
tiplicity of the zero eigenvalues are the same. Now, suppose that we have more thanm lin-
early independent eigenvectors corresponding to zero eigenvalues. Let us define the func-
tions g1(x) = x>(A>P +PA)x and g2(x) = x>

(
(A−BD−1C)>P + P (A−BD−1C)

)
x.

Obviously, at least for n−m linearly independent vectors vi ∈ Rn with i ∈ {1, . . . , n−m},
we have g1(vi) = g2(vi), for instance, for those vi’s that satisfy v>i PB = 0. Suppose there
are more than m linearly independent vectors x such that g2(x) is zero. Then, the two
spaces {x : g2(x) = 0} and {x : g2(x) = g1(x)} intersect at least at one non-zero point,
implying that there exists a non-zero vector x such that

g1(x) = g2(x) = 0.

The condition g1(x) = 0 is in contradiction with the choice of P in (5.45).

Now, the following theorem provides sufficient and necessary conditions for the
existence of a weak CQLF for the switched system (5.35).

Theorem 5.4.2. (Kouhi et al., 2014) Assume A is Hurwitz and all eigenvalues of the
matrix A − BD−1C have negative real parts or are zero. Furthermore, assume that the
zero eigenvalue has a multiplicity of m− p, and associated with the zero eigenvalue is a
full set of m− p linearly independent eigenvectors. Suppose also that

CAiB = (CAiB)> ∀i ∈ {0, 1, . . . , n− 1}, (5.49)

D = D> > 0, (A,B) is controllable, and (C,A) is observable. Then, the switched system
(5.35) is weakly quadratically stable if and only if A(A − BD−1C) has no real negative
eigenvalue and has exactly m− p eigenvalues equal to zero.

Proof of sufficiency: Recall that Lemma 5.2.1 implies that the symmetry conditions
(5.49) and D = D> suffice for the transfer function matrix G(s) = C(sI − A)−1B + D
to be symmetric. The remainder of the proof of sufficiency consists of two parts. In
Part A, we prove that G(0) ≥ 0 and rank(G(0)) = p. Afterwards, in Part B we use
G(1

s
) in combination with the KYP lemma to complete the proof of sufficiency.

Part A: Following the proof of sufficiency in Theorem 5.3.1, A(A−BD−1C) having no
real negative eigenvalue implies that

det(ω2I+A(A−BD−1C)) > 0

⇒ det(D − C(ω2I + A2)−1AB) > 0 ∀ω ∈ R \{0}. (5.50)
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Therefore, analogous to the proof of sufficiency in Theorem 5.3.1, we can argue that

1

2
{G(jω) +G>(−jω)} = D − C(ω2I + A2)−1AB > 0 ∀ω ∈ R \{0}.

By continuity of the eigenvalues with respect to ω around zero, we conclude that the
matrix

G(0) = lim
ω→0

1

2
{G(jω) +G>(−jω)} = D − CA−1B

does not have any eigenvalue in the open left half plane, that is, G(0) = D−CA−1B ≥ 0.
Next, we prove that G(0) has exactly m − p eigenvalues equal to zero. To this end,
consider the equality

(A−BD−1C)A−1B = BD−1(D − CA−1B),

then exploiting the Sylvester rank inequality (see Appendix A.2.5.1 and Horn and John-
son (1990)), we have

rank
(
BD−1(D − CA−1B)

)
= rank

(
(A−BD−1C)A−1B

)
≥

rank(A−BD−1C) + rank(A−1B)− n =

[n− (m− p)] +m− n = p.

As rank(BD−1) = m ≥ p, we must have rank(D − CA−1B) ≥ p. On the other hand,
A− BD−1C has exactly m− p eigenvalues equal to zero with a full set of eigenvectors,
so there exists a matrix W> ∈ R(m−p)×n constructed from the left eigenvectors of A −
BD−1C corresponding to the zero eigenvalue, such that W>(A − BD−1C) = 0. Note
that rank(W>BD−1) = m − p since W>A has full rank and W>A = W>BD−1C. It
thus follows from

W>(A−BD−1C)A−1B = 0⇒W>BD−1(D − CA−1B) = 0 (5.51)

that the columns of D−1B>W ∈ Cm×(m−p) are indeed left eigenvectors of G(0) =
D − CA−1B corresponding to the zero eigenvalues. Note also that the symmetry of
G(0) excludes the possibility of the existence of any generalized eigenvector for G(0).
Consequently, as rank of G(0) ≥ p and (5.51) holds, we have rank(D − CA−1B) = p,
indicating that this matrix has exactly m− p zero eigenvalues.

Part B: Define the system Ḡ(s) := G(1
s
) = C̄(sI − Ā)−1B̄ + D̄, with the state space

representation (Ā, B̄, C̄, D̄),

Ā = A−1, B̄ = −A−1B, C̄ = CA−1, D̄ = D − CA−1B.

Consequently, the symmetry of Ḡ(s) follows from symmetry of G(s). On the other hand,
(Ā, B̄) and (C̄, Ā) by construction are controllable and observable, respectively, and the
matrix D̄ ≥ 0 has rank p. Now, Theorem 5.3.2 implies that A(A − BD−1C) having
no real negative and exactly m − p zero eigenvalues, is equivalent to Ḡ(s) being SPR.
Then, the Kalman-Yakubovic-Popov lemma (see Zhou et al. (1996) and Appendix A.4.1)
implies that there exist a scalar α > 0 and matrices P = P> > 0, L, and W such that

Ā>P + PĀ = −L>L− αP, (5.52)

B̄>P +W>L = C̄, (5.53)

D̄ + D̄> = W>W. (5.54)
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The first equation in (5.52) ensures that

A−>P + PA−1 < 0. (5.55)

By pre- and post-multiplying of this equation by A> and A, respectively, we get A>P +
PA < 0 , which verifies that (5.45) holds. Next, we show that (5.46) also holds. To this
end, first we claim that [

A−>P + PA−1 PB̄ − C̄>
B̄>P − C̄ −(D̄ + D̄>)

]
≤ 0. (5.56)

Note that D̄ ≥ 0 and we shall demonstrate that the Schur complement of the above
matrix is less than or equal to zero (see Appendix A.2.2), in other words,

S̄ = −(D̄ + D̄>)− (B̄>P − C̄)(A−>P + PA−1)−1(PB̄ − C̄>) ≤ 0.

Using equations (5.52-5.54), we get

S̄ = −(D̄ + D̄>)− (B̄>P − C̄)(A−>P + PA−1)−1(PB̄ − C̄>)

= −W>W +W>L (αP + L>L)−1L>W =

= −W> [I − L(αP + L>L)−1L>
]
W. (5.57)

In (5.57), the matrix I − L(αP + L>L)−1L> is the Schur complement of the positive
definite matrix [

αP + L>L L>

L I

]
with respect to the upper left block, which is also positive definite and subsequently
S̄ < 0. Now, let reformulate (5.56) as[

A−1 B̄
−C̄ −D̄

]> [
P 0
0 I

]
+[

P 0
0 I

] [
A−1 B̄
−C̄ −D̄

]
≤ 0. (5.58)

Since D̄ − C̄AB̄ = D, we have[
A−1 B̄
−C̄ −D̄

]−1

=[
A− AB̄(−D̄ + C̄AB̄)−1C̄A −AB̄(−D̄ + C̄AB̄)−1

(−D̄ + C̄AB̄)−1C̄A (−D̄ + C̄AB̄)−1

]
=

[
A−BD−1C −BD−1

−D−1C −D−1

]
; (5.59)

see Appendix A.2.1. By pre-multiplying the inequality (5.58) by the transpose of the
above matrix and by post-multiplying by the above matrix itself, we end up with[

(A−BD−1C)>P + P (A−BD−1C) −(PB + C>)D−1

−D−1(B>P + C) −2D−1

]
≤ 0,
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from which it immediately follows that

(A−BD−1C)>P + P (A−BD−1C) ≤ 0. (5.60)

Thus, we can say that V (x) = x>Px is a weak Lyapunov function for both ẋ = Ax and
ẋ = (A−BD−1C)x. This establishes the proof of sufficiency.

Proof of necessity: The proof of the fact that A(A − BD−1C) does not have
any non-zero real negative eigenvalue is similar to the proof of necessity given in
Theorem 5.4.1.

The last part of the proof is concerned with proving that the product AA2, with
A2 = A−BD−1C, has exactly m− p zero eigenvalues equal to zero. To show this holds,
first notice that AA2 has exactly m − p zero eigenvalues with a full set of eigenvectors.
This fact can be derived by considering that

rank(AA2) = rank(A2).

Therefore, if AA2 has more than m − p zero eigenvalues, then it must contain at least
one generalized eigenvector, say v2 ∈ Rn satisfying AA2v2 = v1, and AA2v1 = 0; see
Appendix A.2.7. This implies that

A2v2 = A−1v1, and A2v1 = 0. (5.61)

Moreover, it can be inferred from the inequality A−>P + PA−1 < 0 that the function
f(x) = x>(A−>P + PA−1)x is always negative for all non-zero x ∈ Rn, in particular for
x = v1. Recalling (5.61), we have

v>1 (A−>P + PA−1)v1 < 0

⇒ v>2 A
>
2 Pv1 + v>1 PA2v2 < 0. (5.62)

On the other hand, with regard to (5.46) the inequality g(x) = x>(A>2 P + PA2)x ≤ 0
must hold for all x ∈ Rn. Now, choosing x = βv1 + v2 with β ∈ R as a parameter and
considering A2v1 = 0, we should have

(βv1 + v2)>(A>2 P + PA2)(βv1 + v2) ≤ 0

⇒ β(v>2 A
>
2 Pv1 + v>1 PA2v2) + v>2 (A>2 P + PA2)v2 ≤ 0. (5.63)

As the inequalities e = v>2 A
>
2 Pv1 + v>1 PA2v2 < 0 and g(v2) = v>2 (A>2 P + PA2)v2 ≤ 0

both hold, there exists always a β ∈ R which makes the expression βe + g(v2) positive.
For instance, one can choose β < −g(v2)/e. However, this is evidently in contradiction
with (5.63).

Example 5.4.4. (Kouhi et al., 2014) Consider two matrices

A1 =

[
−1 0

5 −1

]
, A2 =

[
0 −1
0 −5

]
.
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A1 is Hurwitz and A2 has all eigenvalues in the open left half plane except one eigenvalue
at zero. In addition A1 − A2 has rank two, and with A = A1

B =

[
1 2

10 5

]
, C =

[
1 0.2
−1 0.4

]
, D =

[
1 0
0 1

]
,

we have A2 = A−BD−1C. Furthermore, the transfer function matrix

G(s) = C(sI − A)−1B +D =
1

(s+ 1)2

[
s2 + 5s+ 5 3s+ 5

3s+ 5 s2 + 2s+ 5

]

is symmetric. Note that (A,B) and (C,A) are controllable and observable, respectively.
The eigenvalues of the matrix A1A2 are 0, 0 indicating that there is no weak CQLF for
the switched system associated with the two matrices A1 and A2.

Example 5.4.5. (Kouhi et al., 2014) Consider two matrices

A1 =

[
−0.9 −0.1

4.5 −1.4

]
, A2 =

[
0 −1
0 −5

]
.

A1 is Hurwitz and A2 has all eigenvalues in the open left half plane except one eigenvalue
at zero. In addition A1 − A2 has rank two, and with A = A1,

B =

[
0.9 1.8
9 4.5

]
, C =

[
1 0.2
−1 0.4

]
, D =

[
1 0
0 1

]
,

we have A2 = A−BD−1C. Furthermore, the transfer function matrix

G(s) = C(sI − A)−1B +D =
1

s2 + 2.3s+ 1.71

[
s2 + 5s+ 4.5 2.7s+ 4.5

2.7s+ 4.5 s2 + 2.3s+ 4.5

]

is symmetric. Note that (A,B) and (C,A) are controllable and observable, respectively.
The eigenvalues of the matrix A1A2 are 0, 2.5, implying that there is a weak CQLF
V (x) = x>Px for the switched system (5.35). For instance, one can choose

P =

[
1.48 −0.296
−0.296 0.3089

]
.

Example 5.4.6. (Kouhi et al., 2014) Consider the switched electrical circuit illustrated
in Figure 5.4.4. The variables v1(t) and v2(t) are voltages of two capacitors with capacities
C1 and C2, respectively. Let x(t) := [v1(t) v2(t)]> indicate the vector of the system
states. Depending on the status of the switch S, the system model can be represented
by a switched linear system with two modes ẋ = Aix for i ∈ {1, 2}, where

A1 =

 −1
R1C1

1
R1C1

1
R1C2

−(R1+R2)
R1R2

1
C2

 , A2 =

0 0

0 −1
R2C2

 . (5.64)
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R1

R2

C1

v1(t)

C2

v2(t)

S

Figure 5.4.4: A switched electrical circuit.

In (5.64) A1 refers to the situation when S is closed and A2 refers to the condition
when S is open. Note that A1 is Hurwitz and A2 is singular including exactly one zero
eigenvalue and one real negative eigenvalue. In addition, A1 and A2 have rank one
difference. Defining A := A1, B := [−1/C1 1/C2]

�, C := [1/R1 −1/R1], and D := I, we
have A2 = A−BD−1C and the transfer function G(s) = C(sI −A)−1B +D is trivially
symmetric. Furthermore, (A,B) and (C,A) are controllable and observable, respectively.
Now, consider that the matrix

A1A2 =

⎡
⎢⎣ 0 −1

R1R2C1C2

0 (R1+R2)

R1R2
2C

2
2

⎤
⎥⎦

has no real negative eigenvalue and has exactly one zero eigenvalue. Hence, according
to Theorem5.4.2 this electrical circuit is weakly quadratically stable, implying that the
voltages of both capacitors remain bounded in spite of all possible switching events and
each initial condition.

5.5 Stabilization of controlled switched linear sys-

tems

In this part, we employ the theory elaborated for stability of switched systems associated
with symmetric transfer functions, for stabilization of controlled switched linear systems.
We consider the problem of stabilization of a class of switched linear systems defined by

ẋ = Ax+ σ(t)Bu σ(t) ∈ {0, 1}, (5.65)

where A ∈ R
n×n is a Hurwitz matrix, B ∈ R

n×m, and the pair (A,B) is controllable. The
goal is to find a set of feedback controls in the form of u = Kx, such that the switched
system

ẋ = (A+ σ(t)BK)x σ(t) ∈ {0, 1}, (5.66)

is quadratically stable, that is, there exists a matrix P = P� > 0 such that

(A+ σ(t)BK)�P + P (A+ σ(t)BK) < 0 σ(t) ∈ {0, 1}. (5.67)



94 5.5. Stabilization of controlled switched linear systems

For this purpose, we suppose K has a structure of the form K = −D−1C. This modifies
(5.66) into the form

ẋ = (A− σ(t)BD−1C)x σ(t) ∈ {0, 1}. (5.68)

Now, our wish is to design the unknown matrices D and C by utilizing Theorem 5.4.1.
To this end, we require D = D> > 0, and the transfer function matrix G(s) = C(sI −
A)−1B + D to be symmetric and to be strictly positive real. Referring to Lemma 5.2.2
the transfer function G(s) is symmetric and has the minimal state space realization
(A,B,C,D) if and only if there exists a non-singular matrix S = S> such that

A>S = SA, B>S = C, and D = D>. (5.69)

Therefore, defining Y = S−1, the matrix A satisfies the following Sylvester equation

AY − Y A> = 0. (5.70)

For finding a solution of this equation, similar to the proof of Lemma 5.2.3
we use the Kronecker product and the vectorization operator vec(Y ) =
[y11 . . . yn1 y12 . . . yn2 . . . y1n . . . ynn]>. We can then reformulate (5.70) in the form of

(In ⊗ A− A⊗ In) vec(Y ) = 0. (5.71)

Define S := Y −1 and C := B>S. As (A,B) is controllable, (C,A) is also observable.
Furthermore, we must have G(jω) +G>(−jω) > 0. This is equivalent to the condition

1

2
{G(jω) +G>(−jω)} = D − C(ω2I + A2)−1AB > 0. (5.72)

Therefore, a sufficient condition for the last equation to hold is that

D >
(
supω σmax

(
C(ω2I + A2)−1AB

))
.Im. (5.73)

Note that C(ω2I + A2)−1AB is finite as ω2I + A2 is always non-singular, and
limω→∞C(ω2I + A2)−1AB = 0. Consequently, the right hand side of the inequal-
ity (5.73) is always finite. This verifies that there exists infinitely many matrices
D = D> > 0 such that the inequality (5.73) holds true. This shows that the switched
system (5.66) is always quadratically stabilizable.

In a different context using a distinct approach, output feedback design for an LTI
system has been introduced for making the closed loop system to be SPR (Huang et al.,
1999).

Remark 5.5.1. Assume a Hurwitz matrix A is given. One advantage of using the
discussed approach is to specify a set of matrices A2 which differ by a rank-m matrix
and share a common Lyapunov solution with A.

Example 5.5.1. Suppose we want to find a set of feedbacks u = Kx, where K ∈ R2×2,
which stabilizes the switched linear system (5.66) with the data

A =

[
−0.9 −0.1

4.5 −1.4

]
, B =

[
0.9 1.8

9 4.5

]
.
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Note that A is Hurwitz and (A,B) is controllable. Now, a matrix S satisfying A>S −
SA = 0 equals

S =

[
−0.0025 0.7049

0.7049 −0.0783

]
.

This allows us to compute C as

C = B>S =

[
6.3422 −0.07
3.1677 0.9167

]
.

Now, we derive an appropriate matrix D with regard to (5.73). Computing
supω σmax (C(ω2I + A2)−1AB) = 28.41, we can pick D as any two dimensional sym-
metric positive matrix whose minimum eigenvalue is greater than 28.41. For instance,
we can choose

D =

[
30 0
0 40

]
.

Then, the resulting state feedback gain and the closed loop matrix are

K = −D−1C =

[
−0.2114 0.0023
−0.0792 −0.0229

]
, and A−BD−1C =

[
−1.2328 −0.1392

2.2410 −1.4821

]
.

The eigenvalues of A(A − BD−1C) are equal to 1.170 ± 1.515i, which confirms that a
CQLF V (x) = x>Px for the switched linear system (5.66) exists. Using the MATLAB
LMI Toolbox one such P can be computed as

P =

[
5.6408 −1.2073
−1.2073 1.4448

]
.

5.6 Conclusions

In this chapter, we explored conditions under which a symmetric transfer function matrix
can be associated with a given pair of Hurwitz matrices. Furthermore, we showed that
if the symmetric transfer function matrix associated with this pair is strictly positive
real, then a common Lyapunov solution for such pair of matrices exists. On this basis,
we introduced an approach for stabilization of a class of switched linear systems whose
constituent matrices differ by a rank m matrix. In the case that one matrix is Hurwitz,
and the other one has all eigenvalues with negative real parts and some eigenvalues equal
to zero, we extended our result in terms of a weak common quadratic Lyapunov function.
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Chapter 6

Control of hybrid linear systems

6.1 Introduction

In this chapter, we investigate control of hybrid linear systems including linear flow
and jump dynamics. We start with stability of such hybrid systems and establish
a link between their stability and stability of switched linear systems discussed in
the previous chapters. Moreover, we derive convenient conditions for robust sta-
bility of such hybrid systems. It turns out that the concept of stability for hybrid
linear systems is very similar to the concept of stability for switched linear systems.
In addition, we study some problems concerning optimal control of hybrid linear systems.

In the first optimal control problem in Section 6.4, we find analytic expressions
for lower and upper bounds of the optimal value of the cost function for a linear
quadratic problem in a class of hybrid linear systems. The optimization problem
involves state space constraints and switches between the continuous evolution and
jumps at fixed time instances on the boundaries of flow and jump sets. The basic
idea for our approach uses analytical solutions to continuous- and discrete-time LQR
problems with fixed initial and final states over fixed time intervals; see, for instance,
Lewis and Syrmos (1995); Bryson and Ho (1975). We show that the optimal cost of
each time interval can be represented by its initial and final state variables. Using this
fact, we propose a parameterization method with states corresponding to the initial
and end points of each generalized time domain as decision variables, and show that
we can reformulate the problem as a static optimization problem. The lower bound for
the optimal value of the cost function can be computed analytically, whereas the upper
bound can be computed numerically via solving a quadratic programming problem.
Throughout Section 6.4, we use the restrictive assumption that switching times are fixed.

Therefore, in Section 6.5, we tackle a free switching times optimal control problem for
a class of hybrid linear systems. We employ the same approach as the one for the fixed
switching times optimal control problem to describe the switching points with respect
to switching time instances. Moreover, we show that the problem of finding switching
time instances gives rise to solving a differential algebraic equation with given boundary
conditions. The resulting problem, of course, can only be solved numerically.
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6.2 Stability of hybrid linear systems with single

flow and jump dynamics

Consider a simple form of hybrid linear systems consisting of a single flow and a jump
dynamics given by

H :

{
ẋ = Ax x ∈ C,
x+ = Gx x ∈ D, (6.1)

where the sets C ⊆ Rn and D ⊆ Rn denote the flow and jump sets, respectively.
In general, C and D can be open or closed sets, but in this section we assume both
are closed. Furthermore, we assume C,D ⊆ Rn, C ∪ D = Rn, A is Hurwitz, and all
eigenvalues of G are inside the unit circle.

Given a number K ∈ N0 := N ∪ {0}, the domain of x for such a system is a subset
of R≥0 × N0 defined by time instances

0 := t0 ≤ t1 ≤ t2 . . . ≤ tK , (6.2)

as follows:

TK :=
K−1⋃
k=0

Tk,

where

Tk := [tk, tk+1]× {k} ∀k ∈ {0, . . . , K − 1}. (6.3)

This time domain is called “hybrid time domain”; see, e.g., Goebel et al. (2012). Note
that in (6.2) K and tK are allowed to go beyond all bounds.

Given a number K ∈ N0 and x0 := x(t0, 0) ∈ C ∪ D, we say x : TK → Rn is a
solution of the system (6.1) if

a) for each (t, k) ∈ Tk where (tk, tk+1) has nonempty interior and x(t, k) ∈ C, the
derivative of x(t, k) with respect to t is defined and the following differential equa-
tion holds

d

dt
x(t, k) = Ax(t, k) ∀t ∈ (tk, tk+1).

b) for each (t, k) ∈ TK such that (t, k + 1) ∈ TK , and x(tk, k) ∈ D, the following
difference equation holds

x(tk+1, k + 1) = Gx(tk+1, k).

Note that from item a) in this definition, one can realize that the mapping
(t, k) 7→ x(t, k) is absolutely continuous within any interval Tk with nonempty interior.

We say the hybrid system H is quadratically stable if a quadratic function V (x) =
x>Px with P = P> > 0 exists such that

A>P + PA < 0, (6.4)

G>PG− P < 0. (6.5)
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Analogous to the concept of stability for switched linear systems, one would expect if
such a P exists, exponential stability of the system (6.1) is implied. We now give a short
proof for this argument. Without loss of generality assume that x(t, k) ∈ C for some
(t, k) ∈ Tk . For exponential stability there must exist numbers α, β > 0 such that

‖x(t, k)‖ ≤ αe−β(t+k−t0)x(t0, 0). (6.6)

We show now that (6.6) holds. If both (6.4) and (6.5) hold, there exists a number
0 < γ < λmax(P ), such that

A>P + PA < −γI,
G>PG− P < −γI.

This implies that for each (t, k) ∈ Tk, and x ∈ C

V̇ (x) = x>(A>P + PA)x ≤ −γ‖x‖2. (6.7)

As P is symmetric positive definite, we can write

λmin(P )‖x‖2 ≤ x>Px = V (x) ≤ λmax(P )‖x‖2. (6.8)

Therefore, defining γc := γ/λmax(P ), (6.7) gives us the following upper bound for V :

V̇ (x) =x>(A>P + PA)x ≤ −γ‖x‖2 ≤ −γ
λmax(P )

V (x)

⇒ V (x(t, j)) ≤ V (x(t− tj, j))e−γc(t−tj) ∀(t, j) ∈ Tj, j ≤ k. (6.9)

On the other hand, for each (t, j) ∈ TK , such that x(t, j + 1) ∈ TK and x(t, j) ∈ D for
some j ≤ k, we have

V (x(t, j + 1))− V (x(t, j)) = x>(G>PG−G)x ≤ −γ‖x(t, j)‖2.

Again, recalling (6.8) we can write

−γ‖x(t, j)‖2 ≤ −γV (x(t, j))

λmax(P )
∀(t, j) ∈ TK .

Now, defining γd := −ln (1− γ/λmax(P )) > 0, we have

V (x(t, j + 1))− V (x(t, j)) ≤ − γ

λmax(P )
V (x(t, j))

⇒ V (x(t, j + 1)) ≤
(

1− γ

λmax(P )

)
V (x(t, j))

⇒ V (x(t, j + 1)) ≤ e−γdV (x(t, j)) ∀(t, j), (t, j + 1) ∈ TK , j < k. (6.10)

As a result, combining (6.9) and (6.10), we get

V (x(t, k)) ≤ V (x(t0, 0))e−[γc(t−t0)+γdk]. (6.11)
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Now, considering (6.8) and defining β := min(γc, γd), we can write

‖x(t, k)‖2 ≤ V (x(t0, 0))

λmin(P )
e−β(t−t0+k) ∀(t, k) ∈ TK . (6.12)

This immediately implies exponential stability of the hybrid linear system (6.1). For such
reason, finding a convenient condition under which a CQLF for this system exists is our
point of interest. Note that (6.4) and (6.5) represent continuous and discrete Lyapunov
inequalities, respectively. Nevertheless, we can use bilinear transformation as proposed
in Mason and Shorten (2004) to unify the two inequalities in the form of continuous
Lyapunov inequalities.

Lemma 6.2.1. Let all eigenvalues of G be inside the unit circle. Then, P = P> > 0 is
a solution of the discrete Lyapunov equation

G>PG− P = −Qd with Qd > 0, (6.13)

if and only if P is the solution of the following continuous Lyapunov equation

C(G)>P + P C(G) = −Q̄d, (6.14)

where

C(G) = (G− I)(G+ I)−1, and Q̄d = 2(G+ I)−>Qd(G+ I)−1 > 0.

The mapping G 7→ C(G) = (G − I)(G + I)−1 is known as the bilinear transformation;
see Mason and Shorten (2004).

Proof of sufficiency: Note that (6.14) is equivalent to

(G+ I)−>(G− I)>P + P (G− I)(G+ I)−1 = −2(G+ I)−>Qd(G+ I)−1. (6.15)

By pre- multiplying (6.15) by (G+ I)> and post- multiplying it by (G+ I), we deduce

(G− I)>P (G+ I) + (G+ I)>P (G− I) = −2Qd. (6.16)

Thus, after simplification (6.13) results. Due to simplicity, proof of necessity is not
given.

Lemma 6.2.1 indicates that for checking the existence of a CQLF for the hybrid
linear system (6.1), it is necessary and sufficient to consider the common Lyapunov
solution existence problem for the matrix pair (A,C(G)). This problem was extensively
discussed in Chapters 4 and 5, on stabilization and stability problems for switched linear
systems.
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6.3 Robust Stability of hybrid linear systems

Assume A is Hurwitz and all eigenvalues of G are inside the unit circle. We define the
following concept of robust stability for the hybrid linear system (6.1).

Definition 6.3.1. (See Appendix A.7, Cai et al. (2007); Goebel et al. (2012)) A smooth
function V (x) is a robust Lyapunov function for the hybrid linear system (6.1), if there
exist two increasing positive definite functions α1, α2 : [0,∞)→ [0,∞) satisfying

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (6.17)

〈∇V (x), Ax〉 ≤ −V (x) ∀x ∈ C, (6.18)

V (Gx) ≤ e−1V (x) ∀x ∈ D. (6.19)

Now, the following definition of robustness of the hybrid linear system (6.1) is adopted
from the general definition of robustness for hybrid systems introduced, for example, by
Cai et al. (2007); Goebel et al. (2012).

Definition 6.3.2. (See Appendix A.7 and Cai et al. (2007); Goebel et al. (2012)) The
hybrid linear system (6.1) is said to be robustly asymptotically stable if a continuous
perturbation function δ : Rn → Rn

≥0 with δ(x) > 0 for x ∈ Rn\{0} exists, such that the
perturbed hybrid system given by the differential and difference inclusions

Hδ :=

{
ẋ ∈ Fδ(x) x ∈ Cδ,
x+ ∈ Gδ(x) x ∈ Dδ,

(6.20)

with

Cδ := {x : (x+ δ(x)B) ∩ C 6= ∅},
Fδ(x) := {A. ((x+ δ(x)B) ∩ C) + δ(x)B} ∀x ∈ Cδ,
Dδ := {x : (x+ δ(x)B) ∩D 6= ∅},
Gδ(x) := {v : v ∈ g + δ(g)B, g ∈ G. ((x+ δ(x)B) ∩D)} ∀ x ∈ Dδ, (6.21)

is asymptotically stable, where B denotes the closed unit ball in Rn.

From the results by Cai et al. (2007); Goebel et al. (2012), robust asymptotic stability
of the hybrid linear system (6.1) is equivalent to the existence of a robust Lyapunov
function; see Theorem A.7.2 in Appendix A. Now, we study the robust stability problem
for the hybrid linear system (6.1) when the robust Lyapunov function is quadratic, that
is, there exist V (x) = x>Px with P = P> > 0 such that (6.18-6.19) hold. Note that
condition (6.17) does not limit the selection of such a Lyapunov function. Indeed, for
any P = P> > 0, two appropriate functions α1 and α2 exist. For instance, one can take

α1(‖x‖) = λmin(P )‖x‖2, α2(‖x‖) = λmax(P )‖x‖2,
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where λmin(P ) and λmax(P ) denote the minimum and maximum eigenvalues of P , re-
spectively. Now, (6.18-6.19) can be rewritten as

A>P + PA+ P ≤ 0, (6.22)

G>PG− P + (1− e−1)P ≤ 0. (6.23)

It follows from (6.22-6.23) that the matrix
(
A+ 1

2
I
)

does not have any eigenvalue in

the open right half plane, and all eigenvalues of (e
1
2G) lie within the closed unit disc.

Therefore, intuitively one may expect that the system (6.1) exhibits robustness properties
in the presence of some bounded uncertainties. To verify this formally, we introduce a
Lipschitz uncertainty function in the form of δ(x) = ψ‖x‖. Then, (6.21) becomes:

Cδ := {x : (x+ ψ‖x‖.B) ∩ C 6= ∅}, (6.24)

Fδ(x) := {A((x+ ψ‖x‖.B) ∩ C) + ψ‖x‖.B} ∀ x ∈ Cδ, (6.25)

Dδ := {x : (x+ ψ‖x‖.B) ∩D 6= ∅}, (6.26)

Gδ(x) := {v : v ∈ g + ψ.‖g‖.B, g ∈ G. ((x+ ψ.‖x‖B) ∩D)} ∀ x ∈ Dδ. (6.27)

In the following lemma we introduce an upper bound for such a function δ(x) by
taking into account that the perturbed system Hδ should be asymptotically stable.
In addition, we show that the perturbed hybrid system is exponentially stable. Note
that our approach for the proof of this lemma is different from the one used in
Cai et al. (2007); Goebel et al. (2012) for general nonlinear differential/difference in-
clusions. We exploit some characteristics of systems with linear flow and jump dynamics.

Lemma 6.3.1. Suppose there exists a function V (x) = x>Px with P = P> > 0 satisfy-
ing (6.22−6.23). Then, the perturbed hybrid system Hδ defined by (6.20) and (6.24−6.27)
is exponentially stable for

δ(x) = ψ.‖x‖ = min
(
δc(x), δd(x)

)
, (6.28)

where

δc(x) = ψc.‖x‖,with ψc :=
λmin(P )

4 [λmax(P )(2σmax(A) + 3)]
, (6.29)

δd(x) = ψd.‖x‖,with ψd :=
0.02 λmin(P )

3λmax(P )(σmax(G)2 + 2)
, (6.30)

and λmax(.) and σmax(.) denote the maximum eigenvalue and singular value of a matrix,
respectively.

Proof: Our proof consists of three parts. In Part A, we present a proof for continuous
dynamics, while in Part B we state a proof for discrete counterpart. Finally, in Part C,
we prove exponential stability of the perturbed hybrid system Hδ.

Part A: Define Cδc and Fδc as Cδ and Fδ in (6.24) and (6.25) by setting ψc instead of
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ψ. We demonstrate that the derivative of V (x) for all perturbations bounded by δc(x)
is negative. In other words, we show for each x 6= 0

max
f∈Fδc (x)

〈∇V (x), f〉 < 0 ∀x ∈ Cδc .

First, note that by definition of Cδc , for any x ∈ Cδc and y ∈ C such that (y−x) ∈ δc(x)B,
there exists a v ∈ B satisfying

y = x+ δc(x)v = x+ ψc‖x‖v. (6.31)

On the other hand, by definition of ψc in (6.29), we have 0 < ψc < 1. This means that
the closest point of the set {x ∈ Cδc : x + ψc‖x‖B} to the origin is indeed the point
x1 := x(1− ψc). This implies

‖y‖ ≥ (1− ψc)‖x‖, and (1− ψc)‖x‖.B ⊆ ‖y‖.B. (6.32)

Paying attention to (6.32) and (6.31), one can write

x ∈ y + ψc1‖y‖.B, where ψc1 :=
ψc

1− ψc
. (6.33)

In addition, from (6.32), we can write

‖x‖ ≤ 1

1− ψc
‖y‖ ⇒ ψc‖x‖ ≤

ψc
1− ψc

‖y‖ = ψc1‖y‖, (6.34)

and also y 6= 0 when x 6= 0. Now, note that referring to (6.25) and (6.33) any vector
inside the set Fδc(x) can be written as

f = Ay + ψc.‖x‖v3 = Ay + ψc1.‖y‖v2, (6.35)

for x ∈ Cδc , y ∈ C, and some v2, v3 ∈ B. Utilizing (6.18), (6.35), and (6.33) the derivative
of the Lyapunov function is bounded by:

max
f∈Fδc (x)

〈∇V (x), f〉 = max
v2∈B, x∈Cδc

〈2x>P,Ay + ψc1.‖y‖v2〉

= max
v1,v2∈B

〈2(y + ψc1.‖y‖.v1)>P , Ay + ψc1.‖y‖v2〉

= y>(A>P + PA)y + 2ψc1.‖y‖.y>Pv2 + 2ψc1.‖y‖.v>1 P.Ay
+ 2ψ2

c1.‖y‖2.v>1 Pv2

≤ −y>Py + 2ψc1.‖y‖.‖y‖.‖Pv2‖+ 2ψc1.‖y‖.‖v>1 P‖.‖Ay‖
+ 2ψ2

c1.‖y‖2.‖v1‖.‖Pv2‖.

As P is symmetric and positive definite, its maximum eigenvalue equals its maximum
singular value. Thus, ‖Pv1‖ ≤ λmax(P ) and ‖Pv2‖ ≤ λmax(P ) . Moreover, the inequality
‖Ay‖ ≤ σmax(A)‖y‖, in general, holds true. By the definition of ψc in (6.29), we have
also ψc ≤ 1

2
and therefore, 2ψ2

c1 ≤ ψc1. Furthermore, by the definition of ψc1 from (6.33),
we have ψc1 ≤ 2ψc. Consequently, the following upper bound for the derivative of the
Lyapunov function results

max
f∈Fδc (x)

〈∇V (x), f〉 ≤ −y>Py + 2ψc

(
3 + 2σmax(A)

)
‖y‖2λmax(P ).
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Substituting ψc from (6.29) into the last equation and having y 6= 0 lead to

max
f∈Fδc (x)

〈∇V (x), f〉 ≤ −y>Py +
1

2
λmin(P ).‖y‖2 ≤ −1

2
y>Py < 0. (6.36)

Part B: Let us define Dδd and Gδd similar to what defined for Dδ and Gδ in (6.26) and
(6.27), respectively, by changing the role of δ to δd. We show that during a jump the
following Lyapunov inequality holds

max
g∈Gδd(x)

V (g)− V (x) < 0 ∀x ∈ Dδd\{0}. (6.37)

With the similar argument as presented in Part A, for each x ∈ Dδd and y ∈ D such
that (x− y) ∈ δd(x)B, there exists a vector v1 ∈ B satisfying

x = y + ψd1.‖y‖v1, where ψd1 =
ψd

1− ψd
. (6.38)

Notice also any vector g ∈ Gδd , in accordance with (6.27), can be formulated as

g = Gy + ψd.‖Gy‖v2, y ∈ D, ∃v2 ∈ B. (6.39)

Thus, recalling (6.39) we have

max
g∈Gδd (x)

V (g)− V (x) = max
v1,v2∈B

(
Gy + ψd.‖Gy‖v2

)>
P
(
Gy + ψd.‖Gy‖v2

)
(6.40)

− (y + ψd1.‖y‖v1)>P (y + ψd1.‖y‖v1)

= y>G>PGy − y>Py
+ max

v1,v2∈B

(
2ψd.‖Gy‖v>2 P.Gy + ψ2

d.‖Gy‖2v>2 Pv2

− 2ψd1.‖y‖v>1 Py − ψ2
d1.‖y‖2v>1 Pv1

)
.

Note that from the definition of ψd in (6.30), we have ψd ≤ 1/2 . Therefore, from the
definition of ψd1 in (6.38), we can deduce ψd1 ≤ 2ψd ≤ 1. Moreover, the following
inequalities are valid

max
v2∈B

ψd‖Gy‖v>2 P.Gy ≤ ψd σmax(G)2λmax(P ).‖y‖2,

max
v2∈B

ψ2
d‖Gy‖2v>2 Pv2 ≤ ψd σmax(G)2λmax(P ).‖y‖2,

max
v1∈B

(
−ψd1.‖y‖v>1 Py

)
≤ 2ψd.λmax(P ).‖y‖2,

max
v1∈B

(
−ψ2

d1.‖y‖2v>1 Pv1

)
≤ 2ψd.λmax(P ).‖y‖2.

Then by substituting the value of ψd from (6.30) into (6.40) and using (6.19) for x ∈
Dδd \{0} and consequently y ∈ D \{0}, we have

max
g∈Gδ(x)

V (g)− V (x) ≤ e−1V (y)− V (y) + 3ψd.‖y‖2.(σmax(G)2 + 2)λmax(P )

≤ (e−1 − 1)V (y) + 0.02V (y) ≤ −e−1
2 V (y) < 0. (6.41)
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Now, we observe that if δ(x) is less than δc(x) and δd(x) defined by (6.29) and (6.30), re-
spectively, then the two inequalities (6.36) and (6.41) are valid. Therefore, the Lyapunov
function V (x) and the perturbed hybrid system Hδ satisfy the requirements of Theo-
rem A.7.1. Hence, asymptotically stability of the origin for this system is guaranteed.
Thus, we confine the perturbation function to the uncertainty δ defined by

δ(x) = min
(
δc(x), δd(x)

)
.

Part C: Another interesting characteristic of the system (6.1) satisfying Lemma 6.3.1
is that robust asymptotic stability is equivalent to the robust exponential stability for
this system, which indeed is a more appreciated notion of stability in control systems
theory. To show this fact, we can again define a hybrid time domain for Hδ, denoted by
TK , for a given number K ∈ N0. For exponential stability, for each given (t, k) ∈ TK ,
we must show there exist positive scalars α and β such that (6.6) holds. Let’s define

γc = (1−ψc)2 λmin(P )
2λmax(P )

. Referring to (6.36) and then (6.32), in any time interval (t, j) ∈ TK

such that x(t, j) ∈ Cδ, we can write

V̇ (x(t, j)) ≤ −1

2
V (y) ≤ −1

2
λmin(P )‖y‖2 ≤ −(1− ψc)2 λmin(P )

2λmax(P )
V (x(t, j))

⇒ V (x) ≤ V (x(t− tj, j))e−γc(t−tj) ∀(t, j) ∈ TK , j ≤ k. (6.42)

Now, recalling (6.41) and (6.38) for the points (t, j) ∈ TK such that (t, j + 1) ∈ TK and
x(t, j) ∈ Dδ, and defining

γd = −ln
(

1− (1− ψd)2 λmin(P )

2λmax(P )

)
,

we can write

V (x(t, j + 1))− V (x(t, j)) ≤ −e−1
2 V (y) ≤ −(1− ψd)2 λmin(P )

2λmax(P )
V (x(t, j))

⇒ V (x(t, j + 1)) ≤ V (x(t, j))e−γd ∀(t, j) ∈ TK , j < k. (6.43)

Thus, from (6.42) and (6.43) and defining β = min(γc, γd), the norm of the states of Hδ

is bounded by

‖x(t, k)‖2 ≤ 1

λmin(P )
V (x(t0, 0))e−β(t+k−t0) ∀(t, k) ∈ Tk.

This implies exponential stability of Hδ.

6.4 LQR design for a class of hybrid linear systems

(Scenario I)

In this part, we discuss a linear quadratic control problem for a class of hybrid linear
systems. The results of this section have been published in Kouhi et al. (2013b).
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Consider a controlled hybrid linear system defined by

H :

{
ẋ = Ax+Bu x ∈ C,
x+ = Gx+Hv x ∈ D. (6.44)

Suppose the pairs (A,B) and (G,H) are controllable. Let us assume that the sets
C,D ⊆ Rn are given by

C = ∪i∈I Ci, D = ∪i∈I Di, (6.45)

where I is a finite index set, and Ci and Di satisfy the following conditions:

1) for each i ∈ I, Ci and Di are polyhedral sets; namely, there exists matrices Ei, Fi
and vectors ei, fi with appropriate dimensions such that

Ci := {x ∈ Rn : Eix+ ei ≤ 0},
Di := {x ∈ Rn : Fix+ fi ≤ 0}. (6.46)

2) ∪i∈I (Ci ∪Di) = Rn.

3) for each i, i′ ∈ I, the intersection between the interiors of Ci and Di′ , between Ci
and Ci′ when i 6= i′, and between Di and Di′ when i 6= i′ are empty.

This particular form of the polyhedral sets implies that there exist matrices Wq and
vectors wq such that for each point x on the boundary between two polyhedral sets Ci
and Di′ with nonempty intersection the following relationship holds

Wqx+ wq = 0 x ∈ Ci ∩Di′ , (6.47)

where i, i′ ∈ I and q = (i, i′).

Although the hybrid time domain discussed in Section 6.2 can be used as domain of
x, we introduce a different form of generalized time domain for the hybrid linear system
(6.44), which is more suitable for our problem in this section. We define the domain of
x for the hybrid system (6.44) as:

TK :=
K−1⋃
k=0

(Tc,k ∪ Td,k) ⊆ R≥0 × N0,

with the time intervals Tc,k and Td,k defined by

Tc,k := [tk, tk+1]× {jk}, (6.48)

Td,k := {tk+1} × {jk, . . . jk+1}, (6.49)

where we assume the time instances

0 := t0 < t1 < t2 . . . < tK := T, (6.50)
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tK := Tt0 t1 t2 tK−1
j0

j1

j2

jK−1

jK := J

. . .

...

Figure 6.4.1: Pictorial description of a generalized time domain in Section 6.4.

the jump indices

0 := j0 < j1 < j2 . . . < jK := J, (6.51)

and the number K ∈ N are given; see Figure 6.4.1. Then, we use the notation (t, j) for
expressing any time instance, where t indicates the flow time and j refers to the jump
index. Note that the definition of TK is different from the notion of hybrid time domain
in Goebel et al. (2012).

Although many classes of solutions can be investigated for the hybrid system
(6.44), we only study a particular form of trajectories which are characterized by
Definition 6.4.1. Figure 6.4.2 depicts such a desired trajectory schematically.

Definition 6.4.1. Given inputs u and v, and the fixed indices ik, i
′
k ∈ I such that

Cik ∩Di′k and Di′k ∩ Cik+1
are nonempty for k ∈ {0, . . . , K − 1}, we say x : TK → R

n is
a desired trajectory of the system (6.44) if

a) x starts at a given point x0 in Ci0 , i.e.,

x0 = x(t0, j0) ∈ Ci0 = {x : Ei0x+ ei0 ≤ 0} .

b) x ends at a given point xf in Di′K−1
, i.e.,

xf = x(tK , jK) ∈ Di′K−1
=

{
x : Fi′K−1

x+ fi′K−1
≤ 0

}
.

c) for each k ∈ {0, 1, . . . , K − 1}, we have

c1) x(t, jk) ∈ Cik = {x : Eikx+ eik ≤ 0} ∀t ∈ [tk, tk+1].

c2) (t, jk) �→ x(t, jk) is continuously differentiable for all t ∈ (tk, tk+1).

c3) d
dt
x(t, jk) = Ax(t, jk) +Bu(t, jk) for all t ∈ (tk, tk+1).

d) for each k ∈ {0, 1, . . . , K − 1}, and (tk+1, j) ∈ Td,k such that (tk+1, j + 1) ∈ Td,k,
we have
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Ci0

Di′0

Ci1
CiK−1Di′K−2

Di′K−1

x0 := x(t0, j0)

x1 := x(t1, j0) x2 := x(t1, j1)

x2K−2 := x(tK−1, jK−1)
x2K−1 := x(tK, jK−1) x f := x(tK, jK)

Figure 6.4.2: Pictorial description of a desired hybrid trajectory.

d1) x(tk+1, j) ∈ Di′k = {x : Fi′kx+ fi′k ≤ 0}.
d2) x(tk+1, j + 1) = Gx(tk+1, j) +Hv(tk+1, j).

e) for each (tk+1, jk) with k ∈ {0, 1, . . . , K−1}, and (tk+1, jk+1) with k ∈ {0, 1, . . . , K−
2}, we have

e1) x(tk+1, jk) ∈ Cik ∩Di′k .

e2) x(tk+1, jk+1) ∈ Di′k ∩ Cik+1
.

Then, recalling item e) in Definition 6.4.1 and Equation (6.47), with some abuse of no-
tation, we define q1, q2, . . . , q2K−1 to index the matrices Wq1 , . . . ,Wq2K−1

and vectors
wq1 , . . . , wq2K−1

such that the following relations hold

Wq2k+1
x+ wq′2k+1

= 0 x ∈ Cik ∩Di′k , k ∈ {0, 1, . . . , K − 1}, (6.52)

Wq2k+2
x+ wq′2k+2

= 0 x ∈ Di′k ∩ Cik+1
, k ∈ {0, 1, . . . , K − 2}. (6.53)

Now, interpreting x as x(t, jk), u as u(t, jk), xj as x(tk+1, j), and vj as v(tk+1, j) in
the sequel, we define the LQ problem for the hybrid system (6.44) as follows:

Problem 6.4.1. Given Qc ≥ 0, Rc > 0, Qd ≥ 0, Rd > 0, K ∈ N, time instances
as in (6.50), jump indices as in (6.51), and the symmetric matrices Sc(tk+1, jk) ≥ 0,
Sd(tk+1, jk+1) ≥ 0, k ∈ {0, 1, . . . , K − 1}, find controls u and v such that x(t, j) with
(t, j) ∈ TK is a desired trajectory for the hybrid system (6.44), and the following opti-
mization problem is solved:

minimize J =
K−1∑
k=0

(Jc,k + Jd,k) (6.54)

subject to

⎧⎪⎨
⎪⎩

H defined by (6.44),

x(t0, j0) = x0,

x(tK , jK) = xf ,

(6.55)
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where

Jc,k =
1

2
x(tk+1, jk)

> Sc(tk+1, jk) x(tk+1, jk)+

+
1

2

∫ tk+1

tk

[x> Qc x+ u> Rcu] dt, (6.56)

Jd,k =
1

2
x (tk+1, jk+1)> Sd(tk+1, jk+1) x(tk+1, jk+1)+

+
1

2

jk+1−1∑
j=jk

[x>j Qd xj + v>j Rd vj]. (6.57)

In this problem setting, Jc,k and Jd,k are the cost variables associated to the time
intervals Tc,k and Td,k for k ∈ {0, . . . , K − 1}, respectively. The symmetric matrices
Sc(tk+1, jk) with k ∈ {0, . . . , K − 1}, and Sd(tk+1, jk+1) with k ∈ {0, . . . , K − 2} are
used to specify the costs on the boundaries of the flow and jump sets, and Sd(tK , jK) is
used to specify the cost at the terminal point x(T, J) = xf . Note that Problem 6.4.1
incorporates two control objectives: it seeks controls u and v which move the trajectory
from the initial condition x0 to the final destination xf with 2K − 1 switching between
flow and jump dynamics, and additionally minimizes the cost J defined by (6.54).

Due to the state space constraints and hybrid nature of the system (6.44) solving
Problem 6.4.1 is non-trivial. Consequently, we instead determine controls u and v which
provide suboptimal solutions for the cost (6.54). The approach we follow for finding
these controls, is first to consider the LQR problems associated to each hybrid time
interval parameterized by their initial and end states. For these problems, we introduce
analytical suboptimal controls by neglecting the inequality constraints arising from the
description of the polyhedral sets in (6.46). We further show that the closed-loop system
can be written in affine form with respect to unknown parameters. Later, introducing
static optimization problems, we compute the parameters and hence derive suboptimal
solutions to Problem 6.4.1.

6.4.1 Suboptimal solutions to flow equations

Consider a piece of a desired trajectory that evolves on the flow set Cik within the interval
Tc,k for some k ∈ {0, . . . , K − 1}. Recalling the principle of optimality, given the initial
and end conditions in Tc,k the control u which solves Problem 6.4.1 must also minimize
the cost Jc,k associated to this time interval. On the other hand, if we assume the initial
state vector x2k := x(tk, jk) and final state vector x2k+1 := x(tk+1, jk) as parameters,
then finding the control u which addresses item c) of Definition 6.4.1 as a constraint and
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solves the following optimization problem, is motivated by Problem 6.4.1:

minimize Jc,k (6.58)

subject to



ẋ = Ax+Bu,

x(tk, jk) = x2k,

x(tk+1, jk) = x2k+1,

Eikx+ eik ≤ 0.

Here, we formally need the convention x0 = x0 to allow k taking value 0.

Given Sc(tk+1, jk) ≥ 0, Qc ≥ 0, and Rc > 0, a lower bound for this problem can
be given in analytical form by neglecting the inequality constraint in (6.58) and only
considering the fixed initial and end states as the constraints. This solution can be
written as (see, e.g., Lewis and Syrmos (1995), pp.224)

u = −(Kc −R−1
c B>VcP

−1
c V >c )x−R−1

c B>VcP
−1
c x2k+1, (6.59)

where

−Ṡc = A>Sc + ScA− ScBR−1
c B>Sc +Qc,

Kc = R−1
c B>Sc,

−V̇c = (A−BKc)
>Vc,

Ṗc = V >c BR
−1
c B>Vc, (6.60)

for (t, jk) ∈ Tc,k, and with the boundary conditions

Vc(tk+1, jk) = I, Pc(tk+1, jk) = 0,

and the given Sc(tk+1, jk); see Appendix A.8.3.

In (6.60), the auxiliary variable Vc ∈ Rn×n is a “modified state transition matrix”
for the adjoint of the linear time varying closed loop system, and −Pc(t, jk) ∈ Rn×n is
a sort of weighted reachability gramian. If det(Pc(t, jk)) = 0 for all (t, jk) ∈ Tc,k, the
problem is abnormal and no solution exists. For this reason, we assume Pc is non-singular
within these time intervals. Note that if Qc = 0, non-singularity of Pc is implied by
controllability of the pair (A,B); see Lewis and Syrmos (1995). Moreover, the variables

θc,k := θc(t, jk) = −Pc(t, jk)−1 [Vc(t, jk)
> x− x2k+1]

are constant in the interval Tc,k, and the costate parameters λc(t, jk) are given by

λc(t, jk) = Sc(t, jk) x+ Vc(t, jk) θc,k. (6.61)

Furthermore, referring to (6.59) and (6.61), the relationship between the costate and the
control is given by

u = −R−1
c B>λc(t, jk).
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Note that in (6.60), the first Riccati equation for Sc, as well as the differential equations
for Vc and Pc, are solved backwards in time up to (tk, jk), within any time interval Tc,k;
see Lewis and Syrmos (1995).

Now, a suboptimal value of the cost Jc,k with the state feedback control given by
(6.59) can be analytically computed in the following. Note that throughout this chapter
the symbol ∗ denotes an optimal value of a variable and must be distinguished by the
conjugate transpose symbol used in the previous chapters.

Lemma 6.4.1. (Kouhi et al., 2013b; Bryson and Ho, 1975)) A lower bound for the
optimal value of the cost Jc,k in Problem (6.58) with the control (6.59) is given by

Jl∗
c,k = 1

2
x>2k Sc(tk, jk) x2k − 1

2

[
Vc(tk, jk)

> x2k − x2k+1

]>
× Pc(tk, jk)−1 [Vc(tk, jk)

> x2k − x2k+1]. (6.62)

Proof: Rewrite the control (6.59) in the more convenient form

u = −R−1
c B>

(
Scx− VcP−1

c z
)
, (6.63)

where for reducing the computation we defined the variable

z(t, jk) = Vc(t, jk)
> x− x2k+1.

From the definitions of Kc, Vc, and Pc in (6.60), and the definition of u in (6.59), we
have

ż = V̇ >c x+ V >c ẋ

= −V >c (A−BKc) + V >c (Ax+Bu)

= V >c BR
−1
c B>VcP

−1
c [Vc(tk, jk)

> x− x2k+1]

= ṖcP
−1
c z.

Consequently, we can obtain the following equality

d
dt

[
z>P−1

c z
]

= 2z>Pcż − z>P−1
c ṖcP

−1
c z

= z>P−1
c ṖcP

−1
c z. (6.64)

Then, by utilizing (6.60), (6.63) and (6.64), we have

x>Qcx+ u>Rcu =

= x>Qcx+
[
Sc x− VcP−1

c z
]>
BR−1

c B>
[
Sc x− VcP−1

c z
]

= x>(−Ṡc − A>Sc − ScA+ ScBR
−1
c B>Sc) x

+ x> ScBR
−1
c B>Sc x− 2x> ScBR

−1
c B>VcP

−1
c z + z> P−1

c ṖcP
−1
c z

=
[
−x>Ṡc x− (Ax+Bu)>Sc x− x> Sc(Ax+Bu)

]
+ d

dt
[z> P−1

c z]

= d
dt

[−x> Sc x+ z> P−1
c z]. (6.65)
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Hence, from the definition of Jc,k in (6.56), the suboptimal cost equals

Jl∗c,k = 1
2
x(tk+1, jk)

> Sc(tk+1, jk) x(tk+1, jk)

− 1
2
[x(t, jk)

> Sc(t, jk) x(t, jk)]
tk+1

tk

+ 1
2

[
z(t, jk)

> Pc(t, jk)
−1 z(t, jk)

]tk+1

tk

= 1
2
x>2k Sc(tk, jk) x2k − 1

2
z(tk, jk)

> Pc(tk, jk)
−1 z(tk, jk).

Note that in the last equation we used the fact

z(tk+1, jk)
> Pc(tk+1, jk)

−1 z(tk+1, jk) = 0.

Now, with the control (6.59), the resulting closed-loop system turns out to be a linear
time varying system

ẋ = Mc(t, jk) x+Nc(t, jk) x2k+1, (6.66)

with

Mc(t, jk) = A−BR−1
c B>

(
Sc(t, jk)− Vc(t, jk) Pc(t, jk)−1 Vc(t, jk)

>
)
,

and

Nc(t, jk) = −BR−1
c B>Vc(t, jk) Pc(t, jk)

−1.

As a consequence, the solution of (6.66) is affine with respect to x2k and x2k+1; namely

x(t, jk) = Mc(t, tk, jk) x2k + Nc(t, jk) x2k+1, (6.67)

where Mc(t, tk, jk) ∈ Rn×n and Nc(t, jk) ∈ Rn×n are given by

Ṁc(t, tk, jk) = Mc(t, jk) Mc(t, tk, jk) Mc(τ, τ, jk) = In,

Nc(t, jk) =

∫ t

tk

Mc(t, τ, jk) Nc(τ, jk) dτ ; (6.68)

see Appendix A.5. The function Mc represents the state-transition matrix. The com-
putation of Mc(t, tk, jk) can be accomplished by solving the corresponding differential
equation forward in time.

6.4.2 Suboptimal solutions for jumps

Consider a piece of a desired trajectory which evolves on the jump set Di′k
and satisfies

item d) in Definition 6.4.1 corresponding to the interval Td,k. Then, the optimal control v
which solves Problem 6.4.1 must minimize the cost Jd,k in (6.56) associated to this time
interval. On the other hand, if we consider the initial state vector x2k+1 := x(tk+1, jk)
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and final state vector x2k+2 := x(tk+1, jk+1) as parameters, then finding a control v which
minimizes the cost Jd,k in the following problem is required in Problem 6.4.1:

minimize Jd,k

subject to


x+ = Gx+Hv,

x(tk+1, jk) = x2k+1,

x(tk+1, jk+1) = x2k+2,

Fi′kx+ fi′k ≤ 0.

(6.69)

Here, we need the formal convention x2K = xf to allow k taking value K−1. Neglecting
the inequality constraint in (6.69), Problem (6.69) will be again a standard discrete LQR
problem with initial and final states as parameters. Its solution is known and available
analytically (see Lewis and Syrmos (1995), p.p 250). For simplicity of notation, we
denote

Sd,j = Sd(tk+1, j), Pd,j = Pd(tk+1, j), Vd,j = Vd(tk+1, j).

Then, given Sd(tk+1, jk+1) ≥ 0, Qd ≥ 0, and Rd > 0 the suboptimal control reads

vj = −Kj x+Kv
j Vd,j+1 P

−1
d,j [V >d,j xj − x2k+2], (6.70)

where

Kj = (H> Sd,j+1 H +Rd)
−1 H> Sd,j+1 G,

Sd,j = G> Sd,j+1 (G−HKj) +Qd,

Vd,j = (G−H Kj)
>Vd,j+1,

Pd,j = Pd,j+1 − V >d,j+1H (H> Sd,j+1H +Rd)
−1 H> Vd,j+1,

Kv
j = (H> Sd,j+1 H +Rd)

−1 H>, (6.71)

and the boundary conditions

Pd(tk+1, jk+1) = Pd,jk+1
= 0, Vd(tk+1, jk+1) = Vd,jk+1

= I, Sd,jk+1
= Sd(tk+1, jk+1),

hold; see Appendix A.8.4. Note that Sd(tk+1, jk+1) according to the assumption of
Problem 6.4.1 is given.

In (6.70), the auxiliary variables Vd,j ∈ Rn×n are the “modified state transition ma-
trices” for the adjoint of the time varying closed-loop system, and −Pd,j ∈ Rn×n is a
sort of weighted reachability gramian; see Lewis and Syrmos (1995). The problem has
a solution if and only if det (Pd(tk+1, jk)) 6= 0. Thus, it is natural to assume that non-
singularity of Pd holds within these time intervals. Note that if Qd = 0, controllability
of (G,H) suffices for non-singularity of Pd; see Lewis and Syrmos (1995). If for some
jk < j ≤ jk+1, det (Pd,j) = 0, then the control (6.70) needs to be modified to

vj = −Kj xj +Kv
j Vd,j+1 P

−1
d,jk

[V >d,jk x2k+1 − x2k+2].



114 6.4. LQR design for a class of hybrid linear systems (Scenario I)

Moreover, in this form of solutions the co-state parameters λd(tk, j) are given in the form
of

λd,j = Sd,j xj + Vd,j θd,j, (6.72)

where the variables

θd,k = θd,j := −P−1
d,j [V >d,j xj − x2k+2], (6.73)

are constant in each discrete interval Td,k. Furthermore, referring to (6.70) and (6.72),
the relationship between the co-state and the control is given by

vj = −R−1
d G> λd,j.

Similarly to the continuous evolution, the first Riccati equation for Sd, as well as the
difference equations for Vd and Pd in (6.71) are solved backwards in time up to (tk+1, jk)
within any interval Td,k. Now, the suboptimal value of the cost Jd,k with the state
feedback control given by (6.69) can be given in analytical form as follows:

Lemma 6.4.2. (Kouhi et al., 2013b)) A lower bound for the optimal value of the cost
Jd,k in Problem (6.69) with the control (6.70) is given by

Jl∗d,k = 1
2

x>2k+1 Sd(tk+1, jk) x2k+1 − 1
2

[Vd(tk+1, jk)
> x2k+1 − x2k+2]>×

× Pd(tk+1, jk)
−1 [Vd(tk+1, jk)

> x2k+1 − x2k+2]. (6.74)

Proof: Let us define a new variable

zj = V >d,j xj − x2k+2.

Then, recalling the equations for Vd,j from (6.71) and vj in (6.70), we can deduce

zj − zj+1 = V >d,j xj − V >d,j+1 xj+1

= V >d,j+1 (G−HKj) xj − V >d,j+1(Gxj +Hvj)

= −V >d,j+1 H Kv
j Vd,j+1 P

−1
d,j zj.

Therefore, using the difference equation for Pd,j and the equation of Kv
j from (6.71), we

can compute zj+1 as

zj+1 = (Pd,j + V >d,j+1 HK
v
j Vd,j+1) P−1

d,j zj

= Pd,j+1 P
−1
d,j zj.

It follows that

z>j P−1
d,j (Pd,j − Pd,j+1) P−1

d,j zj =

= z>j P−1
d,j zj − z>j+1 P

−1
d,j+1 zj+1. (6.75)
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Furthermore, from (6.71) we have

x>j+1 Sd,j+1 xj+1 =

= (Gxj +Hvj)
> Sd,j+1 (Gxj +Hvj)

= x>j G> Sd,j+1 G xj + 2x>j G> Sd,j+1 H vj

− v>j Rd vj + v>j (H> Sd,j+1 H +Rd) vj. (6.76)

Then, from the last equation we can compute

v>j Rd vj = −x>j+1 Sd,j+1 xj+1 + x>j G> Sd,j+1 G xj

+ 2x>j G> Sd,j+1H vj + v>j (H> Sd,j+1 H +Rd)vj. (6.77)

To prove (6.74), we now exploit (6.70), (6.71), (6.75), and (6.77) for the evaluation of
the summing terms in the cost variable. To this end, introduce a new variable

yj = x>j Sd,j xj − x>j+1 Sd,j+1 xj+1

to simplify the computations. Then, we have

x>j Qd xj + v>j Rd vj =

= x>j

[
Sd,j −G>Sd,j+1 (G−H Kj)

]
xj − x>j+1 Sd,j+1 xj+1

+ x>j G> Sd,j+1 G xj + 2x>j G> Sd,j+1 H vj + v>j (H S>d,j+1 H +Rd) vj

= yj + x>j G> Sd,j+1 H (Kj xj + vj)︸ ︷︷ ︸
Kv
j Vd,j+1 P−1

d,j zj

+ [v>j + x>j G>Sd,j+1 H (H> Sd,j+1 H +Rd)
−1︸ ︷︷ ︸

K>j

] (H> Sd,j+1 H +Rd) vj

= yj + [x>j G> Sd,j+1 H + v>j (H> Sd,j+1 H +Rd)︸ ︷︷ ︸
z>j P−1

d,j V >d,j+1 Kv>
j (H> Sd,j+1 H+Rd)

] Kv
j Vd,j+1 P

−1
d,j zj

= yj + z>j P
−1
d,j V

>
d,j+1H(H>Sd,j+1H +Rd)

−1H>Vd,j+1︸ ︷︷ ︸
Pd,j+1−Pd,j

P−1
d,j zj

= yj − z>j P−1
d,j zj + z>j+1 P

−1
d,j+1 zj+1.

Now summing up the terms resulted from the previous equation with the terminal cost
of this time interval, Jd,k defined by (6.57) equals

Jd,k = 1
2
x (tk+1, jk+1)> Sd(tk+1, jk+1) x(tk+1, jk+1)+

+ 1
2

jk+1−1∑
j=jk

[x>j Qd xj + v>j Rd vj]

= 1
2
x (tk+1, jk+1)> Sd(tk+1, jk+1) x(tk+1, jk+1)

+ 1
2

jk+1−1∑
j=jk

[yj − z>j P−1
d,j zj + z>j+1 P

−1
d,j+1 zj+1]

= 1
2

x>2k+1 Sd(tk+1, jk) x2k+1

− 1
2
z(tk+1, jk)

> Pd(tk+1, jk)
−1 z(tk+1, jk),
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where we used the identity

z(tk+1, jk+1)> Pd(tk+1, jk+1)−1 z(tk+1, jk+1) = 0.

Note that the closed-loop system with the affine control defined in (6.70) is again
described by a linear time varying difference equation:

xj+1 = Md(tk+1, j) xj +Nd(tk+1, j) x2k+2, (6.78)

with the coefficients

Md(tk+1, j) = G−H Kv
j (Sd,j+1 G− Vd,j+1 P

−1
d,j V

>
d,j),

and

Nd(tk+1, j) = −H Kv
j Vd,j+1 P

−1
d,j .

The solution to (6.78) is an affine function in x2k+1 and x2k+2, that is,

xj = Md(tk+1, j) x2k+1 + Nd(tk+1, j) x2k+2, (6.79)

where the coefficients are given by

Md(tk+1, j) =

j−jk∏
r=0

Md(tk+1, j − r), Md(tk+1, jk) = In,

Nd(tk+1, j) =

j−1∑
r=jk

j−r−1∏
p=1

Md(tk+1, j − p) Nd(tk+1, r),

and Nd(tk+1, jk) = 0. This fact will be utilized in the next section for imposing the
inequality constraints for deriving a desired trajectory.

6.4.3 Constrained QP problems for the hybrid linear system

Having discussed the analytical suboptimal solutions to the optimal control problems
separately for the flow and jump dynamics, in this section we consider them jointly
for establishing a link to Problem 6.4.1. From the elaborations in the previous two
subsections, we know that neglecting the inequality constraints of the polyhedral sets,
the suboptimal cost in each hybrid time interval can be parametrized quadratically
by parameters x2k and x2k+1 given by (6.62), or x2k+1 and x2k+2 given by (6.74) for
k ∈ {0, 1, . . . , K − 1}. Hence, the overall suboptimal cost equals

J̄ =
K−1∑
k=0

(
Jl∗c,k + Jl∗d,k

)
=

1

2
X>PX +QX +R, (6.80)
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where
X := [x>1 x>2 . . . x>2K−1]>,

includes all unknown parameters, and P = [Pij] ∈ R(2K−1)n×(2K−1)n is a symmetric
matrix of the form

P =


P11 P12 0 . . . 0
P21 P22 P23 . . . 0

0 P32
. . . . . .

...
...

...
. . . P2K−2,2K−2 P2K−2,2K−1

0 0 . . . P2K−1,2K−2 P2K−1,2K−1


with the symmetric matrix elements

Pkk =

{−Pc(tk−1, jk−1)−1 + Sd(tk, jk−1)− Vd(tk, jk−1)Pd(tk, jk−1)−1 Vd(tk, jk−1)>, k odd,

−Pd(tk, jk−1)−1 + Sc(tk, jk)− Vc(tk, jk)Pc(tk, jk)−1 Vc(tk, jk)
>, k even,

and

Pk,k+1 = P>k+1,k =

{
Vd(tk, jk−1) Pd(tk, jk−1)−1, k odd

Vc(tk, jk) Pc(tk, jk)
−1, k even.

The element QX +R in the cost (6.80) appears when k = 0 and k = K are considered.
The row vector Q ∈ R1×[(2K−1)n] is given by

Q = [x>0 Vc(t0, j0)Pc(t0, j0)−1 0 · · · 0 x>f Vd(tK , jK−1)Pd(tK , jK−1)−1],

and R is a scalar which is given by

R = 1
2
x>0 Sc(t0, j0) x0 − 1

2
x>0 Vc(t0, j0) Pc(t0, j0)−1

× Vc(t0, j0)> x0 − 1
2
x>f Pd(tK , jK−1)−1 xf .

Now, the cost defined in (6.80) is parameterized only by the decision variable X. Note
that since Jl∗c,k+Jl∗d,k > 0 for each k ∈ {1, . . . , K−1}, we have that 1

2
X>PX+QX+R > 0.

In particular, when x0 = 0 and xf = 0, we have that 1
2
X>PX > 0 for all X 6= 0. This

implies that P > 0.

6.4.3.1 Lower bound for optimal control problem

Now, we intend to determine the unknown parameters x1, . . . ,x2K−1 in a way that we
obtain a lower bound for the optimal cost of Problem 6.4.1. To this end, we consider the
Equations (6.52) and (6.53) as constraints for the minimization of the cost (6.80). Thus,
we define a static optimization problem as follows:

minimize J̄ = 1
2
X>PX +QX +R

subject to CX + R = 0, (6.81)
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where matrix C and vector R are given by

C = diag
(
[Wq1 ,Wq2 , . . . ,Wq2K−1

]
)
,

R =
[
w>q1 w>q2 . . . w>q2K−1

]>
. (6.82)

The Lagrangian for Problem (6.81) then reads

L(X,λ) = 1
2
X>PX +QX +R + λ>(CX + R),

where λ is the Lagrange multiplier. As P > 0, Problem (6.81) has always a minimum.
For finding this optimal value, we assign ∂L/∂X = 0 and use equality constraint in
(6.81) to compute an analytical solution for X, denoted by X∗l , as follows:

X∗l = −P−1
[
Q> −C>(CP−1C>)−1(CP−1Q> −R)

]
. (6.83)

Hence, the optimal value of J̄ in Problem (6.81), denoted by J̄∗l , is given by

J̄∗l = 1
2

[
Q+ (QP−1C> −R>)(CP−1C>)−1C

]
P−1

×
[
−Q> + C>(CP−1C>)−1(CP−1Q> −R)

]
+R. (6.84)

Note that J̄∗l is indeed the optimal cost for Problem 6.4.1 when the inequality constraints
given in Problems (6.58) and (6.69) for k = 0, . . . , K − 1, which capture the flow and
jump sets, are neglected. Therefore, we have J̄∗l ≤ J∗.

6.4.3.2 Algorithm to compute solution and an upper bound

Now, we aim at determining the controls u and v, such that the solution of the hybrid
system (6.44) becomes a desired trajectory, and an upper bound for the cost J∗ defined
in Problem 6.4.1 is derived. To this end, we consider the inequality constraints given in
Problems (6.58) and (6.69) for minimization of the cost (6.80) in order to ensure that all
criteria (a-f) in Definition 6.4.1 hold. Notice (6.67) and (6.79) indicate that each point
of the suboptimal trajectory has the affine representation with respect to the decision
variables x1, . . . ,x2K−1. Now, we insert x(t, jk) from (6.67) into the inequality constraints
(6.58),

Eik x(t, jk) + eik ≤ 0 (6.85)

for all time (t, jk) ∈ Tc,k, and insert x(tk+1, j) from (6.79) into the inequality constraint
given in (6.69), namely

Fi′k x(tk+1, j) + fi′k ≤ 0, (6.86)

for all (tk+1, j) ∈ Td,k. Thus, for each k ∈ {0, . . . , K − 1}, (6.85) and (6.86) can be
expressed in the matrix form as

Xc(t, j)X + Yc(t, j) ≤ 0, (6.87)
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and

Xd(t, j)X + Yd(t, j) ≤ 0, (6.88)

where

Xc(t, j) =


[Ei0Nc(t, j0) 0 . . . 0] ∀(t, j) ∈ Tc,0,

[0 . . . EikMc(t, tk, jk) EikNc(t, jk) . . . 0] ∀(t, j) ∈ Tc,k, k ≥ 1,

Yc(t, j) =


[x>0 Mc(t, t0, j0)>E>i0 + e>i0 0 . . . 0]> ∀(t, j) ∈ Tc,0,

[0 . . . e>ik . . . 0]> ∀(t, j) ∈ Tc,k, k ≥ 1,

Xd(t, j) =


[0 . . . Fi′kMd(tk, j) Fi′kNd(tk, j) 0 . . . 0] ∀(t, j) ∈ Td,k, k ≤ K − 2,

[0 . . . 0 Fi′K−1
Md(tK , j)] ∀(t, j) ∈ Td,K−1,

and

Yd(t, j) =


[0 . . . f>i′k

. . . 0]> ∀(t, j) ∈ Td,k, k ≤ K − 2,

[0 . . . 0 x>f Nd(tK , j)
>F>i′K−1

+ f>i′K−1
]> ∀(t, j) ∈ Td,K−1.

Now, considering the inequality constraints (6.87) and (6.88) for minimization of the cost
(6.80), and for k ∈ {0, . . . , K − 1} we define the following static optimization problem:

minimize J̄ = 1
2
X>PX +QX +R (6.89)

subject to

 Xc(t, j)X + Yc(t, j) ≤ 0 ∀(t, j) ∈ Tc,k,

Xd(t, j)X + Yd(t, j)≤ 0 ∀(t, j) ∈ Td,k.

Problem (6.89) consists of a quadratic cost and a set of infinitely many affine inequalities
due to the continuity of time. However, note that the matrices Xc(t, j) and the vectors
Yc(t, j) implicitly depend on the variables Sc, Pc, and Vc which are computed numerically
via solving the ODE in (6.60) with certain sample times. Therefore, the number of
inequalities in (6.89) is finite from a numerical point of view. Suppose the number of
the time samples are N ∈ N. Therefore, (6.89) can be rewritten as

minimize J̄ = 1
2
X>PX +QX +R (6.90)

subject to

{
Xc X + Yc ≤ 0,
Xd X + Yd ≤ 0,
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where the matrix Xc ∈ RN×(2K−1)n and the vector Yc ∈ RN , the matrix Xd ∈ RJ×(2K−1)n

and the vector Yd ∈ RJ are defined by

Xc =

 Xc(0, 0)
...

Xc(T, jK−1)

 , Yc =

 Yc(0, 0)
...

Yc(T, jK−1)

 ,

Xd =

 Xd(0, 0)
...

Xd(T, J)

 , Yd =

 Yd(0, 0)
...

Yd(T, J)

 .
Problem (6.90) consists of a quadratic cost and a finite set of inequalities defining

a standard quadratic program (QP). It is well known that if P is positive definite,
then the entire problem is convex and can be solved in polynomial time; otherwise, the
problem is NP hard. Quadratic problems are well understood and plenty of established
numerical and analytical algorithms are available, including interior point methods,
active set, etc; see Nocedal and Wright (2006); Bayon et al. (2010).

Next we want to provide a numerical algorithm for solving Problem (6.90) by employ-
ing the dual optimal control theory and gradient projection method (see, e.g., Boyd and
Vandenberghe (2004)), provided that the problem is feasible. To this end, the Lagrangian
of the cost reads

L(X,λc, λd) = 1
2
X>PX +QX +R+

+ λ>c (XcX + Yc) + λ>d (XdX + Yd),

where
λc ≥ 0, λd ≥ 0,

are Lagrange multipliers. Then, the dual problem of (6.90) is given by

maximize g(λc, λd),

subject to λc, λd ≥ 0, (6.91)

where the function g is defined by

g(λc, λd) = inf
X
L(X,λc, λd).

Since all inequalities in (6.90) are affine with respect to X and P > 0, strong duality
is given by the Slater condition (Boyd and Vandenberghe, 2004), implying that optimal
solutions to the dual and primal problems are identical. Starting from an arbitrary initial
condition λ

(0)
c and λ

(0)
d , the solution to the dual problem is determined by an iterative

algorithm for computation of the Lagrange multipliers

λ(r+1)
c = λ(r)

c − α(Xc X
(r)
u + Yc),

λ
(r+1)
d = λ

(r)
d − α(Xd X

(r)
u + Yd). (6.92)
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where 0 < α < 1 represents a fixed step size, r represents the rth update of the variables,
and the index u in Xu refers to the upper bound control algorithm. After each iteration,
the Lagrange multipliers λ

(r)
c and λ

(r)
d are projected in accordance with

[λ(r+1)
c , λ

(r+1)
d ] = [max(0, λ(r+1)

c ), max(0, λ
(r+1)
d )]. (6.93)

The variable X
(r)
u in the last equation can be analytically computed in terms of the

Lagrange multipliers by differentiating the Lagrangian L(X
(r)
u , λ

(r)
c , λ

(r)
d ) with respect to

X
(r)
u and setting it to zero, that is,

X>c λ(r)
c + X>d λ

(r)
d +Q> + P X(r)

u = 0

⇒ X(r)
u = −P−1(X>c λ(r)

c + X>d λ
(r)
d +Q>). (6.94)

Now, let us define

Λ(r) := [ λ(r)>

c λ
(r)>

d ]>.

Then, replacing (6.94) into (6.92), the update law for the gradient projection method
reads (see Boyd and Vandenberghe (2004)):

Λ(r+1) =

I + αXcP
−1X>c αXcP

−1X>d
αXdP

−1X>c I + αXdP
−1X>d

Λ(r) − α

 Yc − XcP
−1Q>

Yd − XdP
−1Q>

 . (6.95)

Equation (6.93) contains a nonlinear operation, thus we are not able to compute Λ(r)

analytically. However, we can describe the equation (6.94) in the matrix form as

X(r)
u = −P−1

(
Q> + X Λ(r)

)
, (6.96)

where X := [X>c X>d ]. It follows from the gradient projection method that

lim
r→∞

X(r)
u → X∗u, and lim

r→∞
Λ(r) → Λ∗.

Therefore, the optimal cost results to be:

J̄∗u =
1

2
(−Q> + XΛ∗)>P−1(Q> + XΛ∗) +R. (6.97)

The cost J̄∗u indeed provides an upper bound for the optimal cost J∗ in Problem 6.4.1.
The reason is that the trajectory which uses the solutions of Problem (6.90) with controls
u, defined by (6.59), and v, defined by (6.70), satisfies all conditions of Definition 6.4.1.
Nevertheless, the equality J̄∗u = J∗ does not necessarily hold since the controls u and v
in (6.59) and (6.70) are computed via neglecting the inequalities given on (6.58) and
(6.69). Thus, this trajectory is not necessarily optimal in the sense of Problem 6.4.1.

The following theorem summarizes this result.
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Theorem 6.4.1. Consider the linear quadratic problem for the hybrid linear system
(6.44) defined by Problem 6.4.1. Suppose that the optimization problem (6.90) is feasible.
Then, the optimal cost J∗ defined in Problem 6.4.1 is bounded by

J̄∗l ≤ J∗ ≤ J̄∗u, (6.98)

with J∗l and J∗u given by expressions (6.84) and (6.97), respectively.

Example 6.4.1. (See also (Kouhi et al., 2013b)) Consider the hybrid linear system

H :


ẋ =

[
−1 1

2 −3

]
x+

[
1 1
2 1

]
u x ∈ C,

x+ =

[
0.7 0.5
0 0.8

]
x+

[
0.125 0.5
0.5 0.2

]
v x ∈ D,

where denoting x = [x1 x2]>, the sets C and D are specified by

C = {x ∈ R2 : 2x1 − x2 ≤ 0}, D = R2\C.

The corresponding cost variables are defined by

Jc,k = 1
2

∫ tk+1

tk

(
x>
[

2 0
0 2

]
x+ u>

[
1 0
0 1

]
u

)
dt,

Jd,k =
1

2

jk+1−1∑
j=jk

x>j

[
2 1
1 1

]
xj + v>j

[
1 0
0 1

]
vj,

where K = 2 is a fixed parameter, indicating that only three switching between the flow
and jump sets must occur. Then, the overall cost J is defined by (6.54). The switching
time instances are fixed and given by

(t1, j0) = (0.2, 0), (t1, j1) = (0.2, 4), and (t2, j1) = (1, 4),

and the fixed final time equals (t2, j2) := (T, J) = (1, 8). Thus, the time domain equals

TK =([0, 0.2]× {0}) ∪ ({0.2} × {0, . . . , 4})
∪ ([0.2, 1]× {4}) ∪ ({1} × {4, . . . , 8}).

The fixed initial and final states are given by x0 = [3 7]> ∈ C and xf = [3 − 1]> ∈ D,
respectively. The cost associated to the switching points and to the terminal point are
zero. Two trajectories computed via our algorithm are depicted in Figure 6.4.3. The
flow evolution is represented by the curves with solid lines, and the jump evolution by
small circles. The top picture refers to the solution obtained by lower bound control for
the hybrid system with neglected inequality constraints arising from the definition of the
flow and jump sets. One can observe that inequality constraints in definition of the flow
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Figure 6.4.3: (Top:) The trajectory resulting from the control policy achieves the
provided lower bound of the cost by ignoring the inequality constraints. (Bottom:) The
system trajectory resulting from the control policy achieves the provided upper bound
of the cost.

and jump sets are violated. Note that this trajectory principally does not belong to the
solution set of this system since a trajectory of the hybrid system cannot jump within the
set C. In contrary, in the bottom picture the solution resulting from the upper bound
control is a desired trajectory of the hybrid system. The parameters x1, x2, and x3 in
the lower bound optimal control problem defined in Section 6.4.3.1 are computed to be

x1 = [−0.9512 − 1.9024]�, x2 = [0.60 1.20]�, x3 = [0.60 1.20]�,

incidentally, with two latter variables being identical. The parameters for the upper
bound control problem defined in Section 6.4.3.2 are computed to be

x1 = [1.0820 2.1640]�, x2 = [0.0446 0.0893]�, x3 = [0.0095 0.0189]�.

For this problem the following upper and lower bounds for the optimal cost J∗ are
computed as

585.3010 ≤ J∗ ≤ 658.3335.
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6.5 LQR design for a class of hybrid linear systems

(Scenario II)

In this section, we address a problem that relates maximum principle (Sussmann, 1999;
Caines et al., 2006; Johansen et al., 2002; Liberzon, 2011) to a class of hybrid linear
systems.

Let us consider a hybrid linear system H consisting of different linear flow dynamics
given by

H :

{
ẋ = Aσ(t,x)x+Bσ(t,x)u x ∈ C,
x+ = x x ∈ D,

(6.99)

where σ(t, x) ∈ L := {1, . . . , `} is the switching signal between different dynamics. We
assume that switching to a new dynamics can only occur when the states of the system
belong to the jump set. Suppose also

Aσ(t,x) ∈ A ∈ {A1, . . . , A`}, Bσ(t,x) ∈ B := {B1, . . . , B`}, (6.100)

where u(t) ∈ Rm, Ai ∈ Rn×n, Bi ∈ Rn×m, and the pairs (Ai, Bi) are controllable for all
i ∈ L. Further, we assume C = Rn and

D = ∪i∈I Di, (6.101)

where the jump set D is the union of switching manifolds given by the affine equations
in the state space as

Di = {x ∈ Rn : cix+ ri = 0} ∀i ∈ I. (6.102)

In (6.102), I is a finite index set, ci are matrices, and ri are vectors with appropriate
dimensions, for all i ∈ I. Given K ∈ N and T ∈ R>0, assume the switching time instances
t1, . . . , tK−1 between different dynamics exist such that

0 := t0 < t1 . . . < tK−1 < tK =: T. (6.103)

For this system, we define the hybrid time domain as follows:

TK :=
K−1⋃
k=0

Tk,

where

Tk = [tk, tk+1]× {k} ∀k ∈ {0, . . . , K − 1}. (6.104)

Note that with these assumptions and the definition of the hybrid system in (6.99), the
mapping (t, k) 7→ x(t, k) is absolutely continuous over the hybrid time domain. For a
definition of absolute continuity see Appendix A.6.1. Interpreting x as x(t, k), we define
an LQ problem for the hybrid system (6.99) as follows:



Chapter 6. Control of hybrid linear systems 125

Problem 6.5.1. Given a number K ∈ N, matrices Qk ≥ 0 and Rk > 0 for each
k ∈ {0, . . . , K − 1}, symmetric matrices Sc(tk+1, k) ≥ 0 for each k ∈ {0, 1, . . . , K − 1},
and a sequence of switching, that is, Aσ(t,x) = Ajk ∈ A and Bσ(t,x) = Bjk ∈ B for all
(t, k) ∈ TK are fixed. Moreover, assume that the final time tK = T is given and either:

a) the time instances t1, . . . , tK−1 satisfying (6.103) are given.

b) the time instances t1, . . . , tK−1 satisfying (6.103) are unknown.

Find the control u (and the switching time instances for case b)), such that the following
optimization problem is solved:

minimize J =
K−1∑
k=0

Jk (6.105)

subject to


H defined by (6.99),

x(t0, 0) ∈ Di0 i0 ∈ I,

x(tk+1, k) ∈ Dik+1
∀k ∈ {0, . . . , K − 1}, ik ∈ I,

(6.106)

where

Jk =
1

2
x(tk+1, k)>S(tk+1, k)x(tk+1, k) +

1

2

∫ tk+1

tk

[x> Qk x+ u> Rk u] dt, (6.107)

for all k ∈ {0, . . . , K − 1}.

In (6.107) the given symmetric matrices S(tk+1, k) for each k ∈ {0, 1, . . . , K − 2} are
used to specify the cost variables corresponding to the switching time instances, and
S(tK , K−1) is used to specify the cost variable at an end point x(T,K−1) = xf ∈ DiK .
Problem 6.5.1 is fairly general and we can solve the following scenarios by finding a
solution to this problem.

i) The switching times with regard to case a) in Problem 6.5.1 are fixed. We call this
problem “fixed switching times problem”.

ii) The switching times are free as represented by case b) of Problem 6.5.1. We refer
to this problem as “free switching times problem”.

iii) The initial state vector x0 and the terminal state vector xf are fixed. This condition
is equivalent to have

ci0 = I, ri0 = x0, ciK = I, riK = xf .

iv) Item iii), and the conditions Dik = Rn for all k ∈ {1, . . . , K − 1} and ik ∈ I
hold. Then, σ(t, x) = σ(t) and Problem 6.5.1 is reduced to computation of
an optimal control u and switching time instances t1, . . . , tK−1, which minimize
the cost (6.105). In this case, a switching can occur at each point of the state space.
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Our solution approach is based on parameterization of the optimal control problem
with respect to initial and end points of each switching time interval, similar to the
approach for solving Problem 6.4.1. To this end, first we represent the LQR problem for
a piece of trajectory and parameterize the problem by the initial and end points of each
switching time interval. We derive an analytical expression for the optimal cost using
the sweeping method presented by Lewis and Syrmos (1995). This allows us to find an
analytical expression for the entire cost J. Afterwards, we determine the switching times
and states in the next step.

6.5.1 Optimal solution for a piece of a trajectory

Consider a piece of hybrid trajectory that evolves with the dynamics as described by
(6.99) within a time interval (t, k) ∈ Tk for some k ∈ {0, . . . , K − 1}. Referring to
the principle of optimality, if Problem 6.5.1 has an optimal solution, then each piece of
the optimal trajectory between two consecutive switching points xk and xk+1 must be
optimal. In other words, if we assume the initial state vector xk := x(tk, k) and the final
state vector xk+1 := x(tk+1, k) are parameters, then solving the following optimization
problem for a trajectory x(t, k) that satisfies the differential equation (6.99) for σ(t, x) =
jk ∈ L, is motivated by Problem 6.5.1:

minimize Jk

subject to


ẋ = Ajk x+Bjk u,

x(tk, k) = xk,

x(tk+1, k) = xk+1.

(6.108)

Now, Problem (6.108) represents an optimal control problem with initial and end
points as parameters. The solution is given by (see Lewis and Syrmos (1995), pp.224)

u = −R−1
k B>jk

(
Sx− V P−1 [V > x− xk+1]

)
, (6.109)

where

−Ṡ = A>jk S + S Ajk − S Bjk R
−1
k B>jk S +Qk,

Kk = R−1
k B>jk S,

−V̇ = (Ajk −Bjk Kk)
> V,

Ṗ = V > Bjk R
−1
k B>jkV, (6.110)

for each (t, k) ∈ Tk and with the boundary conditions

V (tk+1, k) = I, P (tk+1, k) = 0, and given S(tk+1, k) ≥ 0.

In the solution (6.110), the auxiliary variable V (t, k) ∈ Rn×n is a “modified state
transition matrix” for the adjoint of the linear time varying closed loop system, and
−P (t, j) ∈ Rn×n is a sort of weighted reachability gramian. If det(P (t, k)) = 0 for all
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(t, k) ∈ Tk, the problem is abnormal and no solution exists; see Lewis and Syrmos (1995).
However, if Qk = 0 for all k ∈ {0, . . . , K − 1}, controllability of the pairs (Ajk , Bjk) is
sufficient for the existence of solutions. Moreover, in this form of the solutions the
co-state parameters λ(t, k) are given in the form of

λ(t, k) = S(t, k) x− V (t, k) P (t, k)−1
[
V (t, k)> x(t, k)− xk+1

]
, (6.111)

where the elements

θk := θ(t, k) = −P (t, k)−1 [V (t, k)> x(t, k)− xk+1], (6.112)

are constant in the interval (t, k) ∈ Tk. Furthermore, referring to (6.109) and (6.111),
the relationship between the co-state and the control is given by

u(t, k) = −R−1
k B>jk λ(t, k) ∀(t, k) ∈ Tk;

see Lewis and Syrmos (1995). Note that in (6.110), the first Riccati equation for S, as
well as the differential equations for V and P , are solved backwards in time within any
time interval.

Now, for simplification of notation, in the sequel, we signify the values of the functions
S, V , and P at the specific time instance (tk, k) by the index k. For example, Sk should
be interpreted as S(tk, k). As stated by Lemma 6.4.1 the optimal value of the cost Jk
with the state-feedback given by (6.109) can be represented in analytical form as follows:

J∗k = 1
2
x>k Sk xk − 1

2

[
V >k xk − xk+1

]>
P−1
k [V >k xk − xk+1]. (6.113)

6.5.2 A QP problem for finding the switching points

Having discussed the analytical solutions to optimal control for each piece of the trajec-
tory, in this section we consider all of them together. Hence, by (6.113) the overall cost
equals

J =
K−1∑
k=0

J∗k =
1

2
X>MX, (6.114)

where X := [x>0 x>1 . . . x>K ]> includes an initial point x0 = x(t0, 0) ∈ Di0 , switching
points x1, . . . ,xK−1, and a terminal point xK = x(tK , K − 1) ∈ DiK . M = [Mij] ∈
R[n(K+1)]×[n(K+1)] is a symmetric matrix of the form:

M =


M0,0 M0,1 0 . . . 0
M1,0 M11 M12 . . . 0

0 M21
. . . . . .

...
...

...
. . . MK−1,K−1 MK−1,K

0 0 . . . MK,K−1 MK,K

 ,
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with the matrix elements

M0,0 = M>
0,0 = S0 − V0 P

−1
0 V >0

Mjj = M>
jj = Sj − VjP−1

j V >j − P−1
j−1 ∀j ∈ {1, . . . , K − 1},

MKK = M>
KK = −P−1

K−1,

Mj,j+1 = M>
j+1,j = VjP

−1
j ∀j ∈ {0, . . . , K − 1}.

Note that the cost defined in (6.114) is parameterized by the decision variable X. Now,
we add the required constraints to the optimal cost J to ensure that xk ∈ Dik for each
k ∈ {0, . . . , K}. This defines a static optimization problem as

minimize J =
1

2
X>MX

subject to CX + R = 0, (6.115)

where the matrix C and the vector R include the parameters characterizing the equations
of the jump sets Dik for ik ∈ {0, . . . , K}, namely

C = blockdiag([ci0 , . . . , ciK ]), R = [r>i0 . . . r>iK ]>. (6.116)

Now, the cost defined in (6.115) is parameterized only by the decision variable X. Note
that since Jk > 0 for each k ∈ {0, . . . , K − 1}, we have that 1

2
X>MX > 0. This implies

that M > 0 and Problem (6.115) is convex.

Now, introducing the Lagrange multipliers in the form of Λ =
blockdiag ([Λ0, . . . , ΛK ]), the Lagrangian of the cost (6.115) reads

L(X,Λ) = 1
2
X>MX + Λ>(CX + R). (6.117)

6.5.3 Computing optimal switching points

Now, if we set the derivative of the Lagrangian (6.117) with respect to X to zero, then the
optimal switching points can be computed. Consequently, as M > 0, Problem (6.115)
has a globally optimal value X given by

X∗ = −M−1C>(CM−1C>)−1R := G(S,V,P), (6.118)

where G is a function of S := (S0, . . . , SK−1), V := (V0, . . . , VK−1), and P :=
(P0, . . . , PK−1). Hence, the optimal cost equals

J∗ =
1

2
R>(CM−1C>)−1R. (6.119)

Note that the matrix M is a function of switching times t1, . . . , tK−1. Thus, for the
problem of fixed switching times which is specified by case a) in Problem 6.5.1, M is
given. However, for the problem of free switching times M is not known so far, and has
to be determined in the following.
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6.5.3.1 Transversality condition and solutions of fixed switching times
problem

Now, we show that our optimal solution u, given by (6.109), satisfies the so called
“transversality conditions”(see Sussmann (1999); Caines et al. (2006); Liberzon (2011))
for the points belonging to the jump sets. To this end, recalling (6.113) the Lagrangian
of Problem (6.115) can be reformulated as

L(X,Λ) =
1

2
X>MX + Λ>(CX + R) =

= 1
2

{
K−1∑
j=0

x>k Skxk−
[
V >k xk−xk+1

]>
P−1
k [V >k xk − xk+1] +Λ>k (cikxk+rik)

}
+Λ>K(ciKxK+riK).

Recall that the optimal value of X in Section 6.5.3 was computed by differentiating the
Lagrangian with respect to xk and setting it to zero. For an initial condition, this is
equivalent to have

∂L(X,Λ)

∂x0

= 0⇒
(
S0 x0 − V0 P

−1
0 [V >0 x0 − x1]

)
+ c>i0 Λ0 = 0. (6.120)

Likewise, for a point belonging to the jump set Dik , we should have

∂L(X,Λ)

∂xk
= 0⇒

(
Sk xk − Vk P−1

k [V >k xk − xk+1]
)

+

+
(
P−1
k−1 [V >k−1 xk−1 − xk]

)
+ c>k Λk = 0 ∀k ∈ {1, . . . , K − 1}, (6.121)

and finally for a terminal point

∂L(X,Λ)

∂xK
= 0⇒

(
P−1
K−1 [V >K−1 xK−1 − xK ]

)
+ c>iK ΛK = 0. (6.122)

As discussed previously, the co-states are defined by (6.111) and the variables θ(t, k) in
(6.112) are constant in the time interval Tk for all k ≤ K − 1. Therefore, the co-states
can be rewritten in the form of

λ(tk, k) = Sk xk − Vk P−1
k [V >k xk − xk+1], ∀k ∈ {0, . . . , K−1},

λ(tk, k − 1) = S(tk, k − 1) xk − P−1
k−1 [V >k−1 xk−1 − xk], ∀k ∈ {1, . . . , K}. (6.123)

Thus, (6.121) and (6.123) reveal that

λ(t0, 0) + c>i0 Λ0 = 0, (6.124)

λ(tk, k)− λ(tk, k − 1) + S(tk, k − 1) xk + c>ik Λk = 0, (6.125)

− λ(tK , K − 1) + S(tK , K − 1) + c>iK ΛK = 0. (6.126)

In the literature, conditions (6.124-6.126) are referred to as transversality conditions
on the initial point, switching points (jump points), and terminal point, respectively
(Sussmann, 1999; Liberzon, 2011). Now, we can present a theorem concerning the fixed
switching times problem.
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Theorem 6.5.1. The control (6.109), computed by the ordinary differential equations
(6.110), and switching parameters, computed by (6.118), solve the case of the fixed
switching times in Problem 6.5.1. Moreover, the optimal cost (6.105) is equal to
(6.119).

Now, solving the free switching times case of Problem 6.5.1 entails deriving the ap-
propriate switching time instances t1, . . . , tK−1. This will be presented in the sequel.

6.5.4 Computation of optimal switching time instances

For computing the optimal switching times, we set the partial derivative of the cost
function in (6.115) with respect to the switching time tk to zero. In other words,

∂J∗

∂tk
= 0⇒ ∂J∗k−1

∂tk
+
∂J∗k
∂tk

= 0 ∀k ∈ {1, . . . , K − 1}. (6.127)

Now, we aim at showing that the following relations hold

∂J∗k
∂tk

= −H
(
λ,xk, (tk, k)

)
= −

[1

2

(
x>kQkxk + u(tk, k)> Rk u(tk, k)

)
+

λ(tk, k)> (Ajk xk +Bjk u(tk, k))
]
,

∂J∗k−1

∂tk
= H

(
λ,xk, (tk, k − 1)

)
=

1

2

(
x>k Qk−1 xk + u(tk, k − 1)> Rk−1 u(tk, k − 1)

)
+ λ(tk, k − 1)>

(
Ajk−1

xk +Bjk−1
u(tk, k − 1)

)
. (6.128)

Note that (6.128) in fact represents the Hamilton-Jacobi-Bellman equation at the time
instances (tk, k) and (tk, k− 1) (see Appendix A.8.2 and Lewis and Syrmos (1995)). For
this purpose, similar to the computation (6.65), at time instance (tk, k), we can write

1
2

x>k Qk xk + 1
2
u(tk, k)>Rku(tk, k) = −1

2
x>k Ṡk xk − x>k Sk(Ajk xk +Bjku(tk, k))

+ 1
2

[V >k xk − xk+1]> P−1
k V >k Bjk R

−1
k B>jk Vk P

−1
k [V >k xk − xk+1]

= −1
2

x>k Ṡkxk − λ(tk, k)>(Ajk xk +Bjku(tk, k))+

θ>k V
>
k (Ajk xk +Bjku(tk, k)) + 1

2
θkV

>
k Bjk R

−1
k B>jkVk θk,

where θk is given by (6.112). Using (6.109) for u and (6.113) for the cost J∗k, we deduce

1
2

x>kQkxk + 1
2
u(tk, k)>Rku(tk, k) + λ(tk, k)>(Ajkxk +Bjku(tk, k)) =

= −1
2
x>k Ṡk xk + θ>k V >k (Ajk xk −Bjk Kk xk)− 1

2
θ>k V >k Bjk R

−1
k B>jk Vk θk

= −1
2

x>k Ṡk xk − θ>k V̇ >k xk − 1
2
θ>k Ṗk θk

= −∂J∗k
∂tk

.

Furthermore, at time instance (tk, k − 1), we observe that

∂J∗k−1

∂tk
= 1

2
x>k Ṡ(tk, k − 1) xk + θ>k−1 V̇ (tk, k − 1)> xk + 1

2
θ>k−1 Ṗ (tk, k − 1) θk−1.
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Then, similar to the above computation we can show ∂J∗k−1/∂tk=H
(
λ,xk, (tk, k − 1)

)
.

Consequently, (6.127) and (6.128) indicate that the Hamiltonian is continuous with re-
spect to time. This fact complies with the maximum principle for hybrid systems; see
Sussmann (1999); Liberzon (2011). Now, employing (6.123) for λ(tk, k) and λ(tk, k− 1),
and substituting into the following equation

H
(
λ,xk, (tk, k)

)
= H

(
λ,xk, (tk, k − 1)

)
,

condition (6.127) can be expressed by the following boundary condition

X>M(k)(S,V,P)X = 0, (6.129)

where the matrix M(k) for each k ∈ {1, . . . , K − 1} has the form

M(k) =



M
(k)
0,0 M

(k)
0,1 . . . M

(k)
0,K

M
(k)
1,0 M

(k)
1,1 . . . M

(k)
1,K

...
. . . . . .

...

M
(k)
K,1 M

(k)
K,2 . . . MK,K


∀k ∈ {1, . . . , K − 1}.



M
(k)
k,k = Qk − [Sk − Vk P−1

k V >k ]>Bjk R
−1
k B>jk

[
Sk − Vk P−1

k V >k
]

+[Sk − Vk P−1
k V >k ]>Ajk + A>jk [Sk − Vk P−1

k V >k ]−Qk−1

+[S(tk, k − 1) + P−1
k−1 ]> Bjk−1

R−1
k−1 B

>
jk−1

[S(tk, k − 1) + P−1
k−1]

−[S(tk, k − 1) + P−1
k−1 ]>Ajk−1

− A>jk−1
[S(tk, k − 1) + P−1

k−1],

M
(k)
k,k+1 = M

(k)>
k+1,k = [Sk − Vk P−1

k V >k ]> Bjk R
−1
k B>jk Vk P

−1
k − P−1

k V >k Ajk ,

M
(k)
k+1,k+1 = −P−1

k V >k BjkR
−1
k B>jk Vk P

−1
k ,

M
(k)
k−1,k−1 = Vk−1 P

−1
k−1 Bjk−1

R−1
k−1 B

>
jk−1

P−1
k−1 V

>
k−1,

M
(k)
k−1,k = M

(k)>
k,k−1 = −P−1

k−1 V
>
k−1 Bjk−1

R−1
k−1 B

>
jk−1

[S(tk, k − 1)− P−1
k−1]

+A>jk−1
Vk−1 P

−1
k−1,

M
(k)
j,l = 0, j, l ∈ {0, . . . , K} otherwise.

Note that in the above formulation all matrices with index “−1”, and “K+1” should
be set to zero. Now we can substitute the optimal value X∗ = G(S,V,P) from (6.118)
into (6.129), and obtain an expression which is independent of the variable X and only
depends on the time instances t1, . . . , tK−1. The difficulty still remains that in (6.110)
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several ODE’s exist which are defined on different time scales and different initial and
end times. To overcome this problem, for each time interval Tk we define a positive
variable αk as

α2
k = (tk+1 − tk)/T,

K−1∑
k=0

α2
k = 1.

and K set of variables (S̄(k), V̄ (k), P̄ (k)) for k ∈ {0, . . . , K − 1} as

S̄(k)(t) = S(α2
k t+tk, k), V̄ (k)(t) = V (α2

k t+tk, k), P̄ (k)(t) = P (α2
k t+tk, k), ∀t ∈ [0, T ].

This definition establishes the following boundary conditions for the variables
(S̄(k), V̄ (k), P̄ (k)):

S̄(k)(T ) = S(tk+1, k) given, S̄(k)(0) = S(tk, k),

V̄ (k)(T ) = V (tk+1, k) = I, V̄ (k)(0) = V (tk, k),

P̄ (k)(T ) = P (tk+1, k) = 0, P̄ (k)(0) = P (tk, k), (6.130)

for each k ∈ {0, . . . , K − 1}. Now, for finding the switching times t1, . . . , tK−1, we need
only to solve one differential algebraic equation, with given boundary conditions and
unknown parameters αk, as follows:

− ˙̄S(k) = α2
k (A>jk S̄

(k) + S̄(k) Ajk − S̄(k) Bjk R
−1
k B>jk S̄

(k) +Qk) ∀ t ∈ [0, T ],

K̄(k) = R−1
k B>jk S̄

(k),

− ˙̄V (k) = α2
k (Ajk −BjkK̄

(k))> V̄ (k), (6.131)

˙̄P (k) = α2
k V̄

(k)> Bjk R
−1
k B>jk V̄

(k) ∀k ∈ {0, . . . , K − 1}.

subject to:


S̄(k)(T ) = S(tk+1, k) given, V̄ (k)(T ) = In, P̄ (k)(T ) = 0,

G(S̄, V̄, P̄)> M(k)(S̄, V̄, P̄) G(S̄, V̄, P̄) = 0,∑K−1
k=0 α

2
k = 1,

where S̄ =
(
S̄(0), . . . , S̄(K−1)

)
, V̄ =

(
V̄ (0), . . . , V̄ (K−1)

)
, and P̄ =

(
P̄ (0), . . . , P̄ (K−1)

)
.

The algorithm (6.131) is solved backwards until its boundary conditions and the
criteria for the numbers αi are satisfied. Solving this differential algebraic equation can
be done by the Matlab command “bvp5c”. Now, we present the next theorem concerning
the free switching times problem.

Theorem 6.5.2. The solution of the differential algebraic equation (6.131) determines
the switching time instances for Problem 6.5.1. Then, the control (6.109), computed
by the ordinary differential equations (6.110), and the switching points, specified by
(6.118), solve the free switching times case of Problem 6.5.1. Moreover, the optimal cost
(6.105) is equal to (6.119).
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Remark 6.5.1. For the free switching times case of Problem 6.5.1, when the switching
signal does not depend on the states, and the initial state vector x(t0, 0) = x0 and the
end state vector x(tK , K − 1) = xf are fixed, that is,

C = blockdiag([I, 0, . . . , 0 I]), R = [x>0 0 . . . 0 x>f ]>, (6.132)

the optimal switching times problem can be computed similar to (6.118), and the whole
algorithm can be followed similar to what discussed in this section. In this case, the
transversality condition (6.125) has a simpler form as:

λ(tk, k − 1)− λ(tk, k) = S(tk, k − 1) xk. (6.133)

Example 6.5.1. Consider the hybrid linear system (6.99) with ` = 3, and the system
parameters

A1 =

[
−1 1

2 −3

]
, B1 =

[
1 1
2 1

]
,

A2 =

[
−1 1

0 −2

]
, B2 =

[
1 1
0 1

]
,

A3 =

[
−1 0

0 −3

]
, B3 =

[
1 2
1 1

]
.

The corresponding cost variables are given by

J0 =
1

2

∫ t1

t0

(
x>
[

2 0
0 2

]
x+ u>

[
1 0
0 1

]
u

)
dt,

J1 =
1

2
x>
[

2 0
0 2

]
x+

1

2

∫ t2

t1

(
x>
[

2 1
1 1

]
x+ u>

[
1 0
0 1

]
u

)
dt,

J2 =
1

2
x>
[

2 0
0 2

]
x+

1

2

∫ t3

t2

(
x>
[

1 0
0 1

]
x+ u>

[
1 0
0 1

]
u

)
dt,

where K = 3 has been chosen, indicating that two switches between the different flow
dynamics occur. The aim is to minimize the overall cost J defined by (6.105). Define
x = [x1 x2]>. Let’s assume that t0 = 0, tK = 3, x0 = [2 7]>, xf = [4 − 1]>, and the
equations of the manifolds are given by

D0 ={x0}, D1 = {x ∈ R2 : 2x1 − x2 + 2 = 0},
D2 = {x ∈ R2 : x1 − x2 = 0}, D3 = {xf}.

The optimal trajectory computed via our algorithm is depicted in Figure 6.5.1. The
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Figure 6.5.1: The optimal solution to the control policy in Example 6.5.1.

switching times computed via a differential algebraic equation are given as t1 = 1.0942
and t2 = 1.5123. Hence, this defines the hybrid time domain as

TK = ([0, 1.0942]× {0}) ∪ ([1.0942, 1.5123]× {1}) ∪ ([1.5123, 3]× {2}).

The switching points for this problem are computed to be

x1 = [−1.5716 − 1.1432]�, x2 = [0.0169 0.0169]�.

The optimal costs equal J∗
0 = 13.2904, J∗

1 = 1.9566, and J∗
2 = 67.2008. Consequently,

J∗ = 82.4478.

6.6 Conclusions

This chapter considers stability, robust stability, and optimal control of several classes of
hybrid linear systems. Concerning the stability problem, we established a link between
stability of hybrid and switched linear systems. Furthermore, we found an upper bound
for the maximum uncertainty under which stability of a perturbed hybrid linear system
having a quadratic robust Lyapunov function is guaranteed.

We discussed two problems regarding optimal control of hybrid linear systems. In
the first problem, an algorithm for analytical computation of lower and upper bounds
for the fixed initial and end states LQR problem in a class of hybrid linear systems
including a single linear flow and linear jump dynamics was proposed. In the next
scenario, we considered the LQ problem for a different class of hybrid linear systems with
free switching time instances. We showed that the switching times can be determined
by solving a differential algebraic equation with given boundary conditions.

Acknowledgement: The results of Sections 6.2, 6.3, and 6.5 have been developed
through discussions with Prof. Sanfelice at the University of Arizona, and have not
yet been published anywhere.
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Chapter 7

Conclusions

In Chapter 2 we have dealt with distinct problems concerning left eigenstructure
assignment for multi input systems, and partial and complete pole placement for single
input systems. Special attention has been devoted to systems with (n−1) control inputs
due to the nice mathematical properties. The results of this chapter are particularly
suitable for stabilization of certain classes of switched linear systems.

In Chapter 3 we have studied stability and stabilization of switched linear systems
with state dependent switching signals. In our problem setting, we have assumed
certain restrictions on switching manifolds. The stability analysis and stabilization
of switched systems have been based on the concept of common left eigenvectors and
left eigenstructure assignment introduced in Chapter 2. The main challenge here is
to appropriately select a set of desired common left eigenvectors for guaranteeing the
simultaneous stabilization of all linear subsystems, while avoiding the intersection of
the common invariant subspace of the closed loop subsystems with the given switching
manifold in the state space. These results are restrictive as an adequate number of
control inputs and special assumptions on the geometry of the switching manifolds are
required.

In Chapter 4 we have employed the concept of a common invariant subspace and left
eigenvectors assignment for stability and stabilization of switched linear systems with
arbitrary time switching signals. Our main result in this chapter discusses stabilization
of controlled switched linear systems whose open loop constituent matrices share an
invariant subspace to which a common quadratic Lyapunov function can be associated.
Then, we have broadened this class by assuming that open loop matrices have invariant
subspaces with sufficiently small distances from each other, such that a positive definite
matrix which satisfies special forms of Riccati inequalities can be associated to those
subspaces. For this approach, in addition to the required assumptions on the open loop
matrices, an adequate number of control inputs is needed. Moreover, we have discussed
robust stability of switched linear systems when their Hurwitz matrices share (n − 1)
real left eigenvectors.

In Chapter 5 we have investigated the problem of quadratic stability and weak
quadratic stability of a class of switched linear systems with two modes. We have
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shown that the results by Shorten and Narendra (2003) and Shorten et al. (2009) on
stability of rank-1 difference switched systems can be extended to the more general
form of switched linear systems whose constituent matrices have rank m ≥ 1 dif-
ference, provided that a symmetric transfer function matrix can be associated with
the pair of matrices. Moreover, we have defined sufficient and necessary conditions
for a pair of matrices for which a suitable symmetric transfer function matrix exists.
Finally, we have introduced an approach for computing a set of stabilizing control
inputs for a class of switched systems whose constituent matrices have rank m difference.

In Chapter 6 we have studied stability and stabilization of hybrid linear systems.
We have shown that the stability problem for a hybrid linear system is equivalent to
the stability problem for a switched linear system, by using bilinear transformation
for converting the discrete evolution of jumps to continuous dynamics. The main
results of this chapter, however, have been related to the optimal control of hybrid
linear systems. We have investigated two scenarios. In the first scenario, we have
considered a problem in which a fixed sequence of switching between flow and jump
sets occurs at fixed time instances. In this problem, the hybrid linear system is
specified by a single flow and jump dynamics, and state space constraints are repre-
sented by polyhedral sets. We have found upper and lower bounds for the optimal
value of the cost function via solving a constrained quadratic programming (QP)
problem in which the state variables at switching time instances are the unknown
parameters. The lower bound value has been obtained by relaxing the inequality
constraints, whereas the upper bound value has been computed by solving the dual
problem by means of gradient projection method. In the next scenario, using a
similar approach we have considered an optimal control problem for a class of hybrid
linear systems including multiple flows and a fixed sequence of switching with free
switching time instances. The optimal switching times have been computed via solving
a differential algebraic equation. High dimensions and large number of constraints
in these optimal control problems cause difficulties in computing the numerical solutions.
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Appendix A

Preliminaries

A.1 Vectors

Throughout the dissertation, N, Z, R, and C denote the fields of natural, integer, real,
and complex numbers, respectively. We denote n-dimensional real (complex) Euclidean
space by Rn (Cn) and the space of n × n matrices with real (complex) entries by Rn×n

(Cn×n). Consider a complex number a = α + jβ, then we denote the real part of a by
Re(a) = α, and its imaginary part by Im(a) = β. The complex conjugate of a, denoted
by a∗, is defined by a∗ = α− jβ.

Consider a vector v = [ν1 . . . νn]> ∈ Cn. Then, Re(v) = [Re(ν1) . . . Re(νn)]> and
Im(v) = [Im(ν1) . . . Im(νn)]> denote the real and imaginary parts of v, respectively. The
conjugate transpose of v is defined by v∗ = [ν∗1 . . . ν∗n]. The vector 2-norm is defined by

‖v‖ =

√√√√ n∑
i=1

|νi|2, (A.1)

where |νi| =
√

Re(νi)2 + Im(νi)2. Then, the infinity norm of v is defined by

‖v‖∞ = max
i
|νi| i ∈ {1, . . . , n}. (A.2)

The following inequality between 2-norm and infinity norm holds

‖v‖∞ ≤ ‖v‖ ≤ n‖v‖∞. (A.3)

A.2 Matrix properties

In this part we give some elementary concepts concerning matrix properties.
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A.2.1 Inverse of a matrix

Inverse properties of a matrix can be found, for example, in Horn and Johnson (1990).
Consider a non-singular matrix A ∈ Cn×n. The inverse of A, denoted by A−1, equals

A−1 =
adj(A)

det(A)
, (A.4)

where adj(A) is the adjoint of A. Consider a partitioned matrix

A =

[
A11 A12

A21 A22

]
, (A.5)

the inverse of A is computed by

A−1 =

[
A−1

11 + A−1
11 A12S−1A21A

−1
11 −A11A12S−1

−S−1A21A
−1
11 S−1

]
, (A.6)

where S is the Schur complement of A with respect to the block A11, that is, S =
A22 − A21A

−1
11 A12; see Horn and Johnson (1990).

A.2.2 Positive definite matrices

See Horn and Johnson (1990). Consider a Hermitian partitioned matrix

A =

[
X Y
Y ∗ Z

]
, (A.7)

Then A is positive definite (A > 0), if and only if X > 0 and its Schur complement with
respect to the block X is positive definite, that is, S = Z − Y ∗X−1Y > 0. A Slightly
different statement can be presented for a matrix A to be negative definite (A < 0), by
considering that −A > 0 .

A.2.3 Some determinant properties

See Horn and Johnson (1990). Let A ∈ Cn×n be nonsingular and A2 ∈ Cn×n. Then, the
following relationships hold

det(A−1) = 1/det(A), (A.8)

det(A>) = det(A), (A.9)

det(AA2) = det(A) det(A2). (A.10)

If A ∈ Cn×m and B ∈ Cm×n, then

det(In − AB) = det(Im −BA). (A.11)
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A.2.4 Kronecker product

Suppose A is an m× n matrix and B is a p× q matrix. Then, the Kronecker product of
A and B, denoted by A⊗B, is an mp× nq block matrix defined by

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB

 . (A.12)

A.2.5 Matrix rank

The rank of a matrix A, denoted by rank(A), is the number of the largest collection of
linearly independent columns of A.

A.2.5.1 Sylvester rank inequality

See Horn and Johnson (1990). Suppose A ∈ Cn×m, B ∈ Cm×q, and m ≥ n. Then, the
following property for the rank of matrices holds

rank(AB) ≥ rank(A) + rank(B)−m. (A.13)

A.2.6 Eigenvalues and eigenvectors

For the concept of eigenvalues and eigenvectors see, for example, Horn and Johnson
(1990). Consider a matrix A ∈ Cn×n. A number λ1 is an eigenvalue of A if

det(λ1I − A) = 0. (A.14)

For each eigenvalue λ1 there exists a vector v ∈ Cn (called a right eigenvector of A
corresponding to the eigenvalue λ1) satisfying the property

Av = λ1v,

and there exists a vector w ∈ Cn (called a left eigenvector of A corresponding to λ1)
which satisfies the equation

w∗A = w∗λ1.

The polynomial

det(λI − A) = λn + a1λ
n−1 + · · ·+ an, (A.15)

is called the characteristic polynomial of A. The roots of the characteristic polynomial
specify the eigenvalues of A. Therefore, if λ1, . . . , λn are eigenvalues of A, the following
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relationships hold

n∑
i=1

λi = tr(A) = −a1, (A.16)

n∑
i,j=1
i6=j

λiλj = a2, (A.17)

n∏
i=1

λi = det(A) = (−1)nan. (A.18)

A ∈ Rn×n is said to be Hurwitz if its eigenvalues have negative real parts, i.e., Re(λi) < 0
for all i ∈ {1, . . . , n}.

A.2.7 Eigenvalue decomposition

See Horn and Johnson (1990). Any diagonalizable matrix A ∈ Rn×n has a decomposition
of the form

A = T−1ΛT = V ΛW ∗, (A.19)

where Λ is a diagonal matrix whose diagonal entries are eigenvalues of A. T−1 = V ∈
Cn×n is a matrix whose columns are eigenvectors of A. W ∈ Cn×n is a matrix whose
columns are the set of left eigenvectors of A.

When A is not diagonalizable, that is, the algebraic multiplicity of at least one eigen-
value, say λ1, is greater than its geometric multiplicity, A has a generalized eigenvector.
Then, there exist nonzero vectors v1 and v2 such that

(A− λ1I) v1 = 0, (A− λ1I) v2 = v1, (A.20)

where in this formulation v1 is the eigenvector of A corresponding to λ1, and v2 is the
generalized eigenvector of A corresponding to λ1.

A.2.8 QR- decomposition

The concept of QR-decomposition can be found, for instance, in Horn and Johnson
(1990). Any matrix A ∈ Cn×m with n ≥ m can be factorized as the product of an n× n
unitary matrix Q, that is, Q∗Q = I, and an n × m upper triangular matrix R, in the
form of

A = QR = [Q1 Q2]

[
R1

0

]
= Q1R1, (A.21)

where R1 is an m × m upper triangular matrix, Q1 is an n × m matrix, and Q2 is
n × (n − m) matrix. In this description, Q1 and Q2 both have orthonormal columns.
The Q1R1-factorization is called reduced QR- factorization (decomposition).
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A.2.9 Real Schur decomposition

For the concept of real Schur decomposition, one is referred to, e.g., Arbenz and Kressner
(2010). For each A ∈ Rn×n there exists a decomposition

A = QRQ−1, (A.22)

with an orthonormal matrix Q ∈ Rn×n and a quasi triangular matrix R ∈ Rn×n having
the form

R =


R11 R12 . . . R1m

0 R22 . . . R2m
...

...
. . .

...
0 0 0 Rm,m

 , (A.23)

where any Rii for each i ∈ {1, . . . ,m} is either a 1× 1 matrix equal to a real eigenvalue
of A, or is a 2× 2 matrix having a pair of complex conjugate eigenvalues corresponding
to two eigenvalues of A.

A.2.10 Singular value decomposition

The concept of singular value decomposition can be found, e.g., in Horn and Johnson
(1990). Any matrix A ∈ Cn×m with m ≤ n can be factorized in the form of

A = UΣV ∗, (A.24)

where U ∈ Cn×n and V ∈ Cm×m are unitary matrices and Σ ∈ Cn×m is a matrix with
real non-negative entries in the form of

Σ =



σ1 0 · · · 0
0 σ2 . . . 0
...

...
. . . 0

0 0 . . . σm
...

...
... 0

0 0 . . . 0


, (A.25)

where σ1 ≥ σ2 . . . σm ≥ 0 are referred to as singular values of A.

A.2.11 Matrix norm

See Horn and Johnson (1990). Various definitions for matrix norms exist in the literature.
However, we only introduce the norm of a matrix A ∈ Cn×m induced by Euclidean vectors
(2 norm), that is,

‖A‖2 := max
w 6=0

‖Aw‖
‖w‖ = max

‖w‖=1
‖Aw‖ = σmax(A), (A.26)

where σmax(A) is the maximum singular value of A, and ‖w‖ is the vector 2-norm of w.
Note that the following inequality for the matrix norm holds

‖A‖2 ≤
√

tr(A∗A). (A.27)



142 A.3. Controlled linear systems

A.2.12 Similarity

The definition of similarity can be found, for example, in Horn and Johnson (1990). Two
matrices A ∈ Cn×n and Ā ∈ Cn×n are similar if there exists an invertible matrix T such
that

Ā = T−1AT. (A.28)

A.2.13 Invariant subspace of a matrix

This information can be found, for example, in Gohberg et al. (2006). An m dimensional
subspace Xm of Cn is said to be A invariant if for each v ∈ Xm, we have Av ∈ Xm. Let
the columns of V = [v1 . . . , vm] be a basis for Xm, then there exists a matrix L ∈ Cm×m,
such that

AV = V L. (A.29)

Moreover, the set of eigenvalues of L is a subset of the set of eigenvalues of A.

A.2.13.1 Distance between subspaces

For this part we refer the readers to Truhar (1996). Let Vi and Vj for some i, j ∈ N
be bases for the two m dimensional subspaces Xi,m and Xj,m, respectively. Define the
orthogonal projection matrices PXi,m = Vi(V

∗
i Vi)

−1V ∗i and PXj,m = Vj(V
∗
j Vj)

−1V ∗j . Then,
the distance between the two m dimensional subspaces Xi,m and Xj,m is defined by the
norm of the difference between the corresponding orthogonal projection matrices

dist(Xi,m,Xj,m) := ‖PXi,m − PXj,m‖.

Moreover, we have
‖PXi,m − PXj,m‖ = sin θij,

where θij is the greatest canonical angle between Xi,m and Xj,m which is defined by

cos θij = min
x∈Xi,m
x6=0

max
y∈Xj,m
y 6=0

y∗x

‖x‖‖y‖ . (A.30)

A.3 Controlled linear systems

Consider an LTI system

ẋ = Ax+Bu, (A.31)

where A ∈ Cn×n and B ∈ Cn×m. The controllability matrix Φc(A,B) for this system is
defined by

Φc(A,B) = [B AB . . . An−1B]. (A.32)

The pair (A,B) is said to be controllable if rank(Φc(A,B)) = n.
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A.3.1 [A B] invariant subspace

This part is taken from Gohberg et al. (2006). An m dimensional subspace Xm of Cn is
said to be [A B] invariant, if there exists a matrix F ∈ Rn×m such that for each ν ∈ Xm,
(A + BF )ν ∈ Xm. When F = 0, this is interpreted as the familiar relation AXm ⊆ Xm,
for A invariant subspace Xm.

A.3.2 Controlled block similarity

This definition has been taken from Gohberg et al. (2006). We say two controlled pairs
[A B] ∈ Cn×n × Cn×m and [Ā B̄] ∈ Cn×n × Cn×m are block similar, if there exists an
invertible transformation matrix S ∈ C(m+n)×(m+n) in the form of

S =

[
N 0
L M

]
, (A.33)

such that

[Ā B̄] = N−1[A B]

[
N 0
L M

]
. (A.34)

A.4 Input/Output linear systems

Consider an LTI system {
ẋ = Ax+Bu,

y = Cx+Du,
(A.35)

where A ∈ Cn×n, B ∈ Cn×m, C ∈ Cm×n, and D ∈ Cm×m. The observability matrix is
defined by

Φo(C,A) =


C

CA
...

CAn−1

 . (A.36)

Then, (C,A) is called observable if rank (Φo(C,A)) = n; see Kailath (1980). The transfer
function matrix of the system (A.35) equals

G(s) = C(sI − A)−1B +D. (A.37)

We say (A,B,C,D) is a realization of the transfer function matrix G(s). This realization
is minimal if and only if (A,B) is controllable and (C,A) is observable.
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A.4.1 Kalman-Yakubovic-Popov (KYP) lemma

The KYP lemma gives algebraic conditions for the existence of a certain type of Lyapunov
functions for strictly positive real systems; see Boyd et al. (1994), and Zhou et al. (1996).

Lemma A.4.1. Consider the LTI system (A.35). Let A ∈ Rn×n be Hurwitz, B ∈ Rn×m,
C ∈ Rm×n, D ∈ Rm×m, (A,B) be controllable, and (C,A) be observable. Then, the
transfer function matrix G(s) = C(sI −A)−1B +D is strictly positive real if and only if
there exist matrices P = P> > 0, matrices L and W , and a number α > 0, satisfying

A>P + PA = −L>L− αP, (A.38)

B>P +W>L = C, (A.39)

D +D> = W>W. (A.40)

A.5 Linear time varying systems

The concept of solutions for linear time varying systems can be found, for instance, in
(Kailath, 1980). Consider the linear time varying system

ẋ = A(t)x(t) +B(t)u(t) x(t0) = x0. (A.41)

The solution to this system is given by

x(t) = φ(t, t0)x0 +

∫ t

t0

φ(t, τ)B(τ)u(τ) dτ. (A.42)

In this representation, φ is called state transition matrix and satisfies the conditions

∂φ(t, t0)

∂t
= A(t)φ(t, t0), (A.43)

φ(τ, τ) = I. (A.44)

A.6 Differential equations and inclusions

Here, we summarize some important concepts concerning the theory of differential
equations and inclusions. They can be found, for example, in Cortes (2008); Smirnov
(2001).

A.6.1 Absolute continuity

The function γ : [a, b] → R is absolutely continuous in the interval [a, b], if there exists
a Lebesgue integral function k : [a, b]→ R such that

γ(t) = γ(a) +

∫ t

a

k(τ) dτ t ∈ [a, b]. (A.45)
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Absolute continuity is a stronger notion than continuity and weaker than differentiabil-
ity. Every continuous differentiable function is absolutely continuous, but the inverse
is not true. However, every absolutely continuous function is differentiable almost
everywhere.

A.6.2 Solutions of differential equations

For a definition of the different classes of solutions for differential equations see, e.g.,
Cortes (2008). Consider the differential equation

ẋ = f(x(t)) x(t0) = x0, (A.46)

where f : Rn → Rn represents the direction of the vector field at each point x. If f is
continuous, then the solutions to (A.46) are continuously differentiable. These solutions
are called classical solutions. If f is not continuous, then different notions of solutions for
differential equation (A.46) are defined. In the following, we point out couple of them.

A.6.2.1 Caratheodory solutions

See Cortes (2008). Caratheodory solutions are absolutely continuous solutions x(t),
which result from integrating (A.46)

x(t) = x(t0) +

∫ t

t0

f(x(τ)) dτ. (A.47)

Caratheodory solutions may not always follow the direction of vector fields, for example,
at points of measure zero.

A.6.2.2 Filippov solutions

See Cortes (2008) and Filippov (1988). The Filippov set valued map considers the
directions of vector fields around any point in the state space. For defining the Filippov
solutions, the vector field in the right hand side of (A.46) is replaced by the so-called
Filippov set-valued map defined by

F (x) :=
⋂
δ>0

⋂
µ(S)=0

co f(B(x, δ)\S), (A.48)

where co denotes the convex closure and µ denotes the Lebesgue measure. Then, the
Filippov solutions are solutions of the following differential equations

ẋ ∈ F (x). (A.49)

For instance, the differential equation

ẋ =

{
1 x ≥ 0,
−1 x < 0,
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is modified to the differential inclusion defined by

ẋ ∈


1 x > 0,

[−1, 1] x = 0,

−1 x < 0.

Consider a differential inclusion ẋ ∈ F (x). In the theory of differential inclusions,
often some restrictions on set valued map F are assumed. We explain some related
concepts; See Cai et al. (2008) and Goebel et al. (2012).

A.6.3 Outer semi-continuous set valued map

A set valued map F : Rn → 2Rn is said to be outer semi-continuous at the point x̄, if

lim
x→x̄

sup F (x) ⊂ F (x̄). (A.50)

A.6.4 Convex set valued map

A set valued map F : Rn → 2Rn is said to be convex, if the set is convex for all x. In
other words, for each x0, x1 ∈ Rn

F ((1− α)x0 + αx1) ⊃ (1− α)F (x0) + αF (x1) ∀ α ∈ [0, 1]. (A.51)

A.6.5 Locally bounded set valued map

A set valued map F : Rn → 2Rn is said to be locally bounded at the point x̄, if for some
neighborhood N (x̄), for each V ∈ N (x̄) the set F (V ) ⊂ Rn is bounded. It is called
locally bounded on Rn if it is locally bounded at every point x̄ ∈ Rn.

A.7 Hybrid systems

Consider a hybrid system described by the four tuples (C,F,D,G), i.e., a differential
and a difference inclusion in the form of

H :

{
ẋ ∈ F (x) x ∈ C,
x+ ∈ G(x) x ∈ D.

(A.52)

The sets C and D are referred to as flow and jump sets, respectively. Typically, it is
assumed that the set valued map F : C → 2Rn , which contains the set of all possible flow
directions within the closed set C, is nonempty, convex, and outer semi-continuous. The
set valued map G : D → 2Rn , which represents the set-valued jump function, is assumed
to be nonempty and outer semi-continuous. These assumptions on H are called “basic
assumptions”; see Goebel et al. (2012).
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A.7.1 Perturbed hybrid systems

Given a hybrid system (A.52) and a continuous function δ : Rn → R≥0, the hybrid
system Hδ described by the four tuple (Cδ, Fδ, Dδ, Gδ) and

Hδ :

{
ẋ ∈ Fδ(x) x ∈ Cδ,
x+ ∈ Gδ(x) x ∈ Dδ,

(A.53)

with the data

Cδ := {x : (x+ δ(x)B) ∩ C 6= ∅},
Fδ(x) := co F ((x+ δ(x)B) ∩ C) + δ(x)B ∀x ∈ Cδ,
Dδ := {x : (x+ δ(x)B) ∩D 6= ∅},
Gδ(x) := {v : v ∈ g + δ(g)B, g ∈ G((x+ δ(x)B) ∩D)} ∀ x ∈ Dδ, (A.54)

is called the perturbed form of H with respect to the uncertainty function δ. In this
form, B denotes the closed unit ball and the uncertainty δ is typically a continuous
function.

A function α : R≥0 → R≥0 is said to be increasing positive definite or belong to the
class K∞, if it is continuous, zero at zero, and strictly increasing. We make use of the
following theorems, concerning robust stability of the hybrid system H or stability of
the perturbed hybrid system Hδ.

Theorem A.7.1. See Cai et al. (2008) and Goebel et al. (2012). Consider the hybrid
system H defined by (A.52) satisfying the basic assumptions and C∪D = Rn. Suppose a
compact set A ⊂ Rn exists such that G(D ∩ A) ⊂ A. If there exists a smooth Lyapunov
function V : Rn → R≥0 for the pair (H,A), that is, V is positive on (C ∪ D)\A,
limx→A V (x) = 0, and

〈∇V (x), f〉 < 0 x ∈ C\A, f ∈ F (x)

V (g)− V (x) < 0 x ∈ D\A, g ∈ G(x)\A,
(A.55)

then the set A is asymptotically stable, and the basin of attraction contains every forward
invariant compact set.

Theorem A.7.2. See Cai et al. (2008) and Goebel et al. (2012). Consider the hybrid
system H defined by (A.52). If the compact set A is globally asymptotically stable, then
there exist a smooth function V : Rn → R≥0, and α1, α2 ∈ K∞, such that

α1(‖x‖A)) ≤ V (x) ≤ α2(‖x‖A) ∀x ∈ Rn,

max
f∈F (x)

〈∇V (x), f〉 ≤ −V (x), ∀x ∈ C,

max
g∈G(x)

V (g) ≤ e−1V (x) ∀x ∈ D,
(A.56)

where ‖x‖A denotes infy∈A(‖x − y‖). Moreover, the set A is asymptotically stable
for the perturbed hybrid system Hδ = (Cδ, Fδ, Dδ, Gδ) with some continuous function
δ : Rn → Rn

≥0, where δ(x) is positive for x ∈ (C ∪D) \A .
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A particular case of Theorem A.7.2 is obtained by assigning D = ∅ and C = Rn. In
this case,

Fδ(x) := co F (x+ δ(x)B) + δ(x)B ∀x ∈ Rn, (A.57)

and the equations (A.56) concerning the Lyapunov function will be modified to

α1(‖x‖A)) ≤ V (x) ≤ α2(‖x‖A),

max
f∈F (x)

〈∇V (x), f〉 ≤ −V (x); (A.58)

see Teel and Praly (2000). We use the former description for robust stability of hybrid
systems, and the latter illustration for robust stability of switched linear systems.

A.8 Optimization

Now, we present some basic concepts of optimization.

A.8.1 Projection onto a linear subspace

See Boyd and Vandenberghe (2004). The projection of a point x0 onto the set

X = {x ∈ Rn : Ax− b = 0},
denoted by ProjX (x0), equals

ProjX (x0) = x0 − A>(AA>)−1(Ax0 − b). (A.59)

A.8.2 Hamilton-Jacobi-Bellman equation

See, e.g., Lewis and Syrmos (1995). Consider the following problem

J(x(0), 0) = min
u

{∫ T

0

C(x(t), u(t)) dt+D (x(T ))

}
(A.60)

subject to ẋ(t) = f(x(t), u(t)), (A.61)

where C[.] is the scalar cost function, D[.] is a function that specifies the cost at the
final state x(T ), x(t) is the system state vector, x(0) is assumed to be given, and u(t)
for 0 ≤ t ≤ T is the control input vector that must be computed. For this problem, the
Hamilton Jacobi Bellman partial differential equation is defined by

J̇(x, t) + min
u
{∇J(x, t) · f(x, u) + C(x, u)} = 0, (A.62)

subject to the terminal condition

J(x, T ) = D(x), (A.63)

where ∇ is the gradient operator.
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A.8.3 Optimal control with fixed time and fixed final state in
continuous time

See Lewis and Syrmos (1995) and Bryson and Ho (1975). Consider the optimal control
problem

J(t0) =
1

2
x(T )> S(T ) x(T ) +

1

2

∫ T

t0

(x> Q x+ u> R u) dt, (A.64)

subject to


ẋ = Ax+Bu t ≥ t0,

x(t0) = x0,

C x(T ) = r,

(A.65)

with the given initial condition x0, final time T , S(T ) ≥ 0, Q ≥ 0, R > 0, the matrix
C, and the vector r. Then, the optimal control law which minimizes the cost (A.64) is
given as follows:

u(t) = −
(
K(t)−R−1B>V (t)P (t)−1V (t)>

)
x−R−1B>V (t)P (t)−1 r(T ), (A.66)

where

−Ṡ = A>S + SA− SBR−1B>S +Q,

K = R−1B>S,

−V̇ = (A−BK)>V t ≤ T,

Ṗ = V >BR−1B>V t ≤ T, (A.67)

and the following boundary conditions hold

V (T ) = C>, P (T ) = 0, S(T ) ≥ 0 is given.

If det(P (t)) = 0 for all t ∈ (t0, T ), the problem is said to be abnormal and there is no
solution. Note that the parameter

θ := P (t)−1
(
r(T )− V (t)>x(t)

)
, (A.68)

is fixed for any t ∈ [0, T ], where det(P (t)) 6= 0.

A.8.4 Optimal control with fixed time and fixed final state in
discrete time

See Lewis and Syrmos (1995). Consider the optimization problem

J =
1

2
x>K SK xK +

1

2

K−1∑
k=i

[x>k Q xk + u>k R uk], (A.69)

subject to


x+ = Axk +Buk k > i,

xi given,

C xK = rK ,
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with the given final time K, SK ≥ 0, Q ≥ 0, R > 0, the matrix C, and the vector rK .
Then, the optimal control is given by

uk = −Kk xk +Ku
k Vk+1 P

−1
k [V >k xk − rK ], (A.70)

where

Kk = (B> Sk+1 B +R)−1 B> Sk+1 A,

Sk = A> Sk+1 (A−BKk) +Q,

Vk = (A−B Kk)
>Vk+1,

Pk = Pk+1 − V >k+1 B (B> Sk+1 B +R)−1 B> Vk+1,

Ku
k = (B> Sk+1 B +R)−1 B>, (A.71)

with the boundary conditions

VK = C>, PK = 0, SK ≥ 0 is given.

If det(Pi) = 0 for all i ≤ k ≤ K, the problem has no solution in the interval {i, i +
1, . . . , K}. In this case the problem is said to be abnormal. Note that the parameter

θ = P−1
k (rK − V >k xk), (A.72)

is fixed for any k ∈ {i, i+ 1, . . . , K}, where det(Pk) 6= 0.
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