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Abstract

Many transportation networks can be modeled by pmax,`q-linear systems, i.e., discrete
event systems ruled by standard synchronizations (conditions of the form: "for all k ě l, oc-
currence k of event e2 is at least τ units of time after occurrence k´ l of event e1"). In some
applications, it is also necessary to model simultaneity between events (e.g., , for a road
equipped with traffic lights, a vehicle can cross an intersection only when the associated
traffic light is green). Such conditions cannot be expressed using standard synchroniza-
tions. Hence, we introduce the partial synchronization (condition of the form: "event e2
can only occur when event e1 occurs"). In this thesis, we consider a class of discrete event
systems ruled by standard and partial synchronizations, called pmax,`q-systems with par-
tial synchronization. Such systems are split into a main system and a secondary system
such that there exist only standard synchronizations between events in the same system
and partial synchronizations of events in the secondary system by events in the main sys-
tem. We adapt some modeling and control approaches developed for pmax,`q-linear sys-
tems to pmax,`q-systems with partial synchronization. Optimal feedforward control and
model predictive control for pmax,`q-linear systems are extended to pmax,`q-systems
with partial synchronization. Furthermore, transfer relation and model reference control
are provided for the secondary system under a predefined behavior of the main system.

Keywords: discrete event system, synchronization, pmax,`q-algebra, dioid, transporta-
tion network
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Résumé

De nombreux systèmes de transport peuvent être modélisés par des synchronisations
ordinaires (pour tout k ě l, l’occurrence k de l’événement e2 se produit au moins τ unités
de temps après l’occurrence k´ l de l’événement e1). Ces systèmes sont linéaires dans l’al-
gèbre pmax,`q. Pour certaines applications, il est primordial de modéliser la simultanéité
entre événements (par exemple, un véhicule ne peut franchir un feu tricolore que quand
celui-ci est vert). Comme la synchronisation ordinaire ne suffit pas à exprimer ce phéno-
mène, nous introduisons la synchronisation partielle (l’événement e2 ne peut se produire
que quand l’événemet e1 se produit). Dans ce mémoire, des méthodes développées pour
la modélisation et le contrôle de systèmes linéaires dans l’algèbre pmax,`q sont étendues
à des systèmes régis par des synchronisations ordinaires et partielles. Nous considérons
uniquement des systèmes divisés en un système principal et un système secondaire et gou-
vernés par des synchronisations ordinaires entre événements dans le même système et des
synchronisations partielles d’événements dans le système secondaire par des événements
dans le système principal. ous introduisons une commande optimale et une commande
prédictive pour cette classe de systèmes pour cette classe de systèmes par analogie avec les
résultats disponibles pour les systèmes linéaires dans l’algèbre pmax,`q. En considérant
un comportement donné pour le système principal, il est aussi possible de représenter le
système secondaire par une fonction de transfert et de modifier sa dynamique pour suivre
un modèle de référence.

Mots clés : système à événements discrets, synchronisation, algèbre pmax,`q, dioïde,
système de transport
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Zusammenfassung

Viele Verkehrsnetzwerke können mit Hilfe von Standardsynchronisationen (zum Bei-
spiel, für k ě l, das Auftreten k des Ereignisses e2 findet mindestens τ Zeiteinheiten nach
dem Auftreten k ´ l des Ereignisses e1 statt) modelliert werden. Eine interessante Eigen-
schaft solcher Systeme ist die Möglichkeit, sie als lineares System in der pmax,`q-Algebra
abzubilden. Für viele Anwendungen ist eine Modellierung der Gleichzeitigkeit zwischen
Ereignissen erforderlich (ein Fahrzeug kann, zum Beispiel, eine Kreuzung überqueren nur
wenn die dazugehörige Ampel grün ist). Aus diesem Grund wird die partielle Synchronisa-
tion eingeführt. Formal ist die partielle Synchronisation durch die folgende Bedingung defi-
niert: Ereignis e2 kann nur auftretenwenn Ereignis e1 auftritt. In dieser Arbeit wird eine Er-
weiterung derMethoden zurModellierung und Steuerung von pmax,`q-linearen Systemen
vorgestellt. Die betrachtete Systemklasse besteht aus Systemen geteilt in ein Hauptsystem
und ein Nebensystem, so dass jede Synchronisation entweder einer Standardsynchronisa-
tion zwischen Ereignissen im selben System entspricht oder eine partielle Synchronisation
eines Ereignisses im Nebensystem durch ein Ereignis im Hauptsystem darstellt. Analog zu
pmax,`q-linearen Systemen werden optimale Steuerung und modellprädiktive Regelung
für die oben gegebene Systemklasse eingeführt. Des Weiteren besteht die Möglichkeit, das
Nebensystem als eine Übertragungsmatrix abzubilden, wenn das Verhalten des Hauptsys-
tems vorgegeben ist. In diesem Sonderfall werden verfügbare Methoden zur Berechnung
von Vorsteuerungen und Rückführungen für pmax,`q-lineare Systeme an dem Nebensys-
tem angepasst.

Stichwörter: ereignisdiskretes System, Synchronisation, pmax,`q-Algebra, Dioidalgebra,
Verkehrsnetzwerk
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1
Introduction

A discrete event system (e.g., [6]) is a dynamical system driven by the instantaneous oc-
currence of events. In a discrete event system, two basic elements are distinguished: the set
of events and the rule describing the admissible behaviors of the system. Many formal ap-
proaches have been investigated to express this rule such as finite-state automata (e.g., [28])
and Petri nets (e.g., [33]). In some applications, time plays an important role in the dynam-
ics of the system. Therefore, the rule describing the admissible behaviors of the system
can be equipped with time. This gives rise to timed versions of the previous approaches,
namely timed automata and timed Petri nets. Depending on the selected modeling ap-
proaches, different theories, such as supervisory control theory for finite-state automata
[35] or state-based control for Petri nets (e.g., [27]), have been introduced to tackle con-
trol problems. During the last decades, the framework of discrete event systems has been
widely applied to model, analyze, and control both man-made systems such as manufac-
turing systems (e.g., [5]) or transportation networks (e.g., [26]) and natural systems such as
biological systems (e.g., [17]).

In this thesis, we focus on discrete event systems where the rule describing the admissi-
ble behaviors is only composed of synchronizations (i.e., conditions on the timed behavior
of one event in relation to one event). A well-known synchronization is the standard syn-
chronization and corresponds to the following condition: for all k ě l, occurrence k of
event e2 is at least τ units of time after occurrence k ´ l of event e1 with τ P R`

0 and
l P N0. Discrete event systems where the rule describing the admissible behaviors is only
composed of standard synchronizations are called pmax,`q-linear systems. This termi-
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1. Introduction

nology is due to the fact that a specific behavior namely the behavior under the earliest
functioning rule is described by linear equations in particular algebraic structures such
as the pmax,`q-algebra. In the literature, only this specific behavior is usually consid-
ered. For pmax,`q-linear systems, it is possible to partition the set of events into input,
state, and output events and based on this partition to derive a pmax,`q-linear state-space
model of the system. Therefore, much effort has been made during the last decades to adapt
key concepts from standard control theory to pmax,`q-linear systems. Transfer function
matrices have been introduced for pmax,`q-linear systems by using formal power series
[1, 8, 22, 32]. Furthermore, some standard control approaches such as optimal feedforward
control [9, 31], model reference control [14, 30], and model predictive control [20, 34] have
been extended to pmax,`q-linear systems. Graphically, pmax,`q-linear systems are repre-
sented by a class of timed Petri nets, namely timed event graphs. Other synchronizations
have recently been investigated. In [21], soft synchronization is introduced: a soft syn-
chronization is a standard synchronization which can be occasionally ignored by paying a
penalty. In [18], partial synchronization is defined by the following condition: event e2 can
only occur when, not after, event e1 occurs.

The main contributions of our work relate to pmax,`q-systems with partial synchro-
nization. Such systems have a rule described by standard and partial synchronizations and
are split into a main system and a secondary system such that there exist only standard
synchronizations between events in the same system and partial synchronizations (repre-
sented by dashed arrows in Fig. 1.1) of events in the secondary system by events in the main
system. The main system corresponds to a pmax,`q-linear system, as the synchronizations
affecting an event in the main system are standard synchronizations by events in the main
system. However, due to partial synchronization, some events in the secondary system
can occur only when, not after, associated events in the main system occur. Therefore, the
modeling and control methods developed for pmax,`q-linear systems cannot be directly
extended to pmax,`q-systems with partial synchronization. In this thesis, we investigate
how to adapt some of these methods to pmax,`q-systems with partial synchronization.

Main System

Secondary System

Figure 1.1.: A schematic view of a pmax,`q-system with partial synchronization

Before giving the structure of the thesis, let us briefly illustrate the practical interest of

2



pmax,`q-systems with partial synchronization. The main system often offers a service for
a time window to the secondary system. Furthermore, while obtaining this service is es-
sential for the secondary system, the secondary system does not affect the main system.
In the following, two concrete examples of pmax,`q-systems with partial synchronization
are introduced. The first example (discussed in detail in § 7 and § 8) considers a road net-
work subject to traffic lights. The traffic lights solve the resource allocation problems at
intersections and give permission to vehicles to cross intersections for time windows. This
is expressed by partial synchronizations: a vehicle can cross an intersection only when the
associated traffic light is green. Furthermore, while the color of a traffic light affects the
behavior of the vehicles, the presence or absence of vehicles at an intersection is irrelevant
for the associated traffic lights. In this example, the main system corresponds to the traffic
lights and the secondary system corresponds to the road network. In the second example
(discussed in detail in § 5 and in § 6), a supply chain for intermodal containers shuttling
back and forth between warehousesA1 and B1 is investigated. The supply chain is divided
in three sections: a road transport section between warehouse A1 and train station A, a
rail transport section between train stationsA and B, and a road transport section between
train station B and warehouse B1. The train line offers the service of transporting contain-
ers between train stations A and B for a time window, i.e., this service can start only when
a train is leaving the train station. Furthermore, while taking a train is a necessary step in
the supply chain, not taking a container does not affect the train. In this example, the main
system corresponds to the train line and the secondary system corresponds to the supply
chain.

This thesis is divided in two parts. The first part focuses on the mathematical aspects
and is structured as follows:

Chapter 2 provides a broad overview of general mathematical concepts, mainly residua-
tion theory and dioid (or idempotent semiring). Furthermore, some classical results
related to the dioidNmax,γvγw are summarized. In particular, the fundamental theorem
linking periodicity, rationality, and realizability in Nmax,γvγw is recalled.

Chapter 3 introduces the dioid of residuated mappings over Nmax, denoted FNmax
, and the

concepts of causality, periodicity, and rationality are discussed in F
Nmax

.

Chapter 4 defines, by analogy with Nmax,γvγw, the dioid F
Nmax,γ

vγw. The concepts of
causality, periodicity, rationality, and realizability are extended to F

Nmax,γ
vγw. This

leads to a fundamental theorem inF
Nmax,γ

vγw similar to the one obtained inNmax,γvγw.
Furthermore, left- and right-divisions are investigated in F

Nmax,γ
vγw.

The second part makes explicit how to use the mathematical tools discussed in the first part
to model and control pmax,`q-systems with partial synchronization.

Chapter 5 focuses on the modeling of pmax,`q-systems with partial synchronization.
Similarly to pmax,`q-linear systems, the timed behavior can be captured by daters.
This leads to a model in the pmax,`q-algebra.

3



1. Introduction

Chapter 6 describes optimal control for pmax,`q-systems with partial synchronization
based on the model discussed in § 5. Optimal feedforward control and its closed-loop
version, namely model predictive control, are presented.

Chapter 7 focuses on operatorial representation. An operatorial representation for pmax,`q-
systems with partial synchronization is not available. Then, only an operatorial repre-
sentation for a particular dynamics of pmax,`q-systems with partial synchronization
is considered: the dynamics of the secondary system under a predefined behavior of
the main system. In the following, such a system is called a pmax,`q-system subject
to partial synchronization. The suitable algebraic structure for the associated operato-
rial representation is the dioidF

Nmax,γ
vγw. This leads to transfer function matrices for

pmax,`q-systems subject to partial synchronization and clarifies, in terms of system
theory, the meaning of the fundamental theorem in F

Nmax,γ
vγw.

Chapter 8 adapts some results of model reference control developed for pmax,`q-linear
systems to pmax,`q-systems subject to partial synchronization. This approach based
on operatorial representation aims at matching the dynamics of the system with a
predefined model reference. In particular, the concepts of prefilter and feedback are
investigated.
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Part I.

Algebraic Tools

5





2
Mathematical Preliminaries

In this chapter, the mathematical concepts on which this thesis is based are defined.
These concepts are mainly related to residuation theory and dioid theory. Most of the
following definitions and results are directly taken from the literature. Some minor contri-
butions are, as far as we know, Prop. 1 and Lem. 3.

2.1. Residuation Theory

In the following, some basic concepts and results of residuation theory are recalled. A
survey is available in [3, 4, 7].

Definition 1 (Isotone mapping). Let f : EÑ F with E and F ordered sets. Mapping f is said
to be isotone if

@x, y P E, x ĺ yñ f pxq ĺ f pyq
Definition 2 (Residuated mapping). Let f : E Ñ F with E and F ordered sets. Mapping f

is said to be residuated if f is isotone and if, for all y P F, the least upper bound of the subset
tx P E|fpxq ĺ yu exists and lies in this subset. This element in E is denoted f7pyq. Mapping
f7 from F to E is called the residual of f.

The following theorem characterizes residuated mappings.

7
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Theorem 1 ([3]). Let f : E Ñ F with E and F ordered sets. The following statements are
equivalent:

1. f is residuated

2. f is isotone and there is an isotone mapping g : F Ñ E such that g ˝ f ľ IdE and
f ˝ g ĺ IdF

Furthermore, if f is residuated, themapping g in the second condition is unique and corresponds
to the residual of f.

Duality leads to dual versions of Def. 2 and Th. 1.

Definition 3 (Dually residuatedmapping). Let f : EÑ FwithE and F ordered sets. Mapping
f is said to be dually residuated if f is isotone and if, for all y P F, the greatest lower bound of
the subset tx P E|fpxq ľ yu exists and lies in this subset. This element in E is denoted f5pyq.
Mapping f5 from F to E is called the dual residual of f.

Theorem 2 ([3]). Let f : E Ñ F with E and F ordered sets. The following statements are
equivalent:

1. f is dually residuated

2. f is isotone and there is an isotone mapping g : F Ñ E such that g ˝ f ĺ IdE and
f ˝ g ľ IdF

Furthermore, if f is dually residuated, the mapping g in the second condition is unique and
corresponds to the dual residual of f.

Remark 1. make explicit a link between residuated mappings and dually residuated map-

pings. If a mapping f is residuated, then its residual f7 is dually residuated and
`

f7˘5 “ f.

Dually, if amapping f is dually residuated, then its dual residual f5 is residuated and
`

f5˘7 “ f.

2.2. Dioid

Dioids (or idempotent semirings) are algebraic structures which play a major role in the
rest of this thesis. Some basic definitions of dioid theory are recalled in this section. A more
exhaustive discussion is available in [1].

Definition 4 (Dioid). A dioid is a set D endowed with two binary operations, denoted ‘ and
b, such that:
— ‘ is associative, commutative, idempotent (@a P D, a ‘ a “ a), and admits a neutral

element ε.
— b is associative and admits a neutral element e.
— b is distributive with respect to ‘ from both sides:

@a, b, c P D,

#

ab pb‘ cq “ pab bq ‘ pab cq
pa‘ bq b c “ pab cq ‘ pbb cq
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2.2. Dioid

— ε is absorbing for b:
@a P D, ab ε “ εb a “ ε

If b is commutative, then dioid D is said to be commutative.

Formally, the operations ‘ and b are very similar to ` and ˆ in rings. Therefore, these
operations are respectively called addition and multiplication. Then, ε is the zero element
of the dioid D and e is its unit element. As in classical algebra, b is often omitted and the
multiplication of two elements is simply denoted by juxtaposition (i.e., a b b is denoted
ab).

Remark 2. In the literature, dioid might refer to slightly different algebraic structures. In
[29], ‘ is not idempotent and ε is not absorbing for b. In [32], ‘ is not idempotent, but ε is
absorbing for b. In [24], ‘ is not idempotent, but ε is absorbing for b and another condition
on ‘ is given:

@a, b P D, pDc1, c2 P D, a “ b‘ c1 and b “ a‘ c2q ñ a “ b

Clearly, the previous condition holds if ‘ is idempotent.

As ‘ is associative, commutative, and idempotent, it induces an order ĺ on D defined
by a ĺ bô a‘ b “ b. Therefore, a dioid is an ordered set admitting the bottom element
ε, i.e., @a P D, ε ĺ a. Furthermore, the least upper bound of ta, bu Ď D corresponds to
a ‘ b. Due to the distributivity of b with respect to ‘ from both sides, the product by a
constant is isotone. Formally,

@c P D, a ĺ bñ
#

ac ĺ bc

ca ĺ cb

Remark 3. Let S be a set and let D be a dioid. The set of mappings from S to D, denoted
M pS,Dq, is endowed by an operation ‘ and an order ĺ induced by the operation ‘ and the
order ĺ on D. Formally, for f1, f2 PM pS,Dq,

@s P S, pf1 ‘ f2q psq “ f1 psq ‘ f2 psq
f1 ĺ f2 ô @s P S, f1 psq ĺ f2 psq

Definition 5 (Selective dioid). A dioid D is said to be selective if, @a, b P D, a‘ b is equal
either to a or to b.

Example 1 (Dioid Rmax). The set R`
0 Y t´8u endowed with max as addition and ` as

multiplication is a dioid denoted Rmax. Its zero element ε is equal to ´8 and its unit element
e is equal to 0. The order induced by ‘ coincides with the standard order in R`

0 . Obviously,
dioid Rmax is selective and commutative. This dioid (along with other dioids using max as
addition and ` as multiplication) is often called pmax,`q-algebra in the literature.
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2.2.1. Complete Dioid

Definition 6 (Complete dioid). A dioidD is said to be complete if it is closed for infinite sums
and if distributivity is extended to infinite sums. Formally, for all subsets X of D,

à

xPX
x P D and @a P D,

#

ab pÀxPX xq “ À

xPX pab xq
pÀxPX xq b a “ À

xPX pxb aq
In a complete dioid D,

À

xPD x, denoted J, belongs to D. Then, dioid D admits J as top
element, i.e., @a P D, a ĺ J. A new binary operation ^ is defined on a complete dioid D
by

a^ b “ à

xPDa,b

x with Da,b “ tx P D|x ĺ a and x ĺ bu

Obviously, ^ is commutative, idempotent, and associative. Furthermore, ^ admits J as
neutral element in D. Dioid D is stable for ^-operation over infinite sets. For all subsets Y
of D,

ľ

yPY
y “ à

xPDY

x with DY “ tx P D|@y P Y, x ĺ yu

Furthermore, the greatest lower bound of ta, bu Ď D corresponds to a^ b.

Remark 4. In general, b is not distributive with respect to ^. But, since the multiplication
by a constant is isotone,

@a, b, c P D, a pb^ cq ĺ ab^ ac and pa^ bq c ĺ ac^ bc

In selective dioids, b is distributive with respect to ^ from both sides, i.e.,

@a, b, c P D, a pb^ cq “ ab^ ac and pa^ bq c “ ac^ bc

In general, ‘ is not distributive with respect to ^ and ^ is not distributive with respect
to ‘. However,

@a, b, c P D, a‘ pb^ cq ĺ pa‘ bq ^ pa‘ cq (2.1)

@a, b, c P D, a^ pb‘ cq ľ pa^ bq ‘ pa^ cq (2.2)

In [1], distributive dioids are defined as complete dioids where equality holds in (2.1) and
(2.2).

Definition 7 (Distributive dioid). A dioid D is said to be distributive if it is complete and,
for all subsets X of D,

@a P D,

#

a‘ pŹxPX xq “ Ź

xPX pa‘ xq
a^ pÀxPX xq “ À

xPX pa^ xq
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2.2. Dioid

Lemma 1. Let D be a complete selective dioid. Then, D is distributive.

Proof. It remains to show that, for all subsets X of D,

@a P D,

#

a‘ pŹxPX xq “ Ź

xPX pa‘ xq
a^ pÀxPX xq “ À

xPX pa^ xq
Only the first equality is considered. The result for the second equality is obtained by
duality. As D is selective, a‘ pŹxPX xq is either equal to Ź

xPX x or equal to a.
If a‘ pŹxPX xq “ Ź

xPX x, then, for all x P X , x ľ a. Thus,

a‘
˜

ľ

xPX
x

¸

“
ľ

xPX
x “

ľ

xPX
pa‘ xq

Otherwise, a ‘ pŹxPX xq “ a and a ą
Ź

xPX x. Then, there exists x1 P X such that
x1 ń a. Consequently, as D is a selective dioid, a‘ x1 “ a. Thus,

a “ a‘ x1 ľ
ľ

xPX
pa‘ xq ľ a

Example 2 (Dioid Rmax). The set R
`
0 Y t´8,`8u endowed with max as addition and `

as multiplication is a complete dioid denoted Rmax. Its zero element ε is equal to ´8, its
unit element e is equal to 0, and its top element J is equal to `8. The order induced by
‘ coincides with the standard order in R`

0 . Obviously, Rmax is selective and commutative.
Therefore, according to Lem. 1, Rmax is distributive.

Example 3 (Dioid Nmax). The set N0 Y t´8,`8u endowed with max as addition and `
as multiplication is a complete dioid denoted Nmax. Its zero element ε is equal to ´8, its
unit element e is equal to 0, and its top element J is equal to `8. The order induced by
‘ coincides with the standard order in N0. Obviously, Nmax is selective and commutative.
Therefore, according to Lem. 1, Nmax is distributive.

Example 4 (Boolean dioid B). The Boolean dioid B “ tε, eu is the dioid composed of ε and
e. Dioid B is complete, commutative, and selective. Therefore, according to Lem. 1, B is
distributive.

Residuation Theory in Complete Dioids

In the following, residuation theory is investigated when the considered ordered sets are
complete dioids.
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Definition 8 (Lower semi-continuity). A mapping f from complete dioid D1 to complete
dioid D2 is said to be lower semi-continuous if

@X Ď D1, f

˜

à

xPX
x

¸

“ à

xPX
f pxq

The next result gives a very handy characterization of residuated mappings when the
considered ordered sets are complete dioids.

Theorem 3 ([1]). Let f : D1 Ñ D2 withD1 andD2 complete dioids. The following statements
are equivalent:

1. f is residuated

2. f is lower semi-continuous and fpεq “ ε

Corollary 1. Let a be an element in a complete dioidD. The mappings La : x ÞÑ abx (left-
multiplication bya) andRa : x ÞÑ xba (right-multiplication bya) overD are residuated. The
residuals are denoted by L7

apxq “ a z̋x (left-division by a) and R7
apxq “ x{̋a (right-division by

a). By definition, a z̋b (resp. b{̋a) denotes the greatest solution x of the inequality ab x ĺ b

(resp. xb a ĺ b).

Next, some calculation rules with left- and right-divisions are recalled.

Lemma 2 ([1]). Let D be a complete dioid. For X Ď D and a, b, c in D,

˜

à

xPX
x

¸

z̋a “
ľ

xPX
x z̋a and a{̋

˜

à

xPX
x

¸

“
ľ

xPX
a{̋x (2.3)

a z̋
˜

à

xPX
x

¸

ľ
à

xPX
a z̋x and

˜

à

xPX
x

¸

{̋a ľ
à

xPX
x{̋a (2.4)

pbcq z̋a “ c z̋ pb z̋aq and a{̋ pbcq “ pa{̋cq {̋b (2.5)

Example 5. In Nmax, a z̋b “ b{̋a, as b is commutative. Besides,

a z̋b “ b{̋a “
$

’

&

’

%

J if a “ ε or b “ J
ε if a ą b

b´ a if b ľ a and a, b P N0

Proposition 1. Let f1 and f2 be two residuated mappings from a complete selective dioid
D1 to a distributive dioid D2. The mapping g from D1 to D2 defined by, @x P D1, g pxq “
f1 pxq ^ f2 pxq, is residuated.
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Proof. This proof is based on Th. 3. As f1 and f2 are residuated mappings, g pεq “ ε. It
remains to check that g is lower semi-continuous. As f1 and f2 are isotone, g is isotone.
Therefore, for all X Ď D1,

g

˜

à

xPX
x

¸

ľ
à

xPX
g pxq

Furthermore, as f1 and f2 are lower semi-continuous,

g

˜

à

xPX
x

¸

“ f1

˜

à

x1PX
x1

¸

^ f2

˜

à

x2PX
x2

¸

“
˜

à

x1PX
f1 px1q

¸

^
˜

à

x2PX
f2 px2q

¸

As D2 is a distributive dioid,

g

˜

à

xPX
x

¸

“ à

x1PX

˜

f1 px1q ^
˜

à

x2PX
f2 px2q

¸¸

“ à

x1PX

à

x2PX
pf1 px1q ^ f2 px2qq

As f1 and f2 are isotone,

g

˜

à

xPX
x

¸

ĺ
à

x1PX

à

x2PX
pf1 px1 ‘ x2q ^ f2 px1 ‘ x2qq

As D1 is a selective dioid, x1 ‘ x2 is either equal to x1 or to x2. Therefore, x1 ‘ x2 belongs
to X . Then,

g

˜

à

xPX
x

¸

ĺ
à

xPX
pf1 pxq ^ f2 pxqq

ĺ
à

xPX
g pxq

Duality leads to a dual version of Def. 8 and of Th. 3.

Definition 9 (Upper semi-continuity). A mapping f from complete dioid D1 to complete
dioid D2 is said to be upper semi-continuous if

@X Ď D1, f

˜

ľ

xPX
x

¸

“
ľ

xPX
f pxq
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The following result gives a very handy characterization of dually residuated mappings
when the considered ordered sets are complete dioids.

Theorem 4 ([1]). Let f : D1 Ñ D2 withD1 andD2 complete dioids. The following statements
are equivalent:

1. f is dually residuated

2. f is upper semi-continuous and f pJq “ J

Kleene Star

Definition 10 (Kleene star). Let D be a complete dioid. The Kleene star of a P D, denoted
a˚, is defined by

a˚ “ à

kPN0

ak with ak “
#

e if k “ 0

ab ak´1 otherwise

Some properties of the Kleene star are recalled in the following proposition.

Proposition 2 ([22]). In a complete dioid D, the following equalities hold for all a, b P D:

pa˚q˚ “ a˚ (2.6)

a˚a˚ “ a˚ (2.7)

pa‘ bq˚ “ pa˚bq˚ a˚ (2.8)

pa˚bq˚ “ e‘ pa‘ bq˚ b (2.9)

The next theorem plays an essential role in the following to solve implicit inequality of
the form x ľ ax‘ b.

Theorem 5 (Kleene star theorem, [1]). Let D be a complete dioid and a, b P D. Then,
the inequality x ľ ax ‘ b admits a˚b as least solution. Furthermore, this solution achieves
equality.

Example 6. In Nmax, a˚ is either equal to e if a P B or to J otherwise. Then, the equation
x “ ax‘ b admits b as least solution if b “ ε or a P B and J otherwise.

2.2.2. Subdioid

The concept of subdioid matches the concept of subrings in standard algebra.

Definition 11 (Subdioid). A subset S of a dioidD is a subdioid ofD if S is closed with respect
to ‘,b and ε, e P S .
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Remark 5. A subdioid S of a dioidD is a dioid. Besides, ifD is commutative (resp. selective),
then S is commutative (resp. selective). This does not hold for completeness or distributivity.
A subdioid S of a complete dioid D is complete if, and only if, S is closed under infinite sums.

Proposition 3 ([4]). Let S be a complete subdioid of a complete dioidD. Then, the canonical
injection i from S to D is residuated. Its residual i7, also denoted PrS , satisfies the following
conditions:

1. PrS ˝ PrS “ PrS
2. PrS ĺ IdD
3. x “ PrS pxq ô x P S

Remark 6. Let S be a complete subdioid of a complete dioid D. The operations ^S , left-
division z̋S , and right-division {̋S are defined on S , as S is a complete dioid. Furthermore,

@X Ď S,
S

ľ

xPX
x “ PrS

˜

ľ

xPX
x

¸

@a, b P S, b z̋Sa “ PrS pb z̋aq and a{̋Sb “ PrS pa{̋bq

Example 7. Nmax is a complete subdioid of the complete dioid Rmax. Then, the canonical
injection from Nmax to Rmax is residuated and its residual is defined by

Pr
Nmax

pxq “ txu

Rational Closure

Definition 12 (Rational closure). Let D be a complete dioid and let E be a subset of D such
that B Ď E . The rational closure of E , denoted E˚, is the least subset of D containing all finite
combinations of additions, multiplications, and Kleene stars over E . A subset E of D with
B Ď E is said to be rationally closed if E˚ “ E .
Remark 7. LetD be a complete dioid and let E be a subset ofD such thatB Ď E . The rational
closure of E , denoted E˚, is a subdioid of D. Dioid E˚ might not be complete, but E˚ is stable
with respect to the Kleene star. Furthermore, E˚ is rationally closed.

Example 8. In the complete dioid Rmax, the rational closure of tε, e, 1u is the subdioid Nmax.

Lemma 3. Let D be a complete dioid and a, b, c P D. If abdc “ badc for all d P
tε, e, a, bu˚, then

pa‘ bq˚ c “ a˚b˚c

15
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Proof. According to (2.8),

pa‘ bq˚ c “ pa˚bq˚ a˚c

“
˜

e‘à

kě1

pa˚bqk
¸

a˚c

“ a˚c‘à

kě1

pa˚bqk a˚c

Due to the assumption abdc “ badc for all d P tε, e, a, bu˚,

@j P N0,@d P tε, e, a, bu˚
, a˚bja˚bdc “ a˚ `8

à

k“0

bjakbdc

“ a˚ `8
à

k“0

akbj`1dc

“ a˚bj`1dc

Therefore, @k P N, pa˚bqk a˚c “ a˚bkc. Then,

pa‘ bq˚ c “ a˚c‘à

kě1

a˚bkc

“ a˚b˚c

Remark 8. The previous lemma is a minor extension of the classical formula recalled in [22]:

pa‘ bq˚ “ a˚b˚ if a and b commute

2.3. Morphism

A morphism usually refers to a structure-preserving mapping between two algebraic
objects. Next, the notion of morphism is only defined when the domain and the co-domain
are dioids.

Definition 13 (‘-morphism). A mapping f from dioid D1 to dioid D2 is a ‘-morphism if

f pεq “ ε and @a, b P D1, f pa‘ bq “ f paq ‘ f pbq
Lemma 4. Let f be a ‘-morphism from dioid D1 to dioid D2. Then, mapping f is isotone.
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Proof. For a, b P D1,

a ľ bñ a “ a‘ b

ñ f paq “ f pa‘ bq “ f paq ‘ f pbq
ñ f paq ľ f pbq

Lemma 5. Let f be a residuated mapping from complete dioidD1 to complete dioidD2. Then,
f is a ‘-morphism.

Proof. This is a direct consequence of Th. 3.

Definition 14 (b-morphism). A mapping f from dioid D1 to dioid D2 is a b-morphism if

f peq “ e and @a, b P D1, f pab bq “ f paq b f pbq
Definition 15 (Homomorphism). Amapping f from dioidD1 to dioidD2 is a homomorphism
if it is both a ‘-morphism and a b-morphism.

Definition 16 (Isomorphism). A mapping f from dioid D1 to dioid D2 is an isomorphism if
it is a bijective homomorphism. If there exists an isomorphism from dioidD1 to dioidD2, then
dioids D1 and D2 are said to be isomorphic.

Lemma 6. Let f be an isomorphism from dioid D1 to dioid D2. Then, f´1 is an isomorphism
from dioid D2 to dioid D1.

Proof. Mapping f´1 is bijective. It remains to check that f´1 is a homomorphism. We only
check the behavior of f´1 with respect to ‘, as the result concerning b is obtained in a
similar manner. First, as f pεq “ ε,

f´1 pεq “ f´1 ˝ f pεq “ ε

Second, let a1, b1 P D1 and a2, b2 P D2 such that a1 “ f´1 pa2q and b1 “ f´1 pb2q. Then,
f´1 pa2 ‘ b2q “ f´1 pf pa1q ‘ f pb1qq

“ f´1 pf pa1 ‘ b1qq
“ a1 ‘ b1

“ f´1 pa2q ‘ f´1 pb2q

Lemma 7. Let f be an isomorphism from dioid D1 to dioid D2. Then, f is residuated and its
residual f7 is f´1.

Proof. Mappings f and f´1 are isotone. Besides, f ˝ f´1 ĺ IdD2
and f´1 ˝ f ľ IdD1

.
Therefore, according to Th. 1, f is residuated and its residual is f´1.
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2.3.1. Dioid of ‘-Morphisms

The set of mappings over a dioid D is endowed with a binary operation ‘ induced by
the binary operation ‘ over the dioid D as mentioned in Rem. 3. Formally,

@x P D, pf1 ‘ f2q pxq “ f1 pxq ‘ f2 pxq
Another binary operation b is defined as the composition ˝ of mappings. Next, the al-
gebraic structure (with respect to these operations) of particular classes of mappings over
dioid D is investigated.

Proposition 4 ([32]). The set of‘-morphisms over a dioidD, denoted ED , endowed with the
binary operations ‘ and b is a dioid. Its zero element ε is defined by, @x P D, ε pxq “ ε. Its
unit element e is defined by, @x P D, e pxq “ x.

An interesting problem is to determine whether the dioid ED is complete. A necessary
condition is to consider a complete dioidD. However, the completeness ofD is not sufficient
to ensure the completeness of ED as shown in the following example.

Example 9. Let fn with n P N0 denote the‘-morphism over the complete dioidNmax defined
by

fn pxq “
$

’

&

’

%

ε if x “ ε

n if x P N0

J if x “ J
Then,

˜

f0 b
˜

à

nPN0

fn

¸¸

peq “ f0 pJq “ J
˜

à

nPN0

pf0 b fnq
¸

peq “ à

nPN0

f0 pnq “ e

Therefore, right-distributivity cannot be extended to infinite sums. Hence, the dioid ED with
D “ Nmax is not complete.

Proposition 5 ([7]). The set of residuated mappings over a complete dioid D, denoted FD ,
endowed with the previously defined binary operations ‘ and b is a complete dioid.

Proof. First, we show thatFD is a subdioid ofED . According to Lem. 5,FD is a subset ofED .
Furthermore, a direct consequence of Th. 3 is that the set of residuated mappings coincides
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with the set of lower semi-continuous ‘-morphisms. Obviously, ε and e are lower semi-
continuous. It remains to check that FD is closed with respect to ‘ and b. For f1, f2 P FD
and X Ď D,

pf1 ‘ f2q
˜

à

xPX
x

¸

“ f1

˜

à

xPX
x

¸

‘ f2

˜

à

xPX
x

¸

“ à

xPX
f1 pxq ‘

à

xPX
f2 pxq

“ à

xPX
pf1 ‘ f2q pxq

pf1 b f2q
˜

à

xPX
x

¸

“ f1

˜

f2

˜

à

xPX
x

¸¸

“ f1

˜

à

xPX
f2 pxq

¸

since f2 is residuated

“ à

xPX
pf1 b f2q pxq since f1 is residuated

Hence, mappings f1‘f2 and f1bf2 are lower semi-continuous. Therefore,FD is a subdioid
of ED .

Next, we show that the dioid FD is complete. Consider H Ď FD and f “ À

hPH h. As
D is complete, f is a mapping from D to D. Furthermore,

f pεq “ à

hPH
h pεq “ ε

@X Ď D, f

˜

à

xPX
x

¸

“ à

hPH

à

xPX
h pxq “ à

xPX
f pxq

Therefore, FD is closed for infinite sums. It remains to show that distributivity extends to
infinite sums. For left-distributivity, it comes directly from the definition of operations ‘
and b.

@g P FD,@x P D,

˜˜

à

hPH
h

¸

b g

¸

pxq “ à

hPH
h pg pxqq

“
˜

à

hPH
phb gq

¸

pxq

19



2. Mathematical Preliminaries

For right-distributivity, due to lower semi-continuity,

@g P FD,@x P D,

˜

gb
˜

à

hH
h

¸¸

pxq “ g

˜

à

hPH
h pxq

¸

“
˜

à

hPH
pgb hq

¸

pxq

The next step is to determine whether FD is distributive. This problem is not solved in
the general case. As FD is a complete dioid, the operation ^ is defined. But, for H Ď FD ,
the calculation of

Ź

hPH h might not be obvious. Of course,

@x P D,

˜

ľ

hPH
h

¸

pxq ĺ
ľ

hPH
h pxq

However, the mapping g from D to D defined by g pxq “ Ź

hPH h pxq may not be residu-
ated. A particular case has already been investigated in Prop. 1. IfD is a complete selective
dioid and H is a finite subset of FD ,

@x P D,

˜

ľ

hPH
h

¸

pxq “
ľ

hPH
h pxq

However, it is not sure that the equality still holds when H is not finite. This problem is
addressed for the particular case D “ Nmax in § 3.

2.4. Matrix Dioid

In this section, some facts on matrices with entries in a dioid are recalled. By analogy
with standard linear algebra, the operations‘ andb are extended to matrices with entries
in a dioid D.

@A,B P Dnˆp, pA‘ Bqij “ Aij ‘ Bij

@A P Dnˆp,@B P Dpˆq, pAb Bqij “
p

à

k“1

AikBkj
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2.4. Matrix Dioid

Besides, if the dioidD is complete, the operations^, z̋, and {̋ are also extended to matrices.

@A,B P Dnˆp, pA^ Bqij “ Aij ^ Bij

@A P Dnˆq,@B P Dnˆp, pA z̋Bqij “
n

ľ

k“1

Aki z̋Bkj

@A P Dnˆp,@B P Dqˆp, pB{̋Aqij “
p

ľ

k“1

Bik{̋Ajk

The order ĺ induced by operation ‘ corresponds to the standard order for matrices with
entries in an ordered set.

A ĺ Bô @i, j Aij ĺ Bij

According to this order, A ‘ B (resp. A ^ B) is the least upper bound (resp. greatest
lower bound) of tA,Bu and A z̋B (resp. B{̋A) corresponds to the greatest solution X of the
inequality AX ĺ B (resp. XA ĺ B).

Proposition 6 ([8]). LetD be a dioid. The setDnˆn endowed with the operations‘ andb is
a dioid. Besides, ifD is complete (resp. distributive), thenDnˆn is complete (resp. distributive).

In the matrix dioidDnˆn, the zero element ε is defined by εij “ ε for all i, j and the unit
element e is defined by

eij “
#

e if i “ j

ε otherwise

If Dnˆn is complete, then J is defined by Jij “ J for all i, j. Dioid Dnˆn inherits neither
commutativity nor selectivity from dioid D.

Remark 9. In Th. 5, if x or b are not square matrices, it is still possible to extend a, x, and b
with ε-rows and ε-columns to come down to square matrices. Therefore, the least solution of
the matrix inequality x ľ ax‘ b is a˚b.

Lemma 8. Let S be a subdioid of dioid D. The set Snˆn is a subdioid of dioid Dnˆn.

Proof. The set Snˆn contains the zero element and the unit element ofDnˆn. Furthermore,
Snˆn is closed with respect to ‘ and b.

Lemma 9. If dioids D1 and D2 are isomorphic, then dioids Dnˆn
1 and Dnˆn

2 are isomorphic.

Proof. There exists an isomorphismφ fromD1 toD2. Then,Φ fromDnˆn
1 toDnˆn

2 defined
by

@A P Dnˆn
1 , pΦ pAqqij “ φ pAijq

is an isomorphism.
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The next results focus on Kleene star of matrices and rationality.

Lemma 10 ([1, 8]). Let D be a complete dioid and n1, n2 P N. Consider matrices A P
Dn1ˆn1 , B P Dn1ˆn2 , C P Dn2ˆn1 , and D P Dn2ˆn2 . Then,

˜

A B

C D

¸˚
“

˜

pA‘ BD˚Cq˚ A˚B pCA˚B‘Dq˚
pCA˚B‘Dq˚ CA˚ pCA˚B‘Dq˚

¸

Theorem 6 ([8]). Let D be a complete dioid and let E be a subset of D such that B Ď E . The
subdioids pEnˆnq˚ and pE˚qnˆn are identical.

2.4.1. Rational Representation

Next, a particular representation, namely the pB,Cq-representation, for a class of ma-
trices is introduced. Later on, this representation appears to play a major role in system
theory.

Definition 17 (pB,Cq-representation). Let D be a complete dioid and let E be a subset of D
such that B Ď E . An element X P Dmˆp admits a pB,Cq-representation with respect to E if
there exist n P N, C P Bmˆn, A P Enˆn, and B P Bnˆp such that X “ CA˚B.

Theorem 7 ([8]). Let D be a complete dioid and let E be a subset of D such that B Ď E .
The dioid E˚ coincides with the set of elements x P D admitting a pB,Cq-representation with
respect to E .
Proposition 7. Let D be a complete dioid and let E be a subset of D such that B Ď E . For
X P Dmˆp, the following statements are equivalent:

1. X admits a pB,Cq-representation
2. each entry of X admits a pB,Cq-representation

Proof. 1 ñ 2: X admits a pB,Cq-representation, then there exist n P N, C P Bmˆn,
A P Enˆn, and B P Bnˆp such that X “ CA˚B. Consequently, Xij “ Ci.A

˚B.j where Ci.

is the i-th row of C and B.j the j-th column of B. Then, Xij admits a pB,Cq-representation.
2 ñ 1: Xij is admits a pB,Cq-representation. There exist nij P N, Cij P B1ˆnij , A P

Enijˆnij , and B P Bnijˆ1 such that Xij “ CijAi̊jBij. Then, X “ CA˚B with

A “ diag pA11, . . . , A1p, . . . , Am1, . . . , Ampq
C “ diag prC11 . . . C1ps , . . . , rCm1 . . . Cmpsq

B “

¨

˚

˚

˝

diag pB11, . . . , B1pq
...

diag pBm1, . . . , Bmpq

˛

‹

‹

‚

Hence, X admits a pB,Cq-representation.
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2.5. Dioid of Formal Power Series

Formal power series with coefficients in a dioidD provide an elegant way to manipulate
mappings from Zp (with p P N) to D. A complete survey on formal power series with
coefficients in a dioid is available in [1].

Definition 18 (Formal power series). A formal power series in p commutative variables with
coefficients in a complete dioidD is a mapping from Zp toD. A compact notation for a formal
power series s is

s “ à

kPZp

s pkq zk11 . . . z
kp
p where k “ pk1, . . . , kpq

The set of formal power series in p commutative variables z1, . . . , zp with coefficients in D is
denoted Dvz1, . . . , zpw.
The support of a formal power series s, denoted supp psq, is defined by

supp psq “ tk P Zp|s pkq ‰ εu
The valuation of a formal power series s, denoted val psq, is the greatest lower bound of its

support. The degree of a formal power series s, denoted deg psq, is the least upper bound of its
support.
A polynomial (resp. monomial) is a formal power series with a finite support (resp. with an

empty support or a support reduced to a singleton).

Usually, only the values on the support are made explicit in the writing of a formal power
series. The set Dvz1, . . . , zpw is endowed with the binary operation ‘ already mentioned
in Rem. 3, i.e.,

@k P Zp, ps1 ‘ s2q pkq “ s1 pkq ‘ s2 pkq
Another operation b is defined as the Cauchy product.

@k P Zp, ps1 b s2q pkq “
à

jPZp

s1 pjq s2 pk´ jq

Proposition 8 ([1]). Let D be a complete dioid. The set Dvz1, . . . , zpw endowed with the
operations‘ andb defined before is a complete dioid. IfD is commutative (resp. distributive),
then Dvz1, . . . , zpw is commutative (resp. distributive).

The Cauchy product justifies the restriction to complete dioids as shown in the next
example.
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Example 10. Let f1 and f2 be two mappings from Z to the non-complete dioid Rmax defined
by

@k P Z, f1 pkq “ max pk, 0q and f2 pkq “ e

Then,

pf1 b f2q p0q “
à

kPZ
pf1 pkq b f2 p´kqq

“ à

kPN0

k

“ `8 R Rmax

Therefore, the Cauchy product may not be defined when the dioid of coefficients is not complete.

The zero element ε of Dvz1, . . . , zpw is defined by ε pkq “ ε for all k P Zp. The unit
element e of Dvz1, . . . , zpw is defined by

e pkq “
#

e if k “ p0, . . . , 0q
ε otherwise

As Dvz1, . . . , zpw is a complete dioid, operation ^ exists for formal power series and is
defined by

@k P Zp, ps1 ^ s2q pkq “ s1 pkq ^ s2 pkq
The top element J of Dvz1, . . . , zpw is defined by Jpkq “ J for all k P Zp. Besides, for all
k P Zp, left-division and right-division are defined by

ps1 z̋s2q pkq “
ľ

jPZp

s1 pjq z̋s2 pk` jq (2.10)

ps2{̋s1q pkq “
ľ

jPZp

s2 pk` jq {̋s1 pjq (2.11)

Lemma 11. If complete dioids D1 and D2 are isomorphic, then dioids D1vz1, . . . , zpw and
D2vz1, . . . , zpw are isomorphic.

Proof. There exists an isomorphism φ from D1 to D2. Then, Φ from D1vz1, . . . , zpw to
D2vz1, . . . , zpw defined by

@s P D1vz1, . . . , zpw, Φ psq “ φ ˝ s
is an isomorphism.
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Lemma 12. Let S be a complete subdioid of a complete dioid D. The set Svz1, . . . , zpw is a
complete subdioid of Dvz1, . . . , zpw.
Proof. The setSvz1, . . . , zpw contains the zero element and the unit element ofDvz1, . . . , zpw.
Furthermore, Svz1, . . . , zpw is closed under infinite sums and with respect to b.

Example 11 (DioidNmaxvγw). The dioidNmaxvγw is the dioid of formal power series in γwith
coefficients in the complete dioid Nmax equal to ε over tk P Z|k ă 0u. The series s “ 3‘ 7γ5

belongs to Nmaxvγw and corresponds to the mapping from Z to Nmax defined by

s pkq “
$

’

&

’

%

3 if k “ 0

7 if k “ 5

ε otherwise

Furthermore, supp psq “ t0, 5u. Then, s is a polynomial, val psq “ 0, and deg psq “ 5.

2.5.1. Dioid of Isotone Formal Power Series

Let D be a complete dioid. In the following, we only consider formal power series in a
single variable γ with coefficients in D. Sets Z and D are ordered. Then, a formal power
series s P Dvγw is isotone if

@k, l P Z, k ě lñ s pkq ľ s plq
The following lemma gives a simple characterization of isotone formal power series.

Lemma 13. Let s in Dvγw. Series s is isotoneô s “ γ˚s.

Proof. ñ As γ˚ ľ e, γ˚s ľ s. Conversely, as s is isotone, @k P Z, spk` 1q ľ s pkq. Thus,
s ľ γs. This leads to s ľ γ˚s. Hence, s “ γ˚s.
ñ s “ γ˚s implies

@k P Z, s pkq “ à

jPN0

s pk´ jq

Therefore,

@k, l P Z, k ě lñ s pkq ľ s plq
Hence, s is an isotone formal power series.

Lem. 13 allows us to easily determine the algebraic structure of the set of isotone formal
power series.
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Proposition 9. Let D be a complete dioid. The set of isotone formal power series in Dvγw
endowed with the operations ‘ and b is a complete dioid, denoted Dγvγw. Furthermore, if D
is commutative, Dγvγw is commutative.

Proof. Let s1 and s2 be two isotone formal power series in Dvγw.
s1 ‘ s2 “ γ˚s1 ‘ γ˚s2 “ γ˚ ps1 ‘ s2q
s1 b s2 “ pγ˚s1q s2 “ γ˚ ps1 b s2q

Then, Dγvγw is closed with respect to ‘ and b.
As Dγvγw is included in Dvγw, the operation ‘ is associative, commutative, and idem-

potent, and the operation b is associative and distributive on both sides with respect to
‘. Furthermore, the zero element of Dvγw is isotone: it is the neutral element ε for ‘
in Dγvγw. Consequently, ε is absorbing for b. For s P Dγvγw, s “ γ˚s and, obviously,
s “ sγ˚. Therefore, γ˚ is the neutral element e for b in Dγvγw. Thus, Dγvγw is a dioid
included in Dvγw, but not a subdioid of Dvγw.
Dγvγw is stable under infinite sums and distributivity extends to infinite sums. Hence,

Dγvγw is a complete dioid.
Clearly, if D is commutative, Dvγw is commutative. Hence, if D is commutative, Dγvγw

is commutative.

AsDγvγw is a complete dioid, the operation^γ, z̋γ, and {̋γ are defined onDγvγw. Further-
more, s1 ^γ s2, s1 z̋γs2, and s2{̋γs1 correspond respectively to the greatest isotone formal
power series less than or equal to s1 ^ s2, s1 z̋s2, and s2{̋s1. It is easy to check that these
series are isotone. Thus, s1 ^γ s2 “ s1 ^ s2, s1 z̋γs2 “ s1 z̋s2, and s2{̋γs1 “ s2{̋s1.
Lemma 14. Let D a complete dioid. If D is distributive, Dγvγw is distributive.
Proof. As D is distributive, Dvγw is distributive. As ^ and ‘ are the same operations in
Dvγw and in Dγvγw, Dγvγw is distributive.

2.6. Quotient Dioid

By analogy with quotient rings (e.g., Z{nZ with n P N), quotient dioids are defined.
More details on quotient dioids can be found in [11].

Definition 19 (Congruence relation). A congruence relation on a dioid D is an equivalence
relationR on D such that

@c P D, aRbñ
#

pa‘ cqR pb‘ cq
caRcb and acRbc
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Proposition 10 ([11]). Let D be a dioid. The quotient set of D by the congruence relationR
endowed with

aR ‘ bR “ pa‘ bqR and aR b bR “ pab bqR
is a dioid named quotient dioid ofD byR and denotedDR. Besides,DR inherits completeness,
commutativity, and selectivity from D.

The zero element εR (resp. the unit element eR) ofDR is the equivalence class of ε (resp.
e).

If a quotient dioid is considered, no distinction is usually made between an equivalence
class (an element inDR) and one of its representatives (an element inD). An element inD
is associated with its equivalence class. To tackle the inverse problem (i.e., associating an
element in DR with an element in D), a canonical representative for an equivalence class
is defined. In this section, this question is not addressed in general.

2.6.1. Quotient Dioid of a Dioid of Formal Power Series

Quotient dioids of dioids of formal power series play an important role in the following.
The notion of support is generalized to quotient dioids of dioids of formal power series.

Definition 20. Let Dvz1, . . . , zpw be a dioid of formal power series and let R be a con-
gruence relation on Dvz1, . . . , zpw. The support of the equivalence class sR of a series s P
Dvz1, . . . , zpw is defined as

supp psRq “
č

sPsR
supp psq

A polynomial (resp. monomial) inDvz1, . . . , zpwR is an equivalence class with a finite support
(resp. an empty support or a support reduced to a singleton).

Congruence for the Dioid of Isotone Formal Power Series

Let D be a complete dioid. The complete dioid of formal power series in γ with coeffi-
cients in D is considered. In the following, the congruence relation R is defined on Dvγw
by

aRbô γ˚a “ γ˚b

Lemma 15. Dioids DRvγw and Dγvγw are isomorphic.

Proof. Let Φ be the mapping from Dγvγw to DRvγw defined by Φ psq “ sR.
For s1, s2 in Dγvγw,

Φ ps1q “ Φ ps2q ñ γ˚s1 “ γ˚s2
ñ s1 “ s2
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Therefore, Φ is injective.
For S in DRvγw and s P S, γ˚s belongs to SXDγvγw. Therefore, Φ pγ˚sq “ S. Then, Φ

is surjective. Mapping Φ is a bijection from Dγvγw to DRvγw.
Furthermore, for s1, s2 in Dγvγw,

Φ pεq “ εR
Φ pγ˚q “ γR̊ “ eR
Φ ps1 ‘ s2q “ s1R ‘ s2R “ Φ ps1q ‘Φ ps2q
Φ ps1 b s2q “ s1R b s2R “ Φ ps1q bΦ ps2q

Consequently, Φ is an isomorphism from Dγvγw to DRvγw.
A series s inDγvγw is associatedwith an element S inDRvγw. Therefore, a representative

s1 of S characterizes s. This is sometimes written in a slightly ambiguous manner s “ s1.
This leads to richer definitions for support, monomials, and polynomials in the dioidDγvγw.
Definition 21 (γ-support). Let s be a series inDγvγw. The γ-support of s, denoted suppγ psq,
is defined by suppγ psq “ supp psRq.

The classical definitions of polynomials leads to a single polynomial in Dγvγw, namely
ε. Therefore, from now on, monomials and polynomials in Dγvγw are defined with respect
to the γ-support.

Definition 22. Let s be a series in Dγvγw. Series s is a polynomial if its γ-support is finite.
Series s is monomial if its γ-support is either empty or a singleton.

The greatest lower bounds of suppγ psq and val psq coincide. However, the least upper
bound of suppγ psq might be less than deg psq. Then, the γ-degree of series s, denoted
degγ psq, is defined as the least upper bound of suppγ psq. Next, the canonical representa-
tives for a subclass of polynomials in Dγvγw is introduced.
Definition 23. Let p be a polynomial in Dγvγw fulfilling the condition: there exists k P Z

such that p pkq “ ε. If p “ ε, its canonical representative is ε. Otherwise, the canonical
representative of p is

À

kPsuppγppq p pkqγk.

An algorithm to compute the canonical representative of an element in the previous class
of polynomials from any representative consists in, first, maximizing the coefficients and,
second, deleting the redundant coefficients.

2.7. Dioid Nmax,γvγw
The dioid Nmax,γvγw plays a major role in the modeling and control of pmax,`q-linear

systems (e.g., [1, 14]). In this chapter, the dioid Nmax,γvγw is briefly introduced and the con-
cepts of periodicity, rationality, and realizability are recalled for this dioid. The presented
results mainly come from [1, 8, 22].
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Definition 24 (Dioid Nmax,γvγw). The distributive dioid Nmax,γvγw is defined as the dioid of
isotone formal power series in γ with coefficients in the distributive dioid Nmax equal to ε over
tk P Z|k ă 0u. Furthermore, as Nmax is commutative, Nmax,γvγw is commutative.

According to Prop. 9 and Lem. 14, the previous definition is valid. By definition, a series
s in Nmax,γvγw is an isotone mapping from Z to Nmax such that s pkq “ ε for k ă 0.

Example 12. Let s “ 1γ‘ 4γ3 be a series in Nmax,γvγw.

s pkq “
$

’

&

’

%

ε if k ă 1

1 if k “ 1, 2

4 if k ě 3

The γ-support of s is t1, 3u. Therefore, s is a polynomial and, according to Def. 23, its canonical
representative is 1γ‘ 4γ3. A graphical representation of s is drawn in Fig. 2.1.

0

1

2

3

4

1 2 3 4 5 k

s (k)

Figure 2.1.: Series s “ 1γ‘ 4γ3

2.7.1. Periodicity

Definition 25 (Periodicity). A series s in Nmax,γvγw is said to be periodic if there exist two
polynomials p, q in Nmax,γvγw, τ P N0, and ν P N such that s “ p ‘ q pτγνq˚. A matrix
with entries in Nmax,γvγw is said to be periodic if all its entries are periodic.

A canonical representative for periodic series in Nmax,γvγw has been introduced in [22,
23].
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Definition 26 (Throughput). The throughput of a non-zero periodic series s “ p‘q pτγνq˚
in Nmax,γvγw, denoted σ psq, is defined by

σ psq “
$

’

&

’

%

`8 if s is a polynomial and @k P Z, s pkq ă J
0 if s is a polynomial and Dk P Z|s pkq “ J
ν
τ
otherwise

Example 13. Let s be a periodic series in Nmax,γvγw with the canonical representative 3 ‘
4γ2 ‘ `

6γ3 ‘ 8γ4
˘ `

3γ2
˘˚
. Then,

@k ě 3, s pk` 2q “ 3s pkq
The transient of s is given by the polynomial p “ 3 ‘ 4γ2. The pattern of s is given by the
polynomial q “ 6γ3 ‘ 8γ4. Due to the periodicity 3γ2, the pattern q is repeated (translation
of two units to the right and three units to the top). The throughput of s is

σ psq “ ν

τ
“ 2

3

A graphical representation of s is drawn in Fig. 2.2.

Calculations with Periodic Series

Proposition 11 (Sum of periodic series [11, 22]). Let s1 and s2 be two periodic series in
Nmax,γvγw. Series s1 ‘ s2 is periodic. Furthermore, if s1 and s2 are different from ε, then

σ ps1 ‘ s2q “ min pσ ps1q , σ ps2qq
Proposition 12 (Greatest lower bound of periodic series [11]). Let s1 and s2 be two periodic
series in Nmax,γvγw. Series s1 ^ s2 is periodic. Furthermore, if s1 and s2 are different from ε,
then

σ ps1 ^ s2q “ max pσ ps1q , σ ps2qq
Proposition 13 (Product of periodic series [11, 22]). Let s1 and s2 be two periodic series in
Nmax,γvγw. Series s1 b s2 is periodic. Furthermore, if s1 and s2 are different from ε, then

σ ps1 b s2q “ min pσ ps1q , σ ps2qq
Proposition 14 (Division of periodic series [11]). Let s1 and s2 be two periodic series in
Nmax,γvγw. Series s1 z̋s2 and s2{̋s1 are periodic. Furthermore, if s1 and s2 are different from ε,
— s1 z̋s2 “ s2{̋s1 “ ε if σ ps1q ă σ ps2q
— σ ps1 z̋s2q “ σ ps2{̋s1q “ σ ps2q otherwise
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Figure 2.2.: Series s “ 3‘ 4γ2 ‘ `

6γ3 ‘ 8γ4
˘ `

3γ2
˘˚

According to Prop. 11 and Prop. 13, the set of periodic series inNmax,γvγw is a subdioid of
Nmax,γvγw, denotedNper

max,γvγw. Moreover, the dioidN
per
max,γvγw is rationally closed as shown

in the next proposition.

Proposition 15 (Kleene star of periodic series [11, 22]). Let s be periodic series inNmax,γvγw.
Series s˚ is periodic.

However, N
per
max,γvγw is not a complete dioid: series sn “ pnˆ nqγn with n P N belongs

to N
per
max,γvγw, but

À

nPN sn does not belong to N
per
max,γvγw.

Remark 10. Software tools to manipulate periodic series in Nmax,γvγw exist, e.g., [13].

2.7.2. Rationality

Definition 27 (Rationality). A series s in Nmax,γvγw is said to be rational if s belongs to the
rational closure of tε, e, γ, 1u. A matrix with entries in Nmax,γvγw is said to be rational if all
its entries are rational.
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2.7.3. Realizability

Definition 28 (Realizability). Amatrix S inNmax,γvγwmˆp is said to be realizable if S admits
a pB,Cq-representation with respect to tε, e, 1, γu.

2.7.4. The Fundamental Theorem in Nmax,γvγw
Theorem 8 ([1, 8]). Let S be a matrix in Nmax,γvγwmˆp. The following statements are equiv-
alent:

1. S is periodic

2. S is rational

3. S is realizable
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3
Dioid FNmax

In this chapter, the dioid F
Nmax

based on the set of residuated mappings over Nmax is
introduced. Furthermore, the concepts of causality, periodicity, and rationality are defined
in the dioid F

Nmax
and some properties of the dioid F

Nmax
are also proved. The dioid F

Nmax

is used in § 4 as the dioid of coefficients to develop a dioid of formal power series similar
to the dioid Nmax,γvγw.
Definition 29 (DioidF

Nmax
). The complete dioidF

Nmax
is the set of residuated mappings over

Nmax endowed with the operations ‘ and b defined by

@f1, f2 P FNmax
, @x P Nmax, pf1 ‘ f2q pxq “ f1 pxq ‘ f2 pxq

f1 b f2 “ f1 ˝ f2
The order in the dioid F

Nmax
is induced by the order in Nmax, i.e.,

@f1, f2 P FNmax
, f1 ĺ f2 ô @x P Nmax, f1 pxq ĺ f2 pxq

According to Prop. 5, the previous definition is valid. In the next two lemmas, a simple
characterization of the residuated (resp. dually residuated) mappings over Nmax is derived
from Th. 3 (resp. Th. 4) using particular properties of Nmax. These two lemmas are used to
check whether a mapping over Nmax is residuated or dually residuated.

Lemma 16. Let f be a mapping over Nmax. The following statements are equivalent:
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3. Dioid F
Nmax

1. f is residuated

2. f pεq “ ε, f is isotone, and
À

nPN f pnq “ f pJq
Proof. 1 ñ 2: By definition, f is isotone. Besides, according to Th. 3, f pεq “ ε and f is
lower semi-continuous. Therefore,

à

nPN
f pnq “ f

˜

à

nPN
n

¸

“ f pJq

2 ñ 1: According to Th. 3, it remains to prove that f is lower semi-continuous. As f is
isotone,

@X Ď Nmax, f

˜

à

xPX
x

¸

ľ
à

xPX
f pxq

In the dioid Nmax, @X Ď Nmax, x̃ “ À

xPX x is either in X or equal to J. If x̃ P X ,

à

xPX
f pxq ľ f px̃q “ f

˜

à

xPX
x

¸

Otherwise, x̃ “ J. Hence, for all n P N, there exists xn P X such that xn ľ n. Then,

à

xPX
f pxq ľ

à

nPN
f pxnq ľ

à

nPN
f pnq “ f pJq “ f px̃q “ f

˜

à

xPX
x

¸

Therefore, f is lower semi-continuous.

Lemma 17. Let f be a mapping over Nmax. The following statements are equivalent:

1. f is dually residuated

2. f pJq “ J and f is isotone

Proof. 1ñ 2: Mapping f is dually residuated. By definition, f is isotone. Besides, according
to Th. 4, f pJq “ J.
2 ñ 1: According to Th. 4, it remains to prove that f is upper semi-continuous. As f is

isotone,

@X Ď Nmax, f

˜

ľ

xPX
x

¸

ĺ
ľ

xPX
f pxq

In the dioid Nmax, @X Ď Nmax, x̃ “ Ź

xPX x belongs to X .

ľ

xPX
f pxq ĺ f px̃q “ f

˜

ľ

xPX
x

¸

Therefore, f is upper semi-continuous.
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3.1. Projection on F
Nmax

As the dioid F
Nmax

is complete, right-division is defined in F
Nmax

and f2{̋f1 corresponds
to the greatest solution in F

Nmax
of f b f1 ĺ f2. The previous lemma leads, under some

conditions, to a simple expression for right-division in F
Nmax

.

Lemma 18. Let f1, f2 be two mappings in F
Nmax

such that f1 pJq “ J. Then,
f2{̋f1 “ f2 b f5

1

Proof. Mapping f1 is isotone and f1 pJq “ J. According to Lem. 17, f1 is dually residuated.
As f5

1 is residuated (see Rem. 1), f5
1 belongs to F

Nmax
. Let g be a mapping in F

Nmax
. Then,

gb f1 ĺ f2 ñ gb f1 b f5
1 ĺ f2 b f5

1

ñ g ĺ f2 b f5
1 as f1 b f5

1 ľ Id

Furthermore,

g ĺ f2 b f5
1 ñ gb f1 ĺ f2 b f5

1 b f1

ñ gb f1 ĺ f2 as f
5
1 b f1 ĺ Id

Hence, gb f1 ĺ f2 ô g ĺ f2 b f5
1. Thus, f2{̋f1 “ f2 b f5

1.

3.1. Projection on FNmax

In this section, a projection, denoted PrR, from the set of isotone mappings over Nmax to
F
Nmax

is introduced. This allows us, in particular, to prove the distributivity of F
Nmax

.

Proposition 16. Let f be an isotone mapping over Nmax. There exists a greatest mapping in
F
Nmax

, denoted PrR pfq, such that PrR pfq ĺ f. Mapping PrR pfq is defined by

@x P Nmax, PrR pfq pxq “
$

’

&

’

%

ε if x “ ε

f pxq if x P N0
À

nPN f pnq if x “ J
Proof. The mapping g over Nmax is defined by

@x P Nmax, g pxq “
$

’

&

’

%

ε if x “ ε

f pxq if x P N0
À

nPN f pnq if x “ J
Clearly, g is isotone, g pεq “ ε, and

à

nPN
g pnq “ à

nPN
f pnq “ g pJq
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3. Dioid F
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Therefore, according to Lem. 16, g is residuated. Furthermore, as f is isotone,

g pJq “ à

nPN
f pnq ĺ f pJq

Then, g ĺ f. Let h be a residuated mapping less than or equal to f. For x “ ε, h pεq “ ε “
g pεq. For x P N0, h pxq ĺ f pxq “ g pxq. For x “ J,

h pJq “ à

nPN
h pnq ĺ

à

nPN
f pnq “ g pJq

Hence, h ĺ g. Thus, g is the greatest residuated mapping less than or equal to f.

Remark 11. The previous proposition is reminiscent of Prop. 3. However, as shown in Ex. 9, the
set of isotone mappings overNmax is not a complete dioid. Of course, it is possible to reformulate
Prop. 3 in terms of lattices (see [2, 3]). Then, the previous proposition is a direct consequence of
the lattice-version of Prop. 3, as the set of isotone mappings over Nmax and FNmax

are complete
lattices.

The next lemma investigates the behavior of PrR with respect to ‘.

Lemma 19. Let f1, f2 be two isotone mappings over Nmax. Then,

PrR pf1 ‘ f2q “ PrR pf1q ‘ PrR pf2q
Proof. This comes directly from the definition of PrR pfq in Prop. 16.

As the dioid F
Nmax

is complete, left-division is defined in F
Nmax

and f1 z̋f2 corresponds to
the greatest solution inF

Nmax
of f1bf ĺ f2. The projection PrR leads to a simple expression

for left-division in F
Nmax

similar to the one obtained for right-division in Lem. 18.

Lemma 20. Let f1, f2 be two mappings in F
Nmax

.

f1 z̋f2 “ PrR
´

f
7
1 ˝ f2

¯

Proof. Let g be a mapping in F
Nmax

.

f1 b g ĺ f2 ô @x P Nmax, f1 pg pxqq ĺ f2 pxq
ô @x P Nmax, g pxq ĺ f

7
1 pf2 pxqq

ô g ĺ f
7
1 ˝ f2

As f7
1 does not belong toF

Nmax
, f7

1˝f2 may not belong toF
Nmax

. Then, as f7
1˝f2 is an isotone

mapping over Nmax, Prop. 16 leads to

f1 b g ĺ f2 ô g ĺ PrR
´

f
7
1 ˝ f2

¯
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In a complete dioid D, according to Lem. 2,

a z̋
˜

à

xPX
x

¸

ľ
à

xPX
a z̋x and

˜

à

xPX
x

¸

{̋a ľ
à

xPX
x{̋a

with a P D and X Ď D. In the complete dioid F
Nmax

, equality holds under some conditions
as shown in the following lemma.

Lemma 21. Let H be a finite subsets of F
Nmax

and let f1, f2 be two mappings in F
Nmax

such
that f2 pJq “ J. Then,

f1 z̋
˜

à

hPH
h

¸

“ à

hPH
f1 z̋h and

˜

à

hPH
h

¸

{̋f2 “
à

hPH
h{̋f2

Proof. First, left-division is considered. As f7
1 is isotone,

@x P Nmax,
à

hPH
f

7
1 ph pxqq ĺ f

7
1

˜

à

hPH
h pxq

¸

As H is finite, for all x P Nmax, there exists hx P H such that
À

hPH h pxq “ hx pxq. Then,

@x P Nmax, f
7
1

˜

à

hPH
h pxq

¸

“ f
7
1 phx pxqq ĺ

à

hPH
f

7
1 ph pxqq

This implies

f
7
1 ˝

˜

à

hPH
h

¸

“ à

hPH
f

7
1 ˝ h

Consequently, according to Lem. 19 and Lem. 20,

f1 z̋
˜

à

hPH
h

¸

“ PrR
˜

f
7
1 ˝

˜

à

hPH
h

¸¸

“ PrR
˜

à

hPH
f

7
1 ˝ h

¸

“ à

hPH
PrR

´

f
7
1 ˝ h

¯

“ à

hPH
f1 z̋h
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3. Dioid F
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Second, right-division is considered. According to Lem. 18,

˜

à

hPH
h

¸

{̋f2 “
˜

à

hPH
h

¸

b f5
2

“ à

hPH

´

hb f5
2

¯

by distributivity

“ à

hPH
h{̋f2

The projection PrR is also used in the expression of the greatest lower bound in the com-
plete dioid F

Nmax
. The greatest lower bound over finite subsets has already been addressed

in Prop. 1. The next proposition is more general and deals with infinite subsets.

Lemma 22. Let H be a subset of F
Nmax

. Then,
Ź

hPH h “ PrR pgHq where gH is an isotone

mapping over Nmax defined by

@x P Nmax, gH pxq “
ľ

hPH
h pxq

Proof. Let f P F
Nmax

.

f ĺ
ľ

hPH
hô @h P H, f ĺ h

ô @h P H,@x P Nmax, f pxq ĺ h pxq
ô @x P Nmax, f pxq ĺ gH pxq
ô f ĺ gH

As gH is an isotone mapping, f ĺ gH ô f ĺ PrR pgHq. Therefore, Ź

hPH h “ PrR pgHq.

The previous lemma leads to the distributivity of F
Nmax

.

Proposition 17. The complete dioid F
Nmax

is distributive.

Proof. As F
Nmax

is a complete dioid, it remains to check that, for all f P F
Nmax

and H Ď
F
Nmax

,

f‘
˜

ľ

hPH
h

¸

“
ľ

hPH
pf‘ hq and f^

˜

à

hPH
h

¸

“ à

hPH
pf^ hq
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3.2. Subdioid FΔ

To prove these equalities, we use Lem. 22 and the distributivity of Nmax. Only the case
x “ J is not obvious.

˜

f‘
˜

ľ

hPH
h

¸¸

pJq “ f pJq ‘ à

nPN

ľ

hPH
h pnq see Lem. 22

“ à

nPN

˜

f pnq ‘
ľ

hPH
h pnq

¸

“ à

nPN

˜

ľ

hPH
pf pnq ‘ h pnqq

¸

“ à

nPN

˜

ľ

hPH
pf‘ hq

¸

pnq

“
˜

ľ

hPH
pf‘ hq

¸

pJq see Lem. 22

˜

f^
˜

à

hPH
h

¸¸

pJq “ f pJq ^
˜

à

hPH
h

¸

pJq see Prop. 1

“ f pJq ^
˜

à

hPH
h pJq

¸

“ à

hPH
pf pJq ^ h pJqq

“
˜

à

hPH
pf^ hq

¸

pJq

3.2. Subdioid FΔ

In this section, a subdioid of F
Nmax

, denoted FΔ, isomorphic to Nmax is introduced. The

mapping Δ from Nmax to Nmax is defined by Δ pxq “ L1 pxq “ 1x. According to Cor. 1, Δ
belongs to F

Nmax
and its residual Δ7 is often denoted Δ7 pxq “ 1 z̋x.

Lemma 23. The set FΔ “
�

ε,J, Δj with j P N0

(

endowed with the operations ‘ and b
defined over F

Nmax
is a complete selective subdioid of F

Nmax
isomorphic to Nmax. Furthermore,
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3. Dioid F
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there exists a single isomorphism, denoted φ, from Nmax to FΔ. Mapping φ is defined by

@x P Nmax, φ pxq “
$

’

&

’

%

ε if x “ ε

Δx if x P N0

J if x “ J
Proof. The zero element ε and the unit element e “ Δ0 of F

Nmax
belong to FΔ. Obviously,

FΔ is stable for ‘ and b. Then, FΔ is a subdioid of F
Nmax

. Furthermore, FΔ is stable under
infinite sums. Thus, FΔ is a complete subdioid of F

Nmax
.

The mapping φ from Nmax to FΔ defined before is an isomorphism. Therefore, Nmax and
FΔ are isomorphic dioids. Hence, as Nmax is selective, FΔ is selective.

Finally, the uniqueness ofφ is checked. Letψ be an isomorphism fromNmax toFΔ. Then,
ψ pεq “ ε, asψ is a‘-morphism. We now show by induction over k P N0 thatψ pkq “ Δk.
This equality holds for k “ 0, as ψ is ab-morphism. Let us assume that the equality holds
for a given k in N0. As ψ is isotone, ψ pk` 1q ľ Δk. Equality ψ pk` 1q “ Δk “ ψ pkq
is absurd, as ψ is injective. Then, ψ pk` 1q ľ Δk`1. Inequality ψ pk` 1q ľ Δk`2 is also
absurd, as ψ is surjective. Thus, ψ pk` 1q “ Δk`1. As ψ is isotone, ψ pJq ľ Δj for all
j P N0. Consequently, ψ pJq “ J. Hence, ψ “ φ.

The next lemma makes explicit a nice property of mappings in FΔ.

Lemma 24. Let a in FΔ and f, g in F
Nmax

.

a pf^ gq “ af^ ag

Proof. There exists k P Nmax such that, for all x P Nmax, a pxq “ kx. Then,

@x P Nmax, pa pf^ gqq pxq “ k pf pxq ^ g pxqq
“ kf pxq ^ kg pxq
“ pafq pxq ^ pagq pxq
“ paf^ agq pxq

3.3. Quasi-Causality and Causality

In this section, the concepts of quasi-causality and causality are introduced for residuated
mappings over Nmax (i.e., mappings in F

Nmax
).

Definition 30 (Quasi-causality). A mapping f in F
Nmax

is said to be quasi-causal if f “ ε or
if there exists Y P N0 such that

#

f pxq “ ε if x ă Y

f pxq ľ x if x ľ Y
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3.3. Quasi-Causality and Causality

The set of quasi-causal mappings in F
Nmax

is denoted F`
Nmax

.

Lemma 25. Endowed with the operations ‘ and b defined over F
Nmax

, F`
Nmax

is a complete

subdioid of F
Nmax

.

Proof. The zero element and the unit element of F
Nmax

are quasi-causal. For H Ď F`
Nmax

,
À

hPH h is obviously quasi-causal. Let f1 and f2 be two mappings in F`
Nmax

. If f1 or f2 is

equal to ε, then f1bf2 “ ε is quasi-causal. Otherwise, Y1 and Y2 are elements inN0 defined
by

Y1 “
ľ

�

x P Nmax|f1 pxq ą ε
(

and Y2 “
ľ

�

x P Nmax|f2 pxq ą ε
(

Then, Y “ Ź
�

x P Nmax|f2 pxq ľ Y1
(

belongs to N0, as f2 pY1 ‘ Y2q ľ Y1 ‘ Y2 ľ Y1, and
#

pf1 b f2q pxq “ ε if x ă Y

pf1 b f2q pxq ľ f2 pxq ľ x if x ľ Y

Thus, F`
Nmax

is closed with respect to b. Hence, F`
Nmax

is a complete subdioid of F
Nmax

.

Definition 31 (Quasi-causal projection). The quasi-causal projection, denoted Pr`, is a map-
ping fromF

Nmax
toF`

Nmax
defined as the residual of the canonical injection fromF`

Nmax
toF

Nmax
.

As F`
Nmax

is a complete subdioid of F
Nmax

, the canonical injection from F`
Nmax

to F
Nmax

is

residuated (see Prop. 3). Hence, the previous definition makes sense. Let f be a mapping
in F

Nmax
. Mapping Pr` pfq is the greatest quasi-causal mapping (i.e., in F`

Nmax
) less than or

equal to f. To calculatePr` pfq, the subsetA ofNmax is defined byA “
�

x P Nmax|x ą f pxq(.
IfA is not finite, Pr` pfq “ ε. IfA is empty, Pr` pfq “ f. Otherwise, Z “ À

aPA 1a belongs
to N0 and Pr` pfq is defined by

Pr` pfq pxq “
#

ε if x ă Z

f pxq if x ľ Z

As F`
Nmax

is a complete dioid, the greatest lower bound ^`, the left-division z̋`, and the

right-division {̋` are defined in F`
Nmax

. Furthermore, according to Rem. 6,

@H Ď F`
Nmax

,
ľ̀

hPH
h “ Pr`

˜

ľ

hPH
h

¸

@f, g P F`
Nmax

, f z̋`g “ Pr` pf z̋gq and g{̋`f “ Pr` pg{̋fq
Lemma 26. The operation ^` in F`

Nmax
coincides with the operation ^ in F

Nmax
over F`

Nmax
.

Formally, let H Ď F`
Nmax

,
Ź`

hPH h “ Ź

hPH h.
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Proof. To prove the previous equality, it is sufficient to show that
Ź

hPH h is quasi-causal.
If ε P H, then

Ź

hPH h “ ε is quasi-causal. Otherwise, for all h P H,

Yh “
ľ

�

x P Nmax|h pxq ľ x
( P N0

Let Y “ À

hPH Yh.
If Y “ J, for all x P N0, there exists h P H such that h pxq “ ε. Then,

@x P N0,

˜

ľ

hPH
h

¸

pxq “
ľ

hPH
h pxq “ ε

Furthermore,
˜

ľ

hPH
h

¸

pJq “ à

nPN

˜

ľ

hPH
h pnq

¸

“ ε

Hence,
Ź

hPH h “ ε is quasi-causal.
Otherwise, Y P N0,

@x ă Y,

˜

ľ

hPH
h

¸

pxq “
ľ

hPH
h pxq “ ε

@x ľ Y, x ‰ J,
˜

ľ

hPH
h

¸

pxq “
ľ

hPH
h pxq ľ x

x “ J,
˜

ľ

hPH
h

¸

pJq “ à

nPN

˜

ľ

hPH
h pnq

¸

ľ
à

něY

n “ J

Hence,
Ź

hPH h is quasi-causal.

Definition 32 (Causality). A mapping f in F
Nmax

is said to be causal if f “ ε or if, for all

x P Nmax, f pxq ľ x. The set of causal mappings in F
Nmax

is denoted F``
Nmax

.

Lemma 27. Endowed with the operations ‘ and b defined over F
Nmax

, F``
Nmax

is a complete

subdioid of F
Nmax

.

Proof. The unit element and the zero element of F
Nmax

are causal. ForH Ď F``
Nmax

,
À

hPH h

is obviously causal. Let f1 and f2 be two mappings in F``
Nmax

. If f1 or f2 is equal to ε, then

f1 b f2 “ ε is causal. Otherwise,

@x P Nmax, pf1 b f2q pxq ľ f2 pxq ľ x

Thus, F``
Nmax

is closed with respect to b. Hence, F``
Nmax

is a complete subdioid of F
Nmax

.
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Definition 33 (Causal projection). The causal projection, denoted Pr``, is a mapping from
F
Nmax

to F``
Nmax

defined as the residual of the canonical injection from F``
Nmax

to F
Nmax

.

As F``
Nmax

is a complete subdioid of F
Nmax

, the canonical injection from F``
Nmax

to F
Nmax

is

residuated (see Prop. 3). Hence, the previous definition makes sense. Let f be a mapping in
F
Nmax

. Mapping Pr`` pfq is the greatest causal mapping (i.e., in F``
Nmax

) less than or equal to

f. To calculate Pr`` pfq, the subset A of Nmax is defined by A “ �

x P Nmax|x ą f pxq(. If
A is not empty, Pr`` pfq “ ε. If A is empty, Pr`` pfq “ f.

As F``
Nmax

is a complete dioid, the greatest lower bound ^``, the left-division z̋``, and

the right-division {̋`` are defined. Furthermore, according to Rem. 6,

@H Ď F``
Nmax

,

``
ľ

hPH
h “ Pr``

˜

ľ

hPH
h

¸

@f, g P F``
Nmax

, f z̋``g “ Pr`` pf z̋gq and g{̋``f “ Pr`` pg{̋fq
Lemma 28. The operation^`` in F``

Nmax
coincides with the operation^ in F

Nmax
over F``

Nmax
.

Formally, let H Ď F``
Nmax

,
Ź``

hPH h “ Ź

hPH h.

Proof. To prove the previous equality, it is sufficient to show that
Ź

hPH h is causal. If
ε P H,

Ź

hPH h “ ε is causal. Otherwise, for all h P H and for all x P Nmax, h pxq ľ x.
Then,

@x ‰ J,
˜

ľ

hPH
h

¸

pxq “
ľ

hPH
h pxq ľ x

x “ J,
˜

ľ

hPH
h

¸

pJq “ à

nPN

˜

ľ

hPH
h pnq

¸

ľ
à

nPN
n “ J

Hence,
Ź

hPH h is causal.

3.4. Periodicity

In this section, the concept of periodicity is introduced for mappings in F
Nmax

.

Definition 34 (Periodicity). Amapping f inF
Nmax

is said to be periodic with respect toX P N0

andω P N if

@x ľ X, f pωxq “ ωf pxq
A mapping f periodic with respect to X and ω is completely defined by its values f pkq

with e ĺ k ă ωX. The following lemma makes explicit a property of periodic mappings,
which plays an essential role in §4.
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Lemma 29. Let f be a mapping in F
Nmax

periodic with respect to X andω. Then,

fΔX`ω “ ΔωfΔX

Proof. If x “ ε,

fΔX`ω pεq “ ε “ ΔωfΔX pεq
Otherwise, Xx ľ X. Therefore,

fΔX`ω pxq “ f pωXxq “ ωf pXxq “ ΔωfΔX pxq

3.4.1. Calculation with Periodic Mappings

Next, properties of periodic mappings with respect to operations ‘, ^, b, z̋, and {̋ is
investigated.

Sum of Periodic Mappings

Proposition 18 (Sum of periodic mappings). Let f1 (resp. f2) be a mapping inF
Nmax

periodic
with respect to X1 (resp. X2) in N0 and ω1 (resp. ω2) in N. Mapping f1 ‘ f2 is periodic with
respect to X “ X1 ‘ X2 andω “ lcm pω1,ω2q.
Proof.

@x ľ X, pf1 ‘ f2q pωxq “ f1 pωxq ‘ f2 pωxq
“ ωf1 pxq ‘ωf2 pxq
“ ω pf1 ‘ f2q pxq

Greatest Lower Bound of Periodic Mappings

Proposition 19 (Greatest lower bound of periodic mappings). Let f1 (resp. f2) be a mapping
in F

Nmax
periodic with respect to X1 (resp. X2) in N0 andω1 (resp. ω2) in N. Mapping f1^ f2

is periodic with respect to X “ X1 ‘ X2 andω “ lcm pω1,ω2q.
Proof. According to Prop. 1,

@x P Nmax, pf1 ^ f2q pxq “ f1 pxq ^ f2 pxq
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Hence,

@x ľ X, pf1 ^ f2q pωxq “ f1 pωxq ^ f2 pωxq
“ ωf1 pxq ^ωf2 pxq
“ ω pf1 pxq ^ f2 pxqq see Rem. 4

“ ω pf1 ^ f2q pxq

Product of Periodic Mappings

Proposition 20 (Product of periodic mappings). Let f1 (resp. f2) be a mapping in F
Nmax

periodic with respect to X1 (resp. X2) in N0 and ω1 (resp. ω2) in N. Mapping f1 b f2 is
periodic with respect to

X “
#

0 if f2 “ ε

X2 ‘Ź
�

x P Nmax|f2 pxq ľ X1

(

otherwise

ω “ lcm pω1,ω2q
Proof. If f2 “ ε, then f1 b f2 “ ε is periodic with respect to 0 and ω. Otherwise, by
periodicity, there exists x P N0 such that f2 pxq ľ X1. Therefore, X belongs to N0. For
x ľ X,

pf1 b f2q pωxq “ f1 pωf2 pxqq as x ľ X2

“ ω pf1 b f2q pxq as f2 pxq ľ X1

Left-Division of Periodic Mappings

In the following, the periodicity of f1 z̋f2 is investigated when f1 and f2 are periodic
mappings in F

Nmax
.

Example 14. Let f1 and f2 be two causal periodic mappings in F
Nmax

defined by

f1 pxq “
#

x if x ă 3

J if x ľ 3
and f2 pxq “ x

Then,

pf1 z̋f2q pxq “ PrR
´

f
7
1 ˝ f2

¯

pxq “
#

x if x ă 2

2 if x ľ 2

Therefore, mapping f1 z̋f2 is not periodic.

45



3. Dioid F
Nmax

Ex. 14 shows that the periodicity of f1 and of f2 does not imply the periodicity of f1 z̋f2.
From now on, we focus on the quasi-causal case. In the following, we investigate the pe-
riodicity of f1 z̋`f2 when f1 and f2 are quasi-causal periodic mappings in F

Nmax
. First, the

effect of the periodicity of f on its residual f7 is examined.

Lemma 30. Let f be a periodic (with respect to X andω) mapping in F
Nmax

. Then,

@y ľ f pXq , f7 pωyq “ ωf7 pyq
Proof.

@y ľ f pXq , f7 pωyq “ à �

x P Nmax|f pxq ĺ ωy
(

“ à tx ľ ωX|f pxq ĺ ωyu
“ ω

à tx ľ X|f pxq ĺ yu
“ ω

à �

x P Nmax|f pxq ĺ y
(

“ ωf7 pyq

Proposition 21. Let f1 (resp. f2) be a quasi-causal mapping in F
Nmax

periodic with respect
to X1 (resp. X2) in N0 and ω1 (resp. ω2) in N. Mapping f1 z̋`f2 is periodic with respect to
X “ X1 ‘ X2 andω “ lcm pω1,ω2q.
Proof. According to Lem. 20, f1 z̋f2 “ PrR

´

f
7
1 ˝ f2

¯

. Then,

f1 z̋`f2 “ Pr` pf1 z̋f2q “ Pr`
´

PrR
´

f
7
1 ˝ f2

¯¯

In the following, two cases are distinguished.

First Case: We assume that, for all Z P N0, there exists z ľ Z such that f1 pzq ą f2 pzq.
If

´

f
7
1 ˝ f2

¯

pzq ľ z,

f2 pzq ľ
´

f1 ˝ f7
1 ˝ f2

¯

pzq ľ f1 pzq ą f2 pzq

This is absurd. Then,
´

f
7
1 ˝ f2

¯

pzq ă z. Hence, for all Z P N0, there exists z ľ Z such that

PrR
´

f
7
1 ˝ f2

¯

pzq ă z. Then,

f1 z̋`f2 “ Pr`
´

PrR
´

f
7
1 ˝ f2

¯¯

“ ε

Mapping f1 z̋`f2 is periodic with respect to X and ω.
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3.4. Periodicity

Second Case: We assume that there exists Z P N0 such that, @x ľ Z, f1 pxq ĺ f2 pxq.
By periodicity, @x ľ X, f1 pxq ĺ f2 pxq. Hence,

@x ľ X,
´

f
7
1 ˝ f2

¯

pxq ľ
´

f
7
1 ˝ f1

¯

pxq ľ x

This leads to

@x ľ X,
`

f1 z̋`f2
˘ pxq “

´

f
7
1 ˝ f2

¯

pxq

Thus,

@x ľ X,
`

f1 z̋`f2
˘ pωxq “

´

f
7
1 ˝ f2

¯

pωxq
“ f

7
1 pωf2 pxqq as x ľ X ľ X2

As, for x ľ X, f2 pxq ľ f1 pxq ľ f1 pX1q, Lem. 30 leads to

@x ľ X,
`

f1 z̋`f2
˘ pωxq “ ω

´

f
7
1 ˝ f2

¯

pxq
“ ω

`

f1 z̋`f2
˘ pxq

Mapping f1 z̋`f2 is periodic with respect to X and ω.

Right-Division of Periodic Mappings

In the following, the periodicity of f2{̋f1 is investigated when f1 and f2 are periodic.

Example 15. Let f1 and f2 be two causal periodic mappings in F
Nmax

defined by

f1 pxq “
#

x if x ă 3

J if x ľ 3
and f2 pxq “ x

Then,

pf2{̋f1q pxq “
´

f2 b f5
1

¯

pxq “
#

x if x ă 3

3 if x ľ 3

Mapping f2{̋f1 is not periodic.
Ex. 15 shows that the periodicity of f1 and of f2 does not imply the periodicity of f2{̋f1.

From now on, we focus on the quasi-causal case. In the following, we investigate the pe-
riodicity of f2{̋`f1 when f1 and f2 are quasi-causal periodic mappings in F

Nmax
. Next, for

a dually residuated mapping f, the effect of the periodicity of f on its dual residual f5 is
examined.
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Lemma 31. Let f be a dually residuated periodic (with respect to X andω) mapping inF
Nmax

such that f pXq ‰ J. Then, f5 is periodic with respect to 1f pXq andω.

Proof. As f is dually residuated, f ‰ ε. Furthermore, f pXq ‰ J implies 1f pXq P N0. Then,

@y ľ 1f pXq , f5 pωyq “
ľ

�

x P Nmax|f pxq ľ ωy
(

“
ľ

tx ą ωX|f pxq ľ ωyu
“ ω

ľ

tx ą X|f pxq ľ yu
“ ω

ľ

�

x P Nmax|f pxq ľ y
(

“ ωf5 pyq

Proposition 22. Let f1 (resp. f2) be a quasi-causal mapping in F
Nmax

periodic with respect
to X1 (resp. X2) in N0 andω1 (resp. ω2) in N. Mapping f2{̋`f1 is periodic with respect to

X “
#

e‘ 1f1 pX1 ‘ X2q if f1 pX1q ‰ J
e‘ 1f1

`
Ź

�

x P Nmax|f1 pxq “ J
( {̋1˘

otherwise

ω “ lcm pω1,ω2q
Proof. If f1 “ ε, f2{̋`f1 “ J is periodic with respect to X and ω. In the following, we
assume that f1 ‰ ε. As f1 is a non-zero quasi-causal mapping, f1 pJq “ J. Then, according
to Lem. 18,

f2{̋`f1 “ Pr` pf2{̋f1q “ Pr`
´

f2 b f5
1

¯

Let Y “ Ź
�

x P Nmax|f1 pxq “ J
(

. In the following, three cases are distinguished.

First Case: We assume that, for all Z P N0, there exists z ľ Z such that f1 pzq ą f2 pzq.
Then, for all Z P N0, there exists z ľ Z‘X1 such that f1 pzq ą f2 pzq. Thus, as f5

1bf1 ĺ Id,

f1 pzq ą f2 pzq ľ
´

f2 b f5
1 b f1

¯

pzq

As f1 ‰ ε and z ľ Z ‘ X1, f1 pzq ľ Z. Then, for all Z P N0, there exists z1 “ f1 pzq ľ Z

such that

pf2{̋f1q
`

z1˘ “ f2

´

f5
1

`

z1˘
¯

ă z1

Consequently, due to quasi-causality, f2{̋`f1 “ ε is periodic with respect to X and ω.

48



3.5. Rationality

Second Case: We assume that Y P N0 and that there exists Z P N0 such that, for all
x ľ Z, f2 pxq ľ f1 pxq. For x ľ e‘ 1f1 pY{̋1q, f5

1 pxq “ Y. Then,

@x ľ e‘ 1f1 pY{̋1q , pf2{̋f1q pxq “ f2 pYq
Consequently,

@x ľ e‘ 1f1 pY{̋1q ,
`

f2{̋`f1
˘ pxq “

#

J if f2 pYq “ J
ε otherwise

Therefore, f2{̋`f1 is periodic with respect to X “ e‘ 1f1 pY{̋1q and ω.

Third Case: We assume that Y “ J and that there exists Z P N0 such that, for all
x ľ Z, f2 pxq ľ f1 pxq. By periodicity, @x ľ X1 ‘ X2, f2 pxq ľ f1 pxq. Then, @x ľ
e‘ 1f1 pX1 ‘ X2q, f5

1 pxq ľ X1 ‘ X2. This leads to

@x ľ e‘ 1f1 pX1 ‘ X2q , pf2{̋f1q pxq “
´

f2 b f5
1

¯

pxq ľ
´

f1 b f5
1

¯

pxq ľ x

Therefore,

@x ľ e‘ 1f1 pX1 ‘ X2q ,
`

f2{̋`f1
˘ pxq “ pf2{̋f1q pxq “

´

f2 b f5
1

¯

pxq
Hence,

@x ľ e‘ 1f1 pX1 ‘ X2q ,
`

f2{̋`f1
˘ pωxq “

´

f2 b f5
1

¯

pωxq
“ f2

´

ωf5
1 pxq

¯

according to Lem. 31

“ ωf2

´

f5
1 pxq

¯

as f5
1 pxq ľ X2

“ ω
`

f2{̋`f1
˘ pxq

Therefore, f2{̋`f1 is periodic with respect to X “ e‘ 1f1 pX1 ‘ X2q and ω.

3.5. Rationality

The complete dioid Nmax,γvγw has already been introduced in §2.7. It corresponds to the
dioid of isotone formal power series s with coefficients in Nmax and with a single variable
γ such that s pkq “ ε for k ă 0. Based on Nmax,γvγw, a particular class of causal elements
in F

Nmax
is presented and the concepts of rationality for mappings in F

Nmax
is introduced.

Definition 35 (α-mapping). The α-mapping αs associated with a series s P Nmax,γvγw is
the causal element in F

Nmax
defined by

αs pxq “
ľ

tz ľ x|z P Im psq Y tJuu
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A link exists between the periodicity of a series in Nmax,γvγw and the periodicity of the
associated α-mapping in F

Nmax
.

Proposition 23. Let s be a series in Nmax,γvγw. If s is periodic, then αs is periodic.

Proof. Depending on the throughput of series s, four cases are distinguished.

s “ ε: αs “ J is periodic.

σ psq “ 0: s is a polynomial with the canonical representative
ÀN

k“1 akγ
nk such thatN P

N, 0 ď n1 ă ¨ ¨ ¨ ă nN, and e ĺ a1 ă ¨ ¨ ¨ ă aN “ J. If N ě 2, αs pxq “ J for
x ľ 1aN´1. Otherwise (i.e., N “ 1), αs “ J. Thus, αs is periodic with respect to

X “
#

1aN´1 if N ě 2

e if N “ 1
and ω “ 1

σ psq “ `8: s is a polynomial with the canonical representative
ÀN

k“1 akγ
nk such that

N P N, 0 ď n1 ă ¨ ¨ ¨ ă nN, and e ĺ a1 ă ¨ ¨ ¨ ă aN ă J. Then, αs pxq “ J for
x ľ 1aN. Thus, αs is periodic with respect to X “ 1aN and ω “ 1.

0 ă σ psq ă `8: There exist K P N0 and τ, ν P N such that s pKq P N0 and s pk` νq “
τs pkq for k ě K. For J ą x ľ 1s pKq,

αs pτxq “
ľ

ts pkq ľ τx|k P Zu
“

ľ

ts pkq ľ τx|k ą K` νu
“ τ

ľ

ts pkq ľ x|k ą Ku
“ ταs pxq

Thus, αs is periodic with respect to X “ 1s pKq and ω “ τ.

The concept of rationality in F
Nmax

is based on α-mappings.

Definition 36 (Rationality). A mapping f in F
Nmax

is said to be rational if there exists a fi-

nite set tr1, . . . , rNu of periodic series inNmax,γvγw such that f belongs to the rational closure of
tε, e, αr1 , . . . , αrNu. An expression of f as an element of the rational closure of tε, e, αr1 , . . . , αrNu
is called a rational expression of f.

Proposition 24. Let f be a causal periodic mapping in F
Nmax

. Then, f is rational.

Proof. Mapping f is a causal mapping in F
Nmax

: f “ ε or f pxq ľ x for all x P Nmax. Obvi-

ously, ε is rational. Next, the case f pxq ľ x for all x P Nmax is considered. By assumption,
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3.5. Rationality

f is periodic with respect to X P N0 and ω P N. First, f is written as a finite sum of simple
causal periodic mappings in F

Nmax
.

f “
X`ω´1

à

i“0

fi

where the causal periodic mappings fi are defined by

@i such that 0 ď i ă X, fi pxq “
#

x if x ă i

x‘ f piq otherwise

@i such that X ď i ă X`ω, fi pxq “
$

’

&

’

%

x if x ă i

ωjf piq ‘ x if ωji ĺ x ă ωj`1i with j P N0

J if x “ J
Second, the rationality of the mappings fi is investigated in each case. If 0 ď i ă X, then
fi “ αri where

ri “
i´1
à

k“0

kγk ‘ f piqγi p1γq˚

If X ` ω ą i ě X, two subcases are distinguished depending on L “ p1f piqq {̋ pωiq. If
L “ ε, fi “ αri where

ri “
i´1
à

k“0

kγk ‘
˜

M´1
à

k“0

pkf piqqγi`k

¸

´

ωγM
¯˚

with M “ pωiq {̋ p1f piqq. Otherwise, the discussion is slightly more complicated. First of
all, the particular case corresponding to ω “ 1 comes down to periodic mappings with
ω “ 2. Indeed, if ω “ 1, then fi “ f1,i ‘ f2,i with causal periodic mappings f1,i and f2,i
defined by

f1,i pxq “
$

’

&

’

%

x if x ă i

f piq {̋1 if x “ i

1b 2jf piq if 1b 2ji ĺ x ă 3b 2ji with j P N0

f2,i pxq “
#

x if x ă i

2jf piq if 2ji ĺ x ă 2j`1i with j P N0

Afterwards, we assume that ω ě 2. Then, fi “ ÂL
l“0 αri,L´l

with

ri,l “
i´1
à

k“0

kγk ‘ pilω{̋1qγi pωγq˚
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Example 16. Rational expressions of some particular causal periodic mappings in F
Nmax

are
presented. First, Δ “ αr1 ‘ αr2 with r1 “ p2γq˚ and r2 “ 1 p2γq˚. Second, the causal
periodic mapping g defined by

g pxq “
$

’

&

’

%

x if x ă 4

7b 3j if 4b 3j ĺ x ă 7b 3j with j P N0

J if x “ J
admits the rational expression αr2αr1 with

r1 “ e‘ 1γ‘ 2γ2 ‘ 3γ3 ‘ 6γ4 p3γq˚
r2 “ e‘ 1γ‘ 2γ2 ‘ 3γ3 ‘ 7γ4 p3γq˚
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Dioid FNmax,γ

vγw

In this chapter, the dioid F
Nmax,γ

vγw is investigated. This dioid is built by analogy with

the dioid Nmax,γvγw. However, the coefficients of the formal power series belong to F
Nmax

instead of belonging to Nmax. The main objective of this chapter is to obtain a fundamental
theorem in the dioid F

Nmax,γ
vγw similar to the one in the dioid Nmax,γvγw (see Th. 8).

Definition 37 (Dioid F
Nmax,γ

vγw). The distributive dioid F
Nmax,γ

vγw is defined as the dioid
of isotone formal power series in γ with coefficients in the distributive dioid F

Nmax
equal to ε

over tk P Z|k ă 0u.
According to Prop. 9 and Lem. 14, the previous definition is valid. By definition, a series

s in F
Nmax,γ

vγw is an isotone mapping from Z to F
Nmax

such that s pkq “ ε for k ă 0. Then,

s pkq pxq denotes the value in Nmax of the mapping s pkq at x P Nmax. Next, an alternative
representation for series in F

Nmax,γ
vγw is introduced.

Definition 38 (Slicing mapping ψ). The slicing mapping ψ is a mapping from F
Nmax,γ

vγw
to the set of mappings from Nmax to Nmax,γvγw defined by

@s P F
Nmax,γ

vγw,@x P Nmax, ψ psq pxq “ à

kPZ
s pkq pxqγk

or, equivalently,

@s P F
Nmax,γ

vγw,@x P Nmax,@k P Z, ψ psq pxq pkq “ s pkq pxq
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Remark 12. Basic properties of the slicing mapping ψ are

@s P F
Nmax,γ

vγw,@x P Nmax, ψ pγsq pxq “ γψ psq pxq
ψ pΔsq pxq “ 1ψ psq pxq

Lemma 32. Let s be a series in F
Nmax,γ

vγw. The mapping ψ psq from Nmax to Nmax,γvγw is
residuated.

Proof. This proof is based on Th. 3. For all k P Z, as mapping s pkq is residuated, s pkq pεq “
ε and s pkq is lower semi-continuous. Then,

ψ psq pεq “ à

kPZ
s pkq pεqγk “ ε

@X Ď Nmax, ψ psq
˜

à

xPX
x

¸

“ à

kPZ
s pkq

˜

à

xPX
x

¸

γk

“ à

kPZ

à

xPX
s pkq pxqγk

“ à

xPX
ψ psq pxq

Hence, ψ psq is residuated.
The previous lemma shows that the slicingmappingψ is actually amapping fromF

Nmax,γ
vγw

to the set of residuated mappings from Nmax to Nmax,γvγw, denoted FR

`

Nmax,Nmax,γvγw
˘

.

Lemma 33. The slicing mapping ψ from F
Nmax,γ

vγw to FR

`

Nmax,Nmax,γvγw
˘

is bijective.

The mapping ψ´1 from FR

`

Nmax,Nmax,γvγw
˘

to F
Nmax,γ

vγw is defined by
@S P FR

`

Nmax,Nmax,γvγw
˘

,@k P Z,@x P Nmax, ψ´1 pSq pkq pxq “ S pxq pkq
Furthermore, mappings ψ and ψ´1 are isotone. Hence, ψ is residuated.

Proof. Let φ be the mapping from FR

`

Nmax,Nmax,γvγw
˘

to F
Nmax,γ

vγw defined by

@S P FR

`

Nmax,Nmax,γvγw
˘

,@k P Z,@x P Nmax, φ pSq pkq pxq “ S pxq pkq
First, we check that φ is well-defined. For S P FR

`

Nmax,Nmax,γvγw
˘

and k P Z,
φ pSq pkq pεq “ S pεq pkq “ ε pkq “ ε

@X Ď Nmax, φ pSq pkq
˜

à

xPX
x

¸

“ S

˜

à

xPX
x

¸

pkq

“ à

xPX
S pxq pkq

“ à

xPX
φ pSq pkq pxq
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Therefore,φ pSq pkq is residuated, i.e.,φ pSq pkq belongs toF
Nmax

. Furthermore, for k, j P Z,

k ě jñ @x P Nmax, S pxq pkq ľ S pxq pjq
ñ @x P Nmax, φ pSq pkq pxq ľ φ pSq pjq pxq
ñ φ pSq pkq ľ φ pSq pjq

k ă 0ñ @x P Nmax, S pxq pkq “ ε

ñ @x P Nmax, ψ pSq pkq pxq “ ε

ñ @x P Nmax, ψ pSq pkq “ ε

Hence, φ pSq belongs to F
Nmax,γ

vγw.
Second, φ ˝ψ “ Id and ψ ˝ φ “ Id. Then, ψ is bijective and ψ´1 “ φ.
Finally, let s1, s2 P FNmax,γ

vγw and S1, S2 P FR

`

Nmax,Nmax,γvγw
˘

such that S1 “ ψ ps1q
and S2 “ ψ ps2q.

s1 “ ψ´1 pS1q ľ s2 “ ψ´1 pS2q ô @k P Z,@x P Nmax, s1 pkq pxq ľ s2 pkq pxq
ô @k P Z,@x P Nmax, S1 pxq pkq ľ S2 pxq pkq
ô S1 “ ψ ps1q ľ S2 “ ψ ps2q

Thus, mappings ψ and ψ´1 are isotone.

The next lemma investigates how the operations‘,b, and^ inF
Nmax,γ

vγw interact with
the slicing mapping ψ.

Lemma 34. Let s1, s2 be two series in F
Nmax,γ

vγw. Then,

@x P Nmax, ψ ps1 ‘ s2q pxq “ ψ ps1q pxq ‘ψ ps2q pxq
ψ ps1 ^ s2q pxq “ ψ ps1q pxq ^ψ ps2q pxq
ψ ps1 b s2q pxq “

à

jPZ
ψ ps1q pψ ps2q pxq pjqqγj

Proof. For the sum ‘,

@x P Nmax, ψ ps1 ‘ s2q pxq “
à

jPZ
ps1 ‘ s2q pjq pxqγj

“ à

jPZ
ps1 pjq pxq ‘ s2 pjq pxqqγj

“ à

jPZ
s1 pjq pxqγj ‘à

jPZ
s2 pjq pxqγj

“ ψ ps1q pxq ‘ψ ps2q pxq
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For the greatest lower bound ^,

@x P Nmax, ψ ps1 ^ s2q pxq “
à

jPZ
ps1 ^ s2q pjq pxqγj

“ à

jPZ
ps1 pjq pxq ^ s2 pjq pxqqγj

Therefore,

@x P Nmax,@j P Z, ψ ps1 ^ s2q pxq pjq “ s1 pjq pxq ^ s2 pjq pxq
Furthermore,

@x P Nmax,@j P Z, pψ ps1q pxq ^ψ ps2q pxqq pjq “ ψ ps1q pxq pjq ^ψ ps2q pxq pjq
“ s1 pjq pxq ^ s2 pjq pxq

Thus,

@x P Nmax, ψ ps1 ^ s2q pxq “ ψ ps1q pxq ^ψ ps2q pxq
For the product b,

@x P Nmax, ψ ps1 b s2q pxq “
à

jPZ
ps1 b s2q pjq pxqγj

“ à

jPZ

à

lPZ
s1 pj´ lq ps2 plq pxqqγj

“ à

lPZ
ψ ps1q ps2 plq pxqqγl

“ à

lPZ
ψ ps1q pψ ps2q pxq plqqγl

Next, a simple example illustrates the intuitive graphical interpretation of the slicing
mapping.

Example 17. Let s be a series in F
Nmax,γ

vγw defined by

s “ γ‘ fγ3 with f pxq “
$

’

&

’

%

ε if x “ ε

3
P

x
3

T

if x P N0

J if x “ J
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The γ-support of s is t1, 3u. Then, s is a polynomial with the canonical representative γ‘fγ3.
The mapping ψ psq in FR

`

Nmax,Nmax,γvγw
˘

is defined by

ψ psq pxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ε if x “ ε

xγ if x “ 3j with j P N0

xγ‘ 2xγ3 if x “ 1b 3j with j P N0

xγ‘ 1xγ3 if x “ 2b 3j with j P N0

Jγ if x “ J
A graphical representation of series s is drawn in Fig. 4.1. The expression s “ γ‘ fγ3 leads to
the planes px, s pkq pxqq for k P Z (i.e., corresponding to the 2D-representation of the mapping
s pkq in F

Nmax
). The series ψ psq pxq provides the planes pk, s pkq pxqq for x P Nmax (i.e., corre-

sponding to the 2D-representation of the series ψ psq pxq in Nmax,γvγw): ψ psq pxq corresponds
to the slice of the series s at x P Nmax.

Figure 4.1.: Series s “ γ‘ fγ3
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4.1. Subdioid FΔ,γvγw
Definition 39 (Dioid FΔ,γvγw). The distributive dioid FΔ,γvγw is defined as the dioid of
isotone formal power series in γ with coefficients in the distributive dioid FΔ equal to ε over
tk P Z|k ă 0u.

According to Prop. 9 and Lem. 14, the previous definition is valid. Obviously, FΔ,γvγw
is a subdioid of the dioid F

Nmax,γ
vγw. According to Lem. 23, FΔ is isomorphic to Nmax.

Then, FΔ,γvγw is isomorphic to Nmax,γvγw. An isomorphismΦ from Nmax,γvγw to FΔ,γvγw
is defined by, @s P Nmax,γvγw,Φ psq “ φ ˝ s, where φ is the isomorphism from Nmax to FΔ

mentioned in Lem. 23. Therefore, all results presented in § 2.7 are transposed in FΔ,γvγw
through the isomorphism Φ. In particular, the concepts of periodic series and throughput
are directly extended to FΔ,γvγw. Furthermore, the calculation rules for periodic series
developed in § 2.7 are also valid in FΔ,γvγw.

The following lemma illustrates a link between the slicing mapping ψ and the isomor-
phism Φ from Nmax,γvγw to FΔ,γvγw.
Lemma 35. Let s be a series in Nmax,γvγw. Then, ψ pΦ psqq peq “ s.

Proof. First, notice that, for all x P Nmax, φ pxq peq “ x where φ is the isomorphism from
Nmax to FΔ mentioned in Lem. 23. Then,

ψ pΦ psqq peq “
`8
à

k“0

Φ psq pkq peqγk

“
`8
à

k“0

φ ps pkqq peqγk

“
`8
à

k“0

s pkqγk

“ s

Example 18. Let s “ γ‘ Δ3γ3, a series in FΔ,γvγw. The mapping ψ psq is defined by

ψ psq pxq “
$

’

&

’

%

ε if x “ ε

x
`

γ‘ 3γ3
˘

if x P N0

Jγ if x “ J

Series s is associated with series γ‘ 3γ3 in Nmax,γvγw. A graphical representation of series s
is drawn in Fig. 4.2.
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Figure 4.2.: Series s “ γ‘ Δ3γ3

4.2. Quasi-Causality and Causality

The concepts of causality and quasi-causality introduced in § 3 for F
Nmax

are extended to
the dioid F

Nmax,γ
vγw.

Definition 40 (Quasi-causality). A series s in F
Nmax,γ

vγw is said to be quasi-causal if s pkq
is quasi-causal for all k P Z.

The set of quasi-causal series in F
Nmax,γ

vγw is denoted F`
Nmax,γ

vγw. In the next lemma,

the algebraic structure of F`
Nmax,γ

vγw is investigated.

Lemma 36. Endowed with the operations ‘ and b defined over F
Nmax,γ

vγw, F`
Nmax,γ

vγw is a
complete subdioid of F

Nmax,γ
vγw.

Proof. This is a direct consequence of Lem. 12, Lem. 25, and Prop. 9.

Definition 41 (Causality). A series s in F
Nmax,γ

vγw is said to be causal if s pkq is causal for
k P Z.
A matrix with entries in F

Nmax,γ
vγw is said to be causal if all its entries are causal series.
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The set of causal series in F
Nmax,γ

vγw is denoted F``
Nmax,γ

vγw. In the next lemma, the

algebraic structure of F``
Nmax,γ

vγw is discussed.
Lemma 37. Endowed with the operations ‘ and b defined over F

Nmax,γ
vγw, F``

Nmax,γ
vγw is a

complete subdioid of F
Nmax,γ

vγw.
Proof. This is a direct consequence of Lem. 12, Lem. 27, and Prop. 9.

According to Prop. 3, the canonical injection fromF``
Nmax,γ

vγw toF
Nmax,γ

vγw is residuated.
Its residual is named causal projection and denoted Pr``. For s P F

Nmax,γ
vγw, Pr`` psq is

the greatest causal series less than or equal to s. Furthermore, the causal projection is
defined by

@s P F
Nmax,γ

vγw, Pr`` psq pkq “ Pr`` ps pkqq
A simple characterization of F``

Nmax,γ
vγw is based on the mapping ψ.

Proposition 25. Let s be a non-zero series inF
Nmax,γ

vγw. The following statements are equiv-
alent:

1. s is causal

2. @x P Nmax, ψ psq pxq ľ xγvalpsq

Proof. 1ñ 2: By assumption, s is causal. As s is a non-zero causal series, val psq P N0 and
s pval psqq is a causal mapping in F

Nmax
different from ε. Consequently,

@x P Nmax, ψ psq pxq ľ s pval psqq pxqγvalpsq ľ xγvalpsq

2 ñ 1: For all x P Nmax, ψ psq pxq is greater than or equal to xγvalpsq. First, s pkq ‰ ε

implies s pkq ľ s pval psqq. This leads to, for all x P Nmax, s pkq pxq ľ s pval psqq pxq ľ x, as
ψ psq pxq ľ xγvalpsq. Then, for all k ě val psq, s pkq is causal. Consequently, s is causal.

4.3. Periodicity

The concept of periodicity introduced in § 3 for F
Nmax

is extended to F
Nmax,γ

vγw by anal-

ogy with periodicity in Nmax,γvγw.
Definition 42 (Periodicity). A series s inF

Nmax,γ
vγw is said to be periodic if there existN P N,

periodic mappings f1, . . . , fN in F
Nmax

, n1, . . . , nN in N0, τ1, . . . , τN in N0, and ν in N such
that

s “
N

à

k“1

pΔτkγνq˚ fkγnk

A matrix with entries in F
Nmax,γ

vγw is said to be periodic if all its entries are periodic.
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The following proposition investigates the periodicity of the causal projection of a peri-
odic series.

Proposition 26. Let s be a periodic series in F
Nmax,γ

vγw. The causal projection of s, denoted
Pr`` psq, is periodic.
Proof. There existN P N, periodicmappings f1, . . . , fN inF

Nmax
,n1, . . . , nN inN0, τ1, . . . , τN

in N0, and ν in N such that

s “
N

à

k“1

pΔτkγνq˚ fkγnk

If, for all j P Z, s pjq is either equal to ε or non-causal, then Pr`` psq “ ε is periodic.
Otherwise, let J be the least element in N0 such that s pJq is a non-zero causal mapping in
F
Nmax

. Then,

Pr`` psq “ s pJqγJ ‘
N

à

k“1

sk

with

sk “
#

pΔτkγνq˚ fkγnk if nk ě J

pΔτkγνq˚ ΔLkτkfkγ
nk`Lkν with Lk “ r J´nk

ν
s if nk ă J

Thus, Pr`` psq is periodic.
Example 19. The series s “ f1 ‘

`

Δ2γ
˘˚

f2 ‘
`

Δ3γ
˘˚

f3 where f1, f2, and f3 are periodic
mappings in F

Nmax
defined by

f1 pxq “
$

’

&

’

%

ε if x “ ε

3 if x “ 0, 1, 2

x if x ľ 3

f2 pxq “
$

’

&

’

%

ε if x ĺ 2

5 if x “ 3, 4

x if x ľ 5

f3 pxq “
$

’

&

’

%

ε if x ĺ 3

7b 3j if 4b 3j ĺ x ă 7b 3j with j P N0

J if x “ J
is a causal periodic series in F

Nmax,γ
vγw drawn in Fig. 4.3.
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Figure 4.3.: Series s “ f1 ‘
`

Δ2γ
˘˚

f2 ‘
`

Δ3γ
˘˚

f3.

4.3.1. Canonical Representative of Periodic Series

In this section, a canonical representative for periodic series in F
Nmax,γ

vγw is introduced
based on the associated mapping ψ psq in FR

`

Nmax,Nmax,γvγw
˘

. The main idea is to use
the existing canonical representative for periodic series inNmax,γvγw introduced in [22, 23].
First, the effect of the periodicity of series s on the mapping ψ psq is investigated in the
following lemma.

Lemma 38. Let s be a series in F
Nmax,γ

vγw. If s is periodic, then
#

@x P Nmax, ψ psq pxq is a periodic series in Nmax,γvγw
DX P N0, Dω P N such that @x ľ X,ψ psq pωxq “ ωψ psq pxq

Proof. There existN P N, periodicmappings f1, . . . , fN inF
Nmax

,n1, . . . , nN inN0, τ1, . . . , τN
in N0, and ν in N such that

s “
N

à

k“1

pΔτkγνq˚ fkγnk
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As ψ is residuated, ψ is lower semi-continuous. Hence,

@x P Nmax, ψ psq pxq “
N

à

k“1

ψ
`pΔτkγνq˚ fkγnk

˘ pxq

According to Prop. 11, to prove the periodicity of ψ psq pxq, it is sufficient to prove the
periodicity of ψ

`pΔτkγνq˚ fkγnk
˘ pxq. As ψ is lower semi-continuous, Rem. 12 leads to

@x P Nmax, ψ
`pΔτkγνq˚ fkγnk

˘ pxq “
`8
à

j“0

ψ
´

Δjτkγjνfkγ
nk

¯

pxq

“
`8
à

j“0

τ
j
kγ

jνψ pfkγnkq pxq

“ pτkγνq˚ ψ pfkγnkq pxq
“ pτkγνq˚ fk pxqγnk

Then, ψ
`pΔτkγνq˚ fkγnk

˘ pxq is a periodic series in Nmax,γvγw. Consequently, ψ psq pxq is
a periodic series inNmax,γvγw. Furthermore, the mapping fk is a periodic mapping inF

Nmax
:

there exist Xk P N0 and ωk P N such that

@x ľ Xk, fk pωkxq “ ωkfk pxq
Let X “ ÀN

k“1 Xk and ω “ lcm pω1, . . . ,ωNq. Then,
@x ľ X, ψ

`pΔτkγνq˚ fkγnk
˘ pωxq “ pτkγνq˚ fk pωxqγnk

“ ω pτkγνq˚ fk pxqγnk

“ ωψ
`pΔτkγνq˚ fkγnk

˘ pxq
Thus,

@x ľ X, ψ psq pωxq “
N

à

k“1

ψ
`pΔτkγνq˚ fkγnk

˘ pωxq

“
N

à

k“1

ωψ
`pΔτkγνq˚ fkγnk

˘ pxq

“ ωψ psq pxq

This leads to a unique representative in FR

`

Nmax,Nmax,γvγw
˘

of a periodic series s in
F
Nmax,γ

vγw obtained from ψ psq by, first, minimizing ω and, second, minimizing X. In the
following, a canonical representative of s is derived from ψ psq. If ψ psq “ ε, then the
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canonical representative of s is ε. Next, the case s ‰ ε is investigated. There exists Y0 P N0

such that ψ psq pY0{̋1q “ ε and ψ psq pY0q ‰ ε. The mapping Σs from
�

x P Nmax|x ľ Y0
(

to QY t`8u is defined by

Σs pxq “ σ pψ psq pxqq
As s is a non-zero periodic series s, ψ psq pJq “ Jγvalpsq and Σs pJq “ 0.

Lemma 39. Let s be a non-zero periodic series. The mapping Σs is non-increasing.

Proof. Let x1, x2 P Nmax greater than or equal to Y0. Then, ψ psq px1q and ψ psq px2q are
different from ε. Furthermore,

x1 ľ x2 ñ ψ psq px1q ľ ψ psq px2q as ψ psq is isotone
ñ ψ psq px1q “ ψ psq px1q ‘ψ psq px2q
ñ σ pψ psq px1qq “ min pσ pψ psq px1qq , σ pψ psq px2qqq see Prop. 11

ñ σ pψ psq px1qq ď σ pψ psq px2qq
ñ Σs px1q ď Σs px2q

Lemma 40. Let s be a non-zero periodic series in F
Nmax,γ

vγw. There exists X P N0 such that,
for all x P N0, with x ľ X, Σs pxq “ Σs pXq. Furthermore, a possible choice for X is given in
Lem. 38.

Proof. According to Lem. 38, there existX P N0 andω P N such that, @x ľ X,ψ psq pωxq “
ωψ psq pxq. For x P N0, such that x ľ X, x “ ωkx1 with k P N0 and X ĺ x1 ă ωX. Then,
ψ psq pxq “ ωkψ psq px1q. This implies Σs pxq “ Σs px1q. Furthermore, as ψ psq is isotone,

ψ psq pXq ĺ ψ psq `

x1˘ ĺ ψ psq pωXq “ ωψ psq pXq
Therefore, Σs pxq “ Σs px1q “ Σs pXq.

According to Lem. 39 and Lem. 40, there exist Y0, . . . , YL in Z such that

$

’

&

’

%

ψ psq pY0q ‰ ε and ψ psq pY0{̋1q “ ε

σ pψ psq pYi´1qq “ σ pψ psq pYi{̋1qq ą σ pψ psq pYiqq with 1 ď i ď L

@x, such that J ą x ľ YL, σ pψ psq pxqq “ σ pψ psq pYLqq
By convention, we set YL`1 to J. The canonical representative of ψ psq pxq for x ľ Y0 is
denoted px ‘ qx pτxγνxq˚. According to Lem. 38, there exist X P N0 and ω P N such that

@x ľ X, ψ psq pωxq “ ωψ psq pxq
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Then,

M “ max
xľY0

ax “ max
ωXąxľY0

ax where ax “
$

’

&

’

%

´8 if px “ ε and qx “ ε

deg ppxq ` 1 if qx “ ε and px ‰ ε

val pqxq if qx ‰ ε

ν1 “ lcmxľY0 νx “ lcmωXąxľY0 νx

ν1
i “ max

Yi`1^ωXąxľYi
νx with 0 ď i ď L

τ1
i “ ν1

ν1
i

ˆ

max
Yi`1^ωXąxľYi

τx

˙

with 0 ď i ď L

For all x, such that Yi`1 ą x ľ Yi,ψ psq pxq admits a representative p̃x‘ q̃x

´

τ1
iγ

ν1¯˚
with

val pq̃xq “M obtained by developing the Kleene star. Furthermore,

m “ min
xľY0

val pp̃xq “ min
ωXąxľY0

val pp̃xq

Polynomials p̃x and q̃x admit the following non-canonical representatives:

p̃x “
#

ε if m “ `8
ÀM´1

l“m s plq pxqγl otherwise
and q̃x “

M`ν1´1
à

l“M

s plq pxqγl

The polynomials p, q0, . . . , qL in F
Nmax,γ

vγw are defined by

p “
#

ε if m “ `8
ÀM´1

l“m s plqγl otherwise

qk “
M`ν1´1

à

l“M

fqk,lγ
l with fqk,l pxq “

#

ε if x ă Yk

s plq pxq if x ľ Yk

As s is a periodic series, s plq with l P Z is a periodic mapping in F
Nmax

. Then, p and qk are

polynomials inF
Nmax,γ

vγwwith periodic coefficients. Therefore, s1 “ p‘ÀL
k“0

´

Δτ1
kγν1¯˚

qk

is a periodic series in F
Nmax,γ

vγw.

@x P Nmax, ψ
`

s1˘ pxq “ ψ ppq pxq ‘
L

à

k“0

´

τ1
kγ

ν1¯˚
ψ pqkq pxq

If m “ `8, ψ ppq pxq “ ε “ p̃x. Otherwise,

@x P Nmax, ψ ppq pxq “
M´1
à

l“m

s plq pxqγl

“ p̃x
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Therefore,

@x P Nmax, ψ
`

s1˘ pxq “ p̃x ‘
L

à

k“0

´

τ1
kγ

ν1¯˚
ψ pqkq pxq

If x ă Y0, ψ ps1q pxq “ ε “ ψ psq pxq. If Yi ĺ x ă Yi`1,

ψ
`

s1˘ pxq “ p̃x ‘
i

à

k“0

´

τ1
kγ

ν1¯˚
ψ pqkq pxq

“ p̃x ‘
i

à

k“0

´

τ1
kγ

ν1¯˚
˜

M`ν1´1
à

l“M

s plq pxqγl

¸

“ p̃x ‘
i

à

k“0

´

τ1
kγ

ν1¯˚
q̃x

“ p̃x ‘ q̃x

´

τ1
iγ

ν1¯˚

“ ψ psq pxq
Furthermore, ψ psq pJq “ ψ ps1q pJq comes from the lower semi-continuity of ψ psq and
ψ ps1q. Then, s “ s1 as ψ is injective. The canonical representative of s is

s “ p‘
L

à

k“0

´

Δτ1
kγν1¯˚

qk

where the canonical representatives of polynomials p, q0, . . . , qL are considered.

Example 20. For the periodic series s defined in Ex. 19,

ψ psq pxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ε if x “ ε

3 if x “ 0, 1, 2

5 p2γq˚ if x “ 3

3j b 7 p3γq˚ if 4b 3j ĺ x ă 7b 3j with j P N0

J if x “ J
Then, Y0 “ 0 and

Σs pxq “

$

’

’

’

’

&

’

’

’

’

%

`8 if x “ 0, 1, 2
1
2
if x “ 3

1
3
if 4 ĺ x ă J

0 if x “ J
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The canonical representative of s is f1 ‘
`

Δ2γ
˘˚

f2γ‘
`

Δ3γ
˘˚

f3γ with

f1 pxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ε if x “ ε

3 if x “ 0, 1, 2

5 if x “ 3

7b 3j if 4b 3j ĺ x ă 7b 3j with j P N0

J if x “ J

f2 pxq “

$

’

’

’

’

&

’

’

’

’

%

ε if x ă 3

7 if x “ 3

10b 3j if 4b 3j ĺ x ă 7b 3j with j P N0

J if x “ J

f3 pxq “
$

’

&

’

%

ε if x ă 4

10b 3j if 4b 3j ĺ x ă 7b 3j with j P N0

J if x “ J

Throughput

Lem. 39 and Lem. 40 allow us to extend the notion of throughput to periodic series in
F
Nmax,γ

vγw.
Definition 43 (Throughput). Let s be a non-zero periodic series in F

Nmax,γ
vγw. The through-

put of s, denoted σ psq, is Σs pXq with X P N0 such that Σs pXq “ Σs pxq for x P N0 greater
than or equal to X.

Example 21. For the periodic series s defined in Ex. 19,

σ psq “ Σs p4q “ 1

3

Quasi-Causal Periodic Series

The following proposition provides a characterization of quasi-causality for periodic se-
ries.

Proposition 27. Let s be a periodic series in F
Nmax,γ

vγw with the canonical representative

p‘ÀL
k“0 pΔτkγνq˚ qk. The following statements are equivalent:

1. s is a quasi-causal series

2. p, q0, . . . , qL are quasi-causal polynomials
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Proof. 1ñ 2: If m “ `8, p “ ε is a quasi-causal polynomial. Otherwise,

@l P Z, p plq “
$

’

&

’

%

ε if l ă m

s plq if m ď l ăM

s pM´ 1q if l ěM

As s is a quasi-causal series, p is a quasi-causal polynomial. Furthermore,

@l P Z, qk plq “
$

’

&

’

%

ε if l ăM

fqk,l if M` 1 ď l ăM` ν

fqk,M`ν´1 if l ěM` ν

with

fqk,l pxq “
#

ε if x ă Yk

s plq pxq if x ľ Yk

Mapping fqk,l is quasi-causal, as s is quasi-causal. Then, qk is a quasi-causal polynomial.
2ñ 1: For l P Z,

s plq “
#

p plq if l ăM

p plq ‘ÀL
k“0 Δ

t l´M
ν

uτkqk

`

l´ t l´M
ν

uν
˘

if l ěM

Therefore, s is quasi-causal.

4.3.2. Calculation with Periodic Series

Next, the behavior of periodic series with respect to operations ‘, b, ^, z̋, and {̋ is
investigated.

Proposition 28 (Sum of periodic series). Let s1 and s2 be two periodic series in F
Nmax,γ

vγw.
Series s1 ‘ s2 is periodic. If s1 and s2 are different from ε, then

σ ps1 ‘ s2q “ min pσ ps1q , σ ps2qq
Proof. See § A.1.1.

Proposition 29 (Greatest lower bound of periodic series). Let s1 and s2 be two periodic
series in F

Nmax,γ
vγw. Series s1 ^ s2 is periodic. If s1 and s2 are different from ε, then

σ ps1 ^ s2q “ max pσ ps1q , σ ps2qq
Proof. See § A.1.2.
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Proposition 30 (Product of periodic series). Let s1 and s2 be two periodic series inFNmax,γ
vγw.

Series s1 b s2 is periodic. If s1 and s2 are different from ε, then

σ ps1 b s2q “ min pσ ps1q , σ ps2qq
Proof. See § A.1.3.

Remark 13. According to Prop. 28 and Prop. 30, the set of periodic series in F
Nmax,γ

vγw is a
subdioid of F

Nmax,γ
vγw, denoted Fper

Nmax,γ
vγw. However, Fper

Nmax,γ
vγw is not complete. But, the

operation ^ is well-defined on Fper

Nmax,γ
vγw according to Prop.29.

Proposition 31 (Left-division of quasi-causal periodic series). Let s1, s2 be two quasi-causal
periodic series in F

Nmax,γ
vγw. Series s1 z̋`s2 is periodic. If s1 and s2 are different from ε,

— if σ ps1q ă σ ps2q, then s1 z̋`s2 “ ε

— if σ ps1q “ σ ps2q “ `8, then s1 z̋`s2 is either equal to ε or σ
`

s1 z̋`s2
˘ “ `8

— if σ ps2q ‰ `8 and σ ps1q ě σ ps2q, then σ
`

s1 z̋`s2
˘ “ σ ps2q

Proof. See § A.1.4.

Proposition 32 (Kleene star of causal periodic series). The Kleene star of a causal periodic
series is a causal periodic series.

Proof. See § A.1.5.

Remark 14. A direct consequence of the previous proposition is that the dioid of causal peri-
odic series F``,per

Nmax,γ
vγw is rationally closed. However, this dioid is not complete.

The last operation to investigate is the right-division. The set of quasi-causal series in
F
Nmax,γ

vγw is a complete dioid. Therefore, the product is residuated. s2{̋`s1 is the greatest
quasi-causal series s such that s b s1 ĺ s2. However, the periodicity of s2{̋`s1 is not
ensured as shown in the next example.

Example 22. Let us consider s1 “
`

Δγ2
˘˚

and s2 “ pΔγq˚ f with

f pxq “
$

’

&

’

%

ε if x “ ε

e if x “ e

J otherwise

According to (2.3),

s2{̋`s1 “
ľ

jě0

s2{̋`
´

Δjγ2j
¯
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Then, according to (2.11),

@l P Z, `

s2{̋`s1
˘ plq “

ľ

jě0

´

s2{̋`
´

Δjγ2j
¯¯

plq

“
ľ

jě0

s2 pl` 2jq {̋`Δ
j

By definition,
`

s2{̋`s1
˘ plq “ ε if l ă 0. Otherwise,

@l P N0,
`

s2{̋`s1
˘ plq “

ľ

jě0

Pr`
ˆ

Δl`2jf
´

Δj
¯5˙

As f ľ Id,

Δl`2jf
´

Δj
¯5

ľ Δl`2j
´

Δj
¯5

ľ Δl`j ľ Id

Thus,

@l P N0,
`

s2{̋`s1
˘ plq “

ľ

jě0

Fj with Fj “ Δl`2jf
´

Δj
¯5

Clearly,

Fj pxq “
$

’

&

’

%

ε if x “ ε

lj2 if e ĺ x ĺ j

J if x ą j

Then,

@l P N0,@x P N0,
`

s2{̋`s1
˘ plq pxq “

ľ

jě0

Fj pxq

“ lx2

Thus,

@l P N0,
`

s2{̋`s1
˘ plq “ `pΔγq˚ g˘ plq with g pxq “ x2

Then,

s2{̋`s1 “ pΔγq˚ g
Therefore, s2{̋`s1 is not a periodic series inFNmax,γ

vγw, as g is not a periodic mapping inF
Nmax

.
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4.3. Periodicity

4.3.3. Subdioid Fper,c

Nmax,γ
vγw

In the following, we restrain ourselves to a subdioid of causal periodic series, denoted
Fper,c

Nmax,γ
vγw, which is closed with respect to the right-division.

Definition 44. The subset Fper,c

Nmax,γ
vγw of Fper

Nmax,γ
vγw is defined as

Fper,c

Nmax,γ
vγw “ tεu Y

!

s P Fper

Nmax,γ
vγw|σ psq “ σ pψ psq peqq and s is causal

)

Canonical Representative of Series in Fper,c

Nmax,γ
vγw

A series s in Fper,c

Nmax,γ
vγw is a periodic series in F

Nmax,γ
vγw. Therefore, a canonical repre-

sentative for s is available in § 4.3.1. In the following, particular properties of the canonical
representative of a series s in Fper,c

Nmax,γ
vγw are discussed depending on the value of σ psq.

σ psq “ `8: s is a polynomial with the canonical representative

s “
N

à

k“1

fkγ
nk with n1 ă ¨ ¨ ¨ ă nN and fk pxq ‰ J for x ‰ J

σ psq “ 0: s is a polynomial with the canonical representative

s “
N

à

k“1

fkγ
nk with n1 ă ¨ ¨ ¨ ă nN and fN “ J

0 ă σ psq ă `8: The canonical representative of s has the following form

s “ p‘ pΔτγνq˚ q
with τ, ν in N and causal polynomials p, q in F``

Nmax,γ
vγw. Furthermore, σ psq “ ν

τ
, p “ ε

or σ ppq “ `8, and σ pqq “ `8.

Calculation with Series in Fper,c

Nmax,γ
vγw

Next, the behavior of series in Fper,c

Nmax,γ
vγw with respect to operations ‘, b, ^, z̋, and {̋

defined on F
Nmax,γ

vγw is investigated.
Proposition 33 (Sum of series in Fper,c

Nmax,γ
vγw). Let s1 and s2 be two series in Fper,c

Nmax,γ
vγw.

Series s1 ‘ s2 belongs to Fper,c

Nmax,γ
vγw. If s1 and s2 are different from ε, then

σ ps1 ‘ s2q “ min pσ ps1q , σ ps2qq
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Proof. See § A.2.1.

Proposition 34 (Greatest lower bound of series in Fper,c

Nmax,γ
vγw). Let s1 and s2 be two series

in Fper,c

Nmax,γ
vγw. Series s1 ^ s2 belongs to Fper,c

Nmax,γ
vγw. If s1 and s2 are different from ε, then

σ ps1 ^ s2q “ max pσ ps1q , σ ps2qq
Proof. See § A.2.2.

Proposition 35 (Product of series in Fper,c

Nmax,γ
vγw). Let s1 and s2 be two series in Fper,c

Nmax,γ
vγw.

Series s1 b s2 belongs to Fper,c

Nmax,γ
vγw. If s1 and s2 are different from ε, then

σ ps1 b s2q “ min pσ ps1q , σ ps2qq
Proof. See § A.2.3.

Proposition 36 (Left-division of series inFper,c

Nmax,γ
vγw). Let s1, s2 be two series inFper,c

Nmax,γ
vγw.

Series s1 z̋``s2 belongs to Fper,c

Nmax,γ
vγw. If s1 and s2 are different from ε,

— if σ ps1q ă σ ps2q, then s1 z̋``s2 “ ε

— if σ ps1q “ σ ps2q “ `8, then s1 z̋``s2 is either equal to ε or σ
`

s1 z̋`s2
˘ “ `8

— if σ ps2q ‰ `8 and σ ps1q ě σ ps2q, then σ
`

s1 z̋``s2
˘ “ σ ps2q

Proof. See § A.2.4.

Proposition 37 (Right-division of series inFper,c

Nmax,γ
vγw). Let s1, s2 be two series inFper,c

Nmax,γ
vγw.

Series s2{̋``s1 belongs to Fper,c

Nmax,γ
vγw. If s1 and s2 are different from ε,

— if σ ps1q ă σ ps2q, then s2{̋``s1 “ ε

— if σ ps1q “ σ ps2q “ `8, then s2{̋``s1 is either equal to ε or σ
`

s2{̋``s1
˘ “ `8

— if σ ps2q ‰ `8 and σ ps1q ě σ ps2q, then σ
`

s2{̋``s1
˘ “ σ ps2q

Proof. See § A.2.5.

4.4. Rationality

In this section, the concept of rationality is extended from F
Nmax

to F
Nmax,γ

vγw.
Definition 45 (Rationality). A series s in F

Nmax,γ
vγw is said to be rational if there exists a

finite number N of periodic series r1, . . . , rN in Nmax,γvγw such that s belongs to the rational
closure of tε, e, Δ, αr1 , . . . , αrN , γu.
A matrix with entries in F

Nmax,γ
vγw is said to be rational if all its entries are rational.

In the following proposition, the rationality of causal periodic series is investigated based
on the rationality of causal periodic mappings (see Prop. 24).
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Proposition 38. A causal periodic series in F
Nmax,γ

vγw is rational.
Proof. Let s be a causal periodic series. If s “ ε, s is rational. Otherwise, s is a non-zero
causal periodic series. Then, there exists N P N, non-zero quasi-causal periodic mappings
f1, . . . , fN in F

Nmax
, n1, . . . , nN in N0, τ1, . . . , τN in N0, and ν P N such that

s “
N

à

k“1

pΔτkγνq˚ fkγnk

We defined Yk by Yk “ Ź
�

x P Nmax|fk pxq ‰ ε
(

. As fk is a quasi-causal mapping, fk pxq ľ
x for x ľ Yk. In the following, the series s̃ is defined by

s̃ “
N

à

k“1

pRkγ
νkq˚ gkγnk

where

Rk pxq “
#

x if x ă Yk

τkx if x ľ Yk
and gk pxq “

#

x if x ă Yk

fk pxq if x ľ Yk

As Rk and gk are causal periodic mappings in F
Nmax

, they are rational mappings in F
Nmax

according to Prop. 24. Then, s̃ is a rational series. In the following, we prove that s “ s̃. As
s is causal,

@x P Nmax, ψ psq pxq “
N

à

k“1

`pτkγνq˚ fk pxqγnk ‘ xγnk
˘

“
N

à

k“1

Mk pxq with Mk pxq “ pτkγνq˚ fk pxqγnk ‘ xγnk

Clearly,

Mk pxq “
#

xγnk if x ă Yk

pτkγνq˚ fk pxqγnk if x ľ Yk

Then, Mk “ ψ
`pRkγ

νkq˚ gkγnk
˘

. Consequently, ψ psq “ ψ ps̃q. This implies s “ s̃, as ψ
is injective (see Lem. 33). Thus, s is a rational series.

4.5. Realizability

The concept of realizability is defined for F
Nmax,γ

vγw by analogy with the realizability in

Nmax,γvγw.
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Definition 46 (Realizability). A matrix S in F
Nmax,γ

vγwmˆp is said to be realizable if there

exists a finite numberN of periodic series r1, . . . , rN inNmax,γvγw such that S admits a pB,Cq-
representation with respect to tε, e, Δ, αr1 , . . . , αrN , γu where all non-diagonal entries of A
belong to tε, e, Δ, γu.

In the following, two lemmas on realizability in F
Nmax,γ

vγw are proved.
Lemma 41. Let S be a matrix in F

Nmax,γ
vγwmˆp. The following statements are equivalent:

1. S is realizable

2. there exists a finite number N of periodic series r1, . . . , rN in Nmax,γvγw such that S
admits a pB,Cq-representation with respect to tε, e, Δ, αr1 , . . . , αrN , γu

Proof. 1ñ 2 This comes directly from the definition of realizability.
2ñ 1 There exists a finite numberN of periodic series r1, . . . , rN inNmax,γvγw such that

S admits a pB,Cq-representationwith respect to E “ tε, e, Δ, αr1 , . . . , αrN , γu. Then, there
exist n P N, A P Enˆn, B P Bnˆp, and C P Bmˆn such that S “ CA˚B. In the following,
we show how to remove a non-diagonal entries of A equal to a α-mapping, denoted αr by
increasing n by 1. Let i, j with i ‰ j such that Aij “ αr. The matrix Ã in Enˆn is defined
by

Ãkl “
#

ε if k “ i and l “ j

Akl otherwise

The matrices Â in E pn`1qˆpn`1q, B̂ in Bpn`1qˆp, and Ĉ in Bmˆpn`1q are defined by the
following block representations:

Â “
˜

Ã Ei

EJ
j αr

¸

, B̂ “
˜

B

ε

¸

, and Ĉ “
´

C ε

¯

where Ek denotes the vector in Bnˆ1 defined by

pEkqi “
#

e if k “ i

ε otherwise

According to Lem. 10,

ĈÂ˚B̂ “ C
´

Ã‘ Eiαr̊ E
J
j

¯˚
B

“ C
´

Ã‘ αrEiE
J
j

¯˚
B as αr “ αr̊ and Eiαr “ αrEi

“ CA˚B as Ã‘ αrEiE
J
j “ A

“ S
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Hence, Â, B̂, and Ĉ form a pB,Cq-representation with respect to E of matrix S. Therefore,
repeating the previous process leads to a pB,Cq-representation with respect to E of matrix
S where all non-diagonal entries of A belong to tε, e, Δ, γu.
Lemma 42. Let S be a matrix in F

Nmax,γ
vγwmˆp. The following statements are equivalent:

1. S is realizable

2. all entries of S are realizable

Proof. Let us consider the following statements:

1. S is realizable

2. there exists a finite number N of periodic series r1, . . . , rN in Nmax,γvγw such that S
admits a pB,Cq-representation with respect to tε, e, Δ, αr1 , . . . , αrN , γu

3. there exists a finite numberN of periodic series r1, . . . , rN inNmax,γvγw such that each
entry of S admits a pB,Cq-representation with respect to tε, e, Δ, αr1 , . . . , αrN , γu

4. all entries of S are realizable

According to Lem. 41, 1ô 2 and 3ô 4. Furthermore, according to Prop. 7, 2ô 3. Hence,
1ô 4.

4.6. The Fundamental Theorem in FNmax,γ
vγw

Using the definitions discussed before, the fundamental theorem inNmax,γvγw is extended
to F

Nmax,γ
vγw.

Theorem 9. Let S be a matrix in F
Nmax,γ

vγwmˆp. The following statements are equivalent:

1. S is causal and periodic

2. S is rational

3. S is realizable

Proof. As causality, periodicity, rationality, and realizability of a matrix come down to
causality, periodicity, rationality, and realizability of its entries. It is sufficient to consider
the scalar case. Let s be a series in F

Nmax,γ
vγw.

1ñ 2: s is causal and periodic, then s is rational according to Prop. 38.
2ñ 1: s is rational, then s is causal and periodic: tε, e, Δ, αr1 , . . . , αrN , γu Ď F``,per

Nmax,γ
vγw

and F``,per

Nmax,γ
vγw is rationally closed.

2ô 3: Using Th. 7 and Lem. 41, the following statements are equivalent:

1. s is rational

2. there exists a finite number N of periodic series r1, . . . , rN in Nmax,γvγw such that s
belongs to the rational closure of tε, e, Δ, αr1 , . . . , αrN , γu
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3. there exists a finite number N of periodic series r1, . . . , rN in Nmax,γvγw such that s
admits a pB,Cq-representation with respect to tε, e, Δ, αr1 , . . . , αrN , γu

4. s is realizable
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5
Modeling

In this chapter, the modeling of pmax,`q-systems with partial synchronization by recur-
sive equations in the pmax,`q-algebra is discussed. Let us first briefly recall the structure
of pmax,`q-systems with partial synchronization drawn in Fig. 5.1. A pmax,`q-system
with partial synchronization is split into a main system and a secondary system such that
there exist only standard synchronizations between events in the same system and par-
tial synchronization of events in the secondary system by events in the main system. The
modeling of pmax,`q-systems with partial synchronization is widely based on an analogy
with the modeling of timed event graphs, e.g., [1]. The following results have been partly
published in [18, 19]. The modeling approaches presented in this chapter are illustrated

Main System

Secondary System

Figure 5.1.: A schematic view of a pmax,`q-system with partial synchronization
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with Ex. 23.

Example 23. This example deals with a supply chain, where intermodal containers are shut-
tling back and forth between warehouses A1 and B1. The supply chain is divided in three
sections:

1. a road transport section between warehouse A1 and train station A

2. a rail transport section between train stations A and B

3. a road transport section between warehouse B1 and train station B

This system is drawn in Fig. 5.2, where the solid loop represents the train line, the dashed loops
represent the road transport sections, and the dotted loop summarizes the complete supply
chain. The characteristics of the train line and of the supply chain are now made explicit. Two

Train station BTrain station A

Warehouse A1 Warehouse B1

Figure 5.2.: The supply chain and the train line

trains are shuttling back and forth between train stations A and B. Initially, one train is in
train stationA and the other is in train station B. The travel time between train stationsA and
B is ten units of time. A train stays at least two units of time in a train station before returning.
Due to safety practices, the number of trains on each railroad track shall not exceed one. A
single container, initially in warehouseA1, is shuttling back and forth between warehousesA1
and B1. The duration of each road transport section (between train station A and warehouse
A1 or between train station B and warehouse B1) is estimated to �ve units of time. To allow
loading and unloading, the container stays at least three units of time in a warehouse before
returning.
In the following, the train line and the supply chain are modeled by discrete event systems

ruled by synchronization. The model of the train line is based on the following events:

uA (resp. uB) authorization for train departure from train station A (resp. B)

dA (resp. dB) train departure from train station A (resp. B)

aA (resp. aB) train arrival in train station A (resp. B)

yA (resp. yB) noti�cation of train arrival in train station A (resp. B)
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The previous description of the train line corresponds to the following synchronizations:
— for all k ě 0, occurrence k of event aA (resp. aB) is at least ten units of time after

occurrence k of event dB (resp. dA)
— for all k ě 1, occurrence k of event dA (resp. dB) is at least two units of time after

occurrence k´ 1 of event aA (resp. aB)
— for all k ě 1, occurrence k of event dA (resp. dB) is at least zero units of time after

occurrence k´ 1 of event aB (resp. aA)
— for all k ě 0, occurrence k of event dA (resp. dB) is at least zero units of time after

occurrence k of event uA (resp. uB)
— for all k ě 0, occurrence k of event yA (resp. yB) is at least zero units of time after

occurrence k of event aA (resp. aB)
Then, the behavior of the train line is adequately expressed by standard synchronizations
(i.e., the train line is a pmax,`q-linear system). The model of the supply chain is based on
the following events:

uA1
(resp. uB1

) authorization for container departure from warehouse A1 (resp. B1)

dA1
(resp. dB1

) container departure (by truck) from warehouse A1 (resp. B1)

aA1
(resp. aB1

) container arrival (by truck) in warehouse A1 (resp. B1)

yA1
(resp. yB1

) notification of container arrival in warehouse A1 (resp. B1)

dcA (resp. dcB) container departure (by train) from train station A (resp. B)

acA (resp. acB) container arrival (by train) in train station A (resp. B)

The previous description of the supply chain includes the following standard synchronizations:
— for all k ě 0, occurrence k of event dcA (resp. dcB) is at least five units of time after

occurrence k of event dA1
(resp. dB1

)
— for all k ě 1, occurrence k of event dA1

is at least three units of time after occurrence
k´ 1 of event aA1

— for all k ě 0, occurrence k of event dB1
is at least three units of time after occurrence k

of event aB1

— for all k ě 0, occurrence k of event aA1
(resp. aB1

) is at least five units of time after
occurrence k of event acA (resp. acB)

— for all k ě 0, occurrence k of event acA (resp. acB) is at least ten units of time after
occurrence k of event dcB (resp. dcA)

— for all k ě 0, occurrence k of event dA1
(resp. dB1

) is at least zero units of time after
occurrence k of event uA1

(resp. uB1
)

— for all k ě 0, occurrence k of event yA1
(resp. yB1

) is at least zero units of time after
occurrence k of event aA1

(resp. aB1
)

So far, the container/truck interactions (in the road transport sections) and the container/train
interactions (in the rail transport section) have been neglected. While this hypothesis makes
sense for the container/truck interactions (e.g., sufficiently many trucks are available to de-
liver containers), the container/train interactions have to be taken into account. To do so, the
following partial synchronizations are used:

81



5. Modeling

— event dcA (resp. dcB) can only occur when event dA (resp. dB) occurs
— event acA (resp. acB) can only occur when event aA (resp. aB) occurs

Therefore, the complete system is a pmax,`q-system with partial synchronization, where the
main system corresponds to the train line and the secondary system corresponds to the supply
chain.

5.1. Conventions

5.1.1. Input, Output, and State Events

By analogy with pmax,`q-linear systems, the event set of a pmax,`q-systemwith partial
synchronization is partitioned into

input events these events are the source of (standard or partial) synchronizations, but not
subject to (standard or partial) synchronizations

output events these events are subject to (standard or partial) synchronizations, but not
the source of (standard or partial) synchronizations

state events these events are both subject to and the source of (standard or partial) syn-
chronizations

Events which are neither subject to nor the source of (standard or partial) synchronizations
are neglected, as we focus on interactions between events. In the rest of this thesis, we
consider pmax,`q-systems with partial synchronization, where:

— the sets of input, output, and state events in the main and secondary system are not
empty

— there are only partial synchronizations between state events
— there exist no direct standard synchronizations of output events by input events
— the main and the secondary system are structurally controllable: each state event is

affected by at least one input event belonging to the same system
— the main and the secondary system are structurally observable: each state event af-

fects at least one output event belonging to the same system
In practice, these assumptions either hold or can be made to hold by adding or deleting
events. Furthermore, the following convention for notation is used. Parameters in the
main system are denoted with subscript 1, while parameters in the secondary system are
denoted with subscript 2. The numbers of input, output, and state events are respectively
denoted by m, p, and n. Input, output, and state events are respectively denoted by u, y,
and x and integer subscripts are used to distinguish events of the same kind in the main or
secondary system.

Example 24. In Ex. 23, the set of events is partitioned into
— input events uA, uB, uA1

, and uB1

— state events dA, dB, aA, aB, dA1
, dB1

, aA1
, aB1

, dcA, dcB, acA, and acB
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— output events yA, yB, yA1
, and yB1

These events are relabeled according to the above convention (see Tab. 5.1 and Tab. 5.2). In

uA uB dA aB dB aA yB yA

u1,1 u1,2 x1,1 x1,2 x1,3 x1,4 y1,1 y1,2

Table 5.1.: Notation for events in the main system

uA1
uB1

dA1
dcA acB aB1

dB1
dcB acA aA1

yB1
yA1

u2,1 u2,2 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 y2,1 y2,2

Table 5.2.: Notation for events in the secondary system

this case, n1 “ 4, n2 “ 8, andm1 “ m2 “ p1 “ p2 “ 2.

5.1.2. Petri Net Representation

For the graphical representation of pmax,`q-systems with partial synchronization, the
convention valid for pmax,`q-linear systems is extended to take into account partial syn-
chronizations. Events are represented by bars. For example, the standard synchronization
“for all k ě 3, occurrence k of event e2 is at least five units of time after occurrence k´ 3

of event e1” is drawn in Fig. 5.3. Furthermore, partial synchronizations are represented

5
e1 e2

Figure 5.3.: Graphical representation of a standard synchronization

by dashed arrows. For example, the partial synchronization “event e2 can only occur when
event e1 occurs” is drawn in Fig. 5.4. Due to visual resemblance with Petri nets, the obtained
graphical representation is called Petri net representation.

Example 25. The Petri net representation associated with Ex. 23 is given in Fig. 5.5.
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e1

e2

Figure 5.4.: Graphical representation of a partial synchronization

5.1.3. Earliest Functioning Rule

Partial and standard synchronizations only specify conditions enabling occurrences of
events, but never force an event to occur. Therefore, a pmax,`q-system with partial syn-
chronization is not deterministic: a predefined timing pattern of the input events may lead
to different timing patterns for the state and output events. The only requirement is that
these timing patterns are admissible with respect to standard and partial synchronizations
required by the considered system.

In this thesis, we only consider a particular behavior for pmax,`q-systems with partial
synchronization, namely the behavior under the earliest functioning rule. The earliest func-
tioning rule requires that each state or output event occurs as soon as possible. Under the
earliest functioning rule, a pmax,`q-system with partial synchronization is deterministic:
a predefined timing pattern of the input events leads to a unique timing pattern for the state
and output events. This fundamental property is formally proven in § 5.2.3.

In practice, the earliest functioning rule is often suitable, as standard and partial synchro-
nizations express conditions on the occurrence of events. Then, as soon as the conditions
are met, the associated event shall occur.

5.2. Dater Representation

In this section, we derive a model for pmax,`q-systems with partial synchronization
based on daters. A convenient algebraic structure to express this model is the pmax,`q-
algebraRmax. Furthermore, we present amethod based on this model to compute the output
induced by a predefined input.
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5

2 2

10

10

5 5

5

Train Station AWarehouse A1 Train Station B Warehouse B1

u2,1 x2,1 x2,2 x2,3 x2,410

10

x2,5x2,6x2,7x2,8y2,2

y1,2

u1,1 x1,1

x1,4
x1,3

x1,2

u1,2

y1,1

y1,1

u2,2

3 3

Figure 5.5.: Petri net representation of the supply chain and of the train line

5.2.1. Daters

To capture the timed dynamics of a discrete event system, a mapping, called dater, is
associated with each event such that the dater gives the times of occurrences of the con-
sidered event. From now on, we consider daters from Z to Rmax and no distinction in the
notation is made between an event and the associated dater. Hence, for an event d, d pkq
denotes the time of occurrence k of event d. This leads to the following interpretation for
daters:

d pkq “ ε: occurrence k of event d is at t “ ´8. By convention, occurrence k (with
k ă 0) of an event always is at t “ ´8.

d pkq P R`
0 : occurrence k of event d is at time d pkq. By convention, events are required

to occur either at t ě 0 or at t “ ´8.

d pkq “ J: occurrence k of event d never happens.

Furthermore, occurrence k` 1 of event d occurs after occurrence k of event d. Therefore,
as the order in Rmax coincides with the standard order,

@k P Z, d pk` 1q ľ d pkq
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5. Modeling

Thus, a dater is isotone. The previous discussion leads to a formal definition for daters.

Definition 47 (Dater). A dater, denoted d, is an isotone mapping from Z to Rmax such that
d pkq “ ε for k ă 0. The set of daters is denoted D.

According to Rem. 3,D is endowed with an operation‘ and an order ĺ induced respec-
tively by the operation ‘ and the order ĺ in the dioid Rmax.

Remark 15. It is also possible to see daters as formal power series inRmax,γvγw (i.e., as isotone
formal power series in γ with coefficients in Rmax). This allows us to denote daters by formal
power series.

5.2.2. Expressing Synchronizations with Daters

In the following, standard and partial synchronizations are expressed in terms of daters.
This leads to an algebraic representation for pmax,`q-systems with partial synchroniza-
tion.

Expressing Standard Synchronizations with Daters

The standard synchronization “for all k ě l, occurrence k of event e2 is at least τ units
of time after occurrence k´ l of event e1” corresponds to the following inequality in Rmax:

@k P Z, e2 pkq ľ τe1 pk´ lq
Furthermore, the effect of several standard synchronizations on a single event is also ex-
pressed by a single inequality in Rmax. For example, the standard synchronizations “for all
k ě l1, occurrence k of event e2 is at least τ1 units of time after occurrence k´ l1 of event
e1,1” and “for all k ě l2, occurrence k of event e2 is at least τ2 units of time after occurrence
k´ l2 of event e1,2” are both expressed by a single inequality in Rmax:

@k P Z, e2 pkq ľ τ1e1,1 pk´ l1q ‘ τ2e1,2 pk´ l2q
Therefore, matrix inequalities in Rmax are suitable to express standard synchronizations.

The standard synchronizations between events in the main system are summarized by
#

x1 pkq ľ
ÀL1

i“0 pA1,ix1 pk´ iq ‘ B1,iu1 pk´ iqq
y1 pkq ľ

ÀL1
i“0 C1,ix1 pk´ iq (5.1)

where x1, u1, and y1 respectively correspond to the vectors of daters associated with state,
input, and output events in the main system and L1 denotes the greatest parameter l over
all standard synchronizations in the main system. Furthermore, matrices A1,i, B1,i, and

C1,i belong respectively to R
n1ˆn1

max , R
n1ˆm1

max , and R
p1ˆn1

max . The entries of these matrices are
given by the parameters of the standard synchronizations in the main system. In the same
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5.2. Dater Representation

way, the standard synchronizations between events in the secondary system are summa-
rized by

#

x2 pkq ľ
ÀL2

i“0 pA2,ix2 pk´ iq ‘ B2,iu2 pk´ iqq
y2 pkq ľ

ÀL2
i“0 C2,ix2 pk´ iq (5.2)

where x2, u2, and y2 respectively correspond to the vectors of daters associated with state,
input, and output events in the secondary system and L2 denotes the greatest parameter
l over all standard synchronizations in the secondary system. Furthermore, matrices A2,i,

B2,i, and C2,i respectively belong to R
n2ˆn2

max , R
n2ˆm2

max , and R
p2ˆn2

max . The entries of these
matrices are given by the parameters of standard synchronizations in the secondary system.

To simplify (5.1) and (5.2), the event set of the considered pmax,`q-system with partial
synchronization is extended by additional state events. This allows us to convert (5.1) and
(5.2) to first-order recursions. The theoretical validity of this step is ensured by Lem. 43.

Lemma 43. Let l P N. In a pmax,`q-system with partial synchronization, the following (sets
of) synchronizations are equivalent:

1. “for all k ě l, occurrence k of event e2 is at least τ units of time after occurrence k ´ l

of event e1”

2. “for all k ě l ´ 1, occurrence k of event e2 is at least τ units of time after occurrence
k ` 1 ´ l of event ei” and “for all k ě 1, occurrence k of event ei is at least zero units
of time after occurrence k´ 1 of event e1” where state event ei only appears in the two
previous standard synchronizations

3. “for all k ě 1, occurrence k of event e2 is at least zero units of time after occurrence
k´ 1 of event ei” and “for all k ě l´ 1, occurrence k of event ei occurs at least τ units
of time after occurrence k ´ l ` 1 of event e1” where state event ei only appears in the
two previous standard synchronizations

Proof. Only 1ô 2 is checked, as 1ô 3 can be obtained in the same way.
1 ñ 2: Let us consider an event ei only subject to the following standard synchroniza-

tion: for all k ě 1, occurrence k of event ei is at least zero units of time after occurrence
k´ 1 of event e1. Then,

@k P Z, ei pkq ľ e1 pk´ 1q
It remains to prove that the system includes the standard synchronization: “for all k ě l´1,
occurrence k of event e2 is at least τ units of time after occurrence k ` 1 ´ l of event ei”.
Event ei is only subject to this standard synchronization. Hence, according to the earliest
functioning rule,

@k P Z, ei pkq “ e1 pk´ 1q

87



5. Modeling

Therefore,

@k P Z, e2 pkq ľ τe1 pk´ lq “ τei pk´ l` 1q
Then, in terms of standard synchronizations, “for all k ě l´ 1, occurrence k of event e2 is
at least τ units of time after occurrence k` 1´ l of event ei”.
2 ñ 1: Conversely, the two standard synchronizations “for all k ě l ´ 1, occurrence k

of event e2 is at least τ units of time after occurrence k ` 1 ´ l of event ei” and “for all
k ě 1, occurrence k of event ei is at least zero units of time after occurrence k´ 1 of event
e1” correspond, in terms of daters, to

@k P Z, e2 pkq ľ τei pk´ l` 1q and ei pkq ľ e1 pk´ 1q
This implies, as the product is isotone in a dioid,

@k P Z, e2 pkq ľ τe1 pk´ lq
The previous inequality corresponds to the standard synchronization “for all k ě l, occur-
rence k of event e2 is at least τ units of time after occurrence k´ l of event e1”.

According to Lem. 43, the different synchronization relations between events e1 and e2
pictured in Fig. 5.6 are equivalent.

e1 τ e2

(a)

e1 e2ei τ

(b)

e1 τ e2ei

(c)

Figure 5.6.: Equivalent synchronizations if no other synchronizations affect event ei

By using repetitively Lem. 43, it is possible to set all entries of A1,i and A2,i for i ě 2

and of B1,i, C1,i, B2,i, and C2,i for i ě 1 to ε with additional state events. This leads to
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5.2. Dater Representation

the simplified representations for standard synchronizations in the main system and in the
secondary system respectively given in (5.3) and (5.4).

#

x1 pkq ľ A1,0x1 pkq ‘A1,1x1 pk´ 1q ‘ B1,0u1 pkq
y1 pkq ľ C1,0x1 pkq

(5.3)

#

x2 pkq ľ A2,0x2 pkq ‘A2,1x2 pk´ 1q ‘ B2,0u2 pkq
y2 pkq ľ C2,0x2 pkq

(5.4)

In the following, only these representations are considered.

Example 26. For the pmax,`q-system with partial synchronization introduced in Ex. 23, the
following matrix inequalities are obtained:

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

x1 pkq ľ

¨

˚

˚

˚

˚

˝

ε ε ε ε

10 ε ε ε

ε ε ε ε

ε ε 10 ε

˛

‹

‹

‹

‹

‚

x1 pkq ‘

¨

˚

˚

˚

˚

˝

ε e ε 2

ε ε ε ε

ε 2 ε e

ε ε ε ε

˛

‹

‹

‹

‹

‚

x1 pk´ 1q ‘

¨

˚

˚

˚

˚

˝

e ε

ε ε

ε e

ε ε

˛

‹

‹

‹

‹

‚

u1 pkq

y1 pkq ľ

˜

ε e ε ε

ε ε ε e

¸

x1 pkq

$

’

&

’

%

x2 pkq ľ A2,0x2 pkq ‘A2,1x1 pk´ 1q ‘ B2,0u2 pkq
y2 pkq ľ

˜

ε ε ε e ε ε ε ε

ε ε ε ε ε ε ε e

¸

x2 pkq

with

A2,0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ε ε ε ε ε ε ε ε

5 ε ε ε ε ε ε ε

ε 10 ε ε ε ε ε ε

ε ε 5 ε ε ε ε ε

ε ε ε 3 ε ε ε ε

ε ε ε ε 5 ε ε ε

ε ε ε ε ε 10 ε ε

ε ε ε ε ε ε 5 ε

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

B2,0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

e ε

ε ε

ε ε

ε ε

ε e

ε ε

ε ε

ε ε

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚
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and

A2,1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ε ε ε ε ε ε ε 3

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Expressing Partial Synchronizations with Daters

The partial synchronization “event e2 can only occur when event e1 occurs” is expressed
by the following condition on daters:

@k P Z, e2 pkq P A pe1q with A pe1q “ te1 pjq |j P Zu Y tJu
The element J is included in A pe1q to model the non-occurrence of event e2. Thus, ε and
J always belong to A pe1q. The effect of several partial synchronizations on a single event
is easily expressed by an intersection of sets. For example, the partial synchronizations
“event e2 can only occur when event e1,1 occurs” and “event e2 can only occur when event
e1,2 occurs” correspond to

@k P Z, e2 pkq P A pe1,1q XA pe1,2q
To model partial synchronizations in a pmax,`q-system with partial synchronization,

we first recall that, as mentioned in § 5.1.1, only partial synchronizations of state events in
the secondary system by state events in the main system are considered. Then, a subset of
Rmax, denoted Ai, is associated with each state event x2,i in the secondary system. Let us
denote Xi the set of state events in the main system synchronizing event x2,i. Then, Ai is
defined by

Ai “
#

Rmax if Xi “ H
Ş

xPXi
A pxq otherwise

(5.5)

Hence, the partial synchronizations in a pmax,`q-system with partial synchronization are
expressed by the following condition

@k P Z,@i, x2,i pkq P Ai
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5.2. Dater Representation

Example 27. For the example introduced in Ex. 23,

A1 “ A4 “ A5 “ A8 “ Rmax

A2 “ A px1,1q and A3 “ A px1,2q
A6 “ A px1,3q and A7 “ A px1,4q

Algebraic Representation of a pmax,`q-system with Partial Synchronization by

Daters

The main system is modeled by
#

x1 pkq ľ A1,0x1 pkq ‘A1,1x1 pk´ 1q ‘ B1,0u1 pkq
y1 pkq ľ C1,0x1 pkq

(5.6)

The secondary system is modeled by

$

’

&

’

%

x2 pkq ľ A2,0x2 pkq ‘A2,1x2 pk´ 1q ‘ B2,0u2 pkq
y2 pkq ľ C2,0x2 pkq
@i, x2,i pkq P Ai

(5.7)

In (5.7), the first two equations represent the standard synchronizations in the secondary
system and the third equation represents the partial synchronization of state events in the
secondary system by state events in the main system. Then, the main system affects the
secondary system through the sets Ai which depend on the timing pattern of the state
events in the main system (see (5.5)).

5.2.3. Input-Output Behavior

In the following, a method to compute the response of a pmax,`q-system with partial
synchronization to a predefined input specified by daters is discussed. As the secondary
system does not affect the main system, we first focus on the main system. Second, we
investigate the secondary system under a predefined behavior of the main system.

Main System

The synchronizations affecting the main system are summarized in (5.6). By convention,
x1 pkq and y1 pkq have all entries equal to ε for k ă 0. This choice is valid according to (5.6).
As the behavior under the earliest functioning rule is considered, the time of occurrence
k ě 0 of state events (i.e., x1 pkq) is given by the least solution of

#

x ľ A1,0x‘A1,1x1 pk´ 1q ‘ B1,0u1 pkq
x ľ x1 pk´ 1q
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5. Modeling

These two inequalities can be lumped into a single inequality.

x ľ A1,0x‘ pA1,1 ‘ Idq x1 pk´ 1q ‘ B1,0u1 pkq
Therefore, according to Th. 5,

x1 pkq “ A1̊,0 pA1,1 ‘ Idq x1 pk´ 1q ‘A1̊,0B1,0u1 pkq
Furthermore, as the behavior under the earliest functioning rule is considered, the time of
occurrence k ě 0 of output events (i.e., y1 pkq) is given by the least solution of

#

x ľ C1,0x1 pkq
x ľ y1 pk´ 1q

This leads directly to y1 pkq “ C1,0x1 pkq ‘ y1 pk´ 1q. This expression can be simplified
by noticing that, for l in N0,

C1,0x1 pkq ‘ y1 pk´ lq “ C1,0x1 pkq ‘ C1,0x1 pk´ lq ‘ y1 pk´ l´ 1q
“ C1,0 px1 pkq ‘ x1 pk´ lqq ‘ y1 pk´ l´ 1q
“ C1,0x1 pkq ‘ y1 pk´ l´ 1q as x1 pkq ľ x1 pk´ lq

Then, as y1 p´1q “ ε,

y1 pkq “ C1,0x1 pkq ‘ y1 pk´ 1q “ C1,0x1 pkq ‘ y1 p´1q “ C1,0x1 pkq
As, according to (2.7), x1 pkq “ A1̊,0x1 pkq, the main system is described by

#

x1 pkq “ A1x1 pk´ 1q ‘ B1u1 pkq
y1 pkq “ C1x1 pkq

(5.8)

whereA1 “ A1̊,0 pA1,1 ‘ IdqA1̊,0, B1 “ A1̊,0B1,0, and C1 “ C1,0A1̊,0. As mentioned in the
introduction, the main system is a pmax,`q-linear system. This is not surprising, as the
main system is only subject to standard synchronizations.

Remark 16. Equation (5.8) leads to an isotone input-output mapping from Dm1 to Dp1 ,
denoted H1 and defined by H1 pu1q “ y1.

Remark 17. The structural controllability of the main system means that each row of A1̊B1

contains at least one non-zero entry or, equivalently, each row of
´

Àn1´1
j“0 A

j
1

¯

B1 contains at

least one non-zero entry.
The structural observability of the main system means that each column of C1A1̊ contains

at least one non-zero entry or, equivalently, each column of C1

´

Àn1´1
j“0 A

j
1

¯

contains at least
one non-zero entry.
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Secondary System

The synchronizations affecting the secondary system are summarized in (5.7). By con-
vention, x2 pkq and y2 pkq have all entries equal to ε for k ă 0. This choice is valid accord-
ing to (5.7). As the behavior under the earliest functioning rule is considered, the time of
occurrence k ě 0 of state events (i.e., x2 pkq) is given by the least solution of

$

’

&

’

%

x ľ A2,0x‘A2,1x2 pk´ 1q ‘ B2,0u2 pkq
@i, xi P Ai

x ľ x2 pk´ 1q
where the sets Ai are obtained from the behavior of the main system. As in the main
system, it is possible to lump the first and the third equations. This leads to

#

x ľ A2,0x‘ pA2,1 ‘ Idq x2 pk´ 1q ‘ B2,0u2 pkq
@i, xi P Ai

Due to partial synchronizations, it is not possible to directly use Th. 5 to calculate x2 pkq.
However, using a reasoning very similar with [1, § 2.5.3], we can assume thatA2,0 is strictly
lower triangular by deleting state events, lumping state events, and adding input events.
This allows us to get rid of the implicit terms by writing the first inequality componentwise.
This leads to

@i,
#

xi ľ
Ài´1

j“1 pA2,0qij xj ‘ ppA2,1 ‘ Idq x2 pk´ 1q ‘ B2,0u2 pkqqi
xi P Ai

To compute x2 pkq, the mapping Φi from Rmax to Rmax is introduced. Formally, mapping
Φi is defined by

@x P Rmax, Φi pxq “
ľ

tz P Ai|z ľ xu
AsJ P Ai, mappingΦi is well defined. Then,Φi pxq is the least element inAi greater than
or equal to x. Therefore,

@i, x2,i pkq “ Φi

˜

i´1
à

j“1

pA2,0qij x2,j pkq ‘ ppA2,1 ‘ Idq x2 pk´ 1q ‘ B2,0u2 pkqqi
¸

In practice, the entries of x2 pkq have to be computed in a specific order (i.e., for i from
1 to n2). For the output events, a reasoning similar to the one for the main system gives
y2 pkq “ C2x2 pkq with C2 “ C2,0. Thus, the secondary system is described by

#

x2 pkq “ H px2 pk´ 1q , u2 pkqq
y2 pkq “ C2x2 pkq

(5.9)
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where the mapping H from R
n2

max ˆ R
m2

max to R
n2

max is defined by

H px, uqi “ Φi

˜

i´1
à

j“1

pA2,0qij H px, uqj ‘ ppA2,1 ‘ Idq x‘ B2,0uqi
¸

(5.10)

Remark 18. Equation (5.9) leads to an isotone input-output mapping from Dm2 to Dp2 ,
denotedH2,u1

and defined byH2,u1
pu2q “ y2. Due to partial synchronization, this mapping

depends on the input of the main system u1. Then, this leads to an input-output mapping H
for the complete pmax,`q-system with partial synchronization. Mapping H is defined from
Dm1 ˆDm2 to Dp1 ˆDp2 by

H pu1, u2q “ py1, y2q “ pH1 pu1q ,H2,u1
pu2qq

MappingH might be not isotone with respect to the canonical order as shown in Ex. 28.

Example 28. Consider the pmax,`q-system with partial synchronization drawn in Fig. 5.7.
The input uI is defined by

u2

x2

y2

x1,2x1,1 1 y1u1,1

u1,2

Figure 5.7.: A simple pmax,`q-system with partial synchronization

uI
1,1 pkq “

$

’

&

’

%

ε for k ă 0

e for k “ 0

J for k ą 0

uI
1,2 pkq “

$

’

&

’

%

ε for k ă 0

2 for k “ 0

J for k ą 0

uI
2 pkq “

$

’

&

’

%

ε for k ă 0

1 for k “ 0

J for k ą 0

The output induced by uI is

yI
1 pkq “

$

’

&

’

%

ε for k ă 0

2 for k “ 0

J for k ą 0

yI
2 pkq “

#

ε for k ă 0

J for k ě 0
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The input uII is defined by

uII
1,1 pkq “

$

’

&

’

%

ε for k ă 0

1 for k “ 0

J for k ą 0

uII
1,2 “ uI

1,2 uII
2 “ uI

2

The output induced by yII is

yII
1 “ yI

1 yII
2 pkq “

$

’

&

’

%

ε for k ă 0

1 for k “ 0

J for k ą 0

Then, uI ĺ uII, but yI ą yII. Hence, the input-output mappingH associated with this system
is not isotone.

Example 29. For the example introduced in Ex. 23, the output induced by

u1,1 pkq “ u1,2 pkq “ u2,1 pkq “ u2,2 pkq “
$

’

&

’

%

ε for k ă 0

e for 0 ď k ă 15

J for k ě 15

is computed. The main system is described by
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

x1 pkq “

¨

˚

˚

˚

˚

˝

10 e 12 2

20 10 22 12

12 2 10 e

22 12 20 10

˛

‹

‹

‹

‹

‚

x1 pk´ 1q ‘

¨

˚

˚

˚

˚

˝

e ε

10 ε

ε e

ε 10

˛

‹

‹

‹

‹

‚

u1 pkq

y1 pkq “
˜

10 e ε ε

ε ε 10 e

¸

x1 pkq

This leads to

y1,1 pkq “ y1,2 pkq “
$

’

&

’

%

ε for k ă 0

10b 12k for 0 ď k ă 15

J for k ě 15

Furhtermore, the sets Ai necessary for the dynamics of the secondary system are

A1 “ A4 “ A5 “ A8 “ Rmax

A2 “ A6 “ tε, e, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168,Ju
A3 “ A7 “ tε, 10, 22, 34, 46, 58, 70, 82, 94, 106, 118, 130, 142, 154, 166, 178,Ju
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The output of the secondary system is given by

y2,1 pkq “
$

’

&

’

%

ε for k ă 0

27b 48k for 0 ď k ă 4

J for k ě 4

y2,2 pkq “
$

’

&

’

%

ε for k ă 0

51b 48k for 0 ď k ă 3

J for k ě 3
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6
Optimal Control

In this chapter, optimal control for pmax,`q-systems with partial synchronization is ad-
dressed. An output reference representing a deadline for output events is given. The aim of
this approach is to enforce the just-in-time behavior: input events occur as late as possible
while inducing an output respecting, as much as possible, the output reference. In practice,
this objective is very interesting: for a transportation network, departures are delayed as
much as possible while ensuring the schedule. Other criteria are presented in [20], but are
not investigated in this thesis. Next, this control strategy is only investigated when the
priority is given to the main system over the secondary system: the optimal input is first
computed for the main system and, second, for the secondary system under a predefined
behavior of the main system. In many applications, this assumption makes sense as the
main system is shared by many independent secondary systems. Then, it might not be
wise to operate the main system only to satisfy a single secondary system. This configura-
tion might correspond to Ex. 23, if the train line is shared by many supply chains.

In the following, optimal feedforward control and its closed-loop version, namely model
predictive control, are successively presented. Our approach is based on an analogy with
results obtained for pmax,`q-linear systems: optimal feedforward control and model pre-
dictive control for pmax,`q-linear systems have been respectively developed in [9, 31] and
in [20, 34]. The following results have been partly published in [18, 19]. To illustrate these
control approaches, the results are applied to Ex. 23.
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6.1. Optimal Feedforward Control

In optimal feedforward control, the output reference is given over a finite horizon and
the input ensuring the just-in-time behavior is computed offline. The output reference for
the main (resp. secondary) system is specified by a predefined vector of daters z1 P Dp1

(resp. z2 P Dp2 ). Furthermore, the restriction to a finite horizon means that there exists
K P N0 such that, for all k ě K, z1 pkq “ J and z2 pkq “ J. To respect the output
reference, the occurrences of output events should occur before or at the dates specified
by the output reference. Formally, this requirement corresponds to y1 ĺ z1 and y2 ĺ z2.
Hence, the finite horizon assumption means that the output reference is constraining for
the first K occurrences of output events. The optimal inputs u1̊ for the main system and
u2̊ for the secondary system are selected to enforce the just-in-time behavior (i.e., input
events occur as late as possible while inducing an output respecting the output reference).
As the priority is given to the main system over the secondary system, u1̊ is computed by
neglecting the secondary system and, then, u2̊ is computed under the behavior of the main
system induced by u1̊ .

Main System

The main system is described by

#

x1 pkq “ A1x1 pk´ 1q ‘ B1u1 pkq
y1 pkq “ C1x1 pkq

The optimal inputu1̊ is selected to enforce the just-in-time behavior (i.e., input events occur
as late as possible while inducing an output respecting the output reference). Therefore,
u1̊ corresponds to the greatest vector of daters inducing an output less than or equal to the
output reference z1. Hence, u1̊ is given by the greatest solution in Dm1of

#

x1 pkq “ A1x1 pk´ 1q ‘ B1u1 pkq
z1 pkq ľ C1x1 pkq

(6.1)

As z1 pkq “ J for k ě K, u1̊ pkq “ J for k ě K. Therefore, it remains to determine
the value of u1̊ pkq for 0 ď k ă K. In the following, we denote ζ1 pkq the least upper
bound of x1 pkq in (6.1). Obviously, ζ1 pkq “ J for k ě K, as z1 pkq “ J for k ě K.
Furthermore, as the only conditions on ζ1 pkq expressed by (6.1) are z1 pkq ľ C1ζ1 pkq and
ζ1 pk` 1q ľ A1ζ1 pkq, ζ1 pkq is given by the backward recursive equation

ζ1 pkq “ A1 z̋ζ1 pk` 1q ^ C1 z̋z1 pkq
This relation allows us to calculate ζ1 pkq for 0 ď k ă K. Furthermore, the single condition
onu1 pkq induced by (6.1) is ζ1 pkq ľ B1u1 pkq. Therefore,u1 pkq ĺ B1 z̋ζ1 pkq. AsA1 ľ Id,
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the condition ζ1 pk` 1q ľ A1ζ1 pkq implies ζ1 pk` 1q ľ ζ1 pkq. Then, as the left-division
by B1 is isotone,

B1 z̋ζ1 pk` 1q ľ B1 z̋ζ1 pkq
Therefore, taking u1̊ pkq “ B1 z̋ζ1 pkq is a valid choice. Hence, the optimal input u1̊ pkq for
0 ď k ă K is given by

#

ζ1 pkq “ C1 z̋z1 pkq ^A1 z̋ζ1 pk` 1q
u1̊ pkq “ B1 z̋ζ1 pkq

with ζ1 pKq “ J (6.2)

Secondary System

The secondary system is described by
#

x2 pkq “ H px2 pk´ 1q , u2 pkqq
y2 pkq “ C2x2 pkq

The mapping H from R
n2

max ˆ R
m2

max to R
n2

max is defined by

H px, uqi “ Φi

˜

i´1
à

j“1

pA2,0qij H px, uqj ‘ ppA2,1 ‘ Idq x‘ B2,0uqi
¸

where Φi pxq “ Ź tz P Ai|z ľ xu with set Ai depending on the behavior of the main
system.

The optimal input u2̊ is selected to enforce the just-in-time behavior (i.e., input events
occur as late as possible while inducing an output respecting the output reference). There-
fore, u2̊ corresponds to the greatest vector of daters inducing an output less than or equal
to the output reference z2. Hence, u2̊ is given by the greatest solution in Dm2 of

#

x2 pkq “ H px2 pk´ 1q , u2 pkqq
z2 pkq ľ C2x2 pkq

(6.3)

As z2 pkq “ J for k ě K, u2̊ pkq “ J for k ě K. Therefore, it remains to determine
the value of u2̊ pkq for 0 ď k ă K. Before solving this problem, some properties of the
mappings Φi and H are formalized.

Lemma 44. Let A be a finite subset of Rmax such that tε,Ju Ď A. The mapping Φ defined
by

@x P Rmax, Φ pxq “
ľ

tz P A|z ľ xu
is residuated and its residual is given by

@x P Rmax, Φ7 pxq “ à tz P A|z ĺ xu
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Proof. This proof is based on Th. 1. Let us denoteΨ the mapping fromRmax toRmax defined
by

@x P Rmax, Ψ pxq “ à tz P A|z ĺ xu
Mappings Φ and Ψ are well defined, as ε and J belong to A. Furthermore, mappings Φ
and Ψ are isotone. Finally, Φ pxq and Ψ pxq always belong to A, as A is finite. Then,

@x P Rmax, pΨ ˝Φq pxq “ Φ pxq ľ x

pΦ ˝ Ψq pxq “ Ψ pxq ĺ x

This leads to Ψ ˝Φ ľ Id and Φ ˝ Ψ ĺ Id. Hence, according to Th. 1, Φ is residuated and
its residual is Ψ.

Remark 19. Lem. 44 does not hold anymore whenA is not finite. Consider the setA defined
by

A “
"

2´ 1

n
|n P N

*

Then, Φ pÀxPA xq “ Φ p2q “ J, but À

xPAΦ pxq “ 2. Then, according to Th. 3, Φ is not
residuated.

Lemma 45. Let H be the mapping defined in (5.10) and z P R
n2

max. If all mappings Φi

are residuated, the inequality H px, uq ĺ z admits a greatest solution denoted pF pzq , G pzqq
defined by

F pzq “ pA2,1 ‘ Idq z̋R and G pzq “ B2,0 z̋R
where Ri “ Φ

7
i priq and ri “ zi ^Źn2

j“i`1 pA2,0qji z̋Rj.

Proof. First, we prove that H px, uq ĺ z ô H px, uq ĺ r. As, by definition, r ĺ z,
H px, uq ĺ r implies H px, uq ĺ z. Conversely, we reason by induction over index i de-
creasing fromn2 to 1. For i “ n2, as rn2

“ zn2
,H px, uqn2

ĺ zn2
impliesH px, uqn2

ĺ rn2
.

For 1 ď i ă n2, we assume that H px, uqj ĺ rj for i ă j ď n2. Then,

@j with i ă j ď n2, H px, uqj ĺ rj

ñ @j with i ă j ď n2,
j´1
à

k“1

pA2,0qjk H px, uqk ĺ Rj

ñ @j with i ă j ď n2, H px, uqi ĺ pA2,0qji z̋Rj

ñ H px, uqi ĺ
n2
ľ

j“i`1

pA2,0qji z̋Rj
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As H px, uq ĺ z,

H px, uqi ĺ zi ^
n2
ľ

j“i`1

pA2,0qji z̋Rj “ ri

This completes the induction. Therefore,

H px, uq ĺ z

ô H px, uq ĺ r

ô @i,
i´1
à

j“1

pA2,0qij H px, uqj ‘ ppA2,1 ‘ Idq x‘ B2,0uqi ĺ Ri

Furthermore, as H px, uq ĺ r,

i´1
à

j“1

pA2,0qij H px, uqj ĺ
i´1
à

j“1

pA2,0qij rj

ĺ
i´1
à

j“1

pA2,0qij
´

pA2,0qij z̋Ri

¯

ĺ Ri

Hence,

H px, uq ĺ z

ô @i, ppA2,1 ‘ Idq x‘ B2,0uqi ĺ Ri

ô pA2,1 ‘ Idq x‘ B2,0u ĺ R

ô x ĺ pA2,1 ‘ Idq z̋R and u ĺ B2,0 z̋R
Therefore, the inequality H px, uq ĺ z admits a greatest solution pF pzq , G pzqq given by

F pzq “ pA2,1 ‘ Idq z̋R and G pzq “ B2,0 z̋R

In the following, we denote ζ2 pkq the least upper bound of x2 pkq in (6.3). Obviously,
ζ2 pkq “ J for k ě K, as z2 pkq “ J for k ě K. Furthermore, the only conditions on ζ2 pkq
expressed by (6.3) are z2 pkq ľ C2ζ2 pkq and ζ2 pk` 1q ľ H pζ2 pkq , u2 pk` 1qq. Besides,
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as the main system is structurally controllable,

@k ě K` n1, x1̊ pkq ľ
n1´1
à

j“0

A
j
1B1u1̊ pk´ jq

ľ
n1´1
à

j“0

A
j
1B1J

ľ

˜

n1´1
à

j“0

A
j
1B1

¸

J

ľ J according to Rem. 16

Therefore, x1̊ pkq “ J for k ě K ` n1. Hence, for all state event x2,i, either the sets Ai

associated with Φi is finite or Φi “ Id. In both cases, according to Lem. 44, mapping Φi is
residuated. Hence, according to Lem. 45, ζ2 pkq is given by the backward recursive equation

ζ2 pkq “ F pζ2 pk` 1qq ^ C2 z̋z2 pkq
This relation allows us to calculate ζ2 pkq for 0 ď k ă K. Furthermore, the single con-
dition on u2 pkq induced by (6.3) is ζ2 pkq ľ H pζ2 pk´ 1q , u2 pkqq. Therefore, u2 pkq ĺ
G pζ2 pkqq. As the mapping F is isotone, ζ2 pk` 1q ľ ζ2 pkq. Then, as the mapping G is
isotone,

G pζ2 pk` 1qq ľ G pζ2 pkqq
Therefore, taking u2̊ pkq “ G pζ2 pkqq is a valid choice. Hence, the optimal input u2̊ pkq for
0 ď k ă K is given by

#

ζ2 pkq “ C2 z̋z2 pkq ^ F pζ2 pk` 1qq
u2̊ pkq “ G pζ2 pkqq

with ζ2 pKq “ J (6.4)

Remark 20. The previous control strategy consists in finding the greatest, according to a
specific order denoted ĺL, solution of

H pu1, u2q ĺ pz1, z2q
where z1 (resp. z2) denotes the vector of daters associated with the output reference for the
main (resp. secondary) system. The order ĺL corresponds to a lexicographic order based on
the partition in main system and secondary system, i.e.,

´

uI
1, u

I
2

¯

ĺL
´

uII
1 , u

II
2

¯

ô
$

’

&

’

%

uI
1 ă uII

1

or

uI
1 “ uII

1 and uI
2 ĺ uII

2
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The inequality H pu1, u2q ĺ pz1, z2q admits a greatest, according to ĺL, solution. But, in
Ex. 28, uI ĺL uII, but yI ą yII. Then, mapping H is not isotone.
Furthermore, the inequalityH pu1, u2q ĺ pz1, z2q might not admit a greatest, according to

ĺ, solution, as shown in Ex. 30. Hence, the specific order ĺL has not only a practical meaning,
but ensures also the existence of a unique optimal input.

Example 30. Let us consider the pmax,`q-system with partial synchronization drawn in
Fig. 6.1. The following output reference is considered.

u2

x2

y2

x1,2x1,1 1 y1u1

Figure 6.1.: A simple pmax,`q-system with partial synchronization

z1 pkq “
$

’

&

’

%

ε for k ă 0

2 for k “ 0

J for k ą 0

z2 pkq “
$

’

&

’

%

ε for k ă 0

e for k “ 0

J for k ą 0

The incomparable inputs uI and uII defined by

uI
1 pkq “

$

’

&

’

%

ε for k ă 0

1 for k “ 0

J for k ą 0

uI
2 pkq “

#

ε for k ă 1

J for k ě 1

uII
1 pkq “ uII

2 pkq “
$

’

&

’

%

ε for k ă 0

e for k “ 0

J for k ą 0

induce outputs less than or equal to z. However, the input uI ‘ uII does not lead to an output
less than or equal to the reference output. Hence, the inequality H pu1, u2q ĺ pz1, z2q does
not admit a greatest solution with respect to ĺ.
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Example 31. In the following, optimal feedforward control is applied to Ex. 23. The output
reference z1 for the main system is defined as

z1,1 pkq “ z1,2 pkq “
$

’

&

’

%

ε for k ă 0

10b 20k for 0 ď k ă 20

J for k ě 20

This leads to the following optimal input u1̊ for the main system.

u1̊,1 pkq “ u1̊,2 pkq “
$

’

&

’

%

ε for k ă 0

20k for 0 ď k ă 20

J for k ě 20

The output induced by u1̊ , denoted y1̊ , is equal to z1. Hence, y1̊ ĺ z1. Under this specific
behavior of the main system, the optimal input for the secondary system is computed. The
considered output reference, denoted z2, is defined as

z2,1 pkq “
$

’

&

’

%

ε for k ă 0

20b 80k for 0 ď k ă 5

J for k ě 5

and z2,2 pkq “
$

’

&

’

%

ε for k ă 0

55b 80k for 0 ď k ă 5

J for k ě 5

This leads to the following optimal input u2̊ for the secondary system.

u2̊,1 pkq “
$

’

&

’

%

ε for k ă 1

75b 80k´1 for 1 ď k ă 5

J for k ě 5

and u2̊,2 pkq “
$

’

&

’

%

ε for k ă 0

35b 80k for 0 ď k ă 5

J for k ě 5

The output induced by u2̊ , denoted y2̊ , is

y2̊,1 pkq
$

’

&

’

%

ε for k ă 1

95b 80k´1 for 1 ď k ă 5

J for k ě 5

and y2̊,2 pkq “
$

’

&

’

%

ε for k ă 0

55b 80k for 0 ď k ă 5

J for k ě 5

Clearly, y2̊ ĺ z2.

6.1.1. Feasibility

In the previous reasoning, the practical implementation of the optimal input has not been
considered. This aspect may cause a problem: in Ex. 31, the optimal input leads to a first
occurrence of input event u2,1 at t “ ´8, but this requirement cannot be met in practice,
as the system starts at t “ 0. To tackle this problem, the notion of realizability for daters is
introduced.
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Definition 48 (Realizable dater). Adaterd is said to be realizable if, for all k P N0, d pkq ľ e.
The least realizable dater, denoted r, is defined by

r pkq “
#

ε for k ă 0

e for k ě 0

A vector of daters is said to be realizable if all its entries are realizable.

Intuitively, a realizable dater is a dater which can be implemented in practice as the
timing pattern of an input event. In the following, we require the optimal input to be
realizable. This comes at a price: the output reference cannot be respected in general.
In Ex. 31, requiring the optimal input to be realizable leads to u2̊,1 p0q ľ e. Then, the
realizable optimal input cannot be less than or equal to the optimal input computed in
Ex. 31. Hence, the output of the secondary system cannot be less than or equal to the
output reference z2. This illustrates the need for relaxing the output reference to obtain a
realizable optimal input. To formalize this condition, the notion of feasibility for an output
reference is introduced.

Definition 49 (Feasibility). In a pmax,`q-system with partial synchronization, an output
reference is said to be feasible if the associated optimal input is realizable.

Hence, the problem is to find a feasible output reference z̃, partitioned in output reference
z̃1 for the main system and output reference z̃2 for the secondary system, greater than or
equal to the original output reference z. Furthermore, as the behavior of the system should
respect asmuch as possible the original output reference, we require z̃ to be the least feasible
output reference greater than or equal to z. In the following, the problem of finding this
output reference is first addressed for the main system and, then, for the secondary system
under a predefined behavior of the main system.

Main System

Let w1 be an output reference for the main system. The feasibility of w1 is equivalent
to an optimal input associated with w1 greater than or equal to u1 where u1 is the vector
in Dm1 with entries equal to r. As H1 is isotone, this implies w1 ľ H1 pu1q. Conversely,
w1 ľ H1 pu1q implies that the optimal input associated withw1 is greater than or equal to
u1. Therefore,

w1 is feasibleô w1 ľ H1 pu1q
Hence, the least feasible output reference z̃1 greater than or equal to z1 is given by

z̃1 “ H1 pu1q ‘ z1
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With the method developed before, the calculation of H1 pu1q requires an infinite amount
of time. However, as the original output reference z1 is defined over a finite event horizon,
z̃1 is also defined over the same finite event horizon and can be computed in a finite amount
of time. The realizable optimal input ũ1̊ is obtained from the feasible output reference z̃1
using the method developed before.

Secondary System

The previous approach can be directly transposed to the secondary system. Then, ũ2̊ is
obtained from the relaxed output reference z̃2 “ z2 ‘H2,ũ˚

1
pu2q, where u2 is the vector

in Dm2 with entries equal to r, by using the method developed before.

Example 32. The previous method is applied in Ex. 31 to obtain a realizable optimal input.
The problem is already solved for the main system, as u1̊ is realizable. However, for the sec-
ondary system, u2̊ is not realizable. Hence, the output reference z2 defined by

z2,1 pkq “
$

’

&

’

%

ε for k ă 0

20b 80k for 0 ď k ă 5

J for k ě 5

and z2,2 pkq “
$

’

&

’

%

ε for k ă 0

55b 80k for 0 ď k ă 5

J for k ě 5

is not feasible and has to be relaxed. The least feasible output reference greater than or equal
to z2, denoted z̃2, is defined by

z̃2,1 pkq “
$

’

&

’

%

ε for k ă 0

35b 80k for 0 ď k ă 5

J for k ě 5

and z2,2 pkq “
$

’

&

’

%

ε for k ă 0

75b 80k for 0 ď k ă 5

J for k ě 5

This leads to a realizable optimal input ũ2̊ for the secondary system where

ũ2̊,1 pkq “
$

’

&

’

%

ε for k ă 0

15b 80k for 0 ď k ă 5

J for k ě 5

and ũ2̊,2 pkq “
$

’

&

’

%

ε for k ă 0

55b 80k for 0 ď k ă 5

J for k ě 5

The output induced by ũ2̊ , denoted ỹ2̊ , is equal to z̃2. Hence, ỹ2̊ ĺ z̃2. However, ỹ2̊ is not less
than or equal to z2.

6.1.2. Characterization with Cost Functions

The aim of this section is to characterize with cost functions the optimality criterion
developed in § 6.1.1. First, two particular cost functions are introduced. The first cost
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function, denoted J1,1 for the main system and J1,2 for the secondary system, corresponds
to the tardiness criterion and is defined by

J1,i pyiq “
pi
ÿ

j“1

K´1
ÿ

k“0

max pyi,j pkq ´ zi,j pkq , 0q with i P t1, 2u

In the tardiness criterion, a penalty is paid for delays with respect to the output reference
zi. The second cost function, denoted J2,1 for the main system and J2,2 for the secondary
system, corresponds to the just-in-time criterion

J2,i pyiq “ ´
mi
ÿ

j“1

K´1
ÿ

k“0

ui,j pkq with i P t1, 2u

In the just-in-time criterion, a penalty is paid when input events are brought forward.
In the following, an optimal control approach based on these cost functions is inves-

tigated. The problem is first solved for the main system and, second, for the secondary
system under a predefined behavior of the main system. For each system, the tardiness
criterion is first minimized. Then, among all inputs optimal with respect to the tardiness
criterion, an input optimal with respect to the just-in-time criterion is selected. In practice,
this approach makes sense: the objective is to respect the output reference (i.e., the sched-
ule) and, under this condition, it might also be interesting to ensure just-in-time behavior
(i.e., delay the departures).

To avoid a cumbersome discussion over infinite costs, we assume that the reference out-
put z and y (i.e., the response to the least realizable input u) take value inR`

0 over the finite
event horizon of length K. In practice, this assumption is not restrictive.

Main System

The first step consists in finding the optimal cost for the tardiness criterion. Formally,
this corresponds to solving the following optimization problem:

minimize J1,1 py1q
subject to

$

’

&

’

%

x1 pkq “ A1x1 pk´ 1q ‘ B1u1 pkq
y1 pkq “ C1x1 pkq
u1 pk` 1q ľ u1 pkq

for 0 ď k ă K

x1 p´1q “ ε, u1 p0q ľ e, u1 pKq “ J

(6.5)

As yI
1 ľ yII

1 implies J1,1
`

yI
1

˘ ě J1,1
`

yII
1

˘

, it is sufficient to find the least output y1 in (6.5).
Furthermore, as the input-output mapping H1 associated with the main system is isotone,
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it is sufficient to find the least input uK
1 admissible with respect to (6.5). The entries of the

input uK
1 are all equal to eK defined by

eK pkq “
$

’

&

’

%

ε for k ă 0

e for 0 ď k ă K

J for k ě K

Thus, the optimal cost in (6.5), denoted J
opt
1,1 , is given by J1,1

´

yK
1

¯

where yK
1
“ H1

`

uK
1

˘

.

By assumption, Jopt1,1 is finite. The second step consists in solving

minimize J1,2 pu1q
subject to

$

’

&

’

%

x1 pkq “ A1x1 pk´ 1q ‘ B1u1 pkq
y1 pkq “ C1x1 pkq
u1 pk` 1q ľ u1 pkq

for 0 ď k ă K

J1,1 py1q “ J
opt
1,1

x1 p´1q “ ε, u1 p0q ľ e, u1 pKq “ J

(6.6)

Since y1 ľ y
1
, for 0 ď k ă K and 1 ď j ď p1,

max py1,j pkq ´ z1,j pkq , 0q ě max
´

y
1,j
pkq ´ z1,j pkq , 0

¯

Hence, as Jopt1,1 is finite, J1,1 pu1q “ J
opt
1,1 is equivalent to, for 0 ď k ă K and 1 ď j ď p1,

max py1,j pkq ´ z1,j pkq , 0q “ max
´

y
1,j
pkq ´ z1,j pkq , 0

¯

If z1,j pkq ě y
1,j
pkq,

max py1,j pkq ´ z1,j pkq , 0q “ max
´

y
1,j
pkq ´ z1,j pkq , 0

¯

ô max py1,j pkq ´ z1,j pkq , 0q “ 0

ô y1,j pkq ď z1,j pkq
Otherwise, if z1,j pkq ă y

1,j
pkq,

max py1,j pkq ´ z1,j pkq , 0q “ max
´

y
1,j
pkq ´ z1,j pkq , 0

¯

ô max py1,j pkq ´ z1,j pkq , 0q “ y
1,j
pkq ´ z1,j

ô y1,j pkq “ y
1,j
pkq

ô y1,j pkq ď y
1,j
pkq
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Thus, J1,1 pu1q “ J
opt
1,1 is equivalent to y1 ĺ z̃1, where z̃1 is the least feasible output refer-

ence greater than or equal to z1. Hence, (6.6) is equivalent to

minimize J1,2 pu1q
subject to

$

’

&

’

%

x1 pkq “ A1x1 pk´ 1q ‘ B1u1 pkq
z̃1 pkq ľ C1x1 pkq
u1 pk` 1q ľ u1 pkq

for 0 ď k ă K

x1 p´1q “ ε, u1 p0q ľ e, u1 pKq “ J

(6.7)

AsuI
1 ľ uII

1 implies J1,2
`

uI
1

˘ ď J1,2
`

uII
1

˘

, the optimal cost in (6.6) is reached for the optimal
input obtained in § 6.1.1. Therefore, the optimal input computed in § 6.1.1 is optimal with
respect to the just-in-time criterion under an optimal cost for the tardiness criterion.

Secondary System

The previous approach is directly transposed to the secondary system under a predefined
behavior of the main system. Hence, for the secondary system, the optimal input obtained
in § 6.1.1 is optimal with respect to the just-in-time criterion under an optimal cost for the
tardiness criterion.

Remark 21. In optimal control or model predictive control [20], the cost function has some-
times the form J1 pyq ` βJ2 puq where
— J1 is a cost function quantifying the tracking error
— J2 is a cost function quantifying the input effort
— β is an element in R`

0 representing the trade-off between the cost functions J1 and J2. In
practice, β is often selected small but strictly positive.

The objective is to compute the input uminimizing the overall cost function according to the
dynamics of the system. Intuitively, our problem for the main system or the secondary system
is similar, but the parameter β is assumed to be infinitesimal.

6.1.3. Complexity

The computation time of the optimal input for the main system is obtained by solving the
backward recursive relation (6.2) over the event horizon of length K. As the computation
time associated with each step is constant with respect to the length K of the event horizon,
the computation time of the optimal input for the main system is linear with the lengthK of
the event horizon. The computation time of the optimal input for the secondary system is
obtained by solving the backward recursive relation (6.4) over the event horizon of lengthK.
However, the computation time associated with each step may not be constant with respect
to the length K of the event horizon, as the computation of Φ7

i pxq for x P Rmax (necessary
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for the mappings F and G) may depend on the length K of the event horizon. But, it is
possible to come down to a constant time in average over occurrence index k by reusing
information from the previous step. Hence, the computation time of the optimal input
for the secondary system is linear with the length K of the event horizon. Therefore, the
computation time of the optimal input for a pmax,`q-system with partial synchronization
is linear with the length K of the event horizon.

To compute the realizable optimal input, it is only necessary to precede the solving of the
backward recursive relation by the solving of a forward recursive relation over the event
horizon of length K. The aim of this preliminary step is to relax the output reference. Using
a reasoning similar to the one presented before, the computation time associated with this
preliminary step is linear with the length K of the event horizon. Hence, the computation
time of the realizable optimal input for a pmax,`q-system with partial synchronization is
linear with the length K of the event horizon.

Example 33. Let us consider Ex. 23 with the output reference

z1,1 pkq “ z1,2 pkq “
$

’

&

’

%

ε for k ă 0

10b 20k for 0 ď k ă K

J for k ě K

z2,1 pkq “ z2,2 pkq “
$

’

&

’

%

ε for k ă 0

20b 80k for 0 ď k ă K

J for k ě K

A Scilab simulation leads to the following results for the computation time of the realizable
optimal input.

K 64 128 256

Computation time (in s) 1.39 2.59 5.04

As expected, the computation time is linear with the length K of the event horizon.

6.2. Model Predictive Control

Model predictive control (MPC) is a closed-loop version of optimal feedforward control.
At each time step, an output reference for the next K occurrences of each output event is
considered. Based on this output reference, an optimal input is computed with a method
similar to the one presented in § 6.1.1. Then, this optimal input is used to implement oc-
currences of input events during the next time step. The main difficulty in comparison
with optimal feedforward control is to consider the history of the system. The advantage
of this control approach is the ability to take into account changes in the output reference
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(e.g., changes in the schedule) and perturbations. The drawback is the cost associated with
the online computation of the optimal input and the additional communication network
necessary to update information online.

Let us now examine the precise timing of this control approach. At time t, the behavior
of the system before time t and the timing pattern of the input events over the time interval
rt, t` 1r are known. Based on this information and on the output reference, an optimal
input is computed using a method similar to the one presented in § 6.1.1. As this step has
to be done during the time interval rt, t` 1r, the associated computation time is crucial:
a computation time linear with the length K of the event horizon is achieved. Then, the
computed optimal input is used to determine the timing pattern of the input events over
the time interval rt` 1, t` 2r. Hence, the information necessary to start again the process
at time t ` 1 is available at time t ` 1. In practice, the occurrence times of input events
during the time interval r0, 1r has to be guessed or computed offline, as they cannot come
from the previous step.

The link between the time domain and the event domain is formalized, for event e, by
the parameter Kt,e defined as the index of the first occurrence of event e after or at time t.
At time t, e pkq is known for k ă Kt,e, as it corresponds to a past occurrence of event e,
and e pkq ľ t for k ě Kt,e. Furthermore, as the timing pattern of an input event, denoted v,
over the time interval rt, t` 1r is known at time t, v pkq is known, at time t, for k ă Kt`1,v.
The output reference considered at time t, denoted zt, is defined by

ztj pkq “
$

’

&

’

%

yj pkq for k ă Kt,yj

zj pkq ‘ t for Kt,yj
ď k ă Kt,yj

` K

J for k ě Kt,yj
` K

where z is the required output reference.
In the following, a method to compute the optimal input at time t is presented. As before,

the problem is first solved for the main system by neglecting the secondary system and,
second, for the secondary system under a predefined behavior of the main system.

Main System

The main system is described by
#

x1 pkq “ A1x1 pk´ 1q ‘ B1u1 pkq
y1 pkq “ C1x1 pkq

The output reference associated, at time t, with the main system, denoted zt1, is defined by

zt1,j pkq “
$

’

&

’

%

y1,j pkq for k ă Kt,y1,j

z1,j pkq ‘ t for Kt,y1,j
ď k ă Kt,y1,j

` K

J for k ě Kt,y1,j
` K
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The first task consists in identifying the occurrences of input and state events in the
main system affecting the next K occurrences of output events in the main system. Let us
consider state event x1,j and output event y1,i. In the following discussion, two cases are
distinguished.

First case: Kt,y1,i
ď Kt,x1,j . Due to the structure of the model, y1,i pkq is not affected by

x1,j plq for l ą k. Hence, as Kt,y1,i
`K´ 1 ă Kt,x1,j `K, the next K occurrences of output

event y1,i are not affected by occurrences k of state event x1,j with k ě Kt,x1,j ` K. Thus,
to capture the influence of state event x1,j on the next K occurrences of output event y1,i,
it is sufficient to predict the timing pattern of state event x1,j over Kt,x1,j ď k ă Kt,x1,j `K.

Second case: Kt,y1,i
ą Kt,x1,j . Due to the model,

@l P N0, y1,i pKt,y1,i
´ 1q ľ

´

C1A
l
1

¯

ij
x1,j pKt,y1,i

´ l´ 1q

Thus, for 0 ď l ď Kt,y1,i
´ Kt,x1,j ´ 1,

`

C1A
l
1

˘

ij
“ ε, as y1,i pKt,y1,i

´ 1q ă t and

x1,j pKt,y1,i
´ 1´ lq ľ x1,j

`

Kt,x1,j

˘

ľ t. Therefore, y1,i pkq is not affected by x1,j plq for
l ą k ´ Kt,y1,i

` Kt,x1,j . Thus, to capture the influence of state event x1,j on the next K
occurrences of output event y1,i, it is sufficient to predict the timing pattern of state event
x1,j over Kt,x1,j ď k ă Kt,x1,j ` K.

A similar reasoning can be applied to input events. Let us consider input event u1,j and
output event y1,i. To capture the influence of input event u1,j on the next K occurrences
of output event y1,i, it is sufficient to predict the timing pattern of input event u1,j over
Kt,u1,j

ď k ă Kt,u1,j
` K.

A direct consequence of the previous discussion is that the predicted state, input, and
output of themain system, denoted x̂1, û1, and ŷ1, are considered over a finite event horizon
of length K and set to J after this horizon. Hence,

x̂1,i pkq “
#

x1,i pkq for k ă Kt,x1,i

J for k ě Kt,x1,i ` K

û1,i pkq “
#

u1,i pkq for k ă Kt`1,u1,i

J for k ě Kt,u1,i
` K

ŷ1,i pkq “
#

y1,i pkq for k ă Kt,y1,i

J for k ě Kt,y1,i
` K

As occurrences of input events over time interval rt, t` 1r have been determined with this
method, Kt`1,u1,i

ď Kt,u1,i
` K. If Kt`1,u1,i

“ Kt,u1,i
` K, no occurrences of input events

during the time interval rt` 1, t` 2r are required and the process is completed. Hence,
only the case Kt`1,u1,i

ă Kt,u1,i
` K is investigated.
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The problem is then to efficiently fill in the event windowwith unknown entries for each
dater. To solve this problem, a method similar to the one presented in § 6.1.1 is used. Notice
that x̂1, û1, and ŷ1 may not represent a valid future behavior of the system, but they will
be selected such that they respect its dynamics for the event occurrences affecting the next
K occurrences of output events.

The first step consists in finding the least feasible output reference greater than or equal
to zt1, denoted z̃t1. The least realizable input, denoted ût

1, is defined by

ût
1,i pkq “

$

’

&

’

%

u1,i pkq for k ă Kt`1,u1,i

1t for Kt`1,u1,i
ď k ă Kt,u1,i

` K

J for k ě Kt,u1,i
` K

The state induced by û1,i, denoted x̂1,i, is calculated by using the recurrence relation

x1 pkq “ A1x1 pk´ 1q ‘ B1u1 pkq
A naive approach consists in computing this relation for Kt,x1

ď k ă Kt,x1 ` K, where

Kt,x1
“ min pKt,x1,i |1 ď i ď n1q andKt,x1 “ max pKt,x1,i |1 ď i ď n1q. However, asKt,x1´

Kt,x1
might not be bounded, the computation time associated with this problemmight grow

to infinity. A better approach is to compute x̂1 pkq only when at least one of its entries is
unknown. This computation has to be done according to increasing occurrence indices,
i.e., the event windows with unknown entries have to be filled from left to right. Using this
approach, the computation time to obtain x̂1 is linear with the lengthK of the event horizon.
The trick of computing only the needed value to fill in the event windows with unknown
entries is used redundantly for model predictive control and allows us to obtain an overall
computation time linear with the lengthK of the event horizon. Then, the unknown entries
of ŷ

1
, the output induced by û1 are computed using y1 pkq “ C1x1 pkq. Once again, ŷ1 pkq

is computed only when at least one of its entries is unknown. This allows us to compute the
least feasible output reference z̃t1, given by z̃t1 “ zt1 ‘ ŷ

1
. The computation time associated

with this step is linear with the length K of the event horizon.
The second step consists in calculating the optimal input associatedwith output reference

z̃t1. Using a similar reasoning, the predicted least upper bound for state events, denoted ζ̂1,
is partly known, i.e.,

ζ̂1,i pkq “
#

x1,i pkq for k ă Kt,x1,i

J for k ě Kt,x1,i ` K

To fill in the event window with unknown entries, the recursive relation

ζ1 pkq “ A1 z̋ζ1 pk` 1q ^ C1 z̋z1 pkq
is considered. However, as for the calculation of x̂1, ζ̂1 pkq is only computed when at least
one of its entries is unknown to maintain a computation time linear with the lengthK of the
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event horizon. This computation has to be done according to decreasing occurrence indices,
i.e., the event windows with unknown entries have to be filled from right to left. Finally,
the optimal input is given by the relation u1̊ pkq “ B1 z̋ζ1 pkq. To maintain a computation
time linear with the length K of the event horizon, û1 pkq is computed only when at least
one of its entries is unknown. The computation time associated with this step is linear with
the length K of the event horizon.

Secondary System

The secondary system is described by

#

x2 pkq “ H px2 pk´ 1q , u2 pkqq
y2 pkq “ C2x2 pkq

The output reference associated, at time t, with the main system, denoted zt2, is defined by

zt2,j pkq “
$

’

&

’

%

y2,j pkq for k ă Kt,y2,j

z2,j pkq ‘ t for Kt,y2,j
ď k ă Kt,y2,j

` K

J for k ě Kt,y2,j
` K

The first task consists in identifying the occurrences of input and state events in the sec-
ondary system affecting the next K occurrences of output events in the secondary system.
As the only synchronizations between events in the secondary system are standard syn-
chronizations, it is possible to discard partial synchronizations for this task and apply the
method used for the main system. Hence, to capture the influence of state event x2,j (resp.
input event u2,j) on the next K occurrences of output event y2,i, it is sufficient to predict
the behavior of state event x2,j (resp. input event u2,j) over Kt,x2,j ď k ă Kt,x2,j ` K (resp.
Kt,u2,j

ď k ă Kt,u2,j
` K).

The remaining part of optimal input calculation consists in adapting the method devel-
oped in § 6.1 to the moving event horizon. This problem is very similar to the one solved
for the main system and is not discussed further. The computation time associated with
the calculation of the optimal input for the secondary system under a predefined behavior
of the main system is linear with the length K of the event horizon. Hence, the overall
computation time to compute the optimal input at time t is linear with the length K of the
event horizon.

Remark 22. A formulation of the previous control approach with cost functions is direct by
using the characterization of optimal feedforward control in terms of cost functions developed
in § 6.1.2. Furthermore, in standard MPC, a prediction horizon Kp is considered, but the input
is only optimized over a control horizon Ku ď Kp. This lowers the computation time associ-
ated with the optimization problem solved online. In our approach, due to backward recursive
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relations, K “ Kp “ Ku and it is not possible to choose Ku ă Kp. However, reducing the com-
putational timemight be unnecessary, as the computation time to solve online the optimization
problem is linear with the length K of the prediction horizon.

Example 34. The example introduced in Ex. 23 (i.e., the supply chain) is considered with a
simulation time horizon T “ 800 and a prediction event horizon of length K “ 4 (unless
otherwise specified).

Reference case: The output references are given by

z1,1 pkq “ z1,2 pkq “
#

ε if k ă 0

15b 20k if k ě 0

z2,1 pkq “
#

ε if k ă 0

20b 80k if k ě 0
and z2,2 pkq “

#

ε if k ă 0

55b 80k if k ě 0

The input provided by MPC is

u1,1 pkq “ u1,2 pkq “
$

’

&

’

%

ε if k ă 0

5b 20k if 0 ď k ă 40

J if k ě 40

u2,1 pkq “
$

’

&

’

%

ε if k ă 0

20b 80k if 0 ď k ă 10

J if k ě 10

and u2,2 pkq “
$

’

&

’

%

ε if k ă 0

60b 80k if 0 ď k ă 10

J if k ě 10

This input corresponds to the optimal input obtained with the method presented in § 6.1.1 by
truncating the output reference at k “ 40 and forcing the input events to occur after or at time
t “ 1 (this last condition is required by the timing of MPC). Hence, the length of the prediction
horizon is sufficient to predict the behavior of the system.

Complexity analysis: The reference case is run with different lengths K for the predic-
tion horizon. A Scilab implementation leads to the following computation time to solve the
optimization problem for a single time step.

K 4 8 16

Computation time (in s) 2.05 4.09 8.18

As expected, the computation time is linear with the length K of the prediction horizon.
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Change in the output reference: Output reference z1 starts with a throughput of one
train every 20 units of time. At t “ 200, the throughput is suddenly increased to one train
every 15 units of time. Output reference z2 is the same than in the reference case. The input
provided by MPC is

u1,1 pkq “ u1,2 pkq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ε if k ă 0

5b 20k if 0 ď k ă 10

201b 12k´10 if 10 ď k ă 16

275b 15k´16 if 16 ď k ă 52

J if k ě 52

u2,1 pkq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ε if k ă 0

20b 80k if 0 ď k ă 3

232 if k “ 3

285b 60k´4 if 4 ď k ă 13

J if k ě 13

and u2,2 pkq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ε if k ă 0

60b 80k if 0 ď k ă 2

208b 48k´2 if 2 ď k ă 4

315b 60k´4 if 4 ď k ă 13

J if k ě 13

After t “ 200, the main system operates at the maximal throughput (i.e., one train every 12

units of time) to catch up with the new output reference. Afterwards, the main system takes
the correct throughput (i.e., one train every 15 units of time). But, the secondary system drifts:
the throughput increases to one container every 60 units of times after the change in the output
reference instead of staying at one container every 80 units of time. This is due to a prediction
horizon too short with respect to the new throughput of the train line. Indeed, if we consider a
prediction horizon of length K “ 5. The input u1 remains the same, but u2 is given by

u2,1 pkq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

ε if k ă 0

20b 80k if 0 ď k ă 3

232 if k “ 3

315b 75k´4 if 4 ď k ă 6

480b 75k´6 if 6 ď k ă 9

720b 75k´9 if 9 ď k ă 11

J if k ě 11

and u2,2 pkq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

ε if k ă 0

60b 80k if 0 ď k ă 2

208 if k “ 2

270b 75k´3 if 3 ď k ă 5

435b 75k´5 if 5 ď k ă 8

675b 75k´8 if 8 ď k ă 10

J if k ě 10

With a longer prediction horizon, the throughput of the secondary systems remains at one train
every 80 units of time after the change in the output reference.

Perturbation: The reference case is considered, but a perturbations delays the third occur-
rence of event x1,4 (i.e., the arrival in train station B) until t “ 80. This might be caused by
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an unexpected mechanical breakdown. The input provided by MPC is

u1,1 pkq “ u1,2 pkq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

ε if k ă 0

5b 20k if 0 ď k ă 2

82b 10k´2 if 2 ď k ă 4

106b 10k´4 if 4 ď k ă 6

130 if k “ 6

145b 20k´7 if 7 ď k ă 40

J if k ě 40

u2,1 pkq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ε if k ă 0

20 if k “ 0

125 if k “ 1

200b 80k´2 if 2 ď k ă 10

J if k ě 10

and u2,2 pkq “

$

’

’

’

’

&

’

’

’

’

%

ε if k ă 0

89 if k “ 0

160b 80k´1 if 1 ď k ă 10

J if k ě 10

After the perturbation at t “ 80, the main system operates at themaximal throughput (i.e., one
train every 12 units of time) to catch up with the output reference. The secondary system takes
these changes in the behavior of the main system into account.
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In this chapter, operatorial representation for pmax,`q-systems with partial synchro-
nization is discussed. The principle of operatorial representation is to model the dynamics
of the system by mappings over daters. This approach has been successfully applied to
pmax,`q-linear systems [1, 8, 22, 32] and extended to take into account event batching
[10, 15, 16]. The main outcome of operatorial representation for pmax,`q-linear systems is
a concept equivalent to transfer function matrices in standard control theory. Furthermore,
a handy mathematical representation for the class of operators appearing in pmax,`q-
linear systems is provided by the dioid Nmax,γvγw recalled in § 2.7. Unfortunately, an op-
eratorial representation for pmax,`q-systems with partial synchronization does not exist.
However, it is still possible to capture some dynamics using this method. In particular,
an operatorial representation for the secondary system under a predefined behavior of the
main system is obtained. In the following, such systems are called pmax,`q-systems sub-
ject to partial synchronization. Note that a pmax,`q-linear system is a pmax,`q-system
subject to partial synchronization, as a pmax,`q-linear system corresponds to a secondary
system, which is not subject to any partial synchronizations. Hence, pmax,`q-systems sub-
ject to partial synchronization form a larger class of systems than pmax,`q-linear systems.
A suitable algebraic structure for this operatorial representation is the dioid F

Nmax,γ
vγw in-

troduced in § 4. In practice, pmax,`q-systems subject to partial synchronization appear
when the input of the main system is known and perturbations affecting the main system
are unlikely. Hence, the dynamics of the main system can be neglected and predetermined
synchronizing daters are considered in partial synchronizations. From now on, we assume
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that the considered discrete event systems are time-driven (i.e., events only occur at clock
ticks). This assumption is also made in operatorial representation for pmax,`q-linear sys-
tems and allows us to only consider standard synchronizations with a time delay τ P N0

(while, previously, τ P R`
0 ) and daters in Nmax,γvγw. In this chapter, the discussed results

are mainly illustrated with Ex. 35 described below.

Example 35. This example deals with a one-way road fromA toC viaB. The road is equipped
with two traffic lights in B and in C. The traffic light B allows other users such as pedestrians
or trains to cross the road, but is not regulating an intersection with another road. Therefore, a
vehicle entering the road in A passes through B and leaves the road in C. Next, the character-
istics of the road are made explicit. The travel time from A to B or from B to C is ten units of
time. The capacity of each section (i.e., fromA to B or from B toC) is three vehicles. When the
traffic light is green, at most one vehicle can pass the traffic light per unit of time. Furthermore,
the behavior of the traffic lights is known: each traffic light is green for t P Im pdqYtJuwhere
d “ `

e‘ 1γ‘ 2γ2
˘ `

6γ3
˘˚
. Initially, no vehicles are on the road.

In the following, the system is modeled by a discrete event system ruled by synchronization.
The model is based on the following events:

u a vehicle arrives on the road

x1, x2, x3 a vehicle passes respectively through A, B, C

y a vehicle leaves the road

The previous description of the system corresponds to the following synchronizations:
— for all k ě 0, occurrence k of event x2 (resp. x3) is at least ten units of time after

occurrence k of event x1 (resp. x2)
— for all k ě 1, occurrence k of event x2 (resp. x3) is at least one unit of time after occurrence

k´ 1 of event x2 (resp. x3)
— for all k ě 3, occurrence k of event x1 (resp. x2) is at least zero units of time after

occurrence k´ 3 of event x2 (resp. x3)
— for all k ě 0, occurrence k of event x1 (resp. y) is at least zero units of time after

occurrence k of event u (resp. x3)
— event x2 (resp. x3) can only occur at t P Im pdq Y tJu
A graphical representation of the road is given in Fig. 7.1. The dynamics of the main system

(i.e., the traffic lights) is completely neglected and the partial synchronizations are only using
the predefined dater d as timing pattern of the synchronizing events. Hence, this system is a
pmax,`q-system subject to partial synchronization.

7.1. Algebraic Definition of Operatorial Representation

In the following, a general presentation of operatorial representation is made. Daters
have been defined in § 5.2.1 as isotone mappings from Z to Nmax (not to Rmax, as a time-

120



7.1. Algebraic Definition of Operatorial Representation

10 10

1 1

A B C

x1u x2 x3 y

d d

Figure 7.1.: Petri net representation of the road equipped with traffic lights

driven dynamics is assumed) equal to ε over tk P Z|k ă 0u. The set of daters is denotedD.
Let us now formally define operators.

Definition 50 (Operator). An operator is a residuated mapping over the set of daters.

Example 36 (Operator γ). An operator of interest is the shift in the event domain denoted γ
and defined by

@d P D,@k P Z, γ pdq pkq “ d pk´ 1q
The residual of the operator γ, denoted γ7, is defined by

@d P D,@k P Z, γ7 pdq pkq “
#

ε for k ă 0

d pk` 1q for k ě 0

Proposition 39. The set of operators, denoted O, endowed with the operations ‘ and b
defined by

@o1, o2 P O, @d P D, po1 ‘ o2q pdq “ o1 pdq ‘ o2 pdq
o1 b o2 “ o1 ˝ o2

is a complete dioid.

Proof. As D is a complete dioid (a possible operation b to obtain a dioid is the Cauchy
product), this proposition is a direct consequence of Prop. 5.
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According to § 2.4, matrices of operators are endowed with operations ‘ and b. Fur-
thermore, the set of square matrices with entries in O is a complete dioid. The following
definition gives a meaning to matrices of operators.

Definition 51 (Matrix of operators). LetO P Omˆn. MatrixO denotes a mapping fromDn

to Dm defined by

@d P Dn, O pdqi “
n

à

j“1

Oij pdjq

Lemma 46. Let O P Omˆn. Mapping O is residuated.

Proof. Obviously, mapping O is isotone. Let z P Dm.

O pxq ĺ zô @i, O pxqi ĺ zi

ô @i, j, Oij pxjq ĺ zi

ô @i, j, xj ĺ O
7
ij pziq

ô @j, xj ĺ
m

ľ

i“1

O
7
ij pziq

Therefore, the inequalityO pxq ĺ z admits a greatest solution. Hence, mappingO is resid-
uated.

Finally, the previous definitions allow us to formalize what is meant by operatorial rep-
resentation.

Definition 52 (Operatorial representation). Let S be a discrete event system ruled by syn-
chronization, such that its event set is partitioned into n state events, denoted x1, . . . , xn, m
input events, denoted u1, . . . , um, and p output events, denoted y1, . . . , yp. The system S
admits an operatorial representation if there exist A P Onˆn, B P Onˆm, and C P Opˆn

such that the admissible behaviors are characterized by
#

x ľ A pxq ‘ B puq
y ľ C pxq

7.1.1. Transfer Function Matrix

In the following, an input-output mapping, called transfer function matrix due to simi-
larities with standard control theory, is derived from the operatorial representation. This
reasoning is based on an analogy with Th. 5. The first step consists in finding the least (as
the earliest functioning rule is considered) solution of

x ľ A pxq ‘ B puq
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7.1. Algebraic Definition of Operatorial Representation

Let us consider the vector of daters A˚B puq. This is a solution, as

A pA˚B puqq ‘ B puq “ A
˜`8

à

k“0

AkB puq
¸

‘ B puq

“
`8
à

k“0

Ak`1B puq ‘ B puq as A is lower semi-continuous

“ A˚B puq
Furthermore, by induction, we prove that x ľ AkB puq for all k P N0. For k “ 0, x ľ B puq,
as x ľ A pxq ‘ B puq. Let us now assume that, for k ě 0, x ľ AkB puq. Then,

x ľ A pxq ‘ B puq
ľ A

´

AkB puq
¯

as A is isotone

ľ Ak`1B puq
This completes the induction. Hence, for all k P N0, x ľ AkB puq. Thus, x ľ A˚B puq.
Consequently, the least solution of x ľ A pxq ‘ B puq is A˚B puq. This leads directly to a
transfer function matrix, denoted H, such that y ľ H puq where H “ CA˚B.
Remark 23. AsH is residuated,H is isotone. Therefore, in general, operatorial representation
is not suitable to represent pmax,`q-systems with partial synchronization, as the associated
input-output mapping is not necessarily isotone (see Ex. 28).

7.1.2. Composition Operators

In the following, a particular class of operators, namely composition operators, is de-
fined based on the dioid F

Nmax
introduced in § 3. First, a lemma provides the theoretical

foundation to the definition of composition operators.

Lemma 47. Let f be a mapping over Nmax. The following statements are equivalent:

1. mapping Lf, defined by Lf pdq “ f ˝ d for d P D, is an operator

2. mapping f is residuated

Proof. 1ñ 2: Let d be a dater. As Lf pdq is a dater,

f pεq “ f pd p´1qq “ Lf pdq p´1q “ ε

Furthermore, let X Ď Nmax. We associate to each element x in Nmax a dater dx in D such
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7. Operatorial Representation

that dx p0q “ x. Then,

f

˜

à

xPX
x

¸

“ f

˜

à

xPX
dx p0q

¸

“ Lf

˜

à

xPX
dx

¸

p0q

“ à

xPX
Lf pdxq p0q as Lf is lower semi-continuous

“ à

xPX
f pxq

Hence, f is lower semi-continuous. According to Th. 3, f is residuated.
2ñ 1: Let d be a dater. The first step consists in proving that Lf pdq is a dater. Obviously,

Lf pdq is a mapping from Z to Nmax. For k ă 0,

Lf pdq pkq “ f pd pkqq “ f pεq “ ε as f is residuated

Furthermore, as mappings f and d are isotone, Lf pdq “ f ˝ d is also isotone. Hence, Lf is
a mapping over daters. It remains to check that Lf is residuated. Let us define the mapping
g over D by

@d P D,@k P Z, g pdq pkq “
#

ε for k ă 0

f7 pd pkqq for k ě 0

Mapping g is obviously an isotone mapping over D. Furthermore,

@d P D,@k P Z, pg ˝ Lfq pdq pkq “
#

ε for k ă 0

f7 pf pd pkqqq for k ě 0

pLf ˝ gq pdq pkq “
#

ε for k ă 0

f
`

f7 pd pkqq˘ for k ě 0

As f7 ˝ f ľ Id
Nmax

and f ˝ f7 ĺ Id
Nmax

,

@d P D, pg ˝ Lfq pdq ľ d and pLf ˝ gq pdq ĺ d

Hence, g ˝ Lf ľ IdD and Lf ˝ g ĺ IdD . Therefore, according to Th. 1, Lf is residuated.

Definition 53 (Composition operator). An operator o is said to be a composition operator if
there exists a mapping f P F

Nmax
such that o “ Lf.

A composition operator simply composes a dater by a given mapping in F
Nmax

. Lem. 47
shows that composition operators are operators and that only composition by mappings in
F
Nmax

leads to operators.
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7.1. Algebraic Definition of Operatorial Representation

Example 37 (Operator δ). A composition operator of interest is the shift in the time domain
denoted δ and defined by LΔ. The mapping Δ in F

Nmax
has previously been introduced in § 3.2

and is defined by

@x P Nmax, Δ pxq “ 1x

The following lemma investigates the algebraic structure of the set of composition oper-
ators.

Lemma 48. The set of composition operators, denoted OC, is a complete subdioid of O. Fur-
thermore, OC and F

Nmax
are isomorphic.

Proof. First, we prove thatOC is a complete subdioid ofO. The operator ε (resp. e) is equal
to Lε (resp. Le). Hence, ε (resp. e) belongs to OC. Let L Ď OC. For o in L, fo denotes a
mapping in F

Nmax
such that o “ Lfo . Then,

@d P D,@k P Z,
˜

à

oPL
o

¸

pdq pkq “ à

oPL
o pdq pkq

“ à

oPL
fo pd pkqq

“ F pd pkqq where F “ à

oPL
fo

“ LF pdq pkq as F belongs to F
Nmax

Therefore,
À

oPL o belongs toOC. Thus,OC is closed under infinite sum. Furthermore, for
the composition operators Lf1 and Lf2 ,

@d P D, pLf1 b Lf2q pdq “ pf1 b f2q ˝ d
“ Lf1bf2 pdq

Hence, as f1 b f2 belongs to F
Nmax

, OC is closed for the product. Thus, OC is a complete
subdioid of O.

Second, we prove that the mappingΦ, defined byΦ pfq “ Lf, is an homomorphism from
the dioid F

Nmax
to the dioid OC. First of all,

Φ pεq “ Lε “ ε and Φ peq “ Le “ e

Furthermore, for f1, f2 P FNmax
,

@d P D,@k P Z, Φ pf1 ‘ f2q pdq pkq “ Lf1‘f2 pdq pkq
“ pf1 ‘ f2q pd pkqq
“ f1 pd pkqq ‘ f2 pd pkqq
“ Lf1 pdq pkq ‘ Lf2 pdq pkq
“ pLf1 ‘ Lf2q pdq pkq
“ pΦ pf1q ‘Φ pf2qq pdq pkq
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7. Operatorial Representation

@d P D,@k P Z, Φ pf1 b f2q pdq pkq “ Lf1bf2 pdq pkq
“ f1 pf2 pd pkqqq
“ Lf1 pf2 ˝ dq pkq
“ Lf1 pLf2 pdqq pkq
“ pLf1 b Lf2q pdq pkq
“ pΦ pf1q bΦ pf2qq pdq pkq

Hence, Φ pf1 ‘ f2q “ Φ pf1q ‘ Φ pf2q and Φ pf1 b f2q “ Φ pf1q b Φ pf2q. Thus, Φ is an
homomorphism.

Finally, it remains to prove that Φ is bijective. By definition, Φ is surjective. The injec-
tivity of Φ is shown by the following reasoning. Let f1, f2 in F

Nmax
and consider a set of

daters
�

dx|x P Nmax

(

such that, for all x P Nmax, dx p0q “ x. Then,

Φ pf1q “ Φ pf2q ñ @x P Nmax,Φ pf1q pdxq p0q “ Φ pf2q pdxq p0q
ñ @x P Nmax, Lf1 pdxq p0q “ Lf2 pdxq p0q
ñ @x P Nmax, f1 pdx p0qq “ f2 pdx p0qq
ñ @x P Nmax, f1 pxq “ f2 pxq
ñ f1 “ f2

An interesting property of composition operators is presented in the following lemma.

Lemma 49. The operator γ commutes with all composition operators.

Proof. Let Lf be a composition operator associated with a mapping f in F
Nmax

.

@d P D,@k P Z, pγb Lfq pdq pkq “ Lf pdq pk´ 1q
“ f pd pk´ 1qq
“ f pγ pdq pkqq
“ Lf pγ pdqq pkq
“ pLf b γq pdq pkq

Hence, γb Lf “ Lf b γ.

The next proposition shows the interest of the dioid F
Nmax,γ

vγw to represent a particular
class of operators.

Proposition 40. The complete dioid spanned by OC Y tγu, denoted OC,γ, is isomorphic to
F
Nmax,γ

vγw.
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7.1. Algebraic Definition of Operatorial Representation

Proof. The complete dioid spanned by OC Y tγu is, by definition, the least complete dioid
containing OC Y tγu. According to Lem. 49, an element o in OC,γ can be written as

o “
`8
à

k“0

okγ
k where ok P OC

Furthermore, as γ ĺ e, γ˚ “ e. Hence,

o “ γ˚o “
`8
à

k“0

˜

k
à

j“0

ok

¸

γk “
`8
à

k“0

oγ,kγ
k

where oγ,k “ Àk
j“0 ok belongs to OC. The previous notation leads directly to a bijective

mapping Φ from OC,γ to OC
γ vγw defined by

@o P OC,γ,@k P Z, Φ poq pkq “ oγ,k

Furthermore,

Φ pεq “ ε and Φ peq “ e

@o1, o2 P OC,γ, Φ po1 ‘ o2q “ Φ po1q ‘Φ po2q
@o1, o2 P OC,γ, Φ po1 b o2q “ Φ po1q bΦ po2q

Hence, Φ is an isomorphism and the dioids Oc,γ and OC
γ vγw are isomorphic. According to

Lem. 48, OC and F
Nmax

are isomorphic. Thus, OC,γ and F
Nmax,γ

vγw are isomorphic.

In the following, we only consider operatorial representation where the entries of A, B,
and C belong toOC,γ. This allows us to transpose these matrices inF

Nmax,γ
vγw and to apply

the tools developed in § 4.

Impulse Response

In the following, an interpretation in terms of system theory is given to the mapping
ψ psq associated with series s in F

Nmax,γ
vγw. Let us first recall that ψ psq is a mapping from

Nmax to Nmax,γvγw defined by

@x P Nmax, ψ psq pxq “
`8
à

k“0

s pkq pxqγk

Let us consider a SISO discrete event system with an operatorial representation where
the entries of A, B, and C belong to F

Nmax,γ
vγw. As F

Nmax,γ
vγw is a complete dioid, H “

CA˚B is a series in F
Nmax,γ

vγw. For pmax,`q-linear systems and pmax,`q-systems with
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7. Operatorial Representation

partial synchronization, an impulse for an event corresponds to all occurrences k ě 0 of
the considered event at time 0 and is modeled by the dater e defined by

e pkq “
#

ε for k ă 0

e for k ě 0

Hence, for the considered SISO system,

H peq “
`8
à

k“0

H peq pkqγk

“
`8
à

k“0

˜`8
à

j“0

H pjqγj

¸

peq pkqγk

“
`8
à

k“0

`8
à

j“0

H pjq pe pk´ jqqγk

“
`8
à

k“0

k
à

j“0

H pjq peqγk

“
`8
à

k“0

H pkq peqγk

“ ψ pHq peq
Thus, the impulse response is directly given by ψ pHq peq. In the same way, the dater
ψ pHq pxq with x P N0 corresponds to the output induced when all occurrences k ě 0 of
the input event are at time x.

In the following, we discuss how to use the previous results to compute the output in-
duced by input u. The transfer function H of a pmax,`q-linear system is both event-
invariant (i.e., γH “ Hγ) and time-invariant (i.e., δH “ Hδ). Therefore, the input induced
by u is equal to the pmax,`q-convolution of the impulse response and the input u. How-
ever, transfer functions in F

Nmax,γ
vγw are still event-invariant, but, in general, they are not

time-invariant. Therefore, the output induced byu cannot be simply obtained by pmax,`q-
convoluting the impulse response and the input u. Next, a method to calculate the output
induced by input u in this more general case is presented. First, as u belongs to Nmax,γvγw,
it is possible to associate to u a series U “ Φ puq in F

Nmax,γ
vγw (see § 4.1). Then, according

to Lem. 35, U peq “ u. Hence,

H puq “ pHUq peq “ ψ pHUq peq
Therefore, if we are able to calculate the series HU in F

Nmax,γ
vγw, the output induced by u

is easily obtained.
A generalization of the previous discussion to the MIMO case is straightforward.
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7.2. Operatorial Representation for pmax,`q-linear Systems

7.2. Operatorial Representation for pmax,`q-linear Systems

In the following, the operatorial representation for pmax,`q-linear system is recalled.
Let us consider the standard synchronization “for all k ě l, occurrence k of event e2 is at
least τ units of time after occurrence k´ l of event e1”. This corresponds to the following
inequality in Nmax:

@k P Z, e2 pkq ľ τe1 pk´ lq
Rewriting this relation with the operators γ and δ leads to e2 ľ

`

δτγl
˘ pe1q. Furthermore,

the combinations of several standard synchronizations on the same event can be expressed
by the operation‘ over daters and operators. For example, standard synchronizations “for
all k ě l1, occurrence k of event e2 is at least τ1 units of time after occurrence k ´ l1 of
event e1,1” and “for all k ě l2, occurrence k of event e2 is at least τ2 units of time after
occurrence k´ l2 of event e1,2” are both expressed by a single inequality:

e2 ľ
´

δτ1γl1
¯

pe1,1q ‘
´

δτ2γl2
¯

pe1,2q

Therefore, a pmax,`q-linear system admits an operatorial representation. Furthermore,
as the entries of matrices A, B, and C belong to OC,γ, it is possible to obtain an operato-
rial representation in F

Nmax,γ
vγw. An additional simplification is to rewrite this operatorial

representation in Nmax,γvγw, as the entries of A, B, and C belong to FΔ,γvγw. Hence, the
fundamental theorem in Nmax,γvγw recalled in § 2.7.4 leads to important results concern-
ing pmax,`q-linear systems. The transfer function matrix H of a pmax,`q-linear system
is given by CA˚B. Matrices A, B, and C are rational. Then, according to Th. 6, A˚ is ra-
tional. Hence, the transfer function matrix H is rational. Consequently, according to the
fundamental theorem in Nmax,γvγw, the transfer function matrixH is periodic. Conversely,
let M be a periodic matrix in Nmax,γvγwmˆp. According to the fundamental theorem in
Nmax,γvγw, matrix M is realizable, i.e., , there exist n P N, A P tε, e, 1, γunˆn, B P Bnˆp,
and C P Bmˆn such that M “ CA˚B. Hence, M corresponds to the transfer function
matrix of the system described by the operatorial representation

#

x ľ A pxq ‘ B puq
y ľ C pxq

This system is pmax,`q-linear as operators e, γ, and 1 (i.e., δ) respectively correspond to
the following standard synchronizations:

— for all k ě 0, occurrence k of event e2 is at least zero units of time after occurrence k
of event e1

— for all k ě 1, occurrence k of event e2 is at least zero units of time after occurrence
k´ 1 of event e1
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7. Operatorial Representation

— for all k ě 0, occurrence k of event e2 is at least one unit of time after occurrence k
of event e1

Furthermore, the results on calculation with periodic series in Nmax,γvγw and the software
tools presented in § 2.7 are helpful to compute transfer function matrices and outputs in-
duced by periodic inputs for pmax,`q-linear systems.

Example 38. To illustrate operatorial representation of pmax,`q-linear systems, let us con-
sider the train line in Ex. 23 recalled in Fig. 7.2.

2 2

10

10

y1,2

u1,1 x1,1

x1,4
x1,3

x1,2

u1,2

y1,1

Figure 7.2.: Petri net representation of the train line

This system is a pmax,`q-linear system and its operatorial representation in OC,γ is
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

x1 ľ

¨

˚

˚

˚

˚

˝

ε γ ε δ2γ

δ10 ε ε ε

ε δ2γ ε γ

ε ε δ10 ε

˛

‹

‹

‹

‹

‚

px1q ‘

¨

˚

˚

˚

˚

˝

e ε

ε ε

ε e

ε ε

˛

‹

‹

‹

‹

‚

pu1q

y1 ľ

˜

ε e ε ε

ε ε ε e

¸

px1q

Then, its operatorial representation in F
Nmax,γ

vγw is
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

x1 ľ

¨

˚

˚

˚

˚

˝

ε γ ε Δ2γ

Δ10 ε ε ε

ε Δ2γ ε γ

ε ε Δ10 ε

˛

‹

‹

‹

‹

‚

px1q ‘

¨

˚

˚

˚

˚

˝

e ε

ε ε

ε e

ε ε

˛

‹

‹

‹

‹

‚

pu1q

y1 ľ

˜

ε e ε ε

ε ε ε e

¸

px1q
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Finally, its operatorial representation in Nmax,γvγw is
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

x1 ľ

¨

˚

˚

˚

˚

˝

ε γ ε 2γ

10 ε ε ε

ε 2γ ε γ

ε ε 10 ε

˛

‹

‹

‹

‹

‚

px1q ‘

¨

˚

˚

˚

˚

˝

e ε

ε ε

ε e

ε ε

˛

‹

‹

‹

‹

‚

pu1q

y1 ľ

˜

ε e ε ε

ε ε ε e

¸

px1q

The transfer function matrix of the considered pmax,`q-linear system, denotedH1, is given
by

H1 “
˜

p10‘ 20γq `

24γ2
˘˚ `

22γ‘ 32γ2
˘ `

24γ2
˘˚

`

22γ‘ 32γ2
˘ `

24γ2
˘˚ p10‘ 20γq `

24γ2
˘˚

¸

As expected, the transfer function matrix H1 is periodic. Let us consider the particular input
u1 defined by u1,1 “ u1,2 “ e‘ 20γ2 p15γq˚. The output y1 induced by input u1 is given by

y1 “ H1 pu1q “ H1 b u1 “
˜

10‘ 22γ‘ 34γ2 ‘ 46γ3 ‘ 60γ4 p15γq˚
10‘ 22γ‘ 34γ2 ‘ 46γ3 ‘ 60γ4 p15γq˚

¸

Note that the notation is slightly ambiguous, asH1 corresponds both to the transfer function
matrix (i.e., a matrix of operators) and to amatrix of impulse responses (i.e., a matrix of daters).

7.3. Operatorial Representation for pmax,`q-systems Subject

to Partial Synchronization

In the following, the operatorial representation for pmax,`q-systems subject to partial
synchronization is introduced. As for pmax,`q-linear systems, standard synchronizations
are modeled using the operators γ and δ. The main difficulty is to represent partial syn-
chronizations by operators. This problem is solved by using the α-mappings introduced in
§ 3.5. As a reminder, the α-mapping associated with a dater d, denoted αd, is a mapping in
F
Nmax

defined by

@x P Nmax, αd pxq “
ľ

tz ľ x|z P Im pdq Y tJuu
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Let x be an event and d be a predetermined dater.

event x is subject to a partial synchronization by dater d

ô @k P Z, x pkq P Im pdq Y tJu
ô @k P Z, x pkq “ αd px pkqq
ô @k P Z, x pkq ľ αd px pkqq as αd ľ Id

ô x ľ αd ˝ x
ô x ľ Lαd

pxq as αd P FNmax

Therefore, partial synchronizations are modeled by composition operators based on α-
mappings. As before, a combination of several (standard and/or partial) synchronizations
affecting the same event boils down to a single inequality by using the operations ‘ over
daters and operators. This leads to an operatorial representation in OC,γ for pmax,`q-
systems subject to partial synchronization. As shown in Prop. 40, this operatorial repre-
sentation can be written in F

Nmax,γ
vγw.

Example 39. The operatorial representation in OC,γ associated with Ex. 35 is

$

’

’

’

’

&

’

’

’

’

%

x ľ

¨

˚

˝

ε γ3 ε

δ10 Lαd
‘ δγ γ3

ε δ10 Lαd
‘ δγ

˛

‹

‚

pxq ‘
¨

˚

˝

e

ε

ε

˛

‹

‚

puq

y ľ
´

ε ε e

¯

pxq

In FNmax,γ
vγw, the operatorial representation becomes

$

’

’

’

’

&

’

’

’

’

%

x ľ

¨

˚

˝

ε γ3 ε

Δ10 αd ‘ Δγ γ3

ε Δ10 αd ‘ Δγ

˛

‹

‚

pxq ‘
¨

˚

˝

e

ε

ε

˛

‹

‚

puq

y ľ
´

ε ε e

¯

pxq

The dater d represents the behavior of the traffic lights and is known.

7.3.1. Periodic Case

In the following, only the particular case where the predefined daters in partial synchro-
nizations are periodic is considered. Then, according to Prop. 23, theα-mappings associated
with partial synchronizations are periodic. Hence, the entries ofA, B, and C are causal pe-
riodic series in F

Nmax,γ
vγw. This leads to an interpretation in terms of system theory for

the fundamental theorem in F
Nmax,γ

vγw introduced in § 4.6. The transfer function matrix
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of the system is H “ CA˚B. Matrices A, B, and C are rational. Then, according to Th. 6,
A˚ is rational. Hence, the transfer function matrix H is rational. Consequently, according
to the fundamental theorem in F

Nmax,γ
vγw, the transfer function matrix H is causal and

periodic. Conversely, let M be a causal and periodic matrix in F
Nmax,γ

vγwmˆp. According
to the fundamental theorem in F

Nmax,γ
vγw, matrix M is realizable. Hence, there exists a

finite number N of periodic series r1, . . . , rN in Nmax,γvγw such that S admits a pB,Cq-
representation with respect to tε, e, Δ, αr1 , . . . , αrN , γu where all non-diagonal entries of
A belong to tε, e, Δ, γu. Therefore, M corresponds to the transfer function matrix of the
system described by the operatorial representation

#

x ľ A pxq ‘ B puq
y ľ C pxq

This system is a pmax,`q-system subject to partial synchronization. Indeed, entries of A,
B, and C equal to operators e, γ, or Δ (i.e., δ) respectively correspond to the following
standard synchronizations:

— for all k ě 0, occurrence k of event e2 is at least zero units of time after occurrence k
of event e1

— for all k ě 1, occurrence k of event e2 is at least zero units of time after occurrence
k´ 1 of event e1

— for all k ě 0, occurrence k of event e2 is at least one unit of time after occurrence k
of event e1

Furthermore, the entries of A corresponding to a α-mapping are diagonal and correspond
to partial synchronization of the event by a predefined periodic dater. This interpretation
makes clear the necessity of forcing the α-mappings to be on the diagonal of matrix A in
the definition of realizability.

Moreover, the results on calculation with periodic series in F
Nmax,γ

vγw introduced in § 4
are helpful to compute transfer function matrices and outputs induced by periodic inputs
for pmax,`q-systems subject to partial synchronization. In the following, several examples
are discussed.

Example 40. The transfer function of the pmax,`q-system subject to partial synchronization
introduced in Ex. 35 (i.e., a one-way road equipped with two traffic lights) is given by

H “
´

Δ12γ3
¯˚ ´

f1 ‘ f2γ‘ f3γ
2
¯
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7. Operatorial Representation

where

f1 pxq “
$

’

&

’

%

x if x P tε,Ju
24b 6k if 6k ĺ x ă 5b 6k with k P N0

30b 6k if x “ 5b 6k with k P N0

f2 pxq “

$

’

’

’

’

&

’

’

’

’

%

x if x P tε,Ju
25b 6k if 6k ĺ x ă 4b 6k with k P N0

30b 6k if x “ 4b 6k with k P N0

31b 6k if x “ 5b 6k with k P N0

f3 pxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x if x P tε,Ju
26b 6k if 6k ĺ x ă 3b 6k with k P N0

30b 6k if x “ 3b 6k with k P N0

31b 6k if x “ 4b 6k with k P N0

32b 6k if x “ 5b 6k with k P N0

As expected, the transfer function H is causal and periodic. A graphical representation of the
transfer function H is drawn in Fig. 7.3. The transfer function leads directly to the impulse
response of the system (i.e., the output induced by an infinity of vehicles arriving at t “ 0).

H peq “ ψ pHq peq “
´

24‘ 25γ‘ 26γ2
¯ ´

12γ3
¯˚

Let us consider the periodic input u equal to e‘γ3 p6γq˚. This input models the arrival of four
vehicles at t “ 0 and of one vehicle at t “ 6k with k P N. In FΔ,γvγw, input u corresponds to
the series U defined by

U “ e‘
´

Δ6γ
¯˚

γ3

Then,

HU “f1 ‘ f2γ‘ f3γ
2 ‘ Δ12f1γ

3 ‘ Δ12f2γ
4 ‘ Δ12f3γ

5 ‘ Δ24f1γ
6

‘ Δ24f2γ
7 ‘

´

Δ24f3 ‘ Δ30f1

¯

γ8 ‘
´

Δ6γ
¯˚

Δ36f1γ
9

Hence, the output induced by u is given by

H puq “ HU peq
“ ψ pHUq peq
“ 24‘ 25γ‘ 26γ2 ‘ 36γ3 ‘ 37γ4 ‘ 38γ5 ‘ 48γ6 ‘ 49γ7 ‘ 54γ8 p6γq˚
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7.3. Operatorial Representation for pmax,`q-systems Subject to Partial Synchronization

Figure 7.3.: Transfer function of the road equipped with traffic lights

Example 41. In this example, operatorial representation in F
Nmax,γ

vγw is used to calculate
outputs induced by periodic inputs for pmax,`q-systems with partial synchronization. We
consider the pmax,`q-system with partial synchronization presented in Ex. 23 (i.e., the supply
chain). The periodic input is defined by

u1,1 “ u1,2 “ e‘ 20γ2 p15γq˚
u2,1 “ u2,2 “ p90γq˚

The main system is a pmax,`q-linear system and the output y1 induced by input u1 has
already been computed in Ex. 38. Furthermore, this input leads to the following daters for the
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7. Operatorial Representation

state events in the main system.

x1 “

¨

˚

˚

˚

˚

˝

e‘ 12γ‘ 24γ2 ‘ 36γ3 ‘ 50γ4 p15γq˚
10‘ 22γ‘ 34γ2 ‘ 46γ3 ‘ 60γ4 p15γq˚
e‘ 12γ‘ 24γ2 ‘ 36γ3 ‘ 50γ4 p15γq˚
10‘ 22γ‘ 34γ2 ‘ 46γ3 ‘ 60γ4 p15γq˚

˛

‹

‹

‹

‹

‚

Hence, under this behavior of themain system, the secondary system corresponds to a pmax,`q-
system subject to partial synchronization. The transfer function matrix, denoted H2, of this
pmax,`q-system subject to partial synchronization is given by

H2 “
˜

f11 ‘
`

Δ60γ
˘˚

f1γ f12γ‘
`

Δ60γ
˘˚

Δ30f2γ
2

f21 ‘
`

Δ60γ
˘˚

Δ30f1γ f22 ‘
`

Δ60γ
˘˚

f2γ

¸

where

f11 pxq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

x if x P tε,Ju
27 if e ĺ x ă 8

39 if 8 ĺ x ă 20

51 if 20 ĺ x ă 32

65 if 32 ĺ x ă 46

80b 15k if 46b 15k ĺ x ă 61b 15k with k P N0

f12 pxq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

x if x P tε,Ju
39 if x “ e

51 if 1 ĺ x ă 13

65 if 13 ĺ x ă 25

80 if 25 ĺ x ă 37

95 if 37 ĺ x ă 51

110b 15k if 51b 15k ĺ x ă 66b 15k with k P N0

f21 pxq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

x if x P tε,Ju
51 if e ĺ x ă 8

65 if 8 ĺ x ă 20

80 if 20 ĺ x ă 32

95 if 32 ĺ x ă 46

110b 15k if 46b 15k ĺ x ă 61b 15k with k P N0
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f22 pxq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

x if x P tε,Ju
15 if x “ e

27 if 1 ĺ x ă 13

39 if 13 ĺ x ă 25

51 if 25 ĺ x ă 37

65 if 37 ĺ x ă 51

80b 15k if 51b 15k ĺ x ă 66b 15k with k P N0

f1 pxq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

x if x P tε,Ju
80 if e ĺ x ă 8

95 if 8 ĺ x ă 20

110 if 20 ĺ x ă 32

125 if 32 ĺ x ă 46

140b 15k if 46b 15k ĺ x ă 61b 15k with k P N0

f2 pxq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

x if x P tε,Ju
65 if x “ e

80 if 1 ĺ x ă 13

95 if 13 ĺ x ă 25

110 if 25 ĺ x ă 37

125 if 37 ĺ x ă 51

140b 15k if 51b 15k ĺ x ă 66b 15k with k P N0

The impulse response of this pmax,`q-system subject to partial synchronization is given by

H2 peq “
˜

ψ pH2,11q peq ‘ψ pH2,12q peq
ψ pH2,21q peq ‘ψ pH2,22q peq

¸

“
˜

27‘ 80γ p60γq˚
51‘ 110γ p60γq˚

¸

Next, we compute the response of this pmax,`q-system subject to partial synchronization to
the input u2. The matrix with entries in FΔ,γvγw associated with u2, denoted U2, is given by

U2 “
˜

`

Δ90γ
˘˚

`

Δ90γ
˘˚

¸

Then,

H2U2 “
˜

f11 ‘
`

Δ90γ
˘˚

f11Δ
90γ

f21 ‘
`

Δ90γ
˘˚

f21Δ
90γ

¸
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7. Operatorial Representation

Hence,

H2 pu2q “ H2U2 peq

“
˜

ψ ppH2U2q1q peq
ψ ppH2U2q2q peq

¸

“
˜

27‘ 110γ p90γq˚
51‘ 140γ p90γq˚

¸

Example 42. In the previous examples, transfer function matrices have entries in the dioid
Fper,c

Nmax,γ
vγw. In terms of system theory, this means that the throughput of an impulse response

does not depend on the occurring time t P N0 of the impulse. In the following, we present
a pmax,`q-system subject to partial synchronization where the throughput of an impulse
response depends on the occurring time t P N0 of the impulse. Let us consider the pmax,`q-
system subject to partial synchronization drawn in Fig. 7.4.

x1

u y

d2 = e⊕ 1 (2γ)∗

d1 = (2γ)∗

x2

Figure 7.4.: Petri net representation of a pmax,`q-system subject to partial synchronization exhibit-
ing impulse responses with different throughputs
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7.3. Operatorial Representation for pmax,`q-systems Subject to Partial Synchronization

The corresponding operatorial representation in F
Nmax,γ

vγw is
$

’

’

&

’

’

%

x ľ

˜

αd1
γ

e αd2

¸

pxq ‘
˜

ε

e

¸

puq

y ľ
´

ε e

¯

pxq

This leads to the transfer function H defined by

H “ e‘
´

Δ2γ
¯˚

f with f pxq “

$

’

’

’

’

&

’

’

’

’

%

ε if x ă 1

1 if x “ 1

1b 2k if 2k ĺ x ă 2k`1 with k P N
J if x “ J

A graphical representation of H is drawn in Fig. 7.5. For an impulse occurring at t “ 0,

Figure 7.5.: Transfer function H “ e‘ `

Δ2γ
˘˚

f

the throughput of the induced output is `8, while, for an impulse occurring at t P N, the
throughput of the induced output is 2.
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8
Model Reference Control

In this chapter, model reference control for pmax,`q-systems with partial synchroniza-
tion is discussed. A model reference representing a required transfer function matrix is
given. The aim of this approach is to modify the transfer function matrix of the system
to match as closely as possible the model reference. A prerequisite for this approach is
the existence of transfer function matrices. Hence, model reference control cannot be
applied to pmax,`q-systems with partial synchronization. However, it makes sense for
pmax,`q-linear systems and pmax,`q-systems subject to partial synchronization, as trans-
fer function matrices are provided by the operatorial representations in Nmax,γvγw and in
F
Nmax,γ

vγw. For pmax,`q-linear systems, model reference control has been widely inves-
tigated [12, 14, 25, 30]. In the following, we investigate how to extend these results to
pmax,`q-systems subject to partial synchronization. We mainly focus on adding prefilters
and feedbacks to modify the transfer function matrix of the system. However, more sophis-
ticated control structures already developed for pmax,`q-linear systems could be adapted
to pmax,`q-systems subject to partial synchronization in the same way.

The fundamental difference between optimal control and model reference control is that
optimal control acts by applying a particular input while model reference control modifies
the dynamics of the system. Hence, model reference control does not contain any require-
ment on the input. In many applications, the input is not a degree of freedom, but depends
on external factors. In Ex. 35, the arrival of vehicles (i.e., the input) is not a degree of free-
dom, but depends on the overall traffic. Therefore, optimal control is not suitable for this
case, but model reference control leads to interesting results presented in the following.
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8. Model Reference Control

8.1. Prefilter

Let us consider a pmax,`q-system subject to partial synchronizationwith a transfer func-
tion matrix H in F

Nmax,γ
vγwpˆm. A prefilter P in F

Nmax,γ
vγwmˆm is added ahead of the

system. The model reference is specified by the matrix G in F
Nmax,γ

vγwpˆm. The problem
formulation is summarized in Fig. 8.1.

P H

G

v u y

Figure 8.1.: Model reference control with prefilter

The transfer function matrix of the overall system is HP . Indeed,

y “ H puq “ H pP pvqq “ HP pvq
The aim of model reference control is to match as closely as possible the model reference

G. This is formalized by finding the greatest solution P of HP ĺ G. Then, G represents a
least upper bound for the admissible behavior of the overall system. Furthermore, taking
the greatest solution maximizes the input u “ P pvq of the original system (i.e., delays as
much as possible the occurrences of input events). As the dioid F

Nmax,γ
vγw is complete, the

greatest solution, denoted Pmax, of HP ĺ G is given by

Pmax “ H z̋G
The previous reasoning is not constructive and does not lead to a practical implementa-

tion of Pmax. In practice, the prefilter can only use information from the past to compute
occurrences of input events. Hence, the prefilter P is required to be causal. Hence,

Pmax “ Pr`` pPmaxq “ H z̋``G
Furthermore, ifH andG are causal periodicmatrices (forH, thismeans considering periodic
synchronizing daters), Prop. 26 and Prop. 31 give an algorithm to compute Pmax and ensure
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8.1. Prefilter

that Pmax is periodic. Thus, according to the fundamental theorem in F
Nmax,γ

vγw, Pmax

is realizable (i.e., Pmax can be seen as the transfer function matrix of a pmax,`q-system
subject to partial synchronization). This leads to a practical implementation of Pmax.

Remark 24 (Neutral prefilter). An interesting particular case is choosing G “ H. Then,
Pmax “ H z̋``H. In the literature, this prefilter is called neutral prefilter as it does not modify
the transfer function matrix of the system, i.e., HPmax “ H.

Example 43. In the following, the neutral prefilter, denoted Pmax, for the pmax,`q-system
subject to partial synchronization introduced in Ex. 35 (i.e., a one-way road equipped with two
traffic lights) is computed. The transfer function H of this system has already been computed
in Ex. 40. Hence,

Pmax “ H z̋``H “
´

Δ12γ3
¯˚ ´

p1 ‘ p2γ‘ p3γ
2
¯

with

p1 pxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x if x P tε,Ju
2b 6k if 6k ĺ x ă 3b 6k with k P N0

3b 6k if x “ 3b 6k with k P N0

4b 6k if x “ 4b 6k with k P N0

8b 6k if x “ 5b 6k with k P N0

p2 pxq “

$

’

’

’

’

&

’

’

’

’

%

x if x P tε,Ju
3b 6k if 6k ĺ x ă 3b 6k with k P N0

4b 6k if x “ 3b 6k with k P N0

9b 6k if 4b 6k ĺ x ă 6k`1 with k P N0

p3 pxq “
$

’

&

’

%

x if x P tε,Ju
4b 6k if 6k ĺ x ă 3b 6k with k P N0

10b 6k if 3b 6k ĺ x ă 6k`1 with k P N0

A graphical representation of the neutral prefilter Pmax is drawn in Fig. 8.2. Furthermore,
a realization of Pmax as pmax,`q-system subject to partial synchronization is provided in
Fig. 8.3.

Example 44. In the following, the neutral prefilter, denoted Pmax, for the pmax,`q-system
subject to partial synchronization introduced in Ex. 42 is computed. Note that the considered
transfer functionH fulfillsH “ H˚. Hence, finding the neutral prefilter Pmax is equivalent to
finding the greatest causal solution of H˚P ĺ H˚. Consequently, Pmax “ H˚ “ H.
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8. Model Reference Control

Figure 8.2.: Neutral prefilter for the road equipped with traffic lights

8.2. Feedback

Let us consider a pmax,`q-system subject to partial synchronizationwith a transfer func-
tion matrix H in F

Nmax,γ
vγwpˆm. An output feedback F in F

Nmax,γ
vγwmˆp is added. The

model reference is specified by the matrix G in F
Nmax,γ

vγwpˆm. The problem formulation
is summarized in Fig. 8.4.

As y “ H puq and u “ F pyq ‘ v, output y corresponds to the least solution of

y “ HF pyq ‘H pvq
Hence, the transfer function matrix of the overall system is pHFq˚ H.

The aim of model reference control is to match as closely as possible the model reference
G. This is formalized by finding the greatest solution F of pHFq˚ H ĺ G. Then, G repre-
sents a least upper bound for the admissible behavior of the overall system. Furthermore,
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12

1

2

x4

u

x1

x2

x3

v

d1

d2

d3

d1 =
(
2⊕ 3γ ⊕ 4γ2

)(
6γ3

)∗

d2 = (2⊕ 3γ)
(
6γ2

)∗

d3 = 2 (6γ)∗

Figure 8.3.: Realization of the neutral prefilter for the road equipped with traffic lights

taking the greatest solution maximizes the input u “ F pyq ‘ v of the original system
(i.e., delays as much as possible the occurrences of input events). Obviously, this problem
may have no solution, e.g., if G is not greater than or equal to H. Using the reasoning
developed in [14], this problem is solved for the class of model reference G defined by

G “
!

G P F
Nmax,γ

vγwpˆm|DA P F
Nmax,γ

vγwmˆm such that G “ HA˚
)

Y
!

G P F
Nmax,γ

vγwpˆm|DA P F
Nmax,γ

vγwpˆp such that G “ A˚H
)

and the greatest solution, denoted Fmax, is given by

Fmax “ H z̋G{̋H
The previous reasoning is not constructive and does not lead to a practical implementa-

tion of Fmax. In practice, the feedback can only use information from the past to compute
occurrences of input events. Hence, the feedback F is required to be causal. In the fol-
lowing, we only consider the case of a transfer function matrix H in Fper,c

Nmax,γ
vγwmˆp and a

reference model G in Fper,c

Nmax,γ
vγwmˆp such that G “ HA˚ with A in F

Nmax,γ
vγwpˆp. Then,

pHFq˚ H ĺ G ô pHFq˚ ĺ G{̋``H as pHFq˚ is causal

Furthermore, as entries of G and H belong to Fper,c

Nmax,γ
vγwmˆp, entries of G{̋``H belong to

Fper,c

Nmax,γ
vγwmˆp according to Prop. 37. As G ľ XHô G ľ XG,

G{̋``H “ G{̋``G
Furthermore, as XG ĺ G ñ X2G ĺ G,

`G{̋``H
˘˚ “ `G{̋``G

˘˚ “ G{̋``G “ G{̋``H
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H

F

yv

G

u

w

Figure 8.4.: Model reference control with output feedback

Hence,

pHFq˚ ĺ G{̋``Hô HF ĺ G{̋``H
ô F ĺ H z̋``G{̋``H

Therefore, according to Prop. 36, Fmax “ H z̋``G{̋``H belongs to Fper,c

Nmax,γ
vγwpˆm. Thus,

according to the fundamental theorem in F
Nmax,γ

vγw, Fmax is realizable (i.e., Fmax can be
seen as the transfer function matrix of a pmax,`q-system subject to partial synchroniza-
tion). This leads to a practical implementation of Fmax. Using a similar reasoning, it is
possible to deal with a reference model G in Fper,c

Nmax,γ
vγwmˆp such that G “ A˚H with A

in F
Nmax,γ

vγwmˆm. Then, for a pmax,`q-system subject to partial synchronization with

a transfer function matrix H in Fper,c

Nmax,γ
vγwmˆp, we provide an algorithm to compute and

realize the feedback for a model reference G in Gper,c with

Gper,c “
!

G P Fper,c

Nmax,γ
vγwpˆm|DA P F

Nmax,γ
vγwmˆm such that G “ HA˚

)

Y
!

G P Fper,c

Nmax,γ
vγwpˆm|DA P F

Nmax,γ
vγwpˆp such that G “ A˚H

)

Remark 25 (Neutral feedback). An interesting particular case is choosing G “ H. Then,
Fmax “ H z̋``H{̋``H. In the literature, this feedback is called neutral feedback as it does
not modify the transfer function matrix of the system, i.e., pHFmaxq˚ H “ H. Note that if H
belongs to Fper,c

Nmax,γ
vγwpˆm, then model reference G “ H belongs to Gper,c.

Example 45. In the following, the neutral feedback, denoted Fmax, for the pmax,`q-system
subject to partial synchronization introduced in Ex. 35 (i.e., a one-way road equipped with two
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8.2. Feedback

traffic lights) is computed. The transfer function H of this system has already been computed
in Ex. 40 and belongs to Fper,c

Nmax,γ
vγw. Hence, we can compute and realize the feedback Fmax.

Thus,

Fmax “ H z̋``H{̋``H “
´

Δ12γ3
¯˚ ´

p1 ‘ p2γ‘ p3γ
2
¯

γ6

with

p1 pxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x if x P tε,Ju
26 if e ĺ x ă 21

26b 6k if 21b 6k ĺ x ă 25b 6k with k P N0

27b 6k if x “ 25b 6k with k P N0

28b 6k if x “ 26b 6k with k P N0

p2 pxq “

$

’

’

’

’

&

’

’

’

’

%

x if x P tε,Ju
27 if e ĺ x ă 20

27b 6k if 20b 6k ĺ x ă 25b 6k with k P N0

28b 6k if x “ 25b 6k with k P N0

p3 pxq “
$

’

&

’

%

x if x P tε,Ju
28 if e ĺ x ă 19

28b 6k if 19b 6k ĺ x ă 25b 6k with k P N0

A graphical representation of the neutral feedback Fmax is drawn in Fig. 8.5. Furthermore,
a realization of Fmax as pmax,`q-system subject to partial synchronization is provided in
Fig. 8.6.

Example 46. In the following, the neutral feedback, denoted Fmax, for the pmax,`q-system
subject to partial synchronization introduced in Ex. 42 is computed. As H does not belong
to Fper,c

Nmax,γ
vγw, no algorithms has been providing to compute F

Nmax,γ
vγw. However, as H “

H˚, finding the neutral feedback Fmax is equivalent to finding the greatest causal solution of
pH˚Fq˚ H˚ ĺ H˚. Consequently, Fmax “ H˚ “ H.
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Figure 8.5.: Neutral feedback for the road equipped with tra�c lights

12

d1

d2

d3

y

x1 x2

x3

x4

x5

w

2

3

4

d1 =
(
24⊕ 25γ ⊕ 26γ2

)(
6γ3

)∗

d2 = (24⊕ 25γ)
(
6γ2

)∗

d3 = 24 (6γ)∗

Figure 8.6.: Realization of the neutral feedback for the road equipped with tra�c lights
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9
Conclusion

In the literature, discrete event systems ruled only by standard synchronization (e.g., for
all k ě l, occurrence k of event e2 is at least τ units of time after occurrence k´l of event e1)
are widely considered [1, 6, 26]. These systems are called pmax,`q-linear systems, as they
admit a linear state-space representation in the pmax,`q-algebra. Many applications for
pmax,`q-linear systems are found in the fields of manufacturing systems and transporta-
tion networks. Based on an analogy with standard control theory, modeling and control
strategies have been developed for pmax,`q-linear systems such as transfer function ma-
trix [1, 8, 22, 32], optimal feedforward control [9, 31] , model reference control [14, 30], and
model predictive control [20, 34]. In this work, we extend these tools to a class of discrete
event systems ruled by standard synchronization and partial synchronization (e.g., event
e2 can only occur when, not after, event e1 occurs). Partial synchronization often appears
in transportation networks. For example, a vehicle can cross an intersection only when the
associated traffic light is green or a user can take a bus only when a bus is at the bus stop.

The first contribution relates to pmax,`q-systems with partial synchronization, i.e., dis-
crete event systems split into a main system and a secondary system such that there exist
only standard synchronizations between events in the same system and partial synchro-
nizations of events in the secondary system by events in the main system. A modeling
in the pmax,`q-algebra based on daters is introduced for pmax,`q-systems with partial
synchronization. Furthermore, predicting the output induced by a predefined input corre-
sponds to solving a recursive equation in the event domain. This leads to an input-output
mapping for pmax,`q-systems with partial synchronization. The main difference between
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9. Conclusion

pmax,`q-linear systems and pmax,`q-systems with partial synchronization is that the
input-outputmapping associatedwith a pmax,`q-systemwith partial synchronizationmay
not be isotone. Therefore, operatorial representation (used to get transfer function ma-
trices for pmax,`q-linear systems) cannot be extended to pmax,`q-systems with partial
synchronization. Hence, transfer function matrices are not available to model pmax,`q-
systems with partial synchronization. Concerning the control of pmax,`q-systems with
partial synchronization, optimal feedforward control has been extended. The aim of this
control approach is to respect an output reference (i.e., ensure that output events meet a
deadline) under the just-in-time condition (i.e., input events occur as late as possible). This
problem is reformulated in terms of cost functions and the optimal input is computed when
priority is given to the main system over the secondary system (i.e., the performance of the
main system is never degraded only to improve the performance of the secondary system).
Model predictive control is also extended to pmax,`q-systems with partial synchroniza-
tion. This control approach consists in a closed-loop version of optimal feedforward con-
trol. For each time step, the optimal input is computed over a prediction horizon, but only
the occurrences of input events in the next time step are applied to the system. The main
advantage of model predictive control in comparison with optimal feedforward control is
the ability to take into account changes in the output reference and perturbations. Themain
disadvantage is the computational cost associated with the online calculation of the opti-
mal input. In the selected approach, this computational cost is linear with the length of the
prediction horizon. Model reference control is not extended to pmax,`q-system with par-
tial synchronization, as transfer function matrices are not available. The previous methods
are illustrated with a supply chain for containers using a rail transport section. Therefore,
a container can only leave a train station by train when a train is leaving the train station.
Hence, the train line corresponds to the main system and the supply chain corresponds to
the secondary system. As the train line may be shared by several supply chains, it makes
sense not to degrade the performance of the train line only to improve the performance of
a single supply chain.

The second contribution relates to pmax,`q-systems subject to partial synchronization,
i.e., pmax,`q-systems with partial synchronization where the behavior of the main system
is predefined. Hence, a pmax,`q-system subject to partial synchronization corresponds
to a pmax,`q-linear system, where occurrence times of events belong to predefined sets.
All techniques developed for pmax,`q-systems with partial synchronization are available
for pmax,`q-systems subject to partial synchronization. Furthermore, operatorial repre-
sentation is extended and leads to transfer function matrices for pmax,`q-systems subject
to partial synchronization. A convenient dioid to express these transfer function matrices
is F

Nmax,γ
vγw, a dioid of isotone formal power series in γ with residuated mappings over

Nmax as coefficients. A major achievement is the fundamental theorem inF
Nmax,γ

vγwwhich
provides methods to compute transfer function matrices and to find pmax,`q-systems sub-
ject to partial synchronization associated with a predefined transfer function matrix. Then,

150



model reference control is extended to pmax,`q-systems subject to partial synchroniza-
tion. The aim of this approach is to match a model reference by modifying the dynamics
of the system. In particular, the use of prefilters and feedbacks is investigated. The results
are obtained by analogy with model reference control for pmax,`q-linear systems. But, for
feedbacks, some additional assumptions have to be made on the transfer function matrix
and the model reference. The previous methods are illustrated with a road equipped with
traffic lights. As the behavior of the traffic lights is predetermined, this system corresponds
to a pmax,`q-system subject to partial synchronization.

An ambitious goal for future work is to develop a theory for discrete event systems ruled
by standard and partial synchronizations instead of considering only specific structures.
Getting handy transfer function matrices for this class of systems might be tricky, as a
reasoning based on operatorial representation is not possible. It is also of interest to inves-
tigate the dual in the event domain of partial synchronization. Then, the class of systems
dual to pmax,`q-systems subject to partial synchronization leads to transfer function ma-
trices which are formal power series in δ. Similarities between such systems and weight-
balanced timed event graphs or time-varying pmax,`q-systems, investigated in [15, 16],
are expected.
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Appendices
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A
Proofs

A.1. Calculation with Periodic Series in FNmax,γ
vγw

A.1.1. Sum of Periodic Series

Proposition 41 (Sum of periodic series). Let s1 and s2 be two periodic series in F
Nmax,γ

vγw.
Series s1 ‘ s2 is periodic. If s1 and s2 are different from ε, then

σ ps1 ‘ s2q “ min pσ ps1q , σ ps2qq
Proof. For i P t1, 2u, there existNi P N, periodicmappings fi,1, . . . , fi,Ni

inF
Nmax

,ni,1, . . . , ni,Ni

in N0, τi,1, . . . , τi,Ni
in N0, and νi in N such that

si “
Ni
à

k“1

pΔτi,kγνiq˚ fi,kγni,k

Let us define ν, m1, and m2 by

ν “ lcm pν1, ν2q “ m1ν1 “ m2ν2

Then,

@i t1, 2u , si “
Ni
à

k“1

mi´1
à

l“0

pΔmiτi,kγνq˚ Δlτi,kfi,kγ
ni,k`lνi
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Therefore, by definition, s1 ‘ s2 is a periodic series. Besides, according to Lem. 38, there
exist X1, X2 P N0 and ω1,ω2 P N such that

@x ľ X1, ψ ps1q pω1xq “ ω1ψ ps1q pxq
@x ľ X2, ψ ps2q pω2xq “ ω2ψ ps2q pxq

Therefore, with X “ X1 ‘ X2 and ω “ lcm pω1,ω2q,
@x ľ X, ψ ps1 ‘ s2q pωxq “ ωψ ps1q pxq ‘ωψ ps2q pxq

“ ωψ ps1 ‘ s2q pxq
According to Def. 43 and Lem. 40,

σ ps1 ‘ s2q “ σ pψ ps1 ‘ s2q pXqq
“ σ pψ ps1q pXq ‘ψ ps2q pXqq
“ min pσ pψ ps1q pXqq , σ pψ ps2q pXqqq
“ min pσ ps1q , σ ps2qq

A.1.2. Greatest Lower Bound of Periodic Series

Before starting with the proof of Prop. 29, two intermediate lemmas are introduced to
handle the degenerated cases.

Lemma 50. Let f1 and f2 be two mappings in F
Nmax

and n1, n2 P N0.

f1γ
n1 ^ f2γ

n2 “ pf1 ^ f2qγmaxpn1,n2q

Proof.

@k P Z, pf1γn1q pkq “
#

ε if k ă n1

f1 if k ě n1

and pf2γn2q pkq “
#

ε if k ă n2

f2 if k ě n2

Hence,

pf1γn1 ^ f2γ
n2q pkq “ pf1γn1q pkq ^ pf2γn2q pkq

“
#

ε if k ă max pn1, n2q
f1 ^ f2 if k ě max pn1, n2q

Thus, f1γn1 ^ f2γ
n2 “ pf1 ^ f2qγmaxpn1,n2q.
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Lemma 51. Let f1 be a periodic mapping in F
Nmax

, s2 be a periodic series in F
Nmax,γ

vγw, and
n1 in N0. Series f1γn1 ^ s2 is periodic.

Proof. As s2 is a periodic series inFNmax,γ
vγw, there existN inN, periodicmappings f2,1, . . . , f2,N

in F
Nmax

, n2,1, . . . , n2,N in N0, τ1, . . . , τN in N0, and ν in N such that

s2 “
N

à

k“1

pΔτkγνq˚ f2,kγn2,k

As F
Nmax,γ

vγw is a distributive dioid,

f1γ
n1 ^ s2 “

N
à

k“1

`

f1γ
n1 ^ pΔτkγνq˚ f2,kγn2,k

˘

Therefore, according to Prop. 28, to prove the periodicity of f1γn1 ^ s2, it is sufficient to
show that s is a periodic series, where s “ f1γ

n1 ^pΔτγνq˚ f2γn2 with periodic mappings
f1, f2 in F

Nmax
, n1, n2 P Z, ν P N, and τ P N0. Furthermore, as, for all L in N,

f1γ
n1 ^ pΔτγνq˚ f2γn2 “

L´1
à

l“0

´

f1γ
n1 ^ Δlτf2γ

n2`lν
¯

‘
´

f1γ
n1 ^ pΔτγνq˚ ΔLτf2γ

n2`Lν
¯

Therefore, according to Prop. 28, it is sufficient to consider the case where n2 ě n1.
If f1 or f2 is equal to ε, then s “ ε is a periodic series. The case τ “ 0 has been solved in

Lem. 50. In the following, we assume that f1, f2 are non-zero mappings and τ ą 0. For all
k P Z,

pf1γn1q pkq “
#

ε if k ă n1

f1 if k ě n1

`pΔτγνq˚ f2γn2
˘ pkq “

#

ε if k ă n2

Δjτf2 if n2 ` jν ď k ă n2 ` pj` 1qν with j P N0

Then, for all k P Z,

s pkq “
#

ε if k ă n2

f1 ^ Δjτf2 if n2 ` jν ď k ă n2 ` pj` 1qν with j P N0

Furthermore, as f1 and f2 are non-zero mappings, Y1 “ Ź
�

x P Nmax|f1 pxq ą ε
(

and Y2 “
Ź

�

x P Nmax|f2 pxq ą ε
(

belong to N0. According to Prop. 1,

@j P N0,
´

f1 ^ Δjτf2

¯

pxq “
#

ε if x ă Y

f1 pxq ^ τjf2 pxq if x ľ Y
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with Y “ Y1 ‘ Y2. By decomposing f1 in a sum of two periodic mappings in F
Nmax

, we can
assume that either f1 pxq ‰ J for all x P N0 or f1 pY1q “ J.

If f1 pxq ‰ J for all x P N0, f1 pxq is finite for all x P N0 greater than or equal to Y. Then
there exists K P N0 such that

@j ě K,@x ľ Y, f1 pxq ^ τjf2 pxq “ f1 pxq
Thus,

s “
K

à

j“0

´

f1 ^ Δjτf2

¯

γn2`jν

Hence, s is a periodic series.
Otherwise, f1 pY1q “ J. This leads to

´

f1 ^ Δjτf2

¯

pxq “
#

ε if x ă Y

τjf2 pxq if x ľ Y

Then,

f1 ^ Δjτf2 “ Δjτf̃2 with f̃2 pxq “
#

ε if x ă Y

f2 pxq if x ľ Y

Thus,

s “ pΔτγνq˚ f̃2γn2

Hence, s is a periodic series.

Proposition 42 (Greatest lower bound of periodic series). Let s1 and s2 be two periodic
series in F

Nmax,γ
vγw. Series s1 ^ s2 is periodic. If s1 and s2 are different from ε, then

σ ps1 ^ s2q “ max pσ ps1q , σ ps2qq
Proof. s1 and s2 are periodic series inFNmax,γ

vγw. For i P t1, 2u, there existNi P N, periodic
mappings fi,1, . . . , fi,Ni

inF
Nmax

,ni,1, . . . , ni,Ni
inN0, τi,1, . . . , τi,Ni

inN0, andνi inN such
that

si “
Ni
à

k“1

pΔτi,kγνiq˚ fi,kγni,k

As F
Nmax,γ

vγw is distributive,

s1 ^ s2 “
N1
à

k“1

pΔτ1,kγν1q˚ f1,kγn1,k ^
N2
à

j“1

pΔτ2,jγν2q˚ f2,jγn2,j

“
N1
à

k“1

N2
à

j“1

`pΔτ1,kγν1q˚ f1,kγn1,k ^ pΔτ2,jγν2q˚ f2,jγn2,j
˘
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According to Prop. 28, it is sufficient to show that

s1 “ pΔτ1γν1q˚ f1γn1 ^ pΔτ2γν2q˚ f2γn2

is a periodic series. The degenerated cases are considered in Lem. 51. Therefore, in the
following, we assume that τ1 and τ2 are strictly greater than 0 and that f1 and f2 are non-
zero periodic mappings. Furthermore, ν, m1, m2, T1, and T2 are defined by

ν “ lcm pν1, ν2q “ m1ν1 “ m2ν2, T1 “ m1τ1, and T2 “ m2τ2

Then,

@i P t1, 2u , pΔτiγνiq˚ fiγni “
mi´1
à

l“0

´

ΔTiγν
¯˚

Δlτifiγ
ni`lνi

As F
Nmax,γ

vγw is distributive, this leads to

s1 “
m1´1
à

l“0

m2´1
à

j“0

´´

ΔT1γν
¯˚

Δlτ1f1γ
n1`lν1 ^

´

ΔT2γν
¯˚

Δjτ2f2γ
n2`jν2

¯

Consequently, it is sufficient to show that

s “
´

ΔT1γν
¯˚

f1γ
n1 ^

´

ΔT2γν
¯˚

f2γ
n2

is a periodic series. From now on, we assume that n2 ě n1. Then, for k P Z,
s pkq “

´´

ΔT1γν
¯˚

f1γ
n1

¯

pkq ^
´´

ΔT2γν
¯˚

f2γ
n2

¯

pkq

“
$

’

&

’

%

ε if k ă n2

ΔpK`jqT1f1 ^ ΔjT2f2 if n2 ` jν ď k ă n1 ` pK` 1` jqν with j P N0

ΔpK`j`1qT1f1 ^ ΔjT2f2 if n1 ` pK` 1` jqν ď k ă n2 ` pj` 1qν with j P N0

withK “ tn2´n1
ν

u. Furthermore, as f1 and f2 are non-zeromappings, Y1 “ Ź
�

x P Nmax|f1 pxq ą ε
(

and Y2 “ Ź
�

x P Nmax|f2 pxq ą ε
(

belong to N0. According to Prop. 1, for j P N0,

´

ΔpK`jqT1f1 ^ ΔjT2f2

¯

pxq “
#

ε if x ă Y

T
K`j
1 f1 pxq ^ T

j
2f2 pxq if x ľ Y

´

ΔpK`j`1qT1f1 ^ ΔjT2f2

¯

pxq “
#

ε if x ă Y

T
K`j`1
1 f1 pxq ^ T

j
2f2 pxq if x ľ Y

with Y “ Y1 ‘ Y2.
Let us define mappings f̃1 and f̃2 in F

Nmax
by

f̃1 pxq “
#

ε if x ă Y

f1 pxq if x ľ Y
and f̃2 pxq “

#

ε if x ă Y

f2 pxq if x ľ Y
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First Case: T1 ą T2. By decomposing f2 in a sum of two periodic mappings in F
Nmax

,
we can assume that either f2 pxq ‰ J for all x P N0 or f2 pY2q “ J.

If f2 pxq ‰ J for all x P N0, f2 pxq belongs to N0 for all x in N0 greater than or equal to
Y. Then, there exists L P N0 such that

@j ě L,@x ľ Y, T
K`j
1 f1 pxq ^ T

j
2f2 pxq “ T

j
2f2 pxq

Then,

@j ě L, ΔpK`jqT1f1 ^ ΔjT2f2 “ ΔjT2 f̃2

Therefore,

s “
`8
à

j“0

´

ΔpK`jqT1f1 ^ ΔjT2f2

¯

γn2`jν ‘
`8
à

j“0

´

ΔpK`j`1qT1f1 ^ ΔjT2f2

¯

γn1`pK`1`jqν

“ p‘
`8
à

j“L

ΔjT2 f̃2γ
n2`jν

“ p‘
´

ΔT2γν
¯˚

ΔLT2 f̃2γ
n2`Lν

where p is the polynomial defined by

p “
L´1
à

j“0

´

ΔpK`jqT1f1 ^ ΔjT2f2

¯

γn2`jν ‘
L´1
à

j“0

´

ΔpK`j`1qT1f1 ^ ΔjT2f2

¯

γn1`pK`1`jqν

Hence, s is a periodic series.
Otherwise, f2 pY2q “ J. Then,

@j P N0,
´

ΔpK`jqT1f1 ^ ΔjT2f2

¯

pxq “
#

ε if x ă Y

T
K`j
1 f1 pxq if x ľ Y

´

ΔpK`j`1qT1f1 ^ ΔjT2f2

¯

pxq “
#

ε if x ă Y

T
K`j`1
1 f1 pxq if x ľ Y

Thus,

@j P N0, ΔpK`jqT1f1 ^ ΔjT2f2 “ ΔpK`jqT1 f̃1
ΔpK`j`1qT1f1 ^ ΔjT2f2 “ ΔpK`j`1qT1 f̃1
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Consequently,

s “
`8
à

j“0

´

ΔpK`jqT1f1 ^ ΔjT2f2

¯

γn2`jν ‘
`8
à

j“0

´

ΔpK`j`1qT1f1 ^ ΔjT2f2

¯

γn1`pK`1`jqν

“
`8
à

j“0

ΔpK`jqT1 f̃1γn2`jν ‘
`8
à

j“0

ΔpK`j`1qT1 f̃1γn1`pK`1`jqν

“
´

ΔT1γν
¯˚

ΔKT1 f̃1γ
n2 ‘

´

ΔT1γν
¯˚

ΔpK`1qT1 f̃1γn1`pK`1qν

Hence, s is a periodic series.

Second Case: T2 ą T1. By decomposing f1 in a sum of two periodic mappings in F
Nmax

,
we can assume that either f1 pxq ‰ J for all x P N0 or f1 pY1q “ J.

If f1 pxq ‰ J for all x P N0, f1 pxq belongs to N0 for all x in N0 greater than or equal to
Y. Then, there exists L P N0 such that

@j ě L,@x ľ Y, T
K`j`1
1 f1 pxq ^ T

j
2f2 pxq “ T

K`j`1
1 f1 pxq

Then,

@j ě L, ΔpK`j`1qT1f1 ^ ΔjT2f2 “ ΔpK`j`1qT1 f̃1
Therefore,

s “
`8
à

j“0

´

ΔpK`jqT1f1 ^ ΔjT2f2

¯

γn2`jν ‘
`8
à

j“0

´

ΔpK`j`1qT1f1 ^ ΔjT2f2

¯

γn1`pK`1`jqν

“ p‘
`8
à

j“L

ΔpK`jqT1 f̃1γn2`jν ‘
`8
à

j“L

ΔpK`j`1qT1 f̃1γn1`pK`1`jqν

“ p‘
´

ΔT1γν
¯˚

ΔpK`LqT1 f̃1γn2`Lν ‘
´

ΔT1γν
¯˚

ΔpK`L`1qT1 f̃1γn1`pK`1`Lqν

where p is the polynomial defined by

p “
L´1
à

j“0

´

ΔpK`jqT1f1 ^ ΔjT2f2

¯

γn2`jν ‘
L´1
à

j“0

´

ΔpK`j`1qT1f1 ^ ΔjT2f2

¯

γn1`pK`1`jqν

Hence, s is a periodic series.
Otherwise, f1 pY1q “ J.

@j P N0

´

ΔpK`jqT1f1 ^ ΔjT2f2

¯

pxq “
#

ε if x ă Y

T
j
2f2 pxq if x ľ Y

´

ΔpK`j`1qT1f1 ^ ΔjT2f2

¯

pxq “
#

ε if x ă Y

T
j
2f2 pxq if x ľ Y
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Thus,

@j P N0, ΔpK`jqT1f1 ^ ΔjT2f2 “ ΔjT2 f̃2

ΔpK`j`1qT1f1 ^ ΔjT2f2 “ ΔjT2 f̃2

Consequently,

s “
`8
à

j“0

´

ΔpK`jqT1f1 ^ ΔjT2f2

¯

γn2`jν ‘
`8
à

j“0

´

ΔpK`j`1qT1f1 ^ ΔjT2f2

¯

γn1`pK`1`jqν

“
`8
à

j“0

ΔjT2 f̃2γ
n2`jν ‘

`8
à

j“0

ΔjT2 f̃2γ
n1`pK`1`jqν

“
´

ΔT2γν
¯˚

f̃2γ
n2

Hence, s is a periodic series.

Third Case: T1 “ T2 “ T . According to Lem. 24,

ΔpK`jqT f1 ^ ΔjT f2 “ ΔjT
´

ΔKTf1 ^ f2

¯

ΔpK`j`1qT f1 ^ ΔjT f2 “ ΔjT
´

ΔpK`1qT f1 ^ f2

¯

Then,

s “
`8
à

j“0

´

ΔpK`jqT f1 ^ ΔjT f2

¯

γn2`jν ‘
`8
à

j“0

´

ΔpK`j`1qT f1 ^ ΔjT f2

¯

γn1`pK`1`jqν

“
´

ΔTγν
¯˚ ´

ΔKTf1 ^ f2

¯

γn2 ‘
´

ΔTγν
¯˚ ´

ΔpK`1qT f1 ^ f2

¯

γn1`pK`1qν

Hence, s is a periodic series.

Throughput Series s1 and s2 are assumed to be different from ε. According to Lem. 38,
there exist X1, X2 P N0 and ω1,ω2 P N such that

@x ľ X1, ψ ps1q pω1xq “ ω1ψ ps1q pxq
@x ľ X2, ψ ps2q pω2xq “ ω2ψ ps2q pxq

According to Lem. 34,

@x ľ X, ψ ps1 ^ s2q pωxq “ ωψ ps1q pxq ^ωψ ps2q pxq
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with X “ X1 ‘X2 and ω “ lcm pω1,ω2q. Then, for all x ľ X, as Nmax is a selective dioid,

@k P Z, ψ ps1 ^ s2q pωxq pkq “ ωψ ps1q pxq pkq ^ωψ ps2q pxq pkq
“ ω pψ ps1q pxq pkq ^ψ ps2q pxq pkqq
“ ω pψ ps1q pxq ^ψ ps2q pxqq pkq
“ ωψ ps1 ^ s2q pxq pkq

Consequently,

@x ľ X, ψ ps1 ^ s2q pωxq “ ωψ ps1 ^ s2q pxq
According to Def. 43 and Lem. 40,

σ ps1 ^ s2q “ σ pψ ps1 ^ s2q pXqq
“ σ pψ ps1q pXq ^ψ ps2q pXqq
“ max pσ pψ ps1q pXqq , σ pψ ps2q pXqqq
“ max pσ ps1q , σ ps2qq

A.1.3. Product of Periodic Series

Before starting with the proof of Prop. 30, two intermediate lemmas are introduced. The
next lemma gives a simple expression of the throughput of a non-zero periodic series s in
F
Nmax,γ

vγw without using the slicing mapping ψ.

Lemma 52. Let s be a non-zero periodic series such that s “ ÀN
k“1 pΔτkγνkq˚ fkγnk with

N in N, non-zero periodic mappings f1, . . . , fN in F
Nmax,γ

vγw, n1, . . . , nN in N0, τ1, . . . , τN
in N0, and ν in N.

σ psq “
#

0 if there exists k and x P N0 such that fk pxq “ J
min1ďkďN

´

ν
τk

¯

otherwise

Proof. If there exist k and x P N0 such that fk pxq “ J,
σ psq ď σ pψ psq pxqq “ 0

Then, σ psq “ 0.
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Otherwise, we assume that mapping fk is periodic with respect to Xk P N0 and ωk P N.
Let X “ ÀN

k“1 Xk, according to Lem. 40 and Prop. 28,

σ psq “ σ pψ psq pXqq

“ σ

˜

N
à

k“1

pτkγνq˚ fk pXqγnk

¸

“ min
1ďkďN

σ
`pτkγνq˚ fk pXqγnk

˘

“ min
1ďkďN

ν

τk
as fk pXq P N0

Lemma 53. Let s be a series in F
Nmax,γ

vγw such that s “ fγn pΔτγνq˚ with a periodic
mapping f in F

Nmax
, n P N0, ν P N, and τ P N0. Then, s can be written under the form

s “ p‘
´

Δτ1
γν1¯˚

q

with p, q polynomials with coefficients of the form fΔjτ where j P N0, τ1 in N0, and ν1 in N

such that ν1
τ1 “ ν

τ
.

Proof. If τ “ 0, s “ fγn and the result holds.
If τ ‰ 0, f is, by assumption, periodic with respect to X P N0 and ω P N. Then, there

exists K ě 0 such that Kτ ě X. Let τ1 “ lcm pτ,ωq “ mτ and ν1 “ mν. Then,

s “
K´1
à

l“0

fΔlτγn`lν ‘ f
´

Δτ1
γν1¯˚

ΔKτγKν`n

˜

m´1
à

l“0

Δlτγlν

¸

According to Lem. 29, f
´

Δτ1
γν1¯˚

ΔKτ “
´

Δτ1
γν1¯˚

fΔKτ. Consequently,

s “
K´1
à

l“0

fΔlτγn`lν ‘
´

Δτ1
γν1¯˚

˜

m´1
à

l“0

fΔpK`lqτγn`pK`lqν
¸

“ p‘
´

Δτ1
γν1¯˚

q

Proposition 43 (Product of periodic series). Let s1 and s2 be two periodic series inFNmax,γ
vγw.

Series s1 b s2 is periodic. If s1 and s2 are different from ε, then

σ ps1 b s2q “ min pσ ps1q , σ ps2qq
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Proof. For i P t1, 2u, there existNi P N, periodicmappings fi,1, . . . , fi,Ni
inF

Nmax
,ni,1, . . . , ni,Ni

in N0, τi,1, . . . , τi,Ni
in N0, and νi in N such that

si “
Ni
à

k“1

pΔτi,kγνiq˚ fi,kγni,k

Then,

s1 b s2 “
N1
à

k“1

N2
à

j“1

sk,j with sk,j “ pΔτ1,kγν1q˚ f1,k pΔτ2,jγν2q˚ f2,jγn1,k`n2,j

According to Prop. 28, to prove that s1 b s2 is a periodic series, it is sufficient to show that
sk,j is a periodic series. According to Lem. 53,

f1,kγ
n1,k`n2,j pΔτ2,jγν2q˚ “ pk,j ‘

´

Δ
τ1
2,jγν1

2,j

¯˚
qk,j

with τ1
2,j P N0 and ν1

2,j P N such that
ν1

2,j

τ1
2,j
“ ν2

τ2,j
and pk,j, qk,j polynomials with periodic

coefficients of the form f1,kΔ
lτ2,j where l P N0. Then,

sk,j “ pΔτ1,kγν1q˚ pk,jf2,j ‘ pΔτ1,kγν1q˚
´

Δ
τ1
2,jγν1

2,j

¯˚
qk,jf2,j

Besides, by using results from Nmax,γvγw,

pΔτ1,kγν1q˚
´

Δ
τ1
2,jγν1

2,j

¯˚ “ p1
k,j ‘

´

Δ
τ2
k,jγ

ν2
k,j

¯˚
q1
k,j

where p1
k,j, q

1
k,j are polynomials in FΔ,γvγw, τ2

k,j P N0, and ν2
k,j P N such that

ν2
k,j

τ2
k,j

“ min

˜

ν1

τ1,k
,
ν1

2,j

τ1
2,j

¸

“ min

ˆ

ν1

τ1,k
,
ν2

τ2,j

˙

Hence,

sk,j “ pΔτ1,kγν1q˚ pk,jf2,j ‘ p1
k,jqk,jf2,j ‘

´

Δ
τ2
k,jγ

ν2
k,j

¯˚
q1
k,jqk,jf2,j

is a periodic series. Thus, s1 b s2 is a periodic series.

Throughput If s1 and s2 are non-zero periodic series, we can assume that f1,k and f2,j are
non-zero periodic mappings. Then, sk,j are non-zero periodic series. According to Prop. 28,

σ ps1 b s2q “ min
k,j

σ psk,jq
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If there exist k (or j) and x P N0 such that f1,k pxq “ J (or f2,j pxq “ J), then, according
to Lem. 52, σ psk,jq “ 0. Consequently,

σ ps1 b s2q “ 0 “ min pσ ps1q , σ ps2qq
Otherwise, according to Lem. 52,

@k, j, σ psk,jq “ min

ˆ

ν1

τ1,k
,
ν2

τ2,j

˙

Then,

σ ps1 b s2q “ min
k,j

ˆ

min

ˆ

ν1

τ1,k
,
ν2

τ2,j

˙˙

“ min

ˆ

min
k

ˆ

ν1

τ1,k

˙

,min
j

ˆ

ν2

τ2,j

˙˙

Hence, according to Lem. 52, σ ps1 b s2q “ min pσ ps1q , σ ps2qq.

A.1.4. Left-Division ofQuasi-Causal Periodic Series

The set of quasi-causal series in F
Nmax,γ

vγw is a complete dioid. Therefore, the product
is residuated. s1 z̋`s2 is the greatest quasi-causal series s such that s1 b s ĺ s2. In the
following, the periodicity of s1 z̋`s2 is investigated when s1 and s2 are periodic series.
Next, two intermediate lemmas are proved.

Lemma 54. Let s be a quasi-causal periodic series inF
Nmax,γ

vγw and let f be a non-zero quasi-
causal periodic mapping in F

Nmax
. For n P N0, pfγnq z̋`s is a periodic series in F

Nmax,γ
vγw.

Furthermore,
— if s “ ε or σ pfγnq ă σ psq, then pfγnq z̋`s “ ε.
— if σ pfγnq “ σ psq “ `8, then pfγnq z̋`s “ ε or σ

`pfγnq z̋`s
˘ “ σ psq.

— if σ psq ‰ `8 and σ pfγnq ě σ psq, then σ
`pfγnq z̋`s

˘ “ σ psq.
Proof. According to (2.10),

@l P Z, `pfγnq z̋`s
˘ plq “

#

ε if l ă 0

f z̋`s pl` nq if l ě 0

The particular case s “ ε is first addressed.

@l P N0,
`pfγnq z̋`s

˘ plq “ f z̋`ε

As f is a non-zero mapping, for all Z P N0, there exists z ľ Z such that f pzq ą ε. Con-
sequently, according to Prop. 21, f z̋`ε “ ε. Thus, pfγnq z̋`s “ ε and series pfγnq z̋`s is
periodic.
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From now on, we assume that s ‰ ε. Then, according to Prop. 27, there exist N P N,
non-zero quasi-causal periodic mappings f1, . . . , fN in F

Nmax
, n1, . . . , nN in N0, τ1, . . . , τN

in N0, and ν in N such that

s “
N

à

k“1

pΔτkγνq˚ fkγnk

The following notations are introduced:

m “ max

ˆ

0, min
1ďkďN

pnk ´ nq
˙

and M “ max
1ďkďN

p0, nk ´ nq
Yf “

ľ

�

x P Nmax|f pxq ą ε
(

and Zf “
ľ

�

x P Nmax|f pxq “ J
(

Yk “
ľ

�

x P Nmax|fk pxq ą ε
(

and Zk “
ľ

�

x P Nmax|fk pxq “ J
(

Then,

`pfγnq z̋`s
˘ plq “

$

&

%

ε if l ă m

f z̋`
´

ÀN
k“1 Δ

t
l`n´nk

ν
uτkfk

¯

if l ěM

In the following, four cases are distinguished.

First Case: σ psq “ σ pfγnq “ `8. According to Lem. 52, τk “ 0. This leads to

@l ěM,
`pfγnq z̋`s

˘ plq “ f z̋`f̃ with f̃ “
N

à

k“1

fk

Therefore, pfγnq z̋`s “
ÀM

l“m

`pfγnq z̋`s
˘ plqγl is a periodic series. Furthermore,

f z̋`f̃ “ Pr`
´

PrR
´

f7 ˝ f̃
¯¯

ĺ f7 ˝ f̃
As f is a non-zero quasi-causal mapping,

@x P N0,
´

f z̋`f̃
¯

pxq ĺ f7
´

f̃ pxq
¯

ĺ Yf ‘ 1f̃ pxq

As σ psq “ `8, f̃ pxq ‰ x for all x P N0. Therefore, for all x P N0,
´

f z̋`f̃
¯

pxq ‰ J.
Consequently, pfγnq z̋`s is either equal to ε or σ

`pfγnq z̋`s
˘ “ `8 “ σ psq.

Second Case: σ psq ą 0 and σ pfγnq “ 0. As σ psq ą 0, for all l P Z and x P N0,
s plq pxq ‰ J. Furthermore, σ pfγnq “ 0 implies Zf P N0. Then, if x ‰ J, f7 pxq ĺ Zf{̋1.
This leads to

@l P Z,@x P N0,
`pfγnq z̋`s

˘ plq pxq ĺ f7 ps pl` nq pxqq ĺ Zf{̋1
As

`pfγnq z̋`s
˘ plq is a quasi-causal mapping,

`pfγnq z̋`s
˘ plq “ ε. Thus, pfγnq z̋`s “ ε

and pfγnq z̋`s is a periodic series.
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Third Case: σ psq “ σ pfγnq “ 0. As σ pfγnq “ 0, Zf belongs to N0. According to
Lem. 21,

@l ěM,
`pfγnq z̋`s

˘ plq “ Pr` pf z̋s pl` nqq

“ Pr`

˜

N
à

k“1

f z̋
´

Δt
l`n´nk

ν
uτkfk

¯

¸

We associate a parameter Lk in N0 with each mapping f z̋
´

Δt
l`n´nk

ν
uτkfk

¯

.

If τk “ 0, then Lk “M and

@l ě Lk, f z̋
´

Δt
l`n´nk

ν
uτkfk

¯

“ f z̋fk
If τk ą 0, there exists Lk ěM such that

τ
t
Lk`n´nk

ν
u

k fk pYkq ľ f pZf{̋1q
Then,

@l ě Lk,@x P N0, f7
ˆ

τ
t
l`n´nk

ν
u

k fk pxq
˙

“
$

’

&

’

%

f7 pεq if x ă Yk

Zf{̋1 if Zk ą x ľ Yk

J if x ľ Zk

As f z̋
´

Δt
l`n´nk

ν
uτkfk

¯

“ PrR
´

f7 ˝ Δt
l`n´nk

ν
uτkfk

¯

, f z̋
´

Δt
l`n´nk

ν
uτkfk

¯

is defined by

@l ě Lk,@x P N0,
´

f z̋
´

Δt
l`n´nk

ν
uτkfk

¯¯

pxq “
$

’

&

’

%

ε if x “ εf7 pεq if e ĺ x ă Yk

Zf{̋1 if Zk ą x ľ Yk

J if x ľ Zk

In both cases (i.e., τk “ 0 or τk ą 0), f z̋
´

Δt
l`n´nk

ν
uτkfk

¯

does not depend on l for

l ě Lk. Therefore,

@l ě Lk, f z̋
´

Δt
l`n´nk

ν
uτkfk

¯

“ f z̋
´

Δt
Lk`n´nk

ν
uτkfk

¯

Consequently,

pfγnq z̋`s “
L

à

l“m

`pfγnq z̋`s
˘ plqγl with L “ max

1ďkďN
Lk

Hence, pfγnq z̋`s is a periodic series. Furthermore, as σ psq “ 0, there exists X P N0 such
that s pL` nq pXq “ J. Then,

ppfγnq z̋sq pLq pXq “ f7 ps pL` nq pXqq “ f7 pJq “ J
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Therefore, @x ľ X, ppfγnq z̋sq pLq pxq ľ x. Consequently,
`pfγnq z̋`s

˘ pLq pXq “ ppfγnq z̋sq pLq pXq “ J
Thus, σ

`pfγnq z̋`s
˘ “ 0.

Fourth Case: σ psq ‰ `8 and σ pfγnq “ `8. Let K “ tk|τk ą 0u and K0 “
tk|τk “ 0u.

@l ěM, s pl` nq “ f̃‘ à

kPK
Δt

l`n´nk
ν

uτkfk with f̃ “ à

kPK0

fk

Then, according to Lem. 20 and Lem. 21,

@l ěM, ppfγnq z̋sq plq “ f z̋f̃‘ à

kPK
f z̋

´

Δt
l`n´nk

ν
uτkfk

¯

“ PrR
´

f7 ˝ f̃
¯

‘ à

kPK
PrR

´

f7 ˝ Δt
l`n´nk

ν
uτkfk

¯

For k P K,

´

f7 ˝ Δt
l`n´nk

ν
uτkfk

¯

pxq “
$

&

%

f7 pεq if x ă Yk

f7
ˆ

τ
t
l`n´nk

ν
u

k fk pxq
˙

if x ľ Yk

Then, f7 ˝ Δt
l`n´nk

ν
uτkfk “ fε ‘ fk,l with

@x P Nmax, fε pxq “ f7 pεq and fk,l pxq “
$

&

%

ε if x ă Yk

f7
ˆ

τ
t
l`n´nk

ν
u

k fk pxq
˙

if x ľ Yk

This leads to, according to Lem. 19,

@l ěM, ppfγnq z̋sq plq “ PrR
´

f7 ˝ f̃‘ fε

¯

‘ à

kPK
PrR pfk,lq

Note that fk,l pεq “ ε and fk,l is isotone. Furthermore,

@x P N0, τ
t
l`n´nk

ν
u

k fk pxq ă f pRq with R P N0

is absurd, as σ pfγnq “ `8 and fk is a non-zero quasi-causal mapping. Then, for all
R P N0, there exists x P N0 such that fk,l pxq ľ R. Then,

À

nPN fk,l pnq “ J “ fk,l pJq.
Consequently, according to Lem. 16, fk,l is residuated. Hence,

@l ěM, ppfγnq z̋sq plq “ PrR
´

f7 b f̃‘ fε

¯

‘ à

kPK
fk,l
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Moreover, as f (resp. fk) is periodic with respect to X (resp. Xk) and ω (resp. ωk), there
exists L1 ěM such that

@k P K,@x ľ Yk, τ
t
L1`n´nk

ν
u

k fk pxq ľ f pxq
Then, for l ě L1, fk,l is quasi-causal. Therefore,

@l ě L1,
`pfγnq z̋`s

˘ plq “ Pr` pppfγnq z̋sq plqq

“ Pr`

˜

PrR
´

f7 ˝ f̃‘ fε

¯

‘ à

kPK
fk,l

¸

“ Pr`

˜

PrR
´

f7 ˝ f̃‘ fε

¯

‘ à

kPK
fk,L1 ‘

à

kPK
fk,l

¸

“ Pr`

˜

PrR
´

f7 ˝ f̃‘ fε

¯

‘ à

kPK
fk,L1

¸

‘ à

kPK
fk,l

“ `pfγnq z̋`s
˘ pL1q ‘

à

kPK
fk,l

Consequently,

pfγnq z̋`s “
L1

à

l“m

`pfγnq z̋`s
˘ plqγl ‘ à

kPK

`8
à

l“L1

fk,lγ
l

Furthermore, there exists L ě L1 such that

@k P K, τ
t
L`n´nk

ν
u

k fk pYkq ľ f pXq
Then, for x P N0 and l ě L, if x ă Yk, fk,l`ων pxq “ ε and, if x ľ Yk, according to Lem. 30,

fk,l`ων pxq “ f7
ˆ

τωk τ
t
l`n´nk

ν
u

k fk pxq
˙

“ τωk fk,l pxq
Hence, fk,l`ων “ Δωτkfk,l for l ě L. Thus,

pfγnq z̋`s “
L

à

l“m

`pfγnq z̋`s
˘ plqγl ‘ à

kPK
pΔωτkγωνq˚

˜

ων´1
à

l“0

fk,L`lγ
L`l

¸

According to Prop. 21, for l ě L, fk,l is a periodic (with respect to X‘Xk and lcm pω,ωkq)
mapping. Thus, pfγnq z̋`s is a periodic series. Furthermore, if σ psq “ 0, a reasoning
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similar to the third case leads to σ
`pfγnq z̋`s

˘ “ 0. Otherwise, K is not empty. For l P N0

with m ď l ď L,

@x P Nmax,
`pfγnq z̋`s

˘ plq pxq ĺ
N

à

k“1

Yk ‘ 1s pl` nq pxq

and, for l P N0 with 0 ď l ă ων,

@x P Nmax, fk,L`l pxq ĺ Yk ‘ 1τ
t
L`l`n´nk

ν
u

k fk pxq
Then, the values of the previous mappings for x ‰ J are different from J. Furthermore,
the mappings fk,L`l are, by definition, non-zero. Consequently, according to Lem. 52,

σ
`pfγnq z̋`s

˘ “ min
kPK

ν

τk
“ σ psq

Lemma 55. Let s be a quasi-causal periodic series in F
Nmax,γ

vγw and let ν, τ P N. Series

pΔτγνq˚ z̋`s is periodic. Furthermore,
— if s “ ε or σ psq ą σ

`pΔτγνq˚˘

then pΔτγνq˚ z̋`s “ ε

— if σ psq ď σ
`pΔτγνq˚˘

then σ
`pΔτγνq˚ z̋`s

˘ “ σ psq
Proof. The particular case s “ ε is considered. As pΔτγνq˚ z̋`s ĺ e z̋`s ĺ s, pΔτγνq˚ z̋`s “
ε. Hence, series pΔτγνq˚ z̋`s is periodic.

From now on, we assume that s ‰ ε. Then, according to Prop. 27, there exist N P N,
non-zero quasi-causal periodic mappings f1, . . . , fN in F

Nmax
, n1, . . . , nN in N0, τ1, . . . , τN

in N0, and ν1 in N such that

s “
N

à

k“1

pΔτkγν1q˚ fkγnk

According to (2.3),

pΔτγνq˚ z̋`s “
ľ

jě0

´

Δjτγjν
¯

z̋`s

Then,

@l P Z, `pΔτγνq˚ z̋`s
˘ plq “

ľ

jě0

Δjτ z̋`s pl` jνq

The following notations are introduced:

m “ min
1ďkďN

nk and M “ max
1ďkďN

nk
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If l ă m,
`pΔτγνq˚ z̋`s

˘ plq ĺ s plq “ ε. This leads to
`pΔτγνq˚ z̋`s

˘ plq “ ε. Otherwise,

`pΔτγνq˚ z̋`s
˘ plq “

ľ

Rąjě0

Δjτ z̋`s pl` jνq ^
ľ

jěR

Δjτ z̋`

˜

N
à

k“1

Δ
t
l`jν´nk

ν1
uτkfk

¸

with R “ rM´m
ν

s. The set K is defined by

K “
"

k|Dx P N0, fk pxq “ J or
ν

τ
ě ν1

τk

*

In the following, two cases are distinguished.

First Case: σ psq ą σ
`pΔτγνq˚˘

(or equivalently K “ H). For l ě m,

ľ

jěR

Δjτ z̋`

˜

N
à

k“1

Δ
t
l`jν´nk

ν1
uτkfk

¸

“
ľ

jěR

Pr`

˜

N
à

k“1

Δjτ z̋
ˆ

Δ
t
l`jν´nk

ν1
uτkfk

˙

¸

ĺ
ľ

jěR

˜

N
à

k“1

Δjτ z̋
ˆ

Δ
t
l`jν´nk

ν1
uτkfk

˙

¸

For l ě m and x P N0,
ˆ

Δjτ z̋
ˆ

Δ
t
l`jν´nk

ν1
uτkfk

˙˙

pxq “
´

Δjτ
¯7

˜

τ
t
l`jν´nk

ν1
u

k fk pxq
¸

“
˜

τ
t
l`jν´nk

ν1
u

k fk pxq
¸

{̋τj

To show that pΔτγνq˚ z̋`s “ ε, it is sufficient to show that, for all l ě m and for all x in
N0, there exists j ě R such that

@k, τ
t
l`jν´nk

ν1
u

k fk pxq ă τj

It is sufficient to show that, for all l ě m and for all x P N0, there exists L ě r R
ν1

s such that

@k, τ
Lν`t

l´nk
ν1

u

k fk pxq ă τLν1

Let us denote Kx “ tk|fk pxq ‰ εu. If Kx “ H, the previous equation holds for all j ě R.
Otherwise, as fk pxq ‰ J, the previous equation is equivalent in the standard algebra to

@k P Kx, Lντk ` t
l´ nk

ν1

uτk ` fk pxq ă Lν1τ

ô @k P Kx, L pν1τ´ ντkq ą t
l´ nk

ν1

uτk ` fk pxq
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As K “ H, ν1τ´ ντk ą 0. Then, the previous equation is equivalent to

L ě L̃ “ max
kPKx

˜

t
t l´nk

ν1
uτk ` fk pxq

ν1τ´ ντk
u` 1, r

R

ν1

s

¸

This inequality proves the existence of a suitable parameterL. Hence, for l ě m,
`pΔτγνq˚ z̋`s

˘ plq “
ε. Thus, pΔτγνq˚ z̋`s “ ε is a periodic series.

Second Case: σ psq ď σ
`pΔτγνq˚˘

(or equivalently K ‰ H). Let Y be defined by

Y “
ľ

#

x P Nmax|
à

kPK
fk pxq ą ε

+

Let us define the quasi-causal periodic series s̃ by

s̃ “
N

à

k“1

pΔτkγν1q˚ f̃kγnk with f̃k pxq “
#

ε if x ă Y

fk pxq if x ľ Y

Clearly, σ psq “ σ ps̃q. In the following, it is shown that pΔτγνq˚ z̋`s “ pΔτγνq˚ z̋`s̃. A
sufficient condition is to show that pΔτγνq˚ z̋s “ pΔτγνq˚ z̋s̃.

For l ă m,
`pΔτγνq˚ z̋s˘ plq “ ε “ `pΔτγνq˚ z̋s̃˘ plq.

For l ě m and x ă Y, a reasoning similar to the first case (i.e., K “ H) leads to
`pΔτγνq˚ z̋s˘ plq pxq “ ε. Furthermore,

`pΔτγνq˚ z̋s̃˘ plq pxq ĺ s̃ plq pxq “ ε

Then,
`pΔτγνq˚ z̋s̃˘ plq pxq is also equal to ε.

For l ě m and x ľ Y,

`pΔτγνq˚ z̋s˘ plq pxq “
ľ

jě0

´

Δjτ
¯7 ps pl` jνq pxqq

“
ľ

jě0

´

Δjτ
¯7 ps̃ pl` jνq pxqq

“ `pΔτγνq˚ z̋s̃˘ plq pxq
Hence, pΔτγνq z̋s “ pΔτγνq z̋s̃. Next the periodicity of pΔτγνq z̋`s̃ is investigated. As

before, if l ě m,

`pΔτγνq˚ z̋`s̃
˘ plq “

ľ

Rąjě0

Δjτ z̋`s̃ pl` jνq ^
ľ

jěR

Δjτ z̋`

˜

N
à

k“1

Δ
t
l`jν´nk

ν1
uτk f̃k

¸
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By definition of K, there exists J ě R such that

@j ě J,
N

à

k“1

Δ
t
l`jν´nk

ν1
uτk f̃k “

à

kPK
Δ

t
l`jν´nk

ν1
uτk f̃k

Consequently, for l ě m,

`pΔτγνq˚ z̋`s̃
˘ plq “

ľ

Jąjě0

Δjτ z̋`s̃ pl` jνq ^
ľ

jěJ

Δjτ z̋`

˜

à

kPK
Δ

t
l`jν´nk

ν1
uτk f̃k

¸

Δjτ z̋`

˜

à

kPK
Δ

t
l`jν´nk

ν1
uτk f̃k

¸

“ Pr`

˜

à

kPK
Δjτ z̋

ˆ

Δ
t
l`jν´nk

ν1
uτk f̃k

˙

¸

Then,

@k P K, Δpj`ν1qτ z̋
ˆ

Δ
t
l`pj`ν1qν´nk

ν1
uτk f̃k

˙

“ Δpj`ν1qτ z̋
ˆ

ΔντkΔ
t
l`jν´nk

ν1
uτk f̃k

˙

“ Δjτ z̋
ˆ

Δντk´ν1τΔ
t
l`jν´nk

ν1
uτk f̃k

˙

Hence, as τ
ν
ď τk

ν1
for k P K,

@k P K, Δpj`ν1qτ z̋
ˆ

Δ
t
l`pj`ν1qν´nk

ν1
uτk f̃k

˙

ľ Δjτ z̋
ˆ

Δ
t
l`jν´nk

ν1
uτk f̃k

˙

Therefore,

ľ

jěJ

Δjτ z̋`

˜

N
à

k“1

Δ
t
l`jν´nk

ν1
uτk f̃k

¸

“
J`ν1´1

ľ

j“J

Δjτ z̋`

˜

N
à

k“1

Δ
t
l`jν´nk

ν1
uτk f̃k

¸

Thus, for l ě m,

`pΔτγνq˚ z̋`s
˘ plq “ `pΔτγνq˚ z̋`s̃

˘ plq “
J`ν1´1

ľ

j“0

´´

Δjτγjν
¯

z̋`s̃
¯

plq

Then,

pγνΔτq˚ z̋`s “
J`ν1´1

ľ

j“0

´

Δjτγjν
¯

z̋`s̃

Consequently, according to Lem. 54 and Prop. 29, pΔτγνq˚ z̋`s is a periodic series and

σ
`pΔτγνq˚ z̋`s

˘ “ σ ps̃q “ σ psq
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Proposition 44 (Left-division of quasi-causal periodic series). Let s1, s2 be two quasi-causal
periodic series in F

Nmax,γ
vγw. s1 z̋`s2 is a periodic series. If s1 and s2 are different from ε,

— if σ ps1q ă σ ps2q, then s1 z̋`s2 “ ε.
— if σ ps1q “ σ ps2q “ `8, then s1 z̋`s2 is either equal to ε or σ

`

s1 z̋`s2
˘ “ `8.

— if σ ps2q ‰ `8 and σ ps1q ě σ ps2q, then σ
`

s1 z̋`s2
˘ “ σ ps2q.

Proof. If s1 “ ε, s1 z̋`s2 “ J is a periodic series. Otherwise, according to Prop. 27,
there exist N P N, non-zero quasi-causal periodic mappings f1, . . . , fN, n1, . . . , nN in N0,
τ1, . . . , τN in N0, and ν in N such that

s1 “
N

à

k“1

pΔτkγνq˚ fkγnk

According to (2.3) and (2.5),

s1 z̋`s2 “
N

ľ

k“1

pfkγnkq z̋`
`pΔτkγνq˚ z̋`s2

˘

Then, using Lem. 54, Lem. 55, and Prop. 29, s1 z̋`s2 is a periodic series. To determine the
throughput of s1 z̋`s2, three cases are distinguished.

First Case: σ ps1q ă σ ps2q.
There exists k such that σ

`pΔτkγνq˚˘ ă σ ps2q or σ pfkγnkq ă σ ps2q. Consequently,
according to Lem. 54 and Lem. 55, s1 z̋`s2 “ ε.

Second Case: σ ps1q “ σ ps2q “ `8.
For all k, τk “ 0. Then,

s1 z̋`s2 “
N

ľ

k“1

pfkγnkq z̋`s2

Thus, according to Lem. 54, s1 z̋`s2 is either equal to ε or σ
`

s1 z̋`s2
˘ “ `8.

Third Case: σ ps2q ‰ `8 and σ ps1q ě σ ps2q.
Then, according to Lem. 54 and Lem. 55, for all k,

σ
`pfkγnkq z̋`

`pΔτkγνq˚ z̋`s2
˘˘ “ σ ps2q

Thus, σ
`

s1 z̋`s2
˘ “ σ ps2q
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A.1.5. Kleene Star of Causal Periodic Series

Causal Polynomial

In the following, we prove that the Kleene star of a causal polynomial with periodic
coefficients is a periodic series.

Lemma 56. Let p be a non-zero causal polynomial in F
Nmax,γ

vγw such that all its coefficients
are periodic with respect to Xp P N0 andωp P N. Then,

@R P N,
Xp`R`1

à

l“0

pl “
Xp
à

l“0

pl ‘
˜

R
à

l“0

p̃l

¸

pXp`1

where

@l P Z, p̃ plq pxq “
#

ε if x ă Xp

p plq pxq if x ľ Xp

Proof. The canonical representative of p is denoted

p “
N

à

i“1

fiγ
ni

with N in N, non-zero causal periodic mappings f1, . . . , fN in F
Nmax,γ

vγw, and n1, . . . , nN

in N0. By assumption, fk is periodic with respect to Xp in N0 and ωp in N. Furthermore,

p̃ “
N

à

i“1

f̃iγ
ni with f̃i pxq “

#

ε if x ă Xp

fi pxq if x ľ Xp

This lemma is shown by induction on R. First, the initial step (i.e., R “ 1) is proved. The
aim is to show that

Xp`2
à

l“0

pl “
Xp`1
à

l“0

pl ‘ p̃pXp`1

By definition, p ľ p̃. Therefore,

Xp`2
à

l“0

pl ľ
Xp`1
à

l“0

pl ‘ p̃pXp`1

Conversely,

pXp`2 ĺ
Xp`1
à

l“0

pl ‘ p̃pXp`1 ñ
Xp`2
à

l“0

pl ĺ
Xp`1
à

l“0

pl ‘ p̃pXp`1
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Therefore, it is sufficient to show that

@x P Nmax, ψ
´

pXp`2
¯

pxq ĺ ψ

˜

Xp`1
à

l“0

pl ‘ p̃pXp`1

¸

pxq

As

@x P Nmax, ψ
´

pXp`2
¯

pxq “
N

à

i1“1

. . .
N

à

iXp`2“1

˜

Xp`2
â

j“1

fij

¸

pxqγ
řXp`2

j“1 nij

it is sufficient to show that

@i1, . . . , iXp`2,@x P Nmax,

˜

Xp`2
â

j“1

fij

¸

pxqγ
řXp`2

j“1 nij ĺ ψ

˜

Xp`1
à

l“0

pl ‘ p̃pXp`1

¸

pxq

Depending on the values of
´

ÂXp`2

j“2 fij

¯

pxq, several cases are distinguished.
If

´

ÂXp`2

j“2 fij

¯

pxq “ ε, then

˜

Xp`2
â

j“1

fij

¸

pxqγ
řXp`2

j“1 nij “ ε ĺ ψ

˜

Xp`1
à

l“0

pl ‘ p̃pXp`1

¸

pxq

If
´

ÂXp`2

j“2 fij

¯

pxq ľ Xp, then, according to the definition of p̃,

˜

Xp`2
â

j“1

fij

¸

pxq “
˜

f̃i1 b
Xp`2
â

j“2

fij

¸

pxq

Therefore,
˜

Xp`2
â

j“1

fij

¸

pxqγ
řXp`2

j“1 nij ĺ ψ
´

p̃pXp`1
¯

pxq ĺ ψ

˜

Xp`1
à

l“0

pl ‘ p̃pXp`1

¸

pxq

Otherwise, e ĺ
´

ÂXp`2

j“2 fij

¯

pxq ă Xp. As fij is non-zero and causal, fij ľ Id. Then,

e ĺ fiXp`2
pxq ĺ ¨ ¨ ¨ ĺ

˜

Xp`2
â

j“2

fij

¸

pxq ă Xp

Therefore, there exists K with 2 ď K ď Xp`2 such that

˜

Xp`2
â

j“2

fij

¸

pxq “
˜

Xp`2
â

j“2,j‰K

fij

¸

pxq
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Besides, due to the causality of p, niK ě 0. Therefore,
˜

Xp`2
â

j“1

fij

¸

pxqγ
řXp`2

j“1 nij ĺ

˜

Xp`2
â

j“1,j‰K

fij

¸

pxqγ
řXp`2

j“1,j‰K nij

ĺ ψ
´

pXp`1
¯

pxq

ĺ ψ

˜

Xp`1
à

l“0

pl ‘ p̃pXp`1

¸

pxq

Henceforth, the result holds for R “ 1. Second, the inductive step is proved. It is assumed
that, for a given R P N,

Xp`R`1
à

l“0

pl “
Xp
à

l“0

pl ‘
˜

R
à

l“0

p̃l

¸

pXp`1

Next, the equality is checked for R` 1.

Xp`R`2
à

l“0

pl “ e‘ p

˜

Xp`R`1
à

l“0

pl

¸

“
Xp`2
à

l“0

pl ‘
˜

R
à

l“1

pp̃l

¸

pXp`1

“
Xp`1
à

l“0

pl ‘ p̃pXp`1 ‘
˜

R
à

l“1

pp̃l

¸

pXp`1 using the results for R “ 1

Furthermore, due to the definition of p̃, pp̃ “ p̃2. Thus,

Xp`R`2
à

l“0

pl “
Xp
à

l“0

pl ‘
˜

R`1
à

l“0

p̃l

¸

pXp`1

This achieves the induction.

Lemma 57. Let p be a non-zero causal polynomial in F
Nmax,γ

vγw such that all its coefficients
are periodic with respect to Xp P N0 andωp P N. Then,

p˚ “
Xp
à

l“0

pl ‘ p̃˚pXp`1

where

@l P Z, p̃ plq pxq “
#

ε if x ă Xp

p plq pxq if x ľ Xp
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Proof. It is a direct consequence of the previous lemma by considering R approaching`8.

In the next lemma, the periodicity ofp˚ is investigatedwhere p is a non-zero quasi-causal
polynomial with periodic coefficients fulfilling some additional properties.

Lemma 58. Let p be a non-zero quasi-causal polynomial in F
Nmax,γ

vγw such that all its co-
efficients are periodic with respect to Xp in N0 andωp in N and

@l P Z,@x ă Xp, p plq pxq “ ε

Then, p˚ is a periodic series in F
Nmax,γ

vγw.
Proof. The canonical representative of p is denoted

p “
N

à

i“1

fiγ
ni

with N in N, non-zero causal periodic mappings f1, . . . , fN in F
Nmax,γ

vγw, and n1 ă ¨ ¨ ¨ ă
nN inN0. By assumption, fk is periodic with respect toXp inN0 andωp inN and fk pxq “ ε

for x ă Xp. Obviously,

@k P N, pk “
N

à

i1“1

. . .
N

à

ik“1

k
â

j“1

fijγ
nij

Then,

@k P N,@x P Nmax, ψ
´

pk
¯

pxq “
N

à

i1“1

. . .
N

à

ik“1

˜

k
â

j“1

fij

¸

pxqγ
řk

j“1 nij

For amapping f inF
Nmax

, the set of fixed points of f, denoted fix pfq, is defined by fix pfq “
�

x P Nmax|f pxq “ x
(

. In the following, two cases are distinguished depending on the sets
of fixed points of the coefficients of p.

First Case:
ŞN

i“1 fix pfiq ‰ tε,Ju. There exists one fixed point b shared by all mappings

fi such that Xp ĺ b ă ωpXp. Due to the periodicity of fi, ω
j
pb with j P N0 is also a fixed

point.

ψ
´

pωp`1
¯

pxq “
N

à

i1“1

. . .
N

à

iωp`1“1

˜

ωp`1
â

j“1

fij

¸

pxqγ
řωp`1

j“1 nij
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In the following, we prove thatpωp ľ pωp`1, or equivalently for all x P Nmax,ψ ppωpq pxq ľ
ψ

`

pωp`1
˘ pxq. For x ă Xp,

ψ ppωpq pxq “ ε “ ψ
´

pωp`1
¯

pxq
For x ľ Xp, we reason on the monomials composingψ

`

pωp`1
˘ pxq. If x “ J, as niωp`1

ě
0,

˜

ωp`1
â

j“1

fij

¸

pJqγ
řωp`1

j“1 nij “ Jγ
řωp`1

j“1 nij ĺ Jγ
řωp

j“1 nij ĺ ψ ppωpq pJq

Otherwise, B is defined as the least fixed point greater than or equal to x. Clearly, B ă ωpx.
Then, as fi pxq ľ x for x ľ Xp,

x ĺ fiωp`1
pxq ĺ ¨ ¨ ¨ ĺ

˜

ωp`1
â

j“1

fij

¸

pxq ĺ B ă ωpx

Therefore, there exists K such that
˜

ωp`1
â

j“1

fij

¸

pxq “
˜

ωp`1
â

j“1,j‰K

fij

¸

pxq

As niK ě 0,
˜

ωp`1
â

j“1

fij

¸

pxqγ
řωp`1

j“1 nij ĺ

˜

ωp`1
â

j“1,j‰K

fij

¸

pxqγ
řωp`1

j“1,j‰K nij ĺ ψ ppωpq pxq

Consequently, pωp`1 ĺ pωp . Thus, p˚ is a periodic series equal to
Àωp

l“0 p
l.

Second Case:
ŞN

i“1 fix pfiq “ tε,Ju. As f1 ă ¨ ¨ ¨ ă fN, fix pfNq “ tε,Ju.
First, we show that the calculation of p˚ reduces to the calculation of p̃˚ where p̃ is a

non-zero quasi-causal polynomial in F
Nmax,γ

vγw such that all its coefficients are periodic
with respect to Xp in N0 and ωp in N and

#

@l P Z,@x ă Xp, p̃ plq pxq “ ε

@l ě val pp̃q , fix pp̃ plqq “ tε,Ju
Let us consider a sequence ppmqmě0 of non-zero quasi-causal polynomials pm such that

all their coefficients are periodic with respect to Xp in N0 and ωp in N and

@l P Z,@x ă Xp, pm plq pxq “ ε

The canonical representative of pm is denoted pm “ ÀNm

i“1 fm,iγ
nm,i where mappings fm,i

are, by assumption, periodic with respect to Xp andωp. The sequence ppmqmě0 is defined
by the following algorithm:
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1. Initialization: set p0 to p and set m to 0

2. While fix pfm,1q ‰ tε,Ju, set pm`1 to pfm,1γ
nm,1q˚

´

ÀNm

i“2 fm,iγ
nmi

¯

and set m to

m` 1

As fix pfm,1q ‰ tε,Ju, pfm,1γ
nm,1q˚ is a polynomial with periodic coefficients. Therefore,

pm`1 is a polynomial with periodic coefficients. According to (2.8),

pm̊ “ pm̊`1 pfm,1γ
nm,1q˚

Then, as fix pfm,1q ‰ tε,Ju, to show the periodicity of pm̊, it is sufficient to prove the peri-
odicity of pm̊`1. Therefore, to show that the calculation of p˚ boils down to the calculation
of p̃˚, it is sufficient to check that the previous algorithm stops after a finite number of
steps (i.e., there existsM P N0 such that fix pfM,1q “ tε,Ju), as fix pfM,1q “ tε,Ju implies
fix pfM,iq “ tε,Ju for all i. Obvious properties of the sequence ppmqmě0 are

@m P N0, val ppm`1q “ nm`1,1 “ nm,2 ą nm,1 “ val ppmq (A.1)

@m P N0,@l ă m, fm,1 “ pm pnm,1q ľ pl pnm,1q (A.2)

According to (A.1), there exists M P N0 such that val ppMq ě n0,N0
. Then, according to

(A.2), fM,1 ľ p0 pval ppMqq “ f0,N0
. As fix pf0,N0

q is equal to tε,Ju, fix pfM,1q is equal to
tε,Ju. Therefore, in the following, we only consider a non-zero quasi-causal polynomial
p such that all its coefficients are periodic with respect to Xp in N0 and ωp in N and

#

@l P Z,@x ă Xp, p plq pxq “ ε

@l ě val ppq , fix pp plqq “ tε,Ju
Second, some work is done using condition fix pfiq “ tε,Ju to consider only a subclass

of polynomials.

p˚ “ ppωpq˚
˜

ωp´1
à

l“0

pl

¸

with

pωp “
N

à

i1“1

. . .
N

à

iωp“1

ωp
â

j“1

fijγ
nij

“
Nωp
à

i“1

fωp,iγ
nωp,i

where the last expression denotes the canonical representative of pωp . Clearly,

val ppωpq “ nωp,1 “ ωpn1 and fωp,1 “ f
ωp

1
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As f1 does not admit any fixed point, f
ωp

1 pXpq ľ ωpXp. Furthermore, as fωp,i`1 ľ fωp,i,
fωp,i pXpq ľ ωpXp. Therefore, in the following, we investigate the periodicity of p˚ with
a non-zero quasi-causal polynomial p such that all its coefficients are periodic with respect
to Xp in N0 and ωp in N and

#

@l P Z,@x ă Xp, p plq pxq “ ε

@l ě val ppq , p plq pXpq ľ ωpXp

The canonical representative of p is denoted p “ ÀN
i“1 fiγ

ni withN inN, non-zero causal
periodic mappings f1, . . . , fN inF

Nmax,γ
vγw, andn1 ă ¨ ¨ ¨ ă nN inN0. By assumption, fk is

periodic with respect to Xp inN0 andωp inN, fk pxq “ ε for x ă Xp, and fk pXpq ľ ωpXp.
Finally, the periodicity of p˚ is obtained by analogy with [15]. If fN pXpq “ J, then,

@l ě nN, p˚ plq “ fN and, for l ă nN, the coefficients of p˚ can be obtained by developing
the expression. Then, p˚ is a polynomial with periodic coefficients: p˚ is a periodic series.
Otherwise, fi pXpq belongs to N0 for all i. It is easy to check that

fi “
ωp´1
à

k“0

ΔfipkXpq∇
´

Δk`Xp

¯7

where ∇ is a periodic mapping in F
Nmax

defined by

∇ pxq “
#

ε if x “ ε

t x
ωp

uωp if x ľ e

Therefore, polynomial p can be written under the form

p “
M

à

k“1

Δmk∇ pΔrkq7 γnk

Then,

@k P N, pk “
M

à

i1“1

. . .
M

à

ik“1

k
â

j“1

Δ
mij∇ `

Δ
rij

˘7
γ
nij

By noticing that

@j, k P N0,
´

Δk
¯7

Δj “ Δj´k if j ě k and ∇Δj∇ “ Δ
t j
ωp

uωp∇

we obtain

@k ě 2,
k

â

j“1

Δ
mij∇ `

Δ
rij

˘7 “ Δmi1ΔK∇ pΔril q7
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with

K “
k´1
ÿ

j“1

t
mij`1

´ rij

ωp
uωp

The conditionmij`1
ě rij is ensured by the hypothesis fi pXpq ľ ωpXp. Then, a matrix φ

in FΔ,γvγwMˆM is defined by

φij “ Δ
t
mj´ri
ωp

uωp
γni

This leads to

@k ě 3, pk “
M

à

i1“1

. . .
M

à

ik“1

k
â

j“1

Δ
mij∇ `

Δ
rij

˘7
γ
nij

“
M

à

i1“1

. . .
M

à

ik“1

Δmi1

˜

k´1
â

j“1

Δ
t
mij`1

´rij
ωp

uωp
γ
nij

¸

∇ pΔrik q7 γnik

“
M

à

i1“1

. . .
M

à

ik“1

Δmi1

˜

k´1
â

j“1

φijij`1

¸

∇ pΔrik q7 γnik

“
M

à

i1“1

M
à

ik“1

Δmi1

˜

M
à

i2“1

. . .
M

à

ik´1“1

k´1
â

j“1

φijij`1

¸

∇ pΔrik q7 γnik

“
M

à

I“1

M
à

J“1

ΔmI

´

φk´1
¯

IJ
∇ pΔrJq7 γnJ

Therefore,

p˚ “ e‘ p‘ p2 ‘
`8
à

k“3

pk

“ e‘ p‘ p2 ‘
`8
à

k“3

M
à

I“1

M
à

J“1

ΔmI

´

φk´1
¯

IJ
∇ pΔrJq7 γnJ

“ e‘ p‘ p2 ‘
M

à

I“1

M
à

J“1

ΔmI

´

φ2φ˚
¯

IJ
∇ pΔrJq7 γnJ

As φ˚ is periodic, p˚ is a periodic series.

Proposition 45. The Kleene star of a causal polynomial with periodic coefficients is a periodic
series.

183



A. Proofs

Proof. Let p be a causal polynomial in F
Nmax,γ

vγw with periodic coefficients. If p “ ε, then
p˚ “ e is a periodic series. Otherwise, we can find Xp P N0 and ωp P N such that all
coefficients of p are periodic with respect to Xp and ωp. Then, according to Lem. 57,

p˚ “
Xp`1
à

l“0

pl ‘ p̃˚pXp`2

where

@l P Z, p̃ plq pxq “
#

ε if x ă Xp

p plq pxq if x ľ Xp

As p̃ fulfills the condition of Lem. 58, p̃˚ is a periodic series. Thus, p˚ is a periodic series.

Causal Periodic Series

In the following, we prove that the Kleene star of a causal periodic series is a causal
periodic series.

Proposition 46. The Kleene star of a causal periodic series is a causal periodic series.

Proof. Let s be a causal periodic series in F
Nmax,γ

vγw with the canonical representative:

s “ p‘
N

à

k“1

´

Δτkγν1¯˚
qk

Furthermore, we define X P N0 and ω P N such that all coefficients of q1, . . . , qN and p

are periodic with respect to X and ω.
Series s˚ is causal, as the dioid of causal series is a complete subdioid of F

Nmax,γ
vγw. It

remains to show that s˚ is periodic.
The proof is done by induction on N. The initial step N “ 0 corresponds to the polyno-

mial case, which has been solved in Prop. 45. For the inductive step, it is assumed that the
proposition holds for N´ 1 with N P N.

If τN “ 0, s˚ is a periodic series according to the induction hypothesis. If τN ą 0, there
exists L ě 0 such that LτN ě X. Let us define τ and ν by τ “ lcm pω, τNq “ mτN, and
ν “ mν1. Then, s is rewritten using the parameters L, τ, and ν.

s “ s1 ‘ pΔτγνq˚ q
with

s1 “ p‘
L´1
à

l“0

ΔlτNqNγ
lν1 ‘

N´1
à

k“1

´

Δτkγν1¯˚
qk

q “
m´1
à

l“0

ΔpL`lqτNqNγ
pL`lqν1
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According to (2.8),

s˚ “ `

s1̊ pΔτγνq˚ q˘˚
s1̊

Consider a series d in tε, e, s1, Δτγνu˚. Series d is causal as s1 and Δτγν are causal.
Then,

@k P Z,@x P Nmax, ps1Δτγνdqq pkq pxq “ à

pi,j,lqPS
ps1 piqΔτd pjqq plqq pxq

where S “
!

pi, j, lq P Z3|i` j` l` ν “ k
)

By definition, q plq pxq is either equal to ε or greater than or equal to LτN. Then, as d pjq
is causal, pd pjqq plqq pxq is either equal to ε or greater than or equal to LτN. Due to the
periodicity of s1 piq and to the fact that ω divides τ,

à

pi,j,lqPS
s1 piqΔτd pjqq plq “ à

pi,j,lqPS
Δτs1 piqd pjqq plq

Therefore, for all series d in tε, e, s1, γνΔτu˚, s1Δτγνdq “ Δτγνs1dq. Then, according to
Lem. 3,

s1̊ pΔτγνq˚ q “ ps1 ‘ Δτγνq˚ q
Consequently, according to (2.9),

s˚ “ `ps1 ‘ Δτγνq˚ q˘˚
s1̊

“ `

e‘ ps1 ‘ γνΔτ ‘ qq˚ q˘

s1̊

Using the induction hypothesis, s˚ is a periodic series.

A.2. Calculation with Series in Fper,c

Nmax,γ
vγw

A.2.1. Sum of Series in Fper,c

Nmax,γ
vγw

Proposition 47 (Sum of series in Fper,c

Nmax,γ
vγw). Let s1 and s2 be two series in Fper,c

Nmax,γ
vγw.

s1 ‘ s2 belongs to Fper,c

Nmax,γ
vγw. If s1 and s2 are different from ε, then

σ ps1 ‘ s2q “ min pσ ps1q , σ ps2qq
Proof. According to Prop. 28, it remains to show that s1 ‘ s2 belongs to Fper,c

Nmax,γ
vγw. If s1

or s2 is equal to ε, then s1 ‘ s2 obviously belongs to Fper,c

Nmax,γ
vγw. Otherwise, according to
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Lem. 34,

ψ ps1 ‘ s2q peq “ ψ ps1q peq ‘ψ ps2q peq
ñ σ pψ ps1 ‘ s2q peqq “ min pσ pψ ps1q peqq , σ pψ ps2q peqqq
ñ σ pψ ps1 ‘ s2q peqq “ min pσ ps1q , σ ps2qq
ñ σ pψ ps1 ‘ s2q peqq “ σ ps1 ‘ s2q

A.2.2. Greatest Lower Bound of Series in Fper,c

Nmax,γ
vγw

Proposition 48 (Greatest lower bound of series in Fper,c

Nmax,γ
vγw). Let s1 and s2 be two series

in Fper,c

Nmax,γ
vγw. s1 ^ s2 belongs to Fper,c

Nmax,γ
vγw. If s1 and s2 are different from ε, then

σ ps1 ^ s2q “ max pσ ps1q , σ ps2qq
Proof. According to Prop. 29, it remains to show that s1 ^ s2 belongs to Fper,c

Nmax,γ
vγw. If s1

or s2 is equal to ε, then s1 ^ s2 obviously belongs to Fper,c

Nmax,γ
vγw. Otherwise, according to

Lem. 34,

ψ ps1 ^ s2q peq “ ψ ps1q peq ^ψ ps2q peq
ñ σ pψ ps1 ^ s2q peqq “ max pσ pψ ps1q peqq , σ pψ ps2q peqqq
ñ σ pψ ps1 ^ s2q peqq “ max pσ ps1q , σ ps2qq
ñ σ pψ ps1 ^ s2q peqq “ σ ps1 ^ s2q

A.2.3. Product of Series in Fper,c

Nmax,γ
vγw

Proposition 49 (Product of series in Fper,c

Nmax,γ
vγw). Let s1 and s2 be two series in Fper,c

Nmax,γ
vγw.

s1 b s2 belongs to Fper,c

Nmax,γ
vγw. If s1 and s2 are different from ε, then

σ ps1 b s2q “ min pσ ps1q , σ ps2qq
Proof. According to Prop. 30, it remains to show that s1 b s2 belongs to Fper,c

Nmax,γ
vγw. If s1

or s2 is equal to ε, then s1 b s2 obviously belongs to Fper,c

Nmax,γ
vγw. Otherwise, according to

Lem. 34,

ψ ps1 b s2q peq “
à

jPZ
ψ ps1q pψ ps2q peq pjqqγj

In the following, two cases are discussed depending on σ ps2q.
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First Case: σ ps2q “ 0 or σ ps2q “ `8.
Series s2 is a polynomial with the canonical representative

s2 “
N

à

k“1

fkγ
nk with n1 ă ¨ ¨ ¨ ă nN

Then,

ψ ps1 b s2q peq “
N

à

k“1

ψ ps1q pfk peqqγnk

This leads to

σ pψ ps1 b s2q peqq “ min
1ďkďN

pσ pψ ps1q pfk peqqqq

“
#

σ ps1q if σ ps2q “ `8
0 if σ ps2q “ 0

“ min pσ ps1q , σ ps2qq
“ σ ps1 b s2q

Second Case: 0 ă σ ps2q ă `8.
As s1 is a periodic series in F

Nmax,γ
vγw, there exist, according to Lem. 38, X P N0 and

ω P N such that

@x ľ X, ψ ps1q pωxq “ ωψ ps1q pxq
Furthermore, as ψ ps2q peq is a periodic series with σ pψ ps2q peqq “ σ ps2q, there exist
K, τ, ν in N such that

$

’

&

’

%

ψ ps2q peq pKq ľ X

@k ě K, ψ ps2q peq pk` νq “ τψ ps2q peq pkq
ν
τ
“ σ ps2q and ω divides τ

Then,

ψ ps1 b s2q peq “
à

jPZ
ψ ps1q pψ ps2q peq pjqqγj

“ à

jăK

ψ ps1q pψ ps2q peq pjqqγj

‘ pτγνq˚
˜

ν´1
à

k“0

ψ ps1q pψ ps2q peq pK` kqqγK`k

¸
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Thus,

σ pψ ps1 b s2q peqq “ min
´

σ ps1q , ν
τ

¯

“ min pσ ps1q , σ ps2qq
“ σ ps1 b s2q

A.2.4. Left-Division of Series in Fper,c

Nmax,γ
vγw

The set of causal series inF
Nmax,γ

vγw is a complete dioid. Therefore, the product is residu-
ated. Series s1 z̋``s2 is the greatest causal series s such that s1bs ĺ s2. In the following, we
investigate whether s1 z̋``s2 belongs to Fper,c

Nmax,γ
vγw when s1 and s2 belong to Fper,c

Nmax,γ
vγw.

The periodicity of s1 z̋``s2 is ensured by Prop. 26 and Prop. 31. Next, two intermediate
lemmas are proved.

Lemma 59. Let s be a series in Fper,c

Nmax,γ
vγw and let f be a non-zero causal periodic mapping

in F
Nmax

. For n P N0, pfγnq z̋``s is a series in Fper,c

Nmax,γ
vγw. Furthermore,

— if s “ ε or σ pfγnq ă σ psq, then pfγnq z̋``s “ ε.
— if σ pfγnq “ σ psq “ `8, then pfγnq z̋``s “ ε or σ

`pfγnq z̋``s
˘ “ σ psq.

— if σ psq ‰ `8 and σ pfγnq ě σ psq, then σ
`pfγnq z̋``s

˘ “ σ psq.
Proof. Series pfγnq z̋``s is causal by definition and periodic (see Prop. 26 and Prop. 31).
Therefore, it remains to check the results on the throughput and that either pfγnq z̋``s “ ε

or

σ
`pfγnq z̋``s

˘ “ σ
`

ψ
`pfγnq z̋``s

˘ peq˘

According to (2.10),

@l P Z, `pfγnq z̋``s
˘ plq “

#

ε if l ă 0

f z̋``s pl` nq if l ě 0

The remaining of the proof is divided in four cases.

First case: s “ ε or σ pfγnq ă σ psq.
Obviously, pfγnq z̋``s ĺ pfγnq z̋`s. Then, according to Prop. 31, pfγnq z̋``s “ ε.

188



A.2. Calculation with Series in Fper,c

Nmax,γ
vγw

Second case: σ psq “ σ pfγnq “ `8.
The canonical representative of s is denoted

s “
N

à

k“1

fkγ
nk with n1 ă ¨ ¨ ¨ ă nN

For l ěM “ max p0, nN ´ nq,
`pfγnq z̋``s

˘ plq “ f z̋``fN

Then,

pfγnq z̋``s “
M

à

l“0

`pfγnq z̋``s
˘ plqγl

If f z̋``fN “ ε, then pfγnq z̋``s “ ε. Otherwise, as f z̋``fN ĺ fN and f z̋``fN is a
non-zero causal mapping,

σ
`pfγnq z̋``s

˘ “ σ
`

ψ
`pfγnq z̋``s

˘ peq˘ “ `8

Third case: σ psq “ 0.
The canonical representative of s is denoted

s “
N

à

k“1

fkγ
nk with n1 ă ¨ ¨ ¨ ă nN and fN “ J

For l ěM “ max p0, nN ´ nq,
`pfγnq z̋``s

˘ plq “ f z̋``J “ J
Then,

pfγnq z̋``s “
M´1
à

l“0

`pfγnq z̋``s
˘ plqγl ‘JγM

Therefore,

σ
`pfγnq z̋``s

˘ “ σ
`

ψ
`pfγnq z̋``s

˘ peq˘ “ 0
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Fourth case: 0 ă σ psq ă `8 and σ pfγnq “ `8.
The canonical representative of s is denoted p ‘ pΔτγνq˚ q with τ, ν in N and causal

polynomials p, q in F
Nmax,γ

vγw with the canonical representatives

p “
Np
à

k“1

fp,kγ
np,k and q “

Nq
à

k“1

fq,kγ
nq,k

Let us consider M “ max
`

0, np,Np ´ n,nq,Nq ´ n
˘

.

@l ěM, s pl` nq “ fp ‘
Nq
à

k“1

Δt
l`n´nq,k

ν
uτfq,k with fp “

Np
à

k“1

fp,k

Then, according to Lem. 20 and Lem. 21,

@l ěM, ppfγnq z̋sq plq “ f z̋fp ‘
Nq
à

k“1

f z̋
ˆ

Δt
l`n´nq,k

ν
uτfq,k

˙

“ PrR
`

f7 b fp
˘‘

Nq
à

k“1

PrR
ˆ

f7 b Δt
l`n´nq,k

ν
uτfq,k

˙

“ PrR
`

f7 b fp
˘‘

Nq
à

k“1

PrR pfk,lq

with

@x P Nmax, fk,l pxq “
$

&

%

ε if x “ ε

f7
ˆ

τt
l`n´nq,k

ν
ufq,k pxq

˙

if x ‰ ε

fk,l pεq “ ε and fk,l is isotone. Furthermore,

@x P Nmax, f7
ˆ

τt
l`n´nq,k

ν
ufq,k pxq

˙

ľ f7 pf pxqq ľ x

Then, as σ pfγnq “ `8,
À

nPN fk,l pnq “ J “ fk,l pJq. Consequently, according to
Lem. 16, fk,l is residuated. Hence,

@l ěM, ppfγnq z̋sq plq “ PrR
`

f7 b fp
˘‘

Nq
à

k“1

fk,l

Moreover, as mapping f (resp. fk) is causal and periodic with respect to X (resp. Xk) andω
(resp. ωk), there exists L1 ěM such that

@k, τt
L1`n´nq,k

ν
ufq,k ľ f
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Then, for l ě L1, fk,l is causal. Therefore,

@l ě L1,
`pfγnq z̋``s

˘ plq “ Pr`` pppfγnq z̋sq plqq

“ Pr``

˜

PrR
`

f7 b fp
˘‘

Nq
à

k“1

fk,l

¸

“ PrR
`

f7 b fp
˘‘

Nq
à

k“1

fk,l

Consequently,

pfγnq z̋``s “
L1

à

l“0

`pfγnq z̋``s
˘ plqγl ‘

Nq
à

k“1

`8
à

l“L1

fk,lγ
l

Furthermore, there exists L ě L1 such that

@k, τt
L`n´nq,k

ν
ufq,k peq ľ f pXq

Then, for x P N0 and l ě L, according to Lem. 30,

fk,l`ων pxq “ f7
ˆ

τωτt
l`n´nq,k

ν
ufq,k pxq

˙

“ τωfk,l pxq
Hence, fk,l`ων “ Δωτfk,l for l ě L. Thus,

pfγnq z̋``s “
L

à

l“0

`pfγnq z̋``s
˘ plqγl ‘ pΔωτγωνq˚

˜

Nq
à

k“1

ων´1
à

l“0

fk,L`lγ
L`l

¸

For l P N0 with l ď L,

@x P Nmax,
`pfγnq z̋``s

˘ plq pxq ĺ 1s pl` nq pxq
and, for 0 ď l ă ων,

@x P Nmax, fk,L`l pxq ĺ 1τt
L`l`n´nq,k

ν
ufq,k pxq

Then, the values of the previous mappings for x ‰ J are different from J. Furthermore,
the mappings fk,L`l are, by definition, non-zero and causal. Consequently,

σ
`pfγnq z̋``s

˘ “ σ
`

ψ
`pfγnq z̋``s

˘ peq˘ “ ν

τ
“ σ psq
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Lemma 60. Let s be a series in Fper,c

Nmax,γ
vγw and let ν, τ P N. Series pΔτγνq˚ z̋``s belongs to

Fper,c

Nmax,γ
vγw. Furthermore,

— if s “ ε or σ psq ą σ
`pΔτγνq˚˘

, then pΔτγνq˚ z̋``s “ ε.
— if σ psq ď σ

`pΔτγνq˚˘

, then σ
`pΔτγνq˚ z̋``s

˘ “ σ psq.
Proof. Series pΔτγνq˚ z̋``s is causal by definition and periodic (see Prop. 26 and Prop. 31).
Therefore, it remains to check the results on the throughput and that either pΔτγνq˚ z̋``s “
ε or

σ
`pΔτγνq˚ z̋``s

˘ “ σ
`

ψ
`pΔτγνq˚ z̋``s

˘ peq˘

The remaining of the proof is divided in three cases.

First case: s “ ε or σ psq ą σ
`pΔτγνq˚˘

.
Obviously, pΔτγνq˚ z̋``s ĺ pΔτγνq˚ z̋`s. Then, according to Prop. 31, pΔτγνq˚ z̋``s “

ε.

Second case: σ psq “ 0.
The canonical representative of s is denoted

s “
N

à

k“1

fkγ
nk with n1 ă ¨ ¨ ¨ ă nN and fN “ J

According to (2.3),

pΔτγνq˚ z̋``s “
ľ

jě0

´

Δjτγjν
¯

z̋``s

Duo to causality,
`pΔτγνq˚ z̋``s

˘ plq “ ε for l ă 0. Furthermore,

@l P N0,
`pΔτγνq˚ z̋``s

˘ plq “
ľ

jě0

Δjτ z̋``s pl` jνq

“
ľ

Jějě0

Δjτ z̋``s pl` jνq with J “ r
nN

ν
s

Then,

pΔτγνq˚ z̋``s “
ľ

Jějě0

´

Δjτγjν
¯

z̋``s

According to Prop. 34 and Lem. 59,

σ
`pΔτγνq˚ z̋``s

˘ “ σ
`

ψ
`pΔτγνq˚ z̋``s

˘ peq˘ “ 0
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Third case: 0 ă σ psq ď σ
`pΔτγνq˚˘

.
The canonical representative of s is denoted p‘pΔτ1γν1q˚ qwith τ1, ν1 inN and causal

polynomials p, q in F
Nmax,γ

vγw with the canonical representatives

p “
Np
à

k“1

fp,kγ
np,k and q “

Nq
à

k“1

fq,kγ
nq,k

Then, there exists L ě nq,Nq such that

@l ě L, s plq “
Nq
à

k“1

Δ
t
l´nq,k

ν1
uτ1fq,k

Therefore,

@l P N0,
`pΔτγνq˚ z̋``s

˘ plq “
ľ

Rąjě0

Δjτ z̋``s pl` jνq^

ľ

jěR

Δjτ z̋``

˜

N1
à

k“1

Δ
t
l`jν´nq,k

ν1
uτ1fq,k

¸

with J “ r L
ν

s. Furthermore,

@k, Δpj`ν1qτ z̋
ˆ

Δ
t
l`pj`ν1qν´nq,k

ν1
uτ1fq,k

˙

“ Δpj`ν1qτ z̋
ˆ

Δντ1Δ
t
l`jν´nk

ν1
uτ1fq,k

˙

“ Δjτ z̋
ˆ

Δντ1´ν1τΔ
t
l`jν´nq,k

ν1
uτ1fq,k

˙

Hence, as τ
ν
ď τ1

ν1
,

@k, Δpj`ν1qτ z̋
ˆ

Δ
t
l`pj`ν1qν´nq,k

ν1
uτ1fq,k

˙

ľ Δjτ z̋
ˆ

Δ
t
l`jν´nq,k

ν1
uτ1fq,k

˙

Therefore,

ľ

jěJ

Δjτ z̋``

˜

Nq
à

k“1

Δ
t
l`jν´nq,k

ν1
uτ1fq,k

¸

“
J`ν1´1

ľ

j“J

Δjτ z̋``

˜

N
à

k“1

Δ
t
l`jν´nq,k

ν1
uτ1fq,k

¸

Thus,

@l P N0,
`pΔτγνq˚ z̋``s

˘ plq “
J`ν1´1

ľ

j“0

´´

Δjτγjν
¯

z̋``s
¯

plq
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Then,

pγνΔτq˚ z̋``s “
J`ν1´1

ľ

j“0

´

Δjτγjν
¯

z̋``s

Consequently, according to Lem. 59 and Prop. 34,

σ
`pΔτγνq˚ z̋``s

˘ “ σ
`

ψ
`pΔτγνq˚ z̋``s

˘ peq˘ “ 0

Proposition 50 (Left-division of series inFper,c

Nmax,γ
vγw). Let s1, s2 be two series inFper,c

Nmax,γ
vγw.

s1 z̋``s2 belongs to Fper,c

Nmax,γ
vγw. If s1 and s2 are different from ε,

— if σ ps1q ă σ ps2q, then s1 z̋``s2 “ ε.
— if σ ps1q “ σ ps2q “ `8, then s1 z̋``s2 is either equal to ε or σ

`

s1 z̋``s2
˘ “ `8.

— if σ ps2q ‰ `8 and σ ps1q ě σ ps2q, then σ
`

s1 z̋``s2
˘ “ σ ps2q.

Proof. If s1 “ ε, s1 z̋``s2 “ J belongs to Fper,c

Nmax,γ
vγw. Otherwise, there exist N P N, non-

zero causal periodic mappings f1, . . . , fN, n1, . . . , nN in N0, τ1, . . . , τN in N0, and ν in N

such that

s1 “
N

à

k“1

pΔτkγνq˚ fkγnk

According to (2.3) and (2.5),

s1 z̋``s2 “
N

ľ

k“1

pfkγnkq z̋``
`pΔτkγνq˚ z̋``s2

˘

Then, using Lem. 59, Lem. 60, and Prop. 34, s1 z̋``s2 belongs toFper,c

Nmax,γ
vγw. Next, the result

on the throughput is checked. Three cases are distinguished.

First Case: σ ps1q ă σ ps2q.
As s1 z̋``s2 ĺ s1 z̋`s2, s1 z̋``s2 “ ε according to Prop. 31.

Second Case: σ ps1q “ σ ps2q “ `8.
For all k, τk “ 0. Then,

s1 z̋``s2 “
N

ľ

k“1

pfkγnkq z̋``s2

Thus, according to Lem. 59 and Prop. 34, s1 z̋``s2 is either equal to ε or σ
`

s1 z̋``s2
˘ “

`8.
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Third Case: σ ps2q ‰ `8 and σ ps1q ě σ ps2q.
Then, according to Lem. 59 and Lem. 60, for all k,

σ
`pfkγnkq z̋``

`pΔτkγνq˚ z̋``s2
˘˘ “ σ ps2q

Thus, according to Prop. 34, σ
`

s1 z̋``s2
˘ “ σ ps2q.

A.2.5. Right-Division of Series in Fper,c

Nmax,γ
vγw

The set of causal series in F
Nmax,γ

vγw is a complete dioid. Therefore, the product is resid-
uated. Series s2{̋``s1 is the greatest causal series s such that sb s1 ĺ s2. In the following,
we investigate whether s2{̋``s1 belongs toFper,c

Nmax,γ
vγwwhen s1 and s2 belong toFper,c

Nmax,γ
vγw.

Next, two intermediate lemmas are proved.

Lemma 61. Let s be a series in Fper,c

Nmax,γ
vγw and let f be a non-zero causal periodic mapping

in F
Nmax

. For n P N0, s{̋`` pfγnq belongs to Fper,c

Nmax,γ
vγw. Furthermore,

— if s “ ε or σ pfγnq ă σ psq, then s{̋`` pfγnq “ ε.
— if σ pfγnq “ σ psq “ `8, then s{̋`` pfγnq “ ε or σ

`

s{̋`` pfγnq˘ “ σ psq.
— if σ pfγnq ě σ psq and σ psq ‰ `8, then σ

`

s{̋`` pfγnq˘ “ σ psq.
Proof.

`

s{̋`` pfγnq˘ plq “
#

ε if l ă 0

s pl` nq {̋``f if l ě 0

First Case: s “ ε.
As f is a non-zero causal mapping,

@l P N0,
`

s{̋`` pfγnq˘ plq “ ε{̋``f ĺ ε

Then, s{̋`` pfγnq “ ε belongs to Fper,c

Nmax,γ
vγw.

Second Case: σ psq “ σ pfγnq “ `8.
The canonical representative of s is denoted

s “
N

à

k“1

fkγ
nk with n1 ă ¨ ¨ ¨ ă nN

For l ěM “ max p0, nN ´ nq,
`

s{̋`` pfγnq˘ plq “ fN{̋``f
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Then,

s{̋`` pfγnq “
M

à

l“0

`

s{̋`` pfγnq˘ plqγl

If fN{̋``f “ ε, then s{̋`` pfγnq “ ε. Otherwise, as fN{̋``f ĺ fN and fN{̋``f is a non-zero
causal mapping,

σ
`

s{̋`` pfγnq˘ “ σ
`

ψ
`

s{̋`` pfγnq˘ peq˘ “ `8
Thus, s{̋`` pfγnq belongs to Fper,c

Nmax,γ
vγw.

Third case: σ psq ą 0 and σ pfγnq “ 0.
If

`

s{̋`` pfγnq˘ plq ‰ ε, then
`

s{̋`` pfγnq˘ plq ľ e by causality. Thus,

s pl` nq ľ
`

s pl` nq {̋``f
˘

f ľ f

This is absurd as σ psq ą 0 and σ pfγnq “ 0. Then,

@l P N0,
`

s{̋`` pfγnq˘ plq “ ε

Consequently, s{̋`` pfγnq “ ε belongs to Fper,c

Nmax,γ
vγw.

Fourth case: σ psq “ 0.
The canonical representative of s is denoted

s “
N

à

k“1

fkγ
nk with n1 ă ¨ ¨ ¨ ă nN and fN “ J

For l ěM “ max p0, nN ´ nq,
`

s{̋`` pfγnq˘ plq “ fN{̋``f “ J
Then,

s{̋`` pfγnq “
M´1
à

l“0

`

s{̋`` pfγnq˘ plqγl ‘JγM

Thus, s{̋`` pfγnq belongs to Fper,c

Nmax,γ
vγw and σ

`

s{̋`` pfγnq˘ “ 0.
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Fifth case: σ pfγnq “ `8 and `8 ą σ psq ą 0.
The canonical representative of s is denoted p ‘ pΔτγνq˚ q with τ, ν in N and causal

polynomials p, q in F
Nmax,γ

vγw with the canonical representatives

p “
Np
à

k“1

fp,kγ
np,k and q “

Nq
à

k“1

fq,kγ
nq,k

Consider M “ max
`

0, nq,Nq ´ n
˘

.

@l ěM, s pl` nq “
Nq
à

k“1

Δt
l`n´nq,k

ν
uτfq,k

Then, according to Lem. 18,

@l ěM, ps{̋ pfγnqq plq “ s pl` nq {̋f

“
Nq
à

k“1

Δt
l`n´nq,k

ν
uτfq,k b f5

“
Nq
à

k“1

fk,l

with fk,l “ Δt
l`n´nq,k

ν
uτfq,kb f5. Clearly, fk,l`ν “ Δτfk,l. As σ pfγnq “ `8, according to

Lem. 31, f5 is a non-zero periodic mappings. Then, mapping fk,l is periodic. Furthermore,
as f5 pxq ľ e for x ľ e, there exists L ěM such that, for all k, fk,L is causal. Then,

@l ě L,
`

s{̋`` pfγnq˘ plq “
Nq
à

k“1

fk,l

Consequently,

s{̋`` pfγnq “
L

à

l“0

`

s{̋`` pfγnq˘ plqγl ‘
Nq
à

k“1

`8
à

l“L

fk,lγ
l

“
L

à

l“0

`

s{̋`` pfγnq˘ plqγl ‘ pΔτγνq˚
˜

Nq
à

k“1

ν´1
à

j“0

fk,L`jγ
L`j

¸

Then, s{̋`` pfγnq is a causal periodic series. Furthermore, the previous expression leads to

σ
`

s{̋`` pfγnq˘ “ σ
`

ψ
`

s{̋`` pfγnq˘ peq˘ “ ν

τ
“ σ psq

Then, s{̋`` pfγnq belongs to Fper,c

Nmax,γ
vγw.
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Lemma 62. Let s be a series in Fper,c

Nmax,γ
vγw and let ν, τ P N. Series s{̋`` pΔτγνq˚ belongs to

Fper,c

Nmax,γ
vγw. Furthermore,

— if s “ ε or σ psq ą σ
`pΔτγνq˚˘

, then s{̋`` pΔτγνq˚ “ ε.
— if σ psq ď σ

`pΔτγνq˚˘

, then σ
`

s{̋`` pΔτγνq˚˘ “ σ psq.
Proof. According to (2.3),

s{̋`` pΔτγνq˚ “
ľ

jě0

s{̋``
´

Δjτγjν
¯

Then,

@l P Z, `

s{̋`` pΔτγνq˚˘ plq “
#

ε if l ă 0
Ź

jě0 s pl` jνq {̋``Δjτ

In the rest of this proof, five cases are distinguished.

First Case: s “ ε.

s{̋`` pΔτγνq˚ ĺ s “ ε

Then, s{̋`` pΔτγνq˚ “ ε belongs to Fper,c

Nmax,γ
vγw.

Second Case: σ psq ą σ
`pΔτγνq˚˘ “ ν

τ
.

As F``
Nmax,γ

vγw is a complete dioid, s{̋`` pΔτγνq˚ exists.

s{̋`` pΔτγνq˚ “
`8
à

k“0

gkγ
k with gk P F``

Nmax

Then,

@k P N0, ψ
´

gkγ
k pΔτγνq˚

¯

peq ĺ ψ psq peq

For k P N0, gk ‰ ε implies γk pτγνq˚ ĺ ψ psq peq. Then,
ν

τ
ě σ pψ psq peqq “ σ psq

This contradicts the assumption. Therefore, gk “ ε. Consequently, s{̋`` pΔτγνq˚ “ ε

belongs to Fper,c

Nmax,γ
vγw.
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Third Case: σ psq “ 0.
The canonical representative of s s is denoted

s “
N

à

k“1

fkγ
nk with n1 ă ¨ ¨ ¨ ă nN and fN “ J

Then,

@l P N0,
`

s{̋`` pΔτγνq˚˘ plq “
ľ

jě0

s pl` jνq {̋``Δ
jτ

“
ľ

Rąjě0

s pl` jνq {̋``Δ
jτ

“
˜

ľ

Rąjě0

s{̋``
´

Δjτγjν
¯

¸

plq

with R “ rnN
ν

s. Due to causality, this equality also holds for l ă 0. Therefore,

s{̋`` pΔτγνq˚ “
ľ

Rąjě0

s{̋``
´

Δjτγjν
¯

Then, according to Lem. 61 and Prop. 34, s{̋`` pΔτγνq˚ belongs to Fper,c

Nmax,γ
vγw and its

throughput is equal to σ psq.

Fourth Case: σ
`pΔτγνq˚˘ “ ν

τ
ą σ psq ą 0.

The canonical representative of s is denoted

s “ p‘ pΔτ1γν1q˚ q
with τ1, ν1 in N and p, q causal polynomials in F

Nmax,γ
vγw. Furthermore the canonical

representative of q is denoted
ÀN

k“1 fkγ
nk with non-zero causal periodic (with respect to

Xk and ωk) mappings in F
Nmax

. The condition σ
`pΔτγνq˚˘ ą σ psq implies ντ1 ą τν1.

Let us denote X “ max1ďkďN Xk and ω “ lcm1ďkďNωk. Consider K in N such that ν1

divides Kν and ω divides Kτ. According to (2.3),

s{̋``
´

ΔKτγKν
¯˚ “

ľ

jě0

s{̋``
´

ΔjKτγjKν
¯

Then,

@l P N0,
´

s{̋``
´

ΔKτγKν
¯˚¯

plq “
ľ

jě0

´

s{̋``
´

ΔjKτγjKν
¯¯

plq

“
ľ

jě0

s pl` jKνq {̋``Δ
jKτ
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Furthermore, there exists L ě max1ďkďN nk such that

@l ě L, s plq “
N

à

k“1

Δ
t
l´nk
ν1

uτ1fk

Then, for l P N0,
´

s{̋``
´

ΔKτγKν
¯˚¯

plq “
ľ

Rąjě0

s pl` jKνq {̋``Δ
jKτ

^
ľ

jěR

Pr``

˜

N
à

k“1

Δ

´

t
l´nk
ν1

u`jν1
¯

τ1fk

´

ΔjKτ
¯5

¸

where R “ r L
Kν

s and ν1 “ Kν
ν1

.
For j ě R, the mapping Fj in F

Nmax
is defined by

Fj “
N

à

k“1

Δ

´

t
l´nk
ν1

u`jν1
¯

τ1fk

´

ΔjKτ
¯5

Consider J P N. For x ă τjK,

Fj`J pxq “
N

à

k“1

τJν
1

1 τ
t
l´nk
ν1

u`jν1

1 fk peq

“ τJν
1

1 Fj pxq
ľ Fj pxq

For x ľ Xτpj`JqK,

Fj`J pxq “
N

à

k“1

τJν
1

1 τ
t
l´nk
ν1

u`jν1

1 fk

´

τpj`JqK z̋x
¯

ľ
N

à

k“1

τJKτ
t
l´nk
ν1

u`jν1

1 fk

´

τpj`JqK z̋x
¯

as Kτ ă τ1ν
1

ľ
N

à

k“1

τ
t
l´nk
ν1

u`jν1

1 fk

´

τjK z̋x
¯

as ω divides Kτ and τpj`JqK z̋x ľ X

ľ Fj pxq
Therefore,

Fj`J ľ Fj

ô @x with Xτpj`JqK ą x ľ τjK, Fj`J pxq ľ Fj pxq

ô
$

&

%

@x with X ą x ľ e,

ÀN
k“1 τ

Jν1
1 τ

t
l´nk
ν1

u`jν1

1 fk pxq ľ
ÀN

k“1 τ
t
l´nk
ν1

u`jν1

1 fk
`

τJKx
˘
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A sufficient condition is

@k, τJν
1

1 τ
jν1`t

l´nk
ν1

u

1 fk peq ľ τ
jν1`t

l´nk
ν1

u

1 τKJfk pXq as ω divides Kτ

As σ psq ą 0, this equation can be written in standard algebra.

@k, J
`

ν1τ1 ´ Kτ
˘ ě fk pXq ´ fk peq

A sufficient condition is

@k, J
`

ν1τ1 ´ Kτ
˘ ě fk pXq ´ fk peq

As ν1τ1 ą Kτ, a sufficient condition is

J ě max
1ďkďN

ˆ

fk pXq ´ fk peq
ν1τ1 ´ Kτ

, 1

˙

“ J̃

Consequently, @j ě R, Fj`J̃ ľ Fj. Then, @j ě R, Pr``
´

Fj`J̃

¯

ľ Pr`` pFjq. Therefore,

@l P N0,
´

s{̋``
´

ΔKτγKν
¯˚¯

plq “
ľ

Rąjě0

s pl` jKνq {̋``Δ
jKτ ^

ľ

R`J̃ąjěR

Pr`` pFjq

“
ľ

R`J̃ąjě0

s pl` jKνq {̋``Δ
jKτ

“
¨

˝

ľ

R`J̃ąjě0

s{̋``
´

ΔjKτγjKν
¯

˛

‚plq

This equality also holds for l ă 0. Thus,

s{̋``
´

ΔKτγKν
¯˚ “

ľ

R`J̃ąjě0

s{̋``
´

ΔjKτγjKν
¯

According to Lem. 61 and Prop. 34, s{̋``
`

ΔKτγKν
˘˚

belongs to Fper,c

Nmax,γ
vγw and

σ
´

s{̋``
´

ΔKτγKν
¯˚¯

“ σ psq
Furthermore, as

s{̋`` pΔτγνq˚ “
K´1
ľ

k“0

´

s{̋``
´

ΔKτγKν
¯˚¯

{̋``
´

Δkτγkν
¯

According to Lem. 61 and Prop. 34, s{̋`` pΔτγνq˚ belongs to Fper,c

Nmax,γ
vγw and

σ
`

s{̋`` pΔτγνq˚˘ “ σ psq
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Fifth Case: ν
τ
“ σ

`pΔτγνq˚˘ “ σ psq ą 0.
The canonical representative of s is denoted

s “ p‘ pΔτ1γν1q˚ q
with τ1, ν1 in N and p, q causal polynomials in F

Nmax,γ
vγw. Furthermore the canonical

representative of q is denoted
ÀN

k“1 fkγ
nk with non-zero causal periodic (with respect to

Xk and ωk) mappings in F
Nmax

. The condition σ
`pΔτγνq˚˘ “ σ psq implies ντ1 “ τν1.

Let us denote X “ max1ďkďN Xk and ω “ lcm1ďkďNωk. Consider K in N such that ν1

divides Kν, ω divides Kτ, and X ă Kτ. According to (2.3),

s{̋``
´

ΔKτγKν
¯˚ “

ľ

jě0

s{̋``
´

ΔjKτγjKν
¯

Then,

@l P N0,
´

s{̋``
´

ΔKτγKν
¯˚¯

plq “
ľ

jě0

´

s{̋``
´

ΔjKτγjKν
¯¯

plq

“
ľ

jě0

s pl` jKνq {̋``Δ
jKτ

Furthermore, there exists L ě max1ďkďN nk such that

@l ě L, s plq “
N

à

k“1

Δ
t
l´nk
ν1

uτ1fk

Then, for l P N0,
´

s{̋``
´

ΔKτγKν
¯˚¯

plq “
ľ

Rąjě0

s pl` jKνq {̋``Δ
jKτ

^
ľ

jěR

Pr``

˜

N
à

k“1

Δ

´

t
l´nk
ν1

u`jν1
¯

τ1fk

´

ΔjKτ
¯5

¸

where R “ r L
Kν

s and ν1 “ Kν
ν1

.
For j ě R and l P N0, the mapping Fl,j in F

Nmax
is defined by

Fl,j “
N

à

k“1

Δ

´

t
l´nk
ν1

u`jν1
¯

τ1fk

´

ΔjKτ
¯5

Fl,j is a periodic mapping in F
Nmax

. In the following, L̃ is defined by

L̃ “
ľ

tl P N0|Fl,R is causalu
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Clearly, L̃ ď n1, as

Fn1,R ľ ΔRν1τ1f1
´

ΔRKτ
¯5

ľ ΔRKτ
´

ΔRKτ
¯5

as f1 is causal and
ν

τ
“ ν1

τ1

ľ Id

Therefore, L̃ ď n1.
For L̃ ą l ě 0, there exists a in N0 such that Fl,R paq ă a. Then,

Fl,R`J

´

aτJK
¯

“
N

à

k“1

τJν
1

1 τ
t
l´nk
ν1

u`Rν1

1 fk

ˆ

´

ΔRKτ
¯5 paq

˙

“ τJKFl,R paq as
ν

τ
“ ν1

τ1

ă aτJK

Therefore,
´

s{̋``
´

ΔKτγKν
¯˚¯

plq
´

aτJK
¯

ĺ Fl,R`J

´

aτJK
¯

ă aτJK

Thus, by causality, for L̃ ą l ě 0,

´

s{̋``
´

ΔKτγKν
¯˚¯

plq “ ε

For l ě L̃, @j ě R,

@x P Nmax, Fl,j pxq “
N

à

k“1

τKpj´Rqτ
Rν1`t

l´nk
ν1

u

1 fk

ˆ

´

ΔRKτ
¯5 ˆ

´

Δpj´RqKτ
¯5 pxq

˙˙

“ τpj´RqKFl,R
ˆ

´

Δpj´RqKτ
¯5 pxq

˙

ľ τpj´RqK
´

Δpj´RqKτ
¯5 pxq

ľ x

Thus, Fl,j is causal. This implies that, for l ě L̃,

´

s{̋``
´

ΔKτγKν
¯˚¯

plq “
ľ

Rąjě0

s pl` jKνq {̋``Δ
jKτ ^Gl
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where Gl “ Ź

jěR Fl,j. Clearly, Gl is causal and

Gl`ν1
“

ľ

jěR

Fl`ν1,j “
ľ

jěR

Δτ1Fl,j “ Δτ1Gl

In the following, it is shown that Gl is periodic. Consider J ą x ľ XτKR. There exists
J ě R such that XτpJ`1qK ą x ľ XτJK. Then,

Gl pxq “
ľ

jěR

N
à

k“1

τ
t
l´nk
ν1

u`jν1

1 fk

ˆ

´

ΔjKτ
¯5 pxq

˙

“
N

à

k“1

τ
t
l´nk
ν1

u`pJ`2qν1

1 fk peq ^
N

à

k“1

τ
t
l´nk
ν1

u`pJ`1qν1

1 fk

ˆ

´

ΔpJ`1qKτ
¯5 pxq

˙

^
N

à

k“1

τ
t
l´nk
ν1

u`Rν1

1 fk

ˆ

´

ΔRKτ
¯5 pxq

˙

as τpJ`2qK ą x andω divides Kτ. Then, Gl

`

τKx
˘ “ τKGl pxq for x ľ XτKR. Therefore, Gl

is periodic. Furthermore, GL̃ ĺ ¨ ¨ ¨ ĺ GL̃`ν1
“ Δτ1GL̃. Then, for l ě L̃,

Gl “
˜

pΔτ1γν1q˚
˜

ν1´1
à

k“0

GL̃`kγ
L̃`k

¸¸

plq

Consequently, for l ě L̃,
´

s{̋``
´

ΔKτγKν
¯˚¯

plq “
˜

ľ

Rąjě0

s{̋``
´

ΔjKτγjKν
¯

^ pΔτ1γν1q˚
˜

ν1´1
à

k“0

GL̃`kγ
L̃`k

¸¸

plq

Due to the results obtained for 0 ď l ă L̃ and to quasi-causality, this equation also holds
for l ă L̃. Then,

s{̋`
´

ΔKτγKν
¯˚ “

ľ

Rąjě0

s{̋`
´

ΔjKτγjKν
¯

^ s1

with s1 “ pΔτ1γν1q˚
´

Àν1´1
k“0 GL̃`kγ

L̃`k
¯

. Clearly, s1 belongs to Fper,c

Nmax,γ
vγw and σ ps1q “

σ psq. Then, according to Lem. 61 and Prop. 34, s{̋``
`

ΔKτγKν
˘˚

belongs to Fper,c

Nmax,γ
vγw and

σ
´

s{̋``
`

ΔKτγKν
˘˚¯

“ σ psq. Furthermore, as

s{̋`` pΔτγνq˚ “
K´1
ľ

k“0

´

s{̋``
´

ΔKτγKν
¯˚¯

{̋``
´

Δkτγkν
¯
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According to Lem. 61 and Prop. 34, s{̋`` pΔτγνq˚ belongs toFper,c

Nmax,γ
vγw andσ `

s{̋`` pΔτγνq˚˘ “
σ psq.
Proposition 51 (Right-division of series inFper,c

Nmax,γ
vγw). Let s1, s2 be two series inFper,c

Nmax,γ
vγw.

Series s2{̋``s1 belongs to Fper,c

Nmax,γ
vγw. If s1 and s2 are different from ε,

— if σ ps1q ă σ ps2q, then s2{̋``s1 “ ε.
— if σ ps1q “ σ ps2q “ `8, then s2{̋``s1 is either equal to ε or σ

`

s2{̋``s1
˘ “ `8.

— if σ ps2q ‰ `8 and σ ps1q ě σ ps2q, then σ
`

s2{̋``s1
˘ “ σ ps2q.

Proof. If s1 “ ε, s2{̋``s1 “ J belongs to Fper,c

Nmax,γ
vγw. Otherwise, there exist N P N, non-

zero causal periodic mappings f1, . . . , fN, n1, . . . , nN in N0, τ1, . . . , τN in N0, and ν in N

such that

s1 “
N

à

k“1

pΔτkγνq˚ fkγnk

According to (2.3) and (2.5),

s2{̋``s1 “
N

ľ

k“1

`

s2{̋`` pfkγnkq {̋`` pΔτkγνq˚˘

Then, using Lem. 61, Lem. 62, and Prop. 34, s2{̋``s1 belongs to Fper,c

Nmax,γ
vγw. Next, the result

on the throughput is checked. Three cases are distinguished.

First Case: σ ps1q ă σ ps2q.
There exists k such that σ

`pΔτkγνq˚˘ ă σ ps2q or σ pfkγnkq ă σ ps2q. Consequently,
according to Lem. 61 and Lem. 62, s2{̋``s1 “ ε.

Second Case: σ ps1q “ σ ps2q “ `8.
For all k, τk “ 0. Then,

s2{̋``s1 “
N

ľ

k“1

s2{̋`` pfkγnkq

Thus, according to Lem. 61 and Prop. 34, s2{̋``s1 is either equal to ε or σ
`

s2{̋``s1
˘ “ `8.

Third Case: σ ps2q ‰ `8 and σ ps1q ě σ ps2q.
Then, according to Lem. 61 and Lem. 62, for all k,

σ
``

s2{̋`` pfkγnkq˘ {̋`` pΔτkγνq˚˘ “ σ ps2q
Thus, according to Prop. 34, σ

`

s2{̋``s1
˘ “ σ ps2q.
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B
Modeling with Counters

Discrete event systems only ruled by standard synchronization (i.e., pmax,`q-linear sys-
tems) are modeled by linear equations in the pmax,`q-algebra, when daters are used to
capture the dynamics. Such systems are also modeled by linear equations in the pmin,`q-
algebra, when counters are used to capture the dynamics. In the following, we investigate
the modeling of pmax,`q-systems with partial synchronization by counters. The goal is
to find pmin,`q-equations describing the dynamics of pmax,`q-systems with partial syn-
chronization (i.e., equations in the pmin,`q-algebra similar to (5.8) and (5.9)).

B.1. Mathematical Preliminaries

In the following, some useful concepts are introduced.

Definition 54 (Antitone mapping). Let f : E Ñ F with E and F ordered sets. Mapping f is
said to be antitone if

@x, y P E, x ĺ yñ f pxq ľ f pyq
Further, the definition of the pmin,`q-algebra is recalled.

Example 47 (Dioid Nmin). The set N0 Y t`8u endowed with min as addition and ` as
multiplication is a complete dioid denoted Nmin. Its zero element ε is equal to `8, its unit
element e and its top element J are both equal to 0. The order induced by ‘ is the dual of the
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standard order in N0. Clearly, Nmin is selective and commutative. This dioid (along with other
dioids using min as addition and ` as multiplication) is often called pmin,`q-algebra in the
literature.

B.2. Counter Representation

In this section, we derive a model for pmax,`q-systems with partial synchronization
based on counters. A convenient algebraic structure to express this model is the pmin,`q-
algebraNmin. Furthermore, we present a method based on this model to compute the output
induced by a predefined input.

Remark 26. In the counter representation, we assume that the considered discrete event sys-
tem is time-driven (i.e., events only occur at clock ticks). this restriction allows us to only
consider standard synchronizations with a time-delay τ in N0 (while τ belongs to R`

0 in the
dater representation).

B.2.1. Counters

To capture the timed dynamics of a discrete event system, a mapping, called counter,
is associated with each event such that the counter gives the number of occurrences of
the considered event before or at a particular time instant. From now on, we consider
counters from Z to Nmin and no distinction is made in the notation between an event and
the associated counter. Hence, for an event c, c ptq denotes the number of occurrences of
event c before or at time t. This leads to the following interpretation for counters:

c ptq “ e: No occurrence of event c is before or at time t.

c ptq P N: Exactly c ptq occurrences of event c are before or at time t.

c ptq “ ε: An infinity of occurrences of event c is before or at time t and no occurrence
of event c is strictly after time t.

According to the standard order in N0, the number of occurrences of event c before or
at time t is less than or equal to the number of occurrences of event c before or at time
t ` 1. Then, as the order in Nmin is the dual of the standard order in N0, the number of
occurrences of event c before or at time t is, according to the order in Nmin, greater than or
equal to the number of occurrences of event c before or at time t` 1. Therefore,

@t P Z, c ptq ľ c pt` 1q
Hence, a counter is antitone. Furthermore, as for dater representation, we assume that
an event either occurs at t “ ´8 or at t ě 0. This leads to the following condition for
counters.

@t ă 0, c ptq “ c pt´ 1q
The previous discussion leads to a formal definition for counters.
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Definition 55 (Counter). A counter, denoted c, is an antitone mapping from Z to Nmin such
that c ptq “ c pt´ 1q for t ă 0. The set of counters is denoted C.

According to Rem. 3, C is endowed with an operation ‘ and an order ĺ induced respec-
tively by the operation ‘ and the order ĺ in the dioid Nmin.

Remark 27. A dater (i.e., a mapping fromZ toNmax, as a time-driven dynamics is considered)
or a counter is sufficient to fully describe the timing pattern of an event. Hence, it is possible
to convert a dater to a counter or, conversely, a counter to a dater. For dater d and counter c
associated with the same event, these relations are expressed by

@t P Z, c ptq “ max tk P Z|d pk´ 1q ĺ tu
@k P Z, d pkq “ min tt P Z|c ptq ĺ 1ku

with the convention minH “ `8.

Example 48. Let us consider the dater d defined by

d pkq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ε if k ă 0

5 if k “ 0

7 if 1 ď k ă 4

15 if k “ 4

J if k ě 5

The corresponding counter c is defined by

c ptq “

$

’

’

’

’

&

’

’

’

’

%

0 if t ă 5

1 if 5 ď t ă 7

4 if 7 ď t ă 15

5 if t ě 15

B.2.2. Expressing Synchronizations with Counters

In the following, standard and partial synchronizations are expressed in terms of coun-
ters. This leads to an algebraic representation based on counters for pmax,`q-systems with
partial synchronization.

Expressing Standard Synchronizations with Counters

The standard synchronization “for all k ě l, occurrence k of event e2 is at least τ units
of time after occurrence k ´ l of event e1” is reformulated as, in the standard algebra, “at
all time instant t P Z, the number of occurrences of event e2 before or at time t is less than
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or equal to the number of occurrences of event e1 before or at time t ´ τ incremented by
l”. As the order in Nmin is the dual of the standard order, this corresponds to the following
inequality in Nmin:

@t P Z, e2 ptq ľ le1 pt´ τq
Furthermore, the effect of several standard synchronizations on a single event is also ex-
pressed by a single inequality in Nmin. For example, th standard synchronizations “for all
k ě l1, occurrence k of event e2 is at least τ1 units of time after occurrence k´ l1 of event
e1,1” and “for all k ě l2, occurrence k of event e2 is at least τ2 units of time after occurrence
k´ l2 of event e1,2” are both expressed by a single inequality in Nmin:

@t P Z, e2 ptq ľ l1e1,1 pt´ τ1q ‘ l2e1,2 pt´ τ2q
Therefore, matrix inequalities in Nmin are suitable to express standard synchronizations.

The standard synchronizations between events in the main system are summarized by
#

x1 ptq ľ
ÀT1

i“0 A1,ix1 pt´ iq ‘ B1,iu1 pt´ iq
y1 ptq ľ

ÀT1
i“0 C1,ix1 pt´ iq (B.1)

where x1, u1, and y1 respectively correspond to the vectors of counters associated with
state, input, and output events in the main system and T1 denotes the greatest parameters
τ over all standard synchronizations in the main system. Furthermore, matrices A1,i, B1,i,

and C1,i belong respectively to N
n1ˆn1

min , N
n1ˆm1

min , and N
p1ˆn1

min . The entries of these matri-
ces are given by the parameters of the standard synchronizations in the main system. In
the same way, the standard synchronizations between events in the secondary system are
summarized by

#

x2 ptq ľ
ÀT2

i“0 A2,ix2 pt´ iq ‘ B2,iu2 pt´ iq
y2 ptq ľ

ÀT2
i“0 C2,ix2 pt´ iq (B.2)

where x2, u2, and y2 respectively correspond to the vectors of counters associated with
state, input, and output events in the secondary system and T2 denotes the greatest param-
eters τ over all standard synchronizations in the secondary system. Furthermore, matrices

A2,i, B2,i, and C2,i respectively belong to N
n2ˆn2

min , N
n2ˆm2

min , and N
p2ˆn2

min . The entries of
these matrices are given by the the parameters of the standard synchronizations in the
secondary system.

To simplify (B.1) and (B.2), the event set of the considered pmax,`q-system with partial
synchronization is extended by additional state events. This allows us to convert (B.1) and
(B.2) to first-order recursions. The theoretical validity of this step is ensured by Lem. 63.

Lemma 63. Let τ P N. In a pmax,`q-system with partial synchronization, the following
synchronizations are equivalent:
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1. “for all k ě l, occurrence k of event e2 is at least τ units of time after occurrence k ´ l

of event e1”

2. “for all k ě l, occurrence k of event e2 is at least τ´1 units of time after occurrence k´l

of event ei” and “for all k ě 0, occurrence k of event ei is at least one unit of time after
occurrence k of event e1” where state event ei only appears in the two previous standard
synchronizations

3. “for all k ě 0, occurrence k of event e2 is at least one unit of time after occurrence k
of event ei” and “for all k ě l, occurrence k of event ei is at least τ ´ 1 units of time
after occurrence k´ l of event e1” where state event ei only appears in the two previous
standard synchronizations

Proof. Only 1ô 2 is checked, as 1ô 3 can be obtained in the same way.
1 ñ 2: Let us consider an event ei only subject to the following standard synchroniza-

tion: for all k ě 0, occurrence k of event ei is at least one unit of time after occurrence k
of event e1. Then,

@t P Z, ei ptq ľ e1 pt´ 1q
Event ei is only subject to this standard synchronization. Hence, according to the earliest
functioning rule,

@t P Z, ei ptq “ e1 pt´ 1q
Therefore,

@t P Z, e2 ptq ľ le1 pt´ τq “ lei pt´ τ` 1q
Then, in terms of standard synchronizations, “for all k ě l, occurrence k of event e2 is at
least τ´ 1 units of time after occurrence k´ l of event ei”.
2 ñ 1: Conversely, the two standard synchronizations “for all k ě l, occurrence k

of event e2 is at least τ ´ 1 units of time after occurrence k ´ l of event ei” and “for all
k ě 0, occurrence k of event ei is at least one unit of time after occurrence k of event e1”
correspond, in terms of counters, to

@t P Z, e2 ptq ľ lei pt´ τ` 1q and ei ptq ľ e1 pt´ 1q
This implies, as the product is isotone in a dioid,

@t P Z, e2 ptq ľ le1 pt´ τq
The previous inequality corresponds to the standard synchronization “for all k ě l, occur-
rence k of event e2 is at least τ units of time after occurrence k´ l of event e1”.
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e1 e25

(a)

e1 e2ei 41

(b)

e1 e2ei4 1

(c)

Figure B.1.: Equivalent synchronizations if no other synchronizations affect event ei

According to Lem. 63, the different synchronization relations between events e1 and e2
pictured in Fig. B.1 are equivalent.

By using repetitively Lem. 63, it is possible to set all entries of A1,i and A2,i for i ě 2

and of B1,i, C1,i, B2,i, and C2,i for i ě 1 to ε with additional state events. This leads to
the simplified representations for standard synchronizations in the main system and in the
secondary system respectively given in (B.3) and (B.4).

#

x1 ptq ľ A1,0x1 ptq ‘A1,1x1 pt´ 1q ‘ B1,0u1 ptq
y1 ptq ľ C1,0x1 ptq

(B.3)

#

x2 ptq ľ A2,0x2 ptq ‘A2,1x2 pt´ 1q ‘ B2,0u2 ptq
y2 ptq ľ C2,0x2 ptq

(B.4)

In the following, only these representations are considered.

Example 49. For the pmax,`q-system with partial synchronization introduced in Ex. 23
(i.e., the supply chain), the number of state events, obtained after state-space extension, amounts
to 24 state events in the main system and 46 state events in the secondary system. Due to size
restriction, the matrices appearing in (B.3) and (B.4) are not made explicit.
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Expressing Partial Synchronizations with Counters

Partial synchronization “event e2 can only occur when event e1 occurs” is expressed by
the following condition on counters:

@t P Z, e1 ptq “ e1 pt´ 1q ñ e2 ptq “ e2 pt´ 1q
The effect of several partial synchronizations on a single event is easily expressed by a
logical OR. For example, partial synchronizations “event e2 can only occur when event e1,1
occurs” and “event e2 can only occur when event e1,2 occurs” correspond to

@t P Z, pe1,1 ptq “ e1,1 pt´ 1q or e1,2 ptq “ e1,2 pt´ 1qq ñ e2 ptq “ e2 pt´ 1q
To model partial synchronizations in a pmax,`q-system with partial synchronization,

we first recall that, as mentioned in § 5.1.1, only partial synchronizations of state events in
the secondary system by state events in the main system are considered. Then, a mapping
from N0 to t0, 1u, denoted αi, is associated with each state event x2,i in the secondary
system. Let us denote Xi the set of state events in the main system synchronizing event
x2,i. Then, mapping αi is defined by

αi ptq “
#

0 if t ă 0 or Dx P Xi|x ptq “ x pt´ 1q
1 otherwise

(B.5)

If αi ptq “ 1, the partial synchronizations affecting state event x2,i authorize occurrences
at time t. Otherwise, if αi ptq “ 0, the partial synchronizations affecting state event x2,i
forbid occurrences at time t. Hence, the partial synchronizations in a pmax,`q-systemwith
partial synchronization are expressed by the following condition

@t P Z,@i, αi ptq “ 0ñ x2,i ptq “ x2,i pt´ 1q

Algebraic Representation of a pmax,`q-system with Partial Synchronization by

Counters

The main system is modeled by
#

x1 ptq ľ A1,0x1 ptq ‘A1,1x1 pt´ 1q ‘ B1,0u1 ptq
y1 ptq ľ C1,0x1 ptq

(B.6)

The secondary system is modeled by

$

’

&

’

%

x2 ptq ľ A2,0x2 ptq ‘A2,1x2 pt´ 1q ‘ B2,0u2 ptq
y2 ptq ľ C2,0x2 ptq
@i, αi ptq “ 0ñ x2,i ptq “ x2,i pt´ 1q

(B.7)
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In (B.7), the first two equations represent the standard synchronizations in the secondary
system and the third equation represents the partial synchronization of state events in the
secondary system by state events in the main system. Then, the main system affects the
secondary system through themappingsαi which depend on the timing pattern of the state
events x1 in the main system (see (B.5)).

B.2.3. Input-Output Behavior

In the following, a method to compute the response of a pmax,`q-system with partial
synchronization to a predefined input specified by counters is discussed. As the secondary
system does not affect the main system, we first focus on the main system. Second, we
investigate the secondary system under a predefined behavior of the main system.

Main System

The following method is very similar to the one used for dater representation in § 5.2.3.
However, some additional steps are necessary as counters are antitone (while daters are
isotone). The synchronizations affecting the main system are summarized in (B.6). Under
the earliest functioning rule, we are interested in the greatest, according to the standard
order, number of occurrences of state events before or at time t. Thus, as the canonical
order in Nmin is the dual of the standard order, we are actually interested in least solutions.
Hence, the number of occurrences of state events occurring before or at time t (i.e., x1 ptq)
is given by the least solution of

$

’

&

’

%

x ľ A1,0x‘A1,1x1 pt´ 1q ‘ B1,0u1 ptq
t ă 0ñ x “ x1 pt´ 1q
x1 pt´ 1q ľ x

First, a candidate solution x̃1 ptq is found by neglecting the condition x1 pt´ 1q ľ x.
Second, we check that this candidate solution fulfills the omitted condition. For t ă 0,
x̃1 ptq “ x̃1 pt´ 1q by assumption. Hence, x̃1 ptq is given by the least solution of

x ľ pA1,0 ‘A1,1q x‘ B1,0u1 ptq
According to Th. 5, this leads to

@t ă 0, x̃1 ptq “ pA1,0 ‘A1,1q˚ B1,0u1 p´1q as u1 p´1q “ u1 ptq
For t ě 0, x̃1 ptq is given by the least solution of

x ľ A1,0x‘A1,1x̃1 pt´ 1q ‘ B1,0u1 ptq
According to Th. 5, this candidate solution is given by

x̃1 ptq “ A1̊,0A1,1x̃1 pt´ 1q ‘A1̊,0B1,0u1 ptq
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These choices ensure that, if the candidate solution is a solution, it is the least solution.
Finally, the condition x̃1 pt´ 1q ľ x̃1 ptq is checked. For t ă 0, the property holds, as
x̃1 ptq “ x̃1 pt´ 1q. For t ě 0, we reason by induction. First, we prove the initial step
(i.e., x̃1 p´1q ľ x̃1 p0q). As A1,0 ‘A1,1 ľ A1,0 and u1 p´1q ľ u1 p0q,

x̃1 p´1q “ pA1,0 ‘A1,1q˚ B1,0u1 p´1q ľ A1̊,0B1,0u1 p0q
Furthermore,

A1̊,0A1,1x̃1 p´1q “ A1̊,0A1,1 pA1,0 ‘A1,1q˚ B1,0u1 p´1q
“ A1̊,0A1,1 pA1̊,0A1,1q˚ A1̊,0B1,0u1 p´1q according to (2.8)

ĺ A1̊,0A1,1 pA1̊,0A1,1q˚ A1̊,0B1,0u1 p´1q ‘A1̊,0B1,0u1 p´1q
ĺ pA1̊,0A1,1q˚ A1̊,0B1,0u1 p´1q
ĺ pA1,0 ‘A1,1q˚ B1,0u1 p´1q according to (2.8)

ĺ x̃1 p´1q
Hence, x̃1 p´1q ľ A1̊,0A1,1x̃1 p´1q ‘ A1̊,0B1,0u1 p0q “ x̃1 p0q. Second, we assume that
x̃1 pt´ 1q ľ x̃1 ptq. As the product is isotone in a dioid and u1 is composed of counters,
A1̊,0A1,1x̃1 pt´ 1q ľ A1̊,0A1,1x̃1 ptq and A1̊,0B1,0u1 ptq ľ A1̊,0B1,0u1 pt` 1q. Hence,

@t P N0, x̃1 ptq “ A1̊,0A1,1x̃1 pt´ 1q ‘A1̊,0B1,0u1 ptq
ľ A1̊,0A1,1x̃1 ptq ‘A1̊,0B1,0u1 pt` 1q
ľ x̃1 pt` 1q

Consequently, the candidate solution x̃1 ptq is a solution. Thus, the state behavior of the
main system is given by

x1 ptq “
#

pA1,0 ‘A1,1q˚ B1,0u1 p´1q if t ă 0

A1̊,0A1,1x1 pt´ 1q ‘A1̊,0B1,0u1 ptq if t ě 0

The number of occurrences of output events before or at time t (i.e., y1 ptq) is given by the
least solution of

#

x ľ C1,0x1 ptq
y1 pt´ 1q ľ x

As for the state events, we first ignored the condition y1 pt´ 1q ľ x. This leads to a
candidate solution ỹ1 ptq “ C1,0x1 ptq. Second, we check that the condition ỹ1 pt´ 1q ľ
ỹ1 ptq is fulfilled for the candidate solution. As the product is isotone in a dioid and x1 is
composed of counters,

ỹ1 pt´ 1q “ C1x1 pt´ 1q ľ C1x1 ptq “ ỹ1 ptq
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Hence, the candidate solution ỹ1 ptq is a solution. Then, y1 ptq “ C1,0x1 ptq. Thus, by
noticing that x1 ptq “ A1̊,0x1 ptq for all t P Z, the main system is described by

$

’

&

’

%

x1 ptq “
#

x1,´ if t ă 0

A1x1 pt´ 1q ‘ B1u1 ptq if t ě 0

y1 ptq “ C1x1 ptq
(B.8)

where x1,´ “ pA1,0 ‘A1,1q˚ B1,0u1 p´1q, A1 “ A1̊,0A1,1A1̊,0, B1 “ A1̊,0B1,0, and C1 “
C1,0A1̊,0.

Secondary System

The synchronizations affecting the secondary system are summarized in (B.7). By anal-
ogy with the main system, the number of occurrences of state events occurring before or
at time t (i.e., x2 ptq) is given by the least solution of

$

’

&

’

%

x ľ A2,0x‘A2,1x2 pt´ 1q ‘ B2,0u2 ptq
@i, αi ptq “ 0ñ xi “ x2,i pt´ 1q
x2 pt´ 1q ľ x

where the mappings αi are obtained from the behavior of the main system. Notice that,
as αi ptq “ 0 for t ă 0, the condition added for partial synchronizations imply xi “
x2,i pt´ 1q for t ă 0. For t ă 0, the solution is obtained using a reasoning similar to the
one for the main system.

@t ă 0, x2 ptq “ pA2,0 ‘A2,1q˚ B2,0u2 p´1q
In the following, we only consider the case t ě 0. Due to partial synchronizations, it is not
possible to directly use Th. 5 to find x2 ptq. However, using a reasoning very similar with
[1, § 2.5.3], we can assume that A2,0 is strictly lower triangular by deleting state events,
lumping state events, and adding input events. This allows us to get rid of the implicit
terms by writing the first inequality componentwise. This leads to, for all i,

xi ľ
i´1
à

j“1

pA2,0qij xj ‘ pA2,1x2 pt´ 1q ‘ B2,0u2 ptqqi (B.9a)

αi ptq “ 0ñ xi “ x2,i pt´ 1q (B.9b)

x2,i pt´ 1q ľ xi (B.9c)

Let us consider a candidate solution z defined by

zi “
#

x2,i pt´ 1q if αi ptq “ 0
Ài´1

j“1 pA2,0qij zj ‘ pA2,1x2 pt´ 1q ‘ B2,0u2 ptqqi if αi ptq “ 1
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Next, we prove that the candidate solution z is the least solution of (B.9). For a particular i
between 1 and n2, we assume that the components j ă i of z are known. Then, it remains
to prove that zi is the least solution of (B.9).
Case 1: αi ptq “ 0. According to (B.9b), zi “ x2,i pt´ 1q is the single valid solution.

Then, if this is a solution, this is the least solution. Obviously, if zi “ x2,i pt´ 1q, (B.9c)
holds. It remains to check (B.9a). As x2,j pt´ 1q ľ zj for j ă i, x2 pt´ 2q ľ x2 pt´ 1q, and
u2 pt´ 1q ľ u2 ptq,

zi “ x2,i pt´ 1q

ľ
i´1
à

j“1

pA2,0qij x2,j pt´ 1q ‘ pA2,1x2 pt´ 2q ‘ B2,0u2 pt´ 1qqi

ľ
i´1
à

j“1

pA2,0qij zj ‘ pA2,1x2 pt´ 1q ‘ B2,0u2 ptqqi

Case 2: αi ptq “ 1. Equation (B.9a) holds and ensures that, if zi is a solution, zi is the
least solution. As αi ptq “ 1, (B.9b) does not express any conditions on zi. It remains to
check (B.9c). As x2,j pt´ 1q ľ zj for j ă i, x2 pt´ 2q ľ x2 pt´ 1q, andu2 pt´ 1q ľ u2 ptq,

zi “
i´1
à

j“1

pA2,0qij zj ‘ pA2,1x2 pt´ 1q ‘ B2,0u2 ptqqi

ĺ
i´1
à

j“1

pA2,0qij x2,j pt´ 1q ‘ pA2,1x2 pt´ 2q ‘ B2,0u2 pt´ 1qqi
ĺ x2,i pt´ 1q

Thus, x2 ptq is given by z. In practice, the entries of x2 ptq have to be computed in a
specific order (i.e., for i from 1 to n2). For the output events, a reasoning similar to the one
for the main system gives y2 ptq “ C2x2 ptq with C2 “ C2,0. Thus, the secondary system
is described by

#

x2 ptq “ H px2 pt´ 1q , u2 ptq , tq
y2 ptq “ C2x2 ptq

(B.10)

where the mapping H from R
n2

max ˆ R
m2

max ˆ Z to R
n2

max is defined as follows, for i from 1 to
n2,

H px, u, tqi “
$

’

&

’

%

`pA2,0 ‘A2,1q˚ B2,0u2 p´1q
˘

i
if t ă 0

xi if αi ptq “ 0 and t ě 0
Ài´1

j“1 pA2,0qij H px, u, tqj ‘ pA2,1x‘ B2,0uqi otherwise

(B.11)
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Remark 28. The results on optimal control developed in § 6 could also be obtained using
counters. In particular, counters lead to an easier implementation for MPC with a prediction
horizon in the time domain: the counter representation is suitable for online simulations, as the
iteration in (B.8) and in (B.10) is done in the time domain. With dater representation, online
simulation is also possible, but more complicated, as it is necessary to navigate between time
instants and event occurrences. However, the price of counter representation is the restriction
to time-driven dynamics, while dater representation is able to model event-driven dynamics.

Example 50. For the example introduced in Ex. 23, the output induced by

u1,1 ptq “ u1,2 ptq “ u2,1 ptq “ u2,2 ptq “
#

e for t ă 0

5 for t ě 0

is computed. For the main system, this leads to

y1,1 ptq “ y1,2 ptq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

e for t ă 10

1 for 10 ď t ă 22

2 for 22 ď t ă 34

3 for 34 ď t ă 46

4 for 46 ď t ă 58

5 for t ě 58

Furthermore, the mappings αi necessary for the dynamics of the secondary system are

α1 ptq “ α4 ptq “ α5 ptq “ α8 ptq “
#

0 if t ă 0

1 if t ě 0

α2 ptq “ α6 ptq “
#

1 if t P t0, 12, 24, 36, 48u
0 otherwise

α3 ptq “ α7 ptq “
#

1 if t P t10, 22, 34, 46, 58u
0 otherwise

The output of the secondary system is given by

y2,1 ptq “
#

e for t ă 27

1 for t ě 27

y2,2 ptq “
#

e for t ă 51

1 for t ě 51

As expected, these results confirm the results obtained in Ex. 29 with the dater representation.
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