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Abstract 

Particle shape plays an important role in many industrial applications since it can have significant impact on both, processability 
of particles as well as the properties of the final product. For this reason modeling of the corresponding production process is 
crucial for developing efficient process optimization and control strategies. The shape evolution of crystals on the process scale 
can be described conveniently within the framework of morphological population balance modeling. In order of being a reliable 
tool for the prediction of the crystal shape distribution during the production process as well as for the design of suitable control 
and optimal production strategies, the models require the estimation of several parameters characterizing the growth rates of the 
different crystal facets. This is particularly challenging due to the infinite dimensional state space of the models. In this 
contribution online parameter estimation for the growth rates of L-glutamic acid cooling crystallization is presented. Using a 
Lyapunov-based approach the parameter adaption laws are computed directly from the infinite dimensional problem formulation. 
It will be shown that a reasonably fast convergence of the parameter estimates can be achieved even in the presence of 
measurement noise using appropriate filters. 
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1. Introduction 

Crystallization is an important class of production processes in chemical and pharmaceutical industries. It is used to 
produce a desired material in crystalline form from a liquid solution. Details on crystallization principles and 
techniques can be found e.g. in [1].  The production processes are characterized frequently by heterogeneity of the 
crystal ensemble with respect to crystal properties like size and shape. Those have a significant influence on the end-
use property and the processability of the final product. Modeling of the corresponding dynamics is thus crucial for 
the design of efficient schemes for process control and optimization. It is well known that the temporal evolution of 
the previously described heterogeneous system can be modeled using population balances [2]. Here, morphological 
population balances being a special form of multivariate PBMs can be used to describe the dynamic shape evolution 
(e.g. [3], [4]). For the development of process control and optimization schemes the individual facets growth kinetics 
in the population balance have to be determined. This can be done for example by experimentally measuring the 
growth rates of a single crystal or a small number of crystals, which has several drawbacks that may yield biased 
estimates. Alternatively, the rates may be determined directly from process scale seeded crystallization experiments. 
Here, the temperature, solute concentration and the crystal shape distribution have to be measured. The parameters 
of the growth kinetics can then be estimated minimizing the error between the simulation of the morphological PB 
and the measurement data from experiment. In offline optimization-based parameter estimation schemes variations 
of the optimal parameter estimates due to changes in operation conditions are typically neglected resulting in 
performance deterioration. In order to overcome this problem in this manuscript the design of an online parameter 
estimation approach for morphological PBs will be investigated for a L-glutamic acid crystallization process [5,6]. 

This contribution is structured as follows. At first the general process model will be presented. Subsequently, the 
online parameter adaption laws will be derived directly from the infinite dimensional process model using a 
Lyapunov-based approach [7]. Next the performance of the proposed parameter estimation scheme will be shown 
assuming ideal measurements without noise. Further, it will be made clear that in case of realistic measurement 
errors the online adaption has to be combined with a filtering technique. At the end, the results are summarized and 
possible extensions for future research are mentioned. 

 
Nomenclature 

   solute concentration  
   estimated solute concentration  
   solubility  

   error in the number density distribution/concentration between model and process  
   kinetic coefficients (exponents) for facet growth  
   facet growth rate in length/width dimension  
   estimated facet growth rate in length/width dimension  
   facet growth parameters  
   estimated facet growth parameters  
   error in facet growth parameters  

   length of β-form L-GA  
 mean length/width of number density distribution  
 estimated mean length/width of number density distribution  

   number density distribution  
   estimated number density distribution  

  error feedback gains for model  
   kinetic coefficients (exponents) for facet growth  

   time  
   temperature  
    width of β-form L-GA   
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   parameter adaption rate tuning parameters  

   crystal density  
   relative supersaturation 

 

2. Process modeling 

In this manuscript seeded crystallization of β-form L-glutamic acid (L-GA) in a stirred tank reactor as presented 
in [5] is used as a benchmark problem. The shape of a single crystal can be described reasonably by the length  and 
width  of a parallelepiped (Fig. 1). Thus, depending on the ratio of both the crystal shape may vary between disks 
and needles. Assuming that the crystal growth is dominant and neglecting other effects like agglomeration, breakage 
and nucleation, the dynamics of the number density distribution  with respect to the two characteristic 
properties can be modeled using the following morphological PBM 

 

 
 

(1) 

 
Here, the growth rates are given by 
 

 
 

 
 

(2) 

 

 
Figure 1: Scheme of typical  form L-GA crystal and corresponding representation as parallelepiped [5] 

 
It is assumed that each growth rate depends only on the crystal size in the corresponding dimension and on the 
relative supersaturation.  
 

 (3) 
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The solubility of L-GA depends on the solute temperature and is given by the following empirical formula 
 

 
 (4) 

 
Dynamics of the solute concentration can be derived from the mass balance of the liquid in the crystallizer and are 
given by 
 

 

 

(5) 

where   is the crystal density. Obviously, the overall dynamical system consists of an ordinary differential equation 
(ODE) and partial differential equations (PDE), which are coupled. The numerical values of the parameters are 
given in Table 1. 

Table 1: Process parameters and corresponding values 

Parameter Value Parameter Value 

    

    

    

    

 

3. Design of the online parameter estimator 

The majority of the parameter values listed in Table 1 have been identified from lab scale experiments. Thus, 
they can only be viewed as a rough orientation for a crystallization process on an industrial scale. Additionally, in a 
large scale industrial setting the process model may be not exact or the process parameters may vary during plant 
operation. Controller performance particularly suffers from those uncertainties as design procedure typically depend 
on a fully parameterized plant model. For this reason an online parameter identification procedure [7] will be 
designed. 

The Lyapunov-based online estimation uses the following modified plant model, which runs in parallel to the 
actual process (see Fig. 2) 

 

 
 

 

 

(6) 

where  and   are the particle shape distribution and the solute concentration estimated from the modified plant 
model. From this point on it is assumed that only the parameters  and    are unknown such that the unknown 
growth rates are given by 
 
 

 (7) 



1340   Robert Dürr et al.  /  Procedia Engineering   102  ( 2015 )  1336 – 1345 

 

 
 

 

 
Figure 2: Online estimation scheme 

 
The parameters    and    are additional tuning factors and can be interpreted as model error feedback gains. 
In a first step, the estimation errors of the crystal shape number distribution, the solute concentration and the 
parameters are introduced. 
 

 

 

 

 

 

(8) 

Combining (1) and (5-6) the error dynamics can be derived. 
 

 

 

 

 

(9) 

In order to design suitable adaption laws for the parameter estimates the following Lyapunov functional is chosen 
 

. 
 

(10) 

Here,    and  are positive real tuning parameters. One can easily obtain that the Lyapunov function is positive 
definite and vanishes only for exact parameter estimates and if the shape number distribution and the solute 
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concentration of the model converge to the ones of the real plant. Applying standard Lyapunov stability theory 
yields that stability of the proposed estimator scheme can be achieved by guaranteeing that the first time derivative 
of   is negative semidefinite for all time points and vanishes for . Calculating the first time derivative of the 
Lyapunov functional along the system trajectory gives 
 

 

 

(11) 

In order to guarantee the negative definiteness of the first time derivative of the Lyapunov functional  the adaption 
laws are chosen as 
 

 

 

(12) 

Resulting in 
 

 

 
which is negative semidefinite for  and . 

(13) 

4. Evaluation of online identification procedure 

The presented online parameter estimation approach has been implemented numerically using 
MATLAB/Simulink. For this reason the partial differential equations for the process (1) and the model (6) were 
transformed to a large-scale system of ordinary differential equations using a two-dimensional finite volume scheme. 
Details on the application of a finite volume scheme for the discretization of PDEs can be found for example in [8]. 
The double integrals were approximated using a two-dimensional trapezoidal rule. For the process the parameters 
given in Table 1 are used. The initial solute concentration is  

 
 

 
and for the initial crystal shape number density distribution of the process is assumed to correspond to a two-
dimensional normal distribution  
 

 
 
with mean and covariances given as 
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The cooling rate is chosen as  It is assumed that the models initial values for shape number density 
distribution and solute concentration differ from the corresponding process values by a factor of 0.9. Furthermore, 
the initial values for the unknown parameters, i.e. the initial guesses, are only known very roughly. 
 

 

 
Figure 3. Parameter estimates for ideal measurements 

 

 
Figure 4. Moment estimates for ideal measurements 

 

4.1. Ideal measurements without noise 

In a first step the performance of the online parameter estimation algorithm is shown for the case of ideal 
measurements without measurement noise. Though this scenario is not realistic as experimental data is always 
corrupted by measurement uncertainties it is well suited to show the general performance of the algorithm and to 
study the effects of different choices of the tuning parameters on the dynamics of the parameter estimates. 
Simulation studies indicate that the parameter estimates convergence rate mainly depends on the adaption rate 
factors  while the ratio of error feedback factors and adaption rate factors affect the damping or the smoothness of 
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the parameter estimate dynamics. Thus, by an appropriate choice of the tuning parameters a reasonable convergence 
rate can be achieved. In Fig. 3 the corresponding parameter estimate dynamics are shown for  

 
 

 
It can be seen that the parameter estimates converge to the real values within 250 s and are only slightly 
overshooting. Additionally the model crystal shape number density distribution converges to the one of the process 
reasonably fast, as shown in Fig. 4.  
 

4.2. Noise corrupted measurements 

In order to come up with a more realistic setup the measurements are now considered to be corrupted with additive 
white noise. Due to the noise the performance of the proposed online parameter estimation algorithm is expected to 
deteriorate.  In order to achieve comparable performance as in the noise-free setting the model has been extended 
including the first order moments of the distribution  

 

 

 

 

 

(14) 

resulting in two additional model equations 
 

 

 

 

 

(15) 

Using the extended estimator model the Lyapunov function  has to be extended by errors in the two first moments 
 

 

 

(16) 

 
resulting in two extended adaptation laws 

 

 

 
 
 
 

(17) 



1344   Robert Dürr et al.  /  Procedia Engineering   102  ( 2015 )  1336 – 1345 

 

 
The corresponding simulation results can be seen in Fig. 6 and Fig. 7. As in the ideal measurement scenario, the 
parameter estimation errors decrease at first but, due to the stochastic measurement uncertainty, the parameter 
estimates do not converge to their real values. Instead the estimates themselves reflect the stochastic process 
behavior. Applying a simple filter is however sufficient to overcome this problem (dashed black lines). 
 

 
Figure 5. Parameter estimates for noise corrupted measurements 

 

 
Figure 6. Moment estimates for noise corrupted measurements 

 
  

5. Summary/Conclusion, Future Work 

In this manuscript online estimation of facet growth kinetics was studied for L-glutamic acid crystallization. It 
has been shown that the proposed Lyapunov-based adaption laws allow a reasonable fast estimation of the unknown 
model parameters in the case of ideal measurements. Additionally, an extension of the algorithm was presented to 
deal with noise corrupted measurements. Future work will be concerned with further analysis of tuning parameter 
effects on the estimation error dynamics as well as further analysis of the effects of stochastic measurements. In 
addition, the approach will be extended to the estimation of parameters depending directly on the shape dimensions. 
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Finally, the proposed online parameter estimation algorithm is planned to be used for real lab-scale experiments and 
as a part of an adaptive control scheme. 
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