Hochdurchsatz-Sequenz-Analyse zur Identifikation von prädisponierenden sowie somatischen Mutationen bei Patienten mit Nicht-kleinzelligem Bronchialkarzinom (NSCLC) zur Vorhersage von Chemotherapie-Resistenzen

Dissertation

zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat)

eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

vorgelegt von

Melanie Isau

aus Zehdenick

Die vorliegende Arbeit wurde im Zeitraum von April 2009 bis Januar 2014 am Max-Planck-Institut für Molekulare Genetik in Berlin unter der Leitung von Herrn Prof. Dr. Hans Lehrach angefertigt.

1. Gutachter Prof. Dr. Hans Lehrach

Max-Planck-Institut für Molekulare Genetik Ihnestraße 63-73, 14195 Berlin Tel. +49 30 8413 1220

E-Mail: lehrach@molgen.mpg.de

2. Gutachter Prof. Dr. Rupert Mutzel

Institut für Biologie Freie Universität Berlin Königin-Luise-Straße 12-16, 14195 Berlin Tel. +49 30 838 53116

E-Mail: rmutzel@zedat.fu-berlin.de

Tag der Disputation: 04.04.2014

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Dissertation mit dem Titel "Hochdruchsatz-Sequenz-Analyse Identifikation zur prädisponierenden sowie somatischen Mutationen bei Patienten mit Nichtkleinzelligem Bronchialkarzinom (NSCLC) zur Vorhersage Chemotherapie-Resistenzen" eigenständig verfasst und keine weiteren als die angegebenen Hilfsmittel verwendet habe. In der Arbeit verwendete Aussagen anderer Autoren habe ich durch Quellenangaben kenntlich vorliegende Arbeit wurde in keinem früheren gemacht. Die Promotionsverfahren eingereicht oder als ungenügend beurteilt.

Berlin, den 16. Januar 2014

(Melanie Isau)

Inhaltsverzeichnis

1. EINLEITUNG	1
1.1. Tumor-Modell nach Hanahan und Weinberg	1
1.2. Epidemiologie und Risikofaktoren des Bronchialkarzinoms	4
1.3. Histologie des Bronchialkarzinoms	5
1.4. Therapie des Bronchialkarzinoms	7
1.4.1. Klassische Therapien	
1.4.2. Zielgerichtete Therapien	
1.4.2.1. EGFR Inhibitoren	
1.4.2.1.1. Monoklonale Antikörper gegen EGFR	
1.4.2.1.2. <i>Tyrosinkinase</i> Inhibitoren gegen EGFR	
1.4.2.1.3. Erworbene Resistenzen gegenüber EGFR Inhibitoren	
1.4.2.2. EML4-ALK Inhibitoren	15
1.5. Molekulargenetik des Bronchialkarzinoms	
1.5.1. Aktivierung von Onkogenen	
1.5.1.1. Aktivierende Mutationen des Onkogens KRAS	
1.5.1.2. Genetische Veränderungen des Onkogens <i>EGFR</i>	
1.5.1.3. Aktivierung des Fusiongens <i>EML4-ALK</i>	
1.5.1.4. Weitere Onkogene mit einer geringen Mutationsfrequenz	
1.5.2. Inaktivierung von Tumorsuppressorgenen	
1.5.2.1. Inaktivierung des Tumorsuppressorgens <i>TP53</i> 1.5.3. Angiogenese und die Tumor(mikro)umgebung	
1.6. Genetische Prädisposition für das Bronchialkarzinom	24
1.7. Hochdurchsatz-Sequenzierungs-Technologien	25
1.7.1. Genomweite Sequenzierung des Bronchialkarzinoms	26
1.8. Mausmodelle	27
1.8.1. Gentechnisch veränderte Mausmodelle	28
1.8.2. Xenograft-Modelle	
1.8.3. Patienten-abgeleitete Xenograft-Modelle des Nicht-kleinzelligen Bronchialkarzinoms	30
1.9. PREDICT – Ein systembiologischer Ansatz zur prä-klinischen Krebsforschung	31
2. ZIELSETZUNG	33
3. MATERIAL UND METHODEN	35
3.1. Materialien	
3.1.1. Material und Geräte	
3.1.3. Verwendete Puffer und Lösungen	
3.1.4. Verwendete Kits	
3.1.5. Verwendete Protein- und DNA-Marker	
3.1.6. Verwendete Enzyme	

Inhaltsverzeichnis

	3.1.7. Verwendete Medien	
	3.1.7.1. Bakterienmedien	41
	3.1.7.2. Zellkulturmedien	42
	3.1.8. Bakterienstämme	42
	3.1.9. Humane Zelllinien	42
	3.1.10. Oligonukleotide	43
	3.1.11. Vektoren	43
	3.1.12. Antikörper	46
	3.1.13. siRNA Moleküle	46
	3.1.14. Behandlung der Zellen mit zytotoxischen Agenzien	46
3	2. Methoden	47
٥.	3.2.1. Polymerase-Kettenreaktion (PCR)	
	3.2.2. Zielgerichtete Mutagenese	
	3.2.3. Aufreinigung von PCR-Amplifikaten und DNA-Fragmenten aus einem präparativen	+0
	Agarosegel	48
	3.2.4. Enzymatische Restriktion von DNA	
	3.2.5. Ligation	
	3.2.6. Transformation von Escherichia coli	
	3.2.7. Isolierung von Plasmid-DNA aus <i>E. Coli</i>	
	3.2.8. Bestimmung der DNA-bzw. RNA-Konzentration	
	3.2.9. Agarosegelelektrophorese	
	3.2.10. Sanger Sequenzierung	
	3.2.11. Lagerung von kryokonservierten humanen Zelllinien	
	3.2.12. Auftauen von kryokonservierten humanen Zelllinien	
	3.2.13. Kultivierung von humanen Zelllinien	
	3.2.14. Transfektion humaner Zelllinien mit Plasmid-DNA	
	3.2.15. Zelllyse von humanen Zelllinien	
	3.2.16. Transfektion mit siRNA Molekülen	
	3.2.17. SDS-Polyacrylamidgelelektrophorese (SDS-PAGE)	
	3.2.18. Proteintransfer auf eine Membran (Western-Blot)	
	3.2.19. Immunnachweis von Proteinen	
	3.2.20. RNA Aufreinigung	
	3.2.21. Herstellung einzelsträngiger cDNA	
	3.2.22. Quantitative Echtzeit PCR (q-PCR)	
	3.2.23. Luziferase-Reporterexperimente	
	3.2.24. Zellproliferationsexperimente	
	3.2.24.1. Bestimmung der Proliferation mittels AlamarBlue®-Reagenz	
	3.2.24.2. Bestimmung der Proliferation mittels Hochdurchsatz-Mikroskopie	
	3.2.25. Patientenproben	59
	3.2.25.1. IMGUS-Projekt	
	3.2.25.2. PREDICT-Projekt	
	3.2.25.3. Analyse der Einzelnukleotidvarianten mit der Affymetrix SNP-Array Technologie	60
	3.2.26. Agilent SureSelect Anreicherungssystem	
	3.2.26.1. Präparation der DNA-Bibliothek für die Illumina-Sequenzierung	61
	3.2.26.2. Präparation der DNA-Bibliothek für die SOLiD-Sequenzierung	63
	3.2.27. Hybridisierung der DNA-Bibliothek	65
	3.2.27.1. Quantifizierung der DNA-Hybrid-Bibliothek	66
	3.2.28. Illumina –Sequenzierung	67
	3.2.29. SOLiD-Sequenzierung	67
	3.2.30. Prozessierung der Illumina-Sequenzierdaten	
	3.2.30.1. Analyse der Einzelnukleotidvarianten	
	3.2.30.2. Analyse der somatischen Kopienzahlvarianten	
	3.2.31. Prozessierung der SOLiD-Sequenzierdaten	69

Inhaltsverzeichnis

3.2.31.1. Analyse der Einzelnukleotidvarianten	69
3.2.31.2. Analyse der somatischen Kopienzahlvarianten	69
3.2.32. Validierung der Mutationen mittels Massen-Spektrometrie	69
4. ERGEBNISSE	72
4.1. Etablierung der Hochdurchsatz-Squenzierungs-Technologie für klinisches	
Gewebematerial	74
4.1.1. FFPE-Gewebe kann für die SureSelect zielgerichtete DNA Anreicherung mit	
anschließender Hochdurchsatz-Sequenzierung genutzt werden	74
4.1.2. Zielgerichtete DNA-Anreicherungs-Technologien sind geeignet für geringe DNA-Mengen	79
4.1.3. Unterschiedliche Biopsien eines Tumors weisen ein identisches somatisches SNV-Profil, aber unterschiedliche Kopienzahl-Profile auf	83
4.2. Klinische Daten der Patienten	
4.3. Zielgerichtete Anreicherung genomischer Regionen mit anschließender Hochdurchsatz- Sequenzierung	
4.3.1. Gesamt-Exom-Sequenzierung von zwei Patienten mit Normal Tumor- und Xenograft	00
Gewebe	88
4.3.2. Sequenzierung der Anwender-definierten Zielregionen (9Mb) von 21 Patienten mit Normal-	-
und Xenograft-Gewebe	91
4.3.3. Statistik der detektierten Einzelnukleotidvarianten	93
4.4. Validierung somatischer Mutationen mit der Massen-Spektrometrie-Technologie	94
4.5. Berechnung der Konkordanz zwischen dem Xenograft- und Primärtumorgewebe	96
4.6. Detektierung der somatischen- sowie der Keimbahn-Mutationen für 23 Patienten	100
4.6.1. Mutationsstatistik der Gesamt-Exom-Sequenzierung	
4.6.2. Mutationsstatistik der 9Mb-Sequenzierung von 21 Patienten	
4.6.3. Analyse der durch Mutationen betroffenen Signalwege	
4.7. Stratifizierung der Mutationsprofile der einzelnen Xenografts nach der Sensitivität	
gegenüber den eingesetzten Chemotherapien	
4.7.1. Ergebnisse für das Zytostatikum Carboplatin	
4.7.1.1. Analyse der Gene mit somatischen Mutationen	
4.7.1.1.1. Zellproliferationsexperimente	
4.7.1.2. Analyse der Gene mit Keimbahnmutationen	
4.7.2. Ergebnisse für das Zytostatikum Gemcitabin	
4.7.2.1. Analyse der Gene mit somatischen Mutationen	4 A C
4.7.2.1.1. Zellproliferationsexperimente	
4.7.2.2. Analyse der Gene mit Keimbahnmutationen	119
4.7.3. Ergebnisse für das Zytostatikum Paclitaxel	119 120
4 / 2 1 Analyses der Cons mit compticehen Mutationen	119 120 121
4.7.3.1. Analyse der Gene mit somatischen Mutationen	119 120 121 123
4.7.3.2. Analyse der Gene mit Keimbahnmutationen	119 120 121 123 124
4.7.3.2. Analyse der Gene mit Keimbahnmutationen	119 120 121 123 124 124
4.7.3.2. Analyse der Gene mit Keimbahnmutationen	119 120 121 123 124 124
4.7.3.2. Analyse der Gene mit Keimbahnmutationen	119 120 121 123 124 124 126
4.7.3.2. Analyse der Gene mit Keimbahnmutationen	119 120 121 123 124 124 126

5. DISKUSSION137
5.1. Etablierung der Hochdurchsatz-Sequenzierungs-Technologie für klinische Gewebematerial
5.2. Genetische Veränderungen des Androgen Rezeptor-Signalweg in Prostatatumoren140
5.3. Berechnung der Konkordanz zwischen Xenograft- und Primärtumorgewebe143
5.4. Statistik der detektierten Einzelnukleotidvarianten145
 5.5. Zielgerichtete Anreicherung genomischer Regionen mit anschließender Hochdurchsatz-Sequenzierung von 23 Patienten-abgeleiteten Xenograft-Modellen und dem korrespondierenden primären Normalgewebe
5.6. Stratifizierung der Mutationsprofile der einzelnen Xenografts nach der Sensitivitätgegenüber den eingesetzten Chemotherapien1515.6.1. Carboplatin1515.6.2. Gemcitabin1565.6.3. Paclitaxel1595.6.4. Cetuximab160
5.7. Erster Versuch eines systembiologischen Ansatzes zur Voraussage der Wirkung von Cetuximab
6. AUSBLICK167
7. ZUSAMMENFASSUNG168
8. SUMMARY170
9. LITERATURVERZEICHNIS172
PUBLIKATIONEN187
ABKÜRZUNGSVERZEICHNIS191
ANHANG195

1. Einleitung

1.1. Tumor-Modell nach Hanahan und Weinberg

Im Jahr 2000 veröffentlichten Hanahan und Weinberg einen Übersichtsartikel "*Hallmark*s *of Cancer"* in dem die Entwicklung und Progression von Tumorerkrankungen anhand von sechs biologischen Merkmalen beschrieben wurde [1]. Zehn Jahre später erschien eine Neuauflage "Hallmarks of Cancer: The Next Generation" in dem das beschriebene Tumor-Modell anhand neuester wissenschaftlicher Erkenntnisse erweitert wurde (Tabelle 1). Demnach begründen diese Merkmale ein Ordnungsprinzip zur Rationalisierung der Komplexität neoplastischer Erkrankungen und sind charakterisiert durch eine Zellproliferation, Reprimierung von Wachstumsinhibitoren, persistierende Resistenz gegen Zelltod, replikative Immortalität, Angiogenese, Aktivierung der Invasion und Metastasierung, Re-programmierung des Energiemetabolismus und die Inhibition der Immunantwort. All diese Merkmale unterliegen einer Instabilität, die zur Entstehung der genetischen Variabilität von Tumoren beiträgt [2]. Die Tabelle 1 zeigt eine Übersicht über die Tumormerkmale und listet gleichzeitig jeweils Beispiele involvierter Signalwege auf.

Tabelle 1: Tumormerkmale nach Hanahan und Weinberg 2011.

Tumormerkmal	Beispiele involvierter Signalwege
persistierende Zellproliferation	Aktivierung der <i>MAPK</i> , <i>AKT1</i> Signalkaskade Verlust von <i>RAS</i> , <i>PTEN</i>
Reprimierung der Wachstumsinhibitoren	RB und TP53 Suppression
Resistenz gegen Zelltodmechanismen	Verlust von <i>TP53</i> Anit-apoptotische Faktoren (<i>BCL2</i>)
	Überlebensfaktoren (IGF1/2)
Replikative Immortalität	Telomerase Aktivität
Reprogrammierung des Energiemetabolismus	Erhöhte Glykolyse und Laktatsäure Fermentation
Angiogenese	VEGF-A und TSP1 Ungleichgewicht
Inflammatorische Signale	Rekrutierung von Immunzellen und peritumorale Inflammation
Inhibition der Immunantwort	Sekretion von <i>TFG-β</i>
Invasion und Metastasierung	Verlust von E-Cadherin, EMT

Abkürzungen: MAPK: mitogen-activating protein kinase; AKT1: v-akt murine thymoma viral oncogene homolog 1; RAS: rat sarcoma viral oncogene homolog; PTEN: phosphatase and tensin homolog; RB retinoblastoma; TP53: tumor protein 53; BCL2: B-cell CLL/lymphoma 2; IGF1/2: insulin-like growth factor 1/2; VEGF-A: vascular endothelial growth factor A; TSP1: thrombosporin 1; TGF-β: transforming growth factor, beta; EMT: epithelial-mesenchymal transition

Die natürliche Zellproliferation unterliegt einem streng kontrollierten Wachstumsund Zellteilungs-Mechanismus wie beispielsweise der Regulation der Freigabe von wachstumsinduzierenden Molekülen. Defekte innerhalb dieser Kontrollmechanismen können zu einer persistierenden Zellproliferation führen. In ca. 40% aller Melanom-Tumoren konnte eine aktivierende somatische Mutation des Protoonkogens BRAF (v-raf murine sarcoma viral oncogene homolog B1) entdeckt werden, die zu einer veränderten Struktur des Proteins führt, und die mit einer konstitutiven Signalweitergabe der MAP-Kinase (mitogenactivated proteins signaling) -Signaltransduktion einhergeht [3]. Ähnlich aktivierende Mutationen wurden in unterschiedlichen Tumorentitäten innerhalb katalytischen Untereinheit der PI3-Kinase (phosphoinositid-3-kinase) detektiert, die zu einer Hyperaktivierung der Akt/PKB (v-akt murine thymoma viral oncogene homolog / protein kinase B) -Signalkaskade führen. Jüngste Ergebnisse unterstreichen die Bedeutung negativer Rückkopplungsmechanismen, die in Normalzellen wachtumsfördernde Signaltransduktionen inhibieren und so die homeostatische Regulation der Signalweitergabe gewährleisten [4-7]. Defekte innerhalb dieser negativen Rückkopplungsmechanismen führen wiederum zu einer Aktivierung proliferativer Signale. Beispielsweise führen Funktionsverlustmutationen der Phosphatase PTEN (phosphatase and tensin homolog), die die Aktivität der PI3-Kinase aufgrund der Degradierung des Produkts PIP₃ (phosphatidylinositol (3,4,5) trisphosphat) inhibiert zu einer Amplifizierung der PI3K (phosphoinositid-3-kinase) -Signaltransduktion und fördert somit die Tumorprogression, wie in einer Anzahl experimenteller Tumormodelle gezeigt wurde. Neben Mutationen kann die Repression der PTEN Expression auch durch eine differentielle Methylierung der Promotorregion bedingt sein [8, 9].

Ebenso führt die Inaktivierung von Wachstumsinhibitoren zur Aktivierung der Zellproliferation, da entscheidende Kontrollmechanismen des Wachstums- und Zellteilungszyklus unter diesen Umständen dereguliert sind. Die Tumorsuppressorgene TP53 (tumor protein 53) und RB (retinoblastoma 1) regulieren beispielsweise, ob eine Zelle proliferiert oder alternativ in Seneszenz oder Apoptose geht. Somit resultieren Defekte innerhalb des RB und TP53 Gens in einem Verlust dieser Regulationsfunktionen und können zur persistierenden Zellproliferation führen. Die Aktivierung der Apoptose wird maßgeblich durch das Gleichgewicht von pro- und anti-apoptotischen Molekülen der BCL-2 (b-cell lymphoma 2) Familie kontrolliert. Defekte des TP53 Gens führen zu einer erhöhten Expression der anti-apoptotischen Regulatoren BCL-2 und BCX_L (b-cell lymphoma-extra large) oder der Wachstumsfaktoren IGF1/2 (insulin-like growth factor 1/2) durch die Reprimierung pro-apoptotischer Faktoren BAX (bclassociated X protein) und BAK (bcl2-antagonist/killer 1) und tragen somit zur Resistenz gegen den Zelltod bei [10].

In nicht-pathogenen Zellen ist die Anzahl der Wachstums- und Zellteilungen limitiert und die Zellen unterlaufen anschließend eine Seneszenz. Ursache ist die Funktion Stabilisierung Verkürzung der Telomere. deren die Chromosomenenden ist, der einerseits dem Schutz vor End-zu-End Fusionen während der Replikation dient. Diesbezüglich weisen Tumorzellen mit einer erworbenen Seneszenz- bzw. Apoptose-Resistenz eine erhöhte Expression des Enzyms Telomerase auf, das der Verkürzung der Telomere während der Replikation entgegenwirkt und somit zu einer replikativen Immortalität dieser Zellen führt. Die in neoplastischen Erkrankungen vorherrschende dauerhafte und unkontrollierte Proliferation korrespondiert ebenfalls mit einer Adaptation des Energiemetabolismus. Normale Zellen prozessieren Glukose unter aerobischen Bedingungen erst zu Pyruvat im Cytosol und anschließend zu CO₂ in den Mitochondrien. Otto Warburg entdeckte eine Re-programmierung des Energiemetabolismus in Tumorzellen von der oxidativen Phosphorylierung (Zitronsäure-Zyklus) hin zur Glykolyse, gefolgt von der Milchsäure-Fermentation (Warburg-Effekt). Eine erhöhte Glykolyse gewährleistet die Bereitstellung glykolytischer Intermediate für die Biosynthese.

Ein weiteres Merkmal des Tumor-Modells beschreibt die Tumor assoziierte Neovaskularisierung, eingeleitet durch den Prozess der Angiogenese, dem ein Ungleichgewicht von stimulierenden und inhibitorischen Faktoren zugrunde liegt. Zu den bekanntesten Regulatoren gehören die Gene VEGF-A (vascular endothelial growth factor-A), welches in die Bildung und das Wachstum neuer Blutgefäße während der embryonalen- und postnatalen Entwicklung involviert ist. das aber auch durch Hypoxie und onkogene Signale induziert werden kann, und TSP-1 (thrombosporin-1), das an Transmembranrezeptoren bindet und proangiogene Signale reprimiert. Die chronisch aktivierte Angiogenese führt zu einer aberranten Blutgefäßbildung. Neovaskularisierungen Tumoren gekennzeichnet durch nicht ausreichend ausgereifte Gefäßnetzwerke, die zu einer heterogenen Durchblutung des Tumorgewebes führen und ebenfalls mit abnormaler Proliferation bzw. Apoptose der endothelialen Zellen einhergehen.

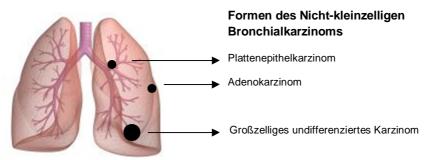
Eine aberrante Bildung von Blutgefäßen kann gleichermaßen auch durch entzündliche Signale eingeleitet werden. Immunzellen wie Makrophagen, Neutrophile, Mastzellen oder das Myeloid schützende Zellen, können in Läsionen infiltrieren und führen dadurch zur peritumoralen Inflammation. Tumorzellen

besitzen überdies die Fähigkeit, die **Immunantwort** durch zytotoxische T-Lymphozyten und native Killerzellen zu inhibieren, beispielsweise durch die Segregation immunsupprimierender Faktoren wie *TGF-\beta* (*transforming growth factor-beta*) oder Rekrutierung regulatorischer T-Zellen.

Weiterführende Stadien der Tumorentwicklung umfassen eine **lokale Invasion** sowie eine **Metastasierung**. Derartige Tumore entwickeln Veränderungen ihrer eigenen Morphologie, aber auch der Zusammensetzung benachbarter Zellen und der extrazellulären Matrix (ECM). Maßgeblich an der Regulation der Zell-Adhäsion ist das Protein E-Cadherin. Defekte in E-Cadherin können zu einer Beeinträchtigung der Adhärenz führen. Exzessive Angiogenese und die Degradierung der ECM fördern die lokale Invasion, einen Prozess, der durch das epitheliale und mesenchymale Transitions- (EMT) Programm kontrolliert wird. EMT führt ebenfalls zu einem Verlust der Adhärenz-Verbindungen, sowie zur Konversion einer epithelialen hin zur fibroblastischen Morphologie und zur Resistenz gegen Apoptose. Disseminierte Tumorzellen bilden Mikrometastasen im umliegenden Gewebe und wachsen, nach entsprechender Adaptation, in der neuen Umgebung zu Metastasen (Kolonisierung) heran.

Zusammenfassend unterliegt die Tumorprogression einem Prozess gestörter Kontrollmechanismen diverser zellulärer Mechanismen und einem komplexen Zusammenspiel zwischen dem Tumor und seiner direkten Umgebung.

1.2. Epidemiologie und Risikofaktoren des Bronchialkarzinoms


Im Jahr 2012 veröffentlichte die amerikanische Krebsgesellschaft (American Cancer Society) ihre aktuelle Statistik zur Inzidenz und Mortalität maligner Tumorerkrankungen und ermittelte, dass das Bronchialkarzinom gleichermaßen bei Männern und Frauen mit jeweils 14% zur zweithäufigsten Tumorerkrankung nach den geschlechtsspezifischen Erkrankungen der Prostata (29%) und der Brust (29%) gehört. Mit einer Mortalitätsrate von 29% bei Männern bzw. 26% bei Frauen zählt es zur häufigsten Todesursache [11]. Für Deutschland konnte eine ähnliche Statistik der Inzidenz und Mortalität des Bronchialkarzinoms ermittelt werden. Danach zählt das Bronchialkarzinom zur dritthäufigsten Tumorerkrankung und weist ebenfalls die höchste Mortalitätsrate auf [12].

Das mittlere Erkrankungsalter liegt durchschnittlich bei 69 Jahren für Männer und bei 68 Jahren für Frauen und entspricht damit in etwa dem für Tumorerkrankungen insgesamt. Die relative 5-Jahres-Überlebensrate weist in

Deutschland mit für Männer 15% und für Frauen 19% eine verhältnismäßig ungünstige Prognose auf. Die Stadienverteilung ist bei Männern und bei Frauen recht ähnlich und durch einen hohen Anteil an T4-Stadien (~40%) gekennzeichnet. Durchschnittlich 85% aller Bronchialkarzinome werden durch kanzerogene Stoffe, die im Tabakrauch enthalten sind, hervorgerufen. Nur 15-25% der Patienten sind Nichtraucher (weniger als 100 Zigaretten im Leben). Dieser ethnologische Unterschied ist deutlich mit den Veränderungen des Tumors assoziiert [13, 14]. Eine Risikoabschätzung des passiven Rauchens ist schwierig. Asbest, Beryllium, Arsen, Cadmium, Chrom, Senfgas, Nickel, Vinychlorid, Gammastrahlen, Alphastrahlen (Radon) sowie Nitrosamine können ebenfalls das Risiko, einen Lungentumor im Laufe des Lebens zu entwickeln, erhöhen. Zusätzlich zu physikalisch-chemischen Noxen kommen auch Ernährungsfaktoren. Bekannt ist, dass β-Karotine und Vitamin A eine protektive Wirkung besitzen, die wahrscheinlich durch eine Begünstigung der zellulären Differenzierung und durch eine antioxidative Aktivität vermittelt wird. Bei chronischen. interstitiellen Lungenerkrankungen Karzinominzidenz 14-fach erhöht. Dabei spielen sicherlich neben chronischentzündlichen Veränderungen und einem gesteigerten Zellumsatz Störungen in der Clearance inhalierter Karzinogene eine Rolle [15].

1.3. Histologie des Bronchialkarzinoms

Bronchialkarzinome sind primär in der Lunge entstandene epitheliale Malignome. In Therapie orientierten Leitlinien wird zwischen Kleinzelligen Karzinomen (SCLC: *small-cell lung cancer*) und Nicht-kleinzelligen Karzinomen (NSCLC: *non-small-cell lung cancer*) unterschieden. Kleinzellige Karzinome treten ca. mit einer Häufigkeit von 10-15% aller Lungentumore auf und sind mit inhalativem Tabakkonsum assoziiert. Zudem sind diese durch ein verhältnismäßig schnelles Wachstum, sowie durch ein gutes Ansprechen auf chirurgische Entfernung, Chemotherapie und Strahlentherapie charakterisiert. Das Nicht-kleinzellige Karzinom ist mit einer Inzidenz von 85-90% das am häufigsten diagnostizierte Bronchialkarzinom und wird weiter nach histologischen und genetischen Parametern in Plattenepithelkarzinome (ca. 30%, vorwiegend mit Patienten mit Raucherstatus assoziiert), Adenokarzinome (ca. 50%, vorwiegend mit Patienten mit Nicht-Raucherstatus assoziiert) und Großzellige Karzinome (ca. 20%, vorwiegend mit Patienten mit Raucherstatus assoziiert) differenziert [16, 17].

Abbildung 1: Formen des Nicht-kleinzelligen Bronchialkarzinoms unterschieden nach histologischen und genetischen Parametern.

Die TNM (*Tumor-Node-Metastasis*) Klassifizierung der Stadieneinteilung erfolgt nach den Richtlinien der UICC (Internationale Vereinigung gegen Krebs) und ist in Tabelle 2 dargestellt [18].

Tabelle 2: TNM Klassifikation nach den UICC Richtlinien für Nicht-kleinzellige Bronchialkarzinome.

klinische TNM Klassifikation

_			
	Prim	ärtumor	

- Tx Nachweis von malignen Zellen im Sputum oder bei Bronchialspülungen weder radiologisch noch bronchioskopisch sichtbar, Primärtumor kann nicht beurteilt werden
- T0 Kein Anhalt für Primärtumor
- Tis Carcinoma in Situ
- T1 Tumor ≤ 3cm im größten Durchmesser, allseits von gesundem Lungegewebe umgeben oder: endobronchialer Tumor, aber nicht im Hauptbronchus
- T2 Tumor > 3cm im größten Durchmesser oder: Infiltration der viszeralen Pleura
 - oder: Atelektase oder Obstruktionspneumonie in weniger als einer Lungenhälfte
- T3 endobronchialer Tumor eines Hauptbronchus, weniger als 2cm von der Karina entfernt, aber nicht in sie infiltrierend oder: Totalatelektase oder Obstruktionspneumonie der ganzen Lunge
 - oder: Tumor jeder Größe mit direktem Übergreifen auf folgende Strukturen: Brustwand, Pleura, Perikard, Zwerchfell
- T4 Tumorausdehnung auf Mediastinum
 - oder: Infiltration in Herz oder große Blutgefäße
 - oder: Infiltration in Luftröhre, Speiseröhre, oder Karina, oder in Wirbelkörper
 - oder: Infiltration in Metastasen im selben Lungenlappen
 - oder: Infiltration in Tumor mit malignem Pleuraerguß

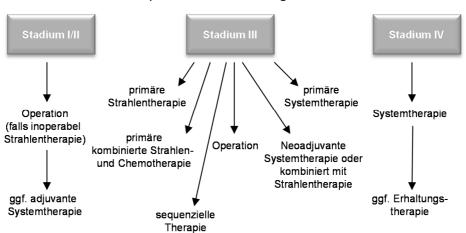
N Regionäre Lymphknoten

- Nx Regionäre Lymphknoten können nicht beurteilt werden
- NO keine regionären Lymphknotenmetastasen
- N1 Metastasen in hilären Lymphknoten
 - oder: peribronchialen oder intrapulmonalen Lymphknoten
- N2 Metastasen in ipsilateralen mediastinalen Lymphknoten
 - oder: in subkarinalen Lymphknoten
- N3 Metastasen in kontralateralem mediastinalen Lymphknoten
 - oder: Metastasen in kontralateralem Hilus
 - oder: Metastasen in ipsilaterale oder kontralaterale Muskulatur oder
 - supraklavikulären Lymphknoten

M Metastasen

- Mx Das Vorliegen von Fernmetastasen kann nicht beurteilt werden
- M0 keine Fernmetastasen
- M1 Fernmetastasen vorhanden
 - auch: Metastasen in mehreren Lappen

Die histologische Einteilung in Stadien (*TNM-Staging: "Tumor-Node-Metastasis"*) erfolgt nach C.F. Mounten (1997) [19, 20]. Sie dient der Prognose und zur Therapieplanung und wird in der Regel bei allen Patienten standardmäßig durchgeführt. Dabei werden die Größe und die Ausdehnung des Tumors (T), das Fehlen oder Vorhandensein und die Verbreitung von regionären Lymphknoten (N), und das Fehlen oder Vorhandensein von Fernmetastasen (M) dokumentiert. Die klinische UICC-Stadieneinteilung fasst die T, N und M in Stadien IA, IB, IIA, IIB, IIIA, IIIB und IV zusammen.


Das Bronchialkarzinom im frühen Stadium ist oft asymptomatisch; auftretende Symptomatiken sind vorwiegend erst bei Bronchialkarzinomen fortgeschrittener Stadien festzustellen. Lokal tumorbedingte Symtpomatiken gehen oftmals mit lang anhaltendem Husten, Thoraxschmerzen, Dyspnoe, Hämoptysen sowie blutigem tingierem Sputum bei Husten einher. Zu den metastasebedingten Symptomatiken zählen unter anderem Knochenschmerzen, Schwindel, neurologische Ausfälle, Verwirrtheit, Krampfanfälle sowie Lymphknotenschwellung.

Etwa 35-40% der Nicht-kleinzelligen Karzinome werden erst im Stadium IV diagnostiziert, und die durchschnittliche Überlebensrate liegt bei 4-5 Monaten sowie die 1-Jahr Überlebensrate unter 10% [16]. Im deutschsprachigen Raum gibt es kein Früherkennungsprogramm für asymptomatische Risikopatienten (Screening). Screeningprogramme auf der Basis von Röntgenaufnahmen des Thorax und Sputumuntersuchungen erwiesen sich als nicht effektiv. Eine amerikanische Studie zeigte beim Vergleich von Überlebensraten nach Screening mit Nidrig-Dosis-Spiral Computerthomographie (LD-CT) bzw. konventioneller Röntgenaufnahme, erstmals in einer Risikopopulation eine signifikante Senkung der Bronichalkarzinom-spezifischen Mortalität [21].

1.4. Therapie des Bronchialkarzinoms

Basis der ersten Therapieentscheidung ist die klinische Stadieneinteilung des Patienten unter Berücksichtigung der Wiederherstellbarkeit der Lungenfunktion und eventueller Ko-Morbiditäten des Patienten. Nach einer Operation wird die Therapie durch die Ergebnisse der pathologischen Untersuchung, insbesondere der patho-histologischen Differenzierung und des Lymphknotenstatus, bestimmt. Nach einer primären Behandlung mit oder ohne Strahlentherapie wird das weitere Vorgehen durch das Ansprechen auf die Therapie bestimmt. Eine

Empfehlung für die lokale Therapie mit kurativem Anspruch gilt für die gesamte Gruppe der Nicht-kleinzelligen Karzinome. Bei der palliativen systemischen Therapie werden die Empfehlungen nach histologischen und genetischen Markern differenziert. Der entsprechende Algorithmus zur Bestimmung der Primärtherapie ist in Abbildung 2 dargestellt.

Erstlinien-Therapie des Nicht-kleinzelligen Bronchialkarzinoms

Abbildung 2: Algorithmus der Primärtherapie zur Behandlung der Nichtkleinzelligen Bronchialkarzinome. Systemtherapie = Chemotherapie; sequenzielle Therapie = Radiochemotherapie

Nicht-kleinzellige Bronchialkarzinome in einem frühen Stadium werden, falls keine Kontraindikation vorliegt, operativ entfernt. Der Operation kann sich, besonders bei schlechten Prognosefaktoren, eine adjuvante Therapie anschließen. Patienten mit Tumoren in späten Stadien (Stadium III) werden standardmäßig einer adjuvanten Chemotherapie und postoperativ einer Strahlentherapie unterzogen, wohingegen Tumore im Stadium IV zumeist mit einer Chemotherapie behandelt werden.

1.4.1. Klassische Therapien

Bis in die späten 90iger Jahren erfolgte die Behandlung des Bronchialkarzinoms histologische Differenzierung ausschließlich mit platin-basierten Chemotherapien wie Cisplatin oder Carboplatin. Cisplatin wurde erstmals 1971 in der Klinik eingesetzt und wird derzeit vorwiegend in der Erstlinientherapie angewandt [22]. Allerdings treten während der **Therapie** schwere Nebenwirkungen wie Übelkeit und Erbrechen, Nephrotoxizität, Polyneuropathie, Ototoxizität, Hämatotoxizität, Elektrolytverschiebung, Kardiotoxizität und Diarrhoe auf. Diese unerwünschten Nebenwirkungen führten zur Entwicklung des Platinderivats Carboplatin, das weniger effektiv wirkt aber für die Patienten verträglicher ist. Es wurde erstmals 1981 in der Klinik eingesetzt. Innerhalb der letzten 20 Jahre wurden neue Zytostatika etabliert, die die Chemotherapie des Bronchialkarzinoms erweitern und in der Monotherapie Remissionsraten von bis zu 20% zeigen, sowie bei den Patienten weniger Nebenwirkungen hervorrufen. Zu diesen Substanzen zählen Gemcitabin, Vinorelbin und die Taxane Docetaxel und Paclitaxel, die häufig in einer Kombination mit platinhaltigen Medikamenten wie Cis- oder Carboplatin eingesetzt werden. Die Antitumorwirkung dieser Zytostatika basiert auf folgenden Wirkmechanismen:

Die platinumbasierten Wirkstoffe Cisplatin und Carboplatin gehören zu den alkylierenden Substanzen und wirken durch Quervernetzung von DNA-Strängen. Aufgrund der hohen Elektrophile des Aqua-Platin-Komplexes bindet Cis- bzw. Carboplatin bevorzugt kovalent an das N₇-Atom von Guanin und es entstehen Verknüpfungen innerhalb des DNA-Stranges (Intrastrang-Quervernetzung) oder zwischen benachbarten DNA-Strängen (Interstrang-Quervernetzung), die zu DNA-Strangbrüchen führen, die DNA-Synthese unterbinden und zum Zelltod durch Apoptose oder Nekrose führen [23, 24].

Gemcitabin gehört zu den Deoxycytidin Analoga (Antimetabolite) und wirkt ebenfalls als Zytostatikum, indem es mittels eines Nukleosid-Transporters in die Zelle transloziert wird und über mehrere Phosphorylierungskaskaden in die aktive Form, das Gemcitabin-Triphosphat, umgewandelt wird, und so die DNA-Synthese durch Inkorporation in den DNA-Strang inhibiert [25].

Die zytotoxische Wirkung von Vinorelbin beruht auf seiner Bindung an das Protein Tubulin, den Grundbaustein der Mikrotubuli. Hierdurch wird einerseits die Polymerisation des Tubulins gehemmt, anderseits fördert es die Depolarisation bereits gebildeter Mikrotubuli. Es verhindert auf diese Weise den Aufbau und die Aufrechterhaltung eines funktionsfähigen Spindelapparates. Die sich teilenden Tumorzellen werden in der Metaphase blockiert und sterben schließlich in der Interphase oder während der darauf folgenden Mitose ab [26, 27].

Paclitaxel und Docetaxel gehören zu den Taxanen und binden ebenfalls kovalent an Tubulin (β-Untereinheit) und inhibieren dadurch den Abbau der Mikrotubuli und stören so die für den Zellstoffwechsel erforderliche Reorganisation dieser Strukturen, so dass die Zellteilung in der Metaphase arretiert wird [28].

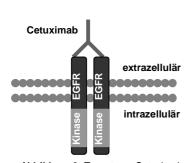
Das Ergebnis einer randomisierten Studie, in der die Anti-Tumorwirkung unterschiedlicher Kombinationen von Cisplatin/Paclitaxel mit der Anti-Tumorwirkung von Cisplatin/Gemcitabin oder Cisplatin/Docetaxel oder Carboplatin/Paclitaxel in 1.207 zufällig ausgewählten Patienten mit einem

fortgeschrittenen Nicht-kleinzelligen Bronchialkarzinom evaluiert wurde, zeigte bis auf eine verringerte Toxizität von Carboplatin/Paclitaxel keine signifikante Verbesserung der beobachteten Ansprechrate [29]. Da weitere klinische Studien mit Kombination der Taxane-basierten Therapie eine Ansprechrate von bis zu 32% sowie eine durchschnittliche Überlebensrate von bis zu 10,6 Monaten ergaben, zählt zur Zeit die Kombination aus Carboplatin bzw. Cisplatin und Paclitaxel zu der häufigsten angewendeten Erstlinientherapie in den USA [30-33].

weiteren klinischen Studien wird derzeit versucht die evaluierten Therapieergebnisse nach den histologischen Subgruppen zu stratifizieren. Ein Beispiel dafür zeigt die Studie von Scagliotti et al. 2008 in der das Ansprechen von Patienten mit fortgeschrittenen Nicht-kleinzelligen Bronchialkarzinomen auf Therapien mit Cisplatin/Gemcitiabin bzw. Cisplatin/Pemetrexed, einem Inhibitor der Purin- und Pyrimidin-Synthese, verglichen wurde. Es konnte keine Verbesserung der Tumor-Ansprechrate nach Cisplatin/Gemcitabin Behandlung für unterschiedliche Histologien gemessen werden. Dennoch konnte, anhand der Stratifizierung der histologischen Subgruppen, ein Anstieg des progressionsfreien Überlebens aller Patienten mit Nicht-Plattenepithelkarzinomen, im Gegensatz zu einer Verschlechterung der Überlebensrate von Patienten mit Plattenepithelarzinomen verzeichnet werden [34].

Auch weitere Studien, u.a. Scagliotti et al. 2008, brachten bisher keine befriedigenden Therapieerfolge. Auch konnte noch nicht geklärt werden, warum Kleinzellige Karzinome besser auf eine Therapie ansprechen als Nichtkleinzellige Karzinome. Ein weiteres, akutes Problem stellt die Limitations des Therapieerfolges aufgrund intrinsisch und erworbener Resistenzen dar. Daraus muss geschlossen werden, dass nur neue Therapiekonzepte zur Verbesserung der Behandlung des Bronchialkarzinoms beitragen können.

1.4.2. Zielgerichtete Therapien


Zusätzlich zu den klassischen, zytotoxischen Chemotherapien konnten in den letzten 10 Jahren anhand einer großen Anzahl wissenschaftlicher und klinischer Studien zielgerichtete Therapieansätze etabliert werden, die darauf ausgerichtet sind, in Nicht-kleinzelligen Bronchialkarzinomen, molekularen Aberrationen, z.B. das Wachstum, die Invasion, die Metastasierung sowie Angiogenese und Resistenz der Apoptose verändern, gezielt entgegen zu wirken. Aus diesem Grund werden derzeit Patienten auf eine Mutation des *EGFR* Gens, sowie auf eine mögliche Translokation des *EML4-ALK* Fusiongens (siehe unten) hin

untersucht und entsprechende zielgerichtete Therapien zur Behandlung fortgeschrittener Tumore sowie deren Metastasen eingesetzt.

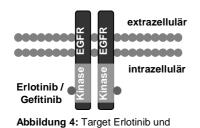
1.4.2.1. EGFR Inhibitoren

Der EGF-Rezeptor (EGFR: epidermal growth factor receptor) gehört zur Gruppe der transmembranen Proteine und ist maßgeblich an der Regulierung onkogener Prozesse, einschließlich Zellproliferation, Zellüberleben, Differenzierung, Neovaskularisierung, Invasion und Metastasierung, beteiligt [35]. Die Inhibierung des überaktiven EGF-Rezeptors hat sich bei zahlreichen soliden Tumoren als wirksamer Therapieansatz erwiesen. Zum Einsatz kommen monoklonale Antikörper wie Cetuximab, die an den Rezeptor binden und so die Bindung des Liganden kompetetiv verhindern, sowie *Tyrosinkinase* Inhibitoren wie Erlotinib oder Geftinib, die die *Tyrosinkinase* Aktivität in der Zelle unterbinden und dadurch, die durch den *EGFR* induzierten Signalkaskaden inhibieren.

1.4.2.1.1. Monoklonale Antikörper gegen EGFR

Abbildung 3: Target von Cetuximab.

Cetuximab (ICM-225, Erbitux[™]) ist ein chimerer monoklonaler Antikörper und bindet an die extrazelluläre Domäne III des EGFR. Diese Interaktion blockiert partiell die Liganden-Binde-Domäne und verhindert so die sterisch korrekte Konformationsänderung der Homo- bzw. Heterodimerisierung des Rezeptors [36].


Cetuximab weist bereits eine viel-versprechende Anti-Tumorwirkung auf, sowohl in der Monotherapie als auch in Kombination mit einer Chemo- bzw. Strahlentherapie in metastasierenden Kolorektalkarzinomen sowie in Hals- und Kopfkarzinomen [37]. Diesbezüglich evaluierte klinische eine (NCT00079066) in 572 Kolonkarzinom Patienten die Anti-Tumorwirkung von Cetuximab in Kombination einer Erstlinientherapie. Das Ergebnis zeigte eine verbesserte durchschnittliche Überlebensrate von 6,1 Monaten in den Cetuximab behandelten Patienten im Vergleich zur Kontrollgruppe mit 4,6 Monaten [38]. Gleichermaßen konnte in einer Studie der ECOG (eastern cooperative oncology group) in 117 Patienten mit fortgeschrittenen Hals-und Kopftumoren eine verbesserte Anti-Tumorwirkung in den Cetuximab behandelten Patienten verzeichnet werden. Das Ergebnis zeigte eine verbesserte durchschnittliche 4,2 Monaten im Vergleich zur progressionsfreie Überlebensrate von

Kontrollgruppe mit 2,6 Monaten und einer durchschnittlichen Überlebensrate von 9,2 Monaten zu 8,0 Monaten [39].

Auch wurde die Anti-Tumorwirkung von Cetuximab in fortgeschrittenen Nichtkleinzelligen Bronchialkarzinomen durch zahlreiche Studien belegt. Hierbei evaluierte eine erste Studie der Phase II der ECOP an 131 Patienten mit fortgeschrittenen Nicht-kleinzelligen Bronchialkarzinom die Kombination einer Erstlinientherapie (Cisplatin oder Carboplatin und Gemcitabin) mit und ohne konnten Cetuximab und eine Verbesserung der durchschnittlichen progressionsfreien Überlebensrate von 5,09 Monaten zu 4,21 Monaten und einer durchschnittlichen Überlebensrate von 11,99 Monaten zu 9,26 Monaten der Cetuximab-Gruppe im Vergleich zur Kontrollgruppe verzeichnen [40]. Eine weitere klinische Studie (LUCAS: lung cancer Cetuximab study) der Phase II, in der 86 Nicht-kleinzellige Bronchialkarzinom Patienten mit Cisplatin und Vinorelbin mit und ohne Cetuximab behandelt wurden, bestätigte ebenfalls eine verbesserte Ansprechrate von 35% des Cetuximab-Arms im Vergleich zu 28% der Kontrollgruppe [41]. Entgegen zu diesen Ergebnissen (einer verbesserten Ansprechrate von Cetuximab) sah die Phase III Studie (BMS099 Studie) sowie eine FLEX Studie (durchschnittliche progressionsfreie Überlebensrate von 4,40 Monaten zu 4,24 Monaten und eine durchschnittliche Überlebensrate von 9,69 Monaten zu 8,38 Monaten) keine Verbesserung [42, 43]. Ein Bericht einer retrospektiven Analyse der FLEX-Daten, wonach die Überlebensrate bei Patienten mit erhöhter EGFR Expression durch Cetuximab verbessert wurde (von 9,6 auf 12 Monate) [44], konnte durch eine Meta-Analyse mit vier implizierten klinischen Studien nicht bestätigt werden [45-48].

Derzeit wird in weiteren klinischen Studien die Effizienz von Cetuximab mit anderen Behandlungsmöglichkeiten und in Kombinationen mit unterschiedlichen Tyrosinkinase Inhibitoren evaluiert, um einen prädiktiven bzw. prognostischen Biomarker zu definieren, der das patientenspezifische Ansprechen weiter klassifiziert.

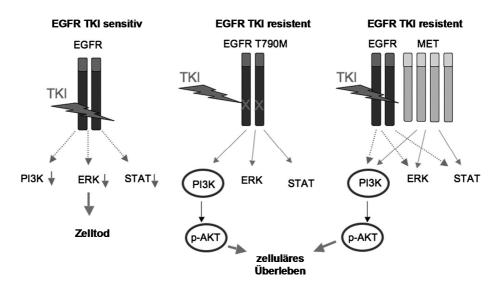
1.4.2.1.2. Tyrosinkinase Inhibitoren gegen EGFR

EGFR Tyrosinkinase Inhibitoren (TKI) sind kleine Moleküle, die oral verabreicht werden und unterschieden werden in reversible (Gefitinib und Erlotinib) und nicht-reversible (Afatinib) Inhibitoren. Sie binden an die intrazelluläre

Domäne des EGF-Rezeptors. Diese Wirkstoffe inhibieren die Phosphorylierung und damit die *Tyrosinkinase* Aktivität der intrazellulären Adenosin-Triphophate (ATP) – Bindedomäne des *EGFR* durch kompetitive Blockierung dieser Position (EGFR TKI) und werden derzeit bei Patienten mit fortgeschrittenen Nichtkleinzelligen Bronchialkarzinomen und bei Pankreaskarzinomen eingesetzt. Sie werden u. a. analysiert, um einen epidemiologischen Unterschied für das Ansprechen auf Erlotinib zu identifizieren. Zusätzlich wird gezielt das Ansprechen bei Vorliegen aktivierender *EGFR* Mutationen untersucht, um die Patienten nach ihrem Mutationsstatus klassifizieren zu können. Generell konnte in Patienten mit aktivierenden *EGFR* Mutationen (vorwiegend die Exons 18-21 der *Tyrosinkinase* Domäne betreffend) eine gute Ansprechrate der zielgerichteten EGFR TKI verzeichnet werden.

Eine retrospektive Analyse bestätigte eine signifikante Verbesserung der Ansprechrate gegenüber EGFR TKI in Patienten mit einer EGFR Mutation [49]. Wie bereits erwähnt wurde Erlotinib in ersten Studien in unselektionierten Patienten mit fortgeschrittenen Nicht-kleinzellingen Karzinomen erprobt, eine folgende Stratifizierung der Patienten nach einer vorhandenen EGFR Mutation ergab eine Ansprechrate von 81% der Patienten mit einer EGFR Mutation im Vergleich zu 10% in Patienten, die keine Mutationen aufwiesen [50, 51]. Eine erste klinische Studie der Phase III (OPTIMAL) evaluierte die Wirkung von Erlotinib in Kombination mit Carboplatin oder Gemcitabin in Patienten asiatischer Herkunft mit einem fortgeschrittenen Nicht-kleinzelligen Karzinom und mit einer aktivierenden EGFR Mutation. Diese Studie zeigte eine maßgebliche Verbesserung der progressionsfreien Überlebensrate von 13,1 Monaten mit Erlotinib zu 4,6 Monaten ohne Erlotinib [52]. Eine randomisierte Studie (EUTRAC) innerhalb einer westeuropäischen Population mit Patienten, die eine aktivierende Mutation des EGFR Gens aufwiesen, ergab ebenfalls eine verbesserte progressionsfreie Überlebensrate von 9,7 Monaten bei Behandlung mit einer Platinum-basierten Chemotherapie kombiniert mit Erlotinib im Vergleich zu 5,2 Monaten ohne Erlotinib [53].

Die Anti-Tumorwirkung von Gefitinib wurde in zwei umfangreichen klinischen Phase III Studien evaluiert. Innerhalb der IPASS Studie wurde die Effizienz von Gefitinib in Kombination mit Carboplatin und Paclitaxel in Patienten mit fortgeschrittenen pulmonalen Adenokarzinom, mit einem Nicht-Raucher Status evaluiert. Das Ergebnis ergab eine nicht signifikante Verbesserung der Überlebensrate sowohl in Patienten mit einer *EGFR* Mutation als auch in


Patienten mit keiner *EGFR* Mutation. Dennoch konnte anhand der Stratifizierung der *EGFR* Mutationen eine signifikant längere progressionsfreie Überlebensrate von 58,9% in Patienten verzeichnet werden, die sowohl eine Amplifikation als auch eine Mutation im *EGFR* Gen aufwiesen. Nur 44,8% wurde in Patienten erreicht, deren *EGFR* ausschließlich eine Amplifikation ohne begleitende Mutation enthielten [54]. Diese Ergebnisse konnten in einer zweiten klinischen Phase III Studie (UMIN-CTR C00000376) bestätigt werden [55].

Basierend auf diesen Ergebnissen empfiehlt die amerikanische Gesellschaft der klinischen Onkologie (*American Society of Clinical Oncology*) Patienten mit fortgeschrittenem Nicht-kleinzelligem Bronchialkarzinom auf eine *EGFR* Mutation hin zu testen und stimmt einer Erstlinientherapie mit *Tyrosinkinase* Inhibitoren zu.

1.4.2.1.3. Erworbene Resistenzen gegenüber EGFR Inhibitoren

Trotz der signifikanten Verbesserung der Anti-Tumorwirkung durch die EGFR zielgerichteten Therapien konnten sekundär erworbene Mutationen nach einer derartigen Therapie identifiziert werden, die langfristig den Therapieerfolg limitieren (Abbildung 5). Hierzu gehört zum einen die sekundär erworbene Punktmutation p.T790M des *EGFR* Gens, die zu einer konstitutiven Phosphorylierung führt, und die inhibitorische Wirkung von Erlotinib und Gefitinib reduziert, zum anderen eine sekundär erworbene Erhöhung der Kopienzahl des *MET* (*hepatocyte growth factor receptor*) Gens, die zu einer konstitutiven Aktivität untergeordneter Signalkaskaden führt [56, 57].

Die Feststellung von erworbenen Resistenzen gegenüber EGFR TKI veranlasste die Entwicklung von EGFR TKI der zweiten Generationen wie Neratinib, Afatinib und Dacomtinib, die kovalent und irreversibel die intrazelluläre *Tyrosinkinase* Domäne des *EGFR* binden und zusätzlich weitere Mitglieder der ErbB Kinase inhibieren [58]. Weiterhin wird derzeit eine dritte Generation der EGFR TKI klinisch evaluiert. Diese Wirkstoffe binden kovalent das ATP Bindemotiv im mutierten *EGFR* und weisen in ersten Analysen eine selektive Aktivität gegenüber der sekundär aufgetretenen *EGFR* Mutation (p.T790M) auf [59].

Abbildung 5: Molekulare Mechanismen, die der erworbenen Resistenz von EGFR *Tyrosinkinase* Inhibitoren zu Grunde liegen. Zwei unterschiedliche Mechanismen erworbener Resistenzen einer EGFR TKI Behandlung wurden in Nicht-kleinzelligen Bronchialkarzinomen identifiziert. Ein Mechanismus (Mitte) resultiert aus dem Erwerb einer sekundären Punktmutation p.T790M des *EGFR* Gens innerhalb der *Kinase* Domäne. Der zweite Mechanismus (rechts) umfasst den Erwerb einer *MET* Amplifikation. Modifiziert nach [35].

1.4.2.2. EML4-ALK Inhibitoren

Im Jahr 2007 veröffentlichte eine japanische Arbeitsgruppe um Soda et al. die Identifizierung eines onkogenen Fusionsgens (EML4-ALK) in Nicht-kleinzelligen Bronchialkarzinomen [60]. Diese Translokation zwischen dem 5'-Ende des EML4 Gens (echinoderm microtubulus-associated protein like 4) und dem 3'-Bereich des ALK Gens (anaplastic lymphoma kinase) tritt mit einer Inzidenz von 2-7% vorwiegend in Adenokarzinomen auf und wird mit einem Nicht-Raucherstatus assoziiert [61]. Eine erste klinische Studie der Phase I (NCT00585195) erzielte unter Verwendung des ALK Inhibitors Crizotinib in Patienten mit Nichtkleinzelligen Karzinomen mit einer EML4-ALK Translokation eine deutlich verbesserte Ansprechrate von 57% im Gegensatz zu 33% [62]. Eine retrospektive Analyse offenbarte eindrucksvoll eine 1-Jahres Überlebensrate von 74% und 2-Jahres Überlebensrate von 54% in 82% ALK-positiver Patienten (einschließlich Patienten mit vorausgegangener Therapie) nach der Behandlung mit Crizotinib [63]. Derzeit wird die Anti-Tumorwirkung neu entwickelter ALKbzw. EGFR Inhibitoren in der Klinik erprobt und maßgeblich nach den Mutationsprofilen der Patienten (ALK Translokation, EGFR Mutationen) evaluiert. Außerdem wird die Untersuchung der Wirkung auf weitere Tumorentitäten ausgedehnt.

1.5. Molekulargenetik des Bronchialkarzinoms

Das Bronchialkarzinom zeichnet sich durch seine Komplexität und Heterogenität der molekularbiologischen Prozesse aus, die mit einer großen Anzahl genetischer und epigenetischer Veränderungen einhergehen, und die vermehrt das Potential aufweisen, für die Diagnose, Prognose und auch Therapie entscheidend sein. Ein verbessertes Verständnis zu biochemischen Signaltransduktionen, die in der molekularen Pathogenese des Bronchialkarzinoms ermöglicht involviert sind, die Entwicklung von Behandlungsstrategien, die zielgerichtet auf molekulare Veränderungen und deren untergeordnete aktivierende Signalwege wirken. Das progressive Tumorwachstum unterliegt maßgeblich der Aktivierung wachstumsfördernder der Signaltransduktionen (Onkogene) sowie Reprimierung wachstumsinhibitorischer Signaltransduktionen (Tumorsuppressorgene (TGS)). Diesbezüglich konnten in der Vergangenheit bereits eine große Anzahl von Onkogenen wie KRAS, EGFR, BRAF, MEK-1, Her2, MET, ALK und RET sowie Tumorsuppressorgene wie TP53, RB, PTEN und STK11, die der Tumorgenese des Bronchialkarzinoms zugrunde liegen, identifiziert werden [64]. In der folgenden Tabelle wurden die am häufigsten auftretenden Gene und deren durchschnittliche Mutationsfrequenz im Bronchialkarzinom zusammengefasst (Tabelle 3).

Tabelle 3: Übersicht der am häufigsten betroffenen Gene mit deren Mutationen im Bronchialkarzinom.

Gen	Kleinzelliges Bronch	nialkarzinom [%]	Nicht-kleinzelliges Bronchialkarzinom [%]		
·			Alle	Adenokarzinom	Plattenepithelkarzinom
Onkogene '	Veränderungen				
Mutationen					
BRAF	sel	ten	1-3	1-5	selten
EGFR	sel	ten	~20	10-40	selten
ErbB2 (HER	(2) sel	ten	2	4	selten
KRAS	sel	ten	10-30	15-35	< 5
MET	1	3	21	14	12
PIK3CA	sel	ten	1-5	< 5	< 5
Amplifikatio	nen				
EGFR	sel	ten	20-30	15	30
ErbB2 (HER	22) 5-	30	2-23	6	2
MDM2			6-24	14	22
MET			7-21	20	21
MYC	18-	-30	8-22		
NKX2-1 (TI	ΓF1) sel	ten	12-30	10-15	3-15
PIK3CA	~	5	9-17	6	33-36
erhöhte Pro	teinexpression				
CRK			8-30	8-30	
BCL2	75	-95	10-35		

Gen Kleinzelliges Bronchialkarzinom [%]			Nicht-kleinzelliges Bronchialkarzinom [%]			
			Alle	Adenokarzinom	Plattenepithelkarzinom	
CCND1		0	43	35-55	30-35	
CD44	:	selten	häufig	3	48	
c-KIT		46-91	selten			
EGFR	:	selten	50-90	40-65	60-85	
ErbB2 (HER2)	< 10	20-35	16-38	6-16	
MYC		10-45	< 10			
PDGFRA		65	2-100	100	89	
Tumorsuppri	mierende Verände	rungen				
Mutationen						
CDKN2A (p16	5) <	1	10-40			
LKB1	se	lten	30-40	30-60	5-30	
TP53	75	-90	50-60	50-70	60-70	
PTEN	15	-20	< 10			
RB	80-	100	20-40			
Deletionen / L	.OH					
CDKN2A (p16	3)	37	75-80			
FHIT	1	00	55-75			
TP53	86	-93	74-86			
RB	g	93	62			
reduzierte Pro	oteinexpression					
CAV1	g	95	24			
CDKN2A (p14	IARF) 6	55	40-50			
CDKN2A (p16	3-	37	30-79	~55	60-75	
FHIT	80	-95	40-70			
PTEN			25-74	77	70	
RB	g	00	15-60	23-57	6-14	
TUSC2 (FUS	1) 1	00	82	79	87	

Abkürzungen: BRAF: v-raf murine sarcoma viral oncogene homolog B; EGFR: epidermal growth factor receptor; ErbB2: v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2; KRAS: Kirsten rat sarcoma viral oncogene homolog; MET: met proto-oncogene; PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha; MDM2: MDM2 oncogene, E3 ubiquitin protein ligase; MYC: v-myc avian myelocytomatosis viral oncogene homolog; NKX2.1: NK2 homeobox 1; CRK: v-crk avian sarcoma virus CT10 oncogene homolog; BCL2: B-cell CLL/lymphoma 2; CCND1: cyclin D1; CD44: CD44 molecule; c-KIT: v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog; PDGFRA: platelet-derived growth factor receptor, alpha polypeptide; CDKN2A: cyclin-dependent kinase inhibitor 2A; LKB1: serine/threonine kinase 11; FHIT: fragile histidine triad; CAV1: caveolin 1; TUSC2: tumor suppressor candidate 2

1.5.1. Aktivierung von Onkogenen

Mechanismen, die mit einer Aktivierung wachstumsfördernder Onkogene einhergehen, umfassen chromosomale Aberrationen wie Amplifikationen, Deletionen und strukturelle Varianten, die zu pathologischen Fusionen zweier Gene führen können, oder andere genetische Veränderungen, wie z.B. aktivierende Punktmutationen. Sie können zu unkontrollierten und konstitutiv aktivierenden Signaltransduktionen führen, die wachstumsregulatorische biologische Prozesse steuern und werden derzeit vielfältig für zielgerichtete Therapieansätze evaluiert [50, 65].

1.5.1.1. Aktivierende Mutationen des Onkogens KRAS

Aktivierende Mutationen des Onkogens *KRAS* zählen zu den am häufigsten betroffenen onkogenen Veränderungen und wurden bisher mit einer Häufigkeit von 25-40% in Adenokarzinomen beschrieben [66-68]. Untersuchungen zeigten, dass *KRAS* Mutationen vorwiegend in der westlichen Population auftreten, mehr Männer als Frauen betroffen sind, und mit einem aktiven Tabakkonsum assoziiert sind [66, 67, 69]. Die Mutationsrate von Nicht-Rauchern mit einem Adenokarzinom liegt bei 0-15% [70, 71]. *KRAS* Mutationen wurden bisher nur sehr selten in den Subgruppen des Nicht-kleinzelligen Bronchialkarzinoms wie Plattenepithelkarzinomen oder Großzelligen Bronchialkarzinomen identifiziert [72, 73]. Eine kürzlich erschienene, umfangreiche genomische Studie von 188 Plattenepithelkarzinomen identifizierte nur in einem Tumor eine *KRAS* Mutation [74].

KRAS gehört zu den RAS Protoonkogenen und kodiert ein G-Protein, das maßgeblich an der Kontrolle von Signaltransduktionen beteiligt ist, und somit zur Regulierung biologischer Prozesse wie Proliferation, Differenzierung und Zellüberleben beiträgt [75]. Die Aktivierung des Ras-GDP (Guanosin-Diphosphat) zu Ras-GTP (Guanosin-Triphosphat) induziert die Aktivierung untergeordneter Signaltransduktionsketten, einschließlich der Mitogen aktivierenden Proteinkinase MAPK (RAS/RAF/MEK/MAPK)- Transduktion, sowie die PI3K (PI3K/AKT/mammalian target of Rapamycin (mTOR)- Transduktionen [76]. In einer im Jahr 2008 veröffentlichten Studie wurde die RAS/RAF/MEK/MAPK-Signalkaskade mit mindestens einer Mutation in einem der involvierten Gene in 132 von 188 Adenokarzinomen identifiziert, von denen KRAS die höchste Mutationsfrequenz aufwies [66]. Die KRAS Mutationen des Adenokarzinoms resultieren hauptsächlich in eine Aminosäuresubstitution des Kodons 12 (14,17). In Tabakkonsumenten sind die KRAS Mutationen signifikant häufiger durch G>T Transversionen (~84%) gekennzeichnet als in Nicht-Raucher mit vorwiegend G>A Transitionen [70].

Interessanterweise zeigten die Daten der BATTLE Studie (*Prospective Phase II Biomarker-integrated Approaches of Target Therapy for Lung Cancer Elimination*) von 2012 ein kürzeres progressionsfreies Überleben in Patienten mit der aktivierenden Aminosäuresubstitution p.G12C oder p.G12V im Vergleich zu Patienten mit anderen *KRAS* Mutationen oder mit dem Wildtyp *KRAS* [77]. Weiterhin konnte, mit einer Ausnahme einer Studie (67), Hinweise erbracht werden, dass auftretende *KRAS* Mutationen nicht mit *EGFR* Mutationen

assoziiert sind [66, 68, 69]. *KRAS* Mutationen gehen mit einer Resistenz gegenüber EGFR Inhibitoren einher, da aktivierende Mutationen zu einer konstitutiven Aktivierung der Signalkaskaden, unterhalb des *EGFR*, führen [78]. Die Ergebnisse implizieren eine essentielle klinische Relevanz des konstitutiv aktivierenden KRAS Proteins und sollten hinsichtlich einer zielgerichteten Therapie evaluiert werden.

1.5.1.2. Genetische Veränderungen des Onkogens EGFR

Genetische Veränderungen des *EGFR* Gens zeigen einen Einfluss auf die Pathogenese vieler maligner Tumore einschließlich des Nicht-kleinzelligen Bronchialkarzinoms. Der EGF-Rezeptor gehört zur Gruppe der transmembranen Proteine und hat vier unterschiedliche Mitglieder: EGFR (Her1 oder ErbB1), HER2 (ErbB2), HER3 (ErbB3) und HER4 (ErbB4), die alle durch eine extrazelluläre Liganden-Binde-Domäne und eine intrazelluläre Komponente, einschließlich der *Tyrosinkinase* Domäne, charakterisiert sind [79]. Durch die Bindung des Liganden *EGF* (*epidermal growth factor*) kommt es zur Homo-bzw. Heterodimerisierung mit anderen Mitgliedern der *EGFR* Familie und die *Tyrosinkinase* Domäne wird aktiviert. Die Aktivierung des Rezeptors resultiert in einer Aktivierung untergeordneter Signalwege wie die RAS/RAF/MEK/MAPK-, PI3K/AKT/mTOR- und JAK/STAT- Signalkaskaden. Der *EGFR* hat eine regulatorische Funktion auf onkogene Prozesse wie Proliferation, Zellüberleben, Differenzierung, Neovaskularisierung, Invasion und Metastasierung [80, 81].

Aktivierende *EGFR* Mutationen zeigen eine Mutationsrate von 10-15% in unselektionierten kaukasischen Patienten im Vergleich zu 30-40% innerhalb der asiatischen Population. Zudem wurden aktivierende *EGFR* Mutationen vorwiegend in Adenokarzinomen nachgewiesen und nur sehr selten in Plattenepithelkarzinomen [82, 83]. Dies bestätigte auch die Mutationsanalyse des *Cancer Genome Atlas Research Network* von 188 Plattenepithelkarzinomen, die nur in zwei Patienten eine p.L861G Mutation beschreibt [74]. Während aktivierende Punktmutationen vorwiegend in Adenokarzinomen auftreten, wurden eine *EGFR* Amplifikation und eine erhöhte Protein Expression häufiger mit Plattenepithelkarzinomen assoziiert [84]. Weiterhin konnte nachgewiesen werden, dass *EGFR* Mutationen vermehrt in Frauen, jüngeren Patienten und überwiegend in Nicht-Rauchern vorkommen [66, 69, 83, 85, 86].

Generell wurden *EGFR* Mutationen in Nicht-kleinzelligen Bronchialkarzinomen vermehrt in den ersten vier Exons der intrazellulären *Tyrosinkinase* Domäne identifiziert. Die am häufigsten auftretende Mutation ist eine Deletion innerhalb

des Leserasters des Exon 19 (~45%) mit über 20 Varianten und die häufigste p.delE746-A750 umfasst. Die zweithäufigste EGFR Mutation ist eine Punktmutation (~40%) Exon p.L858R in 21. Eine Analyse des Mutationsspektrums von 204 Patienten mit Adenokarzinom ergab Mutationsfrequenz der Deletion des Exons 19 in 14% der Kohorte und der prominenten p.L858R Substitution in 29% der Fälle [68]. Weitere zahlreiche EGFR Mutationen mit einer geringerer Prävalenz sind häufig mit einer Resistenz gegenüber EGFR Tyrosinkinase Inhibitoren assoziiert [69, 87].

Zudem sind sekundär auftretende *EGFR* Mutationen identifiziert worden, die nach einer EGFR spezifischen Therapie auftreten und mit einer erworbenen Resistenz einhergehen. Diesbezüglich wurde in über 50% der Patienten mit einer erworbenen Resistenz eine aktivierende *EGFR* Mutation innerhalb des Exons 20 (p.T790M) detektiert, die die Bindung der reversiblen *Tyrosinkinase* Inhibitoren beeinflusst [88, 89]. Auch eine Amplifikation des *MET* Gens konnte als weiterer Resistenzmechanismus identifiziert werden, der aufgrund der Aktivierung nachgeschalteter Signalkaskaden zu einer Resistenz gegenüber *Tyrosinkinase* Inhibitoren führt [90].

Das Protoonkogen *MET* (*HGFR: hepatocyte growth factor receptor*) kodiert ebenfalls für einen membrangebundenen *Tyrosinkinase* Rezeptor und wird durch seinen Liganden *HGF* (*hepatocyte growth factor*) aktiviert. Er führt so zur Rezeptor-Homodimerisierung und zur Aktivierung untergeordneter Signalwege wie der RAS/RAF/MEK/MAPK-, PI3K/AKT- und s-SRC-Kinase- Signalkaskaden [91]. In einer im Jahr 2008 veröffentlichten Studie wurde in 21% der untersuchten Patienten eine Amplifikation von *MET* detektiert, und es konnte bereits gezeigt werden, dass diese *MET* Amplifikationen häufiger mit Plattenepithelkarzinomen als mit Adenokarzinomen und mit einer *KRAS* Mutation assoziiert werden [92-94].

1.5.1.3. Aktivierung des Fusiongens EML4-ALK

Wie bereits erwähnt, wurde im Jahr 2007 das Fusionsgen *EML4-ALK* identifiziert, das aus einer Fusion des Intron 19 der intrazellulären *Kinase* Domäne des *ALK* Gens mit dem aminoterminalen Ende des *EML4* Gens, vorwiegend des Intron 13 hervorging [60]. Es sind unterschiedliche Varianten der *EML4-ALK* Translokation beschrieben worden, häufig bestehend aus den Exons 1-13 des *EML4* Gens gekoppelt mit den Exons 20-29 des *ALK* Gens, die sich in der Länge des *EML4* Gens unterscheiden [95-97]. *ALK* Reorganisationen treten durchschnittlich in 4% der Nicht-kleinzelligen Bronchialkarzinomen auf und werden vorwiegend mit

Adenokarzinomen, jüngeren Patienten und einem Nicht-Raucherstatus bzw. mit einem geringen Tabakkonsum assoziiert [61, 96, 98-100]. Zudem konnte keine Assoziation mit auftretenden *EGFR* sowie *KRAS* Mutationen festgestellt werden [68, 98-100]. In funktionellen Analysen konnte eine konstitutive Aktivität des Fusiongens *EML4-ALK* nachgewiesen werden, die mit einer vermehrten Zellproliferation, vermittelt durch die Aktivierung der RAS/RAF/MAPK1-, PI3K/AKT- und JAK-STAT3- Signalkaskaden, sowie der Inhibition der Apoptose einhergeht [97, 101]. In Mausmodellen zeigt die Expression des *EML4-ALK* Fusiongens die Entwicklung multipler Adenokarzinome, die gegenüber ALK Inhibitoren sensitiv reagieren [102]. Der ALK Inhibitor Crizotinib spricht gut auf Adenokarzinomen mit einer *EML4-ALK* Translokationan, wobei sekundär auftretende Mutationen des *ALK* Gens, wenn sie zu einer Aktivierung des EGFR-Signalwegs führen, mit einer Inhibitor-Resistenz einhergehen [95, 103].

1.5.1.4. Weitere Onkogene mit einer geringen Mutationsfrequenz

Weitere Onkogene, in denen Mutationen mit einer geringen Frequenz in Nicht-kleinzelligen Bronchialkarzinomen identifiziert wurden, sind *BRAF*, *MEK*, *HER2*, *ROS1* und *RET*, sowie die Onkogene *FGFR1* und *DDR2*, die hauptsächlich in Kleinzelligen Bronchialkarzinomen auftreten [64, 104]. Das *BRAF* Gen kodiert für eine *Serin-Threonin Proteinkinase*, das die MAPK-Signaltransduktion aktiviert, und so an der Regulation proliferationsfördernder Mechanismen beteiligt ist. Aktivierende Mutationen des *BRAF* Gens befinden sich häufig in der *Kinase* Domäne bzw. der G-Schleife der *Kinase* Domäne und treten mit einer Inzidenz von etwa 3% vorwiegend in Adenokarzinomen auf. [67, 105-108].

Das Onkogen *MEK* (auch als *MAPK1* bekannt) kodiert ebenfalls für eine *Serin-Threonin Kinase*, die *MAPK2* und *MAPK3* unterhalb von *BRAF* aktiviert [75]. Innerhalb einer Studie von 107 Adenokarzinomen wurden zwei somatische Mutation des *MEK* Gens beschrieben. Diese Mutationen sind in Exon 2 lokalisiert, also nicht in der *Kinase* Domäne des Proteins und stellen somit eine sehr seltene Form des Bronchialkarzinoms dar [109]. Aktivierende Mutationen des *HER2* Gens (ErbB2), das für eine membrangebundene Rezeptor *Tyrosinkinase* kodiert und zur Familie der ErbB-Rezeptoren gehört, wurden in einer kleinen Population (~4%) von Bronchialkarzinomen identifiziert, von denen etwa 20% mit einer erhöhten Proteinexpression einhergehen und durchschnittlich 1,6-4% durch eine aktivierende Mutation bedingt sind [110-113]. Aktivierende Mutationen sind vorwiegend kleine Insertionen zwischen 3 und 12 Basenpaaren im Exon 20 [111]. In einigen Untersuchungen ist eine Mutation des *HER2* Gens

mit dem weiblichen Geschlecht, asiatischer Ethnizität und mit einem Nicht-Raucherstatus assoziiert. Zudem wurden diese Mutationen vorwiegend in Adenokarzinomen, die keine Mutation des *EGFR* bzw. *KRAS* Gens besitzen, identifiziert [111-113].

Weiterhin wurden in groß angelegten Studien Reorganisiationen des *ROS1* (*c-ros oncogene, receptor tyrosine kinase*) Gens gefunden [114]. Interessanterweise scheinen *ROS1* Reorganisationen, ähnlich den *ALK* Translokationen, vorwiegend mit jungen Frauen asiatischer Herkunft und mit Nicht-Rauchern assoziiert zu sein und mit einer Sensitivität gegenüber Kinase Inhibitoren (ALK/MET) einherzugehen [114].

Veränderungen der Rezeptor *Tyrosinkinase RET* (*ret prot-oncogene*) wurden erstmals in papillären und medullären Schilddrüsenkarzinomen gefunden [115]. Vor kurzem wurden aktivierende *RET* Reorganisationen in einer kleinen Anzahl von Bronchialkarzinomen, die mit einer Inzidenz von 1-2% vorwiegend in Adenokarzinomen auftreten, identifiziert [116-118]. Durch die Translokation wird die funktionelle *RET Kinase* Domäne von Exon 12-20 mit *KIF5B* (*kinesin family 5B gene*) fusioniert [116, 117]. Einige *Kinase* Inhibitoren mit einem breitem Spektrum zeigten in ersten *in vitro* Analysen eine sehr effektive Wirkung beim Vorliegen von *RET*-Fusionsgenen [117, 118].

1.5.2. Inaktivierung von Tumorsuppressorgenen

Tumorsuppressorgene fungieren als negative Regulatoren gegen eine überschießende Proliferation. Defekte innerhalb dieser Tumorsuppressorgene sind maßgeblich an der Tumorprogression beteiligt [119]. Innerhalb des Bronchialkarzinoms konnten folgende häufig auftretende Tumorsuppressorgene identifiziert werden: *TP53*, *RB1*, *STK11*, *CDKNA2*, *FHIT*, *RASSF1A*, *PTEN*, *NF1* und *ATM* [66, 120].

1.5.2.1. Inaktivierung des Tumorsuppressorgens TP53

Die Inaktivierung des Tumorsuppressorgens *TP53*, bedingt durch eine hemizygoten Deletion auf Chromosom 17p13, gehört zu den häufigsten genetischen Veränderungen des Bronchialkarzinoms und tritt mit einer Inzidenz von 90% in Kleinzelligen Karzinomen und zu 65% in Nicht-kleinzelligen Karzinomen auf [121]. *TP53* kodiert für ein nukleäres Phosphoprotein, das an die DNA binden kann und als Transkriptionsfaktor fungiert, und somit maßgeblich an der Regulation von Zellzyklus-regulatorischen Genen beteiligt ist [121]. Die meisten Mutationen des *TP53* Gens sind Punktmutationen innerhalb der DNA-

Binde-Domäne [122]. In Rauchern ist das Mutationsspektrum signifikant häufiger durch G>T Transversionen gekennzeichnet, wohingegen Nicht-Raucher vorwiegend G>A Transitionen der *TP53* Mutationen aufweisen [123, 124]. Genetische Veränderungen des *TP53* Gens korrelieren mit auftretenden aktivierenden Mutationen des *EGFR* und *KRAS* Gens und wurden bereits ebenfalls mit Therapieresistenzen in Verbindung gebracht [85, 125].

Ein weiterer wichtiger Signalweg zur Regulation des Zellzyklus ist der p16^{INK4a}-RB-Signalweg, der an der Transition von der G1- zur S-Phase beteiligt ist. RB1 reguliert die G1/S Transition durch die Bindung des Transkriptionsfaktor E2F1 [126]. Inaktivierende Mutationen des RB1 Gens treten vorwiegend in Kleinzelligen Bronchialkarzinomen (über 90%) auf, wohingegen die Mutationsfrequenz zwischen 10-15% in Nicht-kleinzelligen Karzinomen liegt [64]. In Nicht-kleinzelligen Bronchialkarzinomen ist dieser Signalweg vorwiegend durch genetische Veränderungen des Zyklins D1, CDK4 und des Zyklin abhängigen Kinase Inhibitors p16 (CDKN2A) betroffen [120]. P16 INK4a ist inaktiv in über 80% von Patienten mit Nicht-kleinzelligen Bronchialkarzinomen [127, 128] und ist in 72% der Plattenepithelkarzinome verändert. Es wird vorwiegend durch homozygote Deletionen, Methylierung oder Mutationen inaktiviert, wie es u. a. im Rahmen des TCGA-Projektes (The Cancer Genome Atlas) dargestellt wurde [74]. Zusätzlich konnte ein Anstieg des Zyklins D1 durch eine Genamplifikation oder andere Mechanismen in über 40% der Nicht-kleinzelligen Bronchialkarzinomen identifiziert werden [127].

Zusammenfassend kann man sagen, dass eine hohe Diversität und eine damit verbundene hohe Anzahl unterschiedlicher genetischer Aberrationen dem Bronchialkarzinom zu Grunde liegen. Bronchialkarzinome weisen im Vergleich zu anderen Tumorentitäten die höchste Mutationsfrequenz mit durchschnittlich 17,7 Mutationen pro Megabase DNA auf [129, 130]. Die große Herausforderung der derzeitigen Forschung besteht nun darin, die jenigen Mutationen zu identifizieren, die für die Pathogenese der Bronchialkarzinome eine ursächliche Rolle spielen. Andere Mutationen, die zufällig auftreten, könnten dann ggf. für die Diagnostik und Therapie vernachlässigt werden. Die große Anzahl an unterschiedlichen die Mutationen unterstreicht Heterogenitiät und Komplexität Bronchialkarzinoms und stellt eine große Herausforderung für die stratifizierte personalisierte Medizin dar.

1.5.3. Angiogenese und die Tumor(mikro)umgebung

Angiogenese ist eines der Hauptmerkmale der Tumorbiologie (Anschnitt 1.1.). Diesbezüglich wurden einige angiogenetische Proteine einschließlich VEGF, PDGF, FGF und IL-8 identifiziert, die maßgeblich an diesem Prozess beteiligt sind. VEGF ist wichtig für die Induktion der Angiogenese. Die für die biologischen Prozesse erforderlichen Signalkaskaden werden durch Hypoxie, Wachstumsfaktoren, Zytokine oder weitere onkogene Aktivierung eingeleitet [131]. Sowohl in Nicht-kleinzelligenals in Kleinzelligen auch Bronchialkarzinomen konnte eine erhöhte VEGF Proteinmenge nachgewiesen werden, was, im Falle von Nicht-kleinzelligen Bronchialkarzinomen in eine resultierte [132]. schlechtere Prognose Die Inhibierung der VEGF-Signalkaskaden stellt einen wichtigen Ansatz der zielgerichteten Therapie dar. Derzeit werden zwei zielgerichtete Therapieansätze zur Inhibierung des VEGFR in klinischen Studien evaluiert. Zum einen Bevacizumab, ein humanisierter, monoklonaler Antikörper, der die Ligand-Rezeptor Bindung inhibiert, und zum anderen ein Tyrosinkinase Inhibitor (ZD6474), der an die intrazelluläre Domäne des Rezeptors bindet [133].

Die Modulation entscheidender Biomarker könnte die derzeitige Behandlung von Bronchialkarzinomen verbessern. Zum Beispiel ist Hypoxie assoziiert mit einem erhöhten Metastasen Risiko sowie erhöhten Resistenz gegenüber einer Strahlentherapie und möglicherweise auch einer Chemotherapie. Die Inhibition des unter Hypoxiestress aktivierten Transkriptionsfaktor *HIF1α* oder *VEGFR*, ein Target von *HIF1α*, kann die Sensitivität gegenüber einer Strahlentherapie erhöhen [134, 135].

1.6. Genetische Prädisposition für das Bronchialkarzinom

Epidemiologische Studien zeigten eine Assoziation zwischen dem Familienstammbaum und einem erhöhten Risiko für Bronchialkarzinom. Es wurde eine genetische Prädisposition postuliert, die bedingt ist, durch selten auftretende Keimbahnmutationen in den Tumorsuppressorgenen *TP53* und *RB1* sowie auch im Onkogen *EGFR* [136-138]. Im Jahr 2008 identifizierten drei unabhängige genomweite Assoziationsstudien (*GWAS*) eine Assoziation zwischen auftretenden Einzelnukleotidvarianten (SNVs) auf Chromosom 15q24-q25.1 und einem erhöhten nikotinabhängigen Bronchialkarzinom-Risiko [139-141]. Dieser Lokus umfasst Gene, die für die Untereinheiten (*CHRNA5*, *CHNRA3* und *CHRNB4*) des Nikotin-Acetylcholin Rezeptors (*nAChR*) kodieren. In zwei

weiteren Meta-Analysen wurden Varianten auf den Chromosomen 15q25.1, 5p15.33 und 6p21.33 ebenfalls mit einem erhöhten Risiko in Zusammenhang gebracht [142, 143]. Eine weitere genomweite Kopplungsanalyse des *Genetic Epidemiology of Lung Cancer Consortiums* (*GELCC*) lokalisierte eine familiäre Suszeptibilität zu dem Lokus 6q23-25 [144, 145]. Innerhalb dieses Lokus wurde das G-Protein *RGS17* identifiziert. Häufig wiederkehrende Varianten werden mit familiären aber nicht mit sporadisch auftretenden Bronchialkarzinomen assoziiert [146].

1.7. Hochdurchsatz-Sequenzierungs-Technologien

In den letzten Jahren wurden innovative Verfahren der Hochdurchsatz-Sequenzierung entwickelt, die unter dem Begriff *Next Generation Sequencing* (NGS) zusammengefasst werden. Diese neuen Technologie-Plattformen beruhen auf der Idee der massiven parallelen Sequenzierung von Millionen DNA-Fragmenten in einem einzigen Sequenzierlauf. Aufgrund der gesteigerten Sequenzierleistung ist es nun erstmals möglich, die genetischen Grundlagen vieler Krankheitsbilder umfassend zu analysieren. Zu den drei im Augenblick marktführenden Unternehmen der Hochdurchsatz-Sequenzierungs-Technologien gehören die Firmen Roche, Illumina und Applied Biosystems™. Die Prozessierung der Sequenzierung lässt sich in drei Arbeitsschritte einteilen:

- 1. Die Herstellung der DNA-Bibliothek, bestehend aus der Generierung kurzer, Adapter flankierter DNA-Fragmente,
- 2. die parallele, klonale Amplifikation der DNA-Bibliothek und
- 3. die Sequenzierung.

Der 454 *Genome Sequencer* (GS) der Firma Roche gehörte im Jahr 2005 zu der ersten Sequenzierungs-Technologie, einem Ansatz, der am *Royal Institute of Technology* in Stockholm entwickelt wurde [147]. Die klonale Amplifizierung der DNA-Bibliothek erfolgt mittels Emulsions-PCR und die anschließende Pyrosequenzierung basiert auf der Messung der Biolumineszenz, die durch ATP-abhängige katalytische Spaltung von Luziferin emittiert wird [148]. Die Reihenfolge der generierten Lichtsignale wird als Diagramm von einer CCD (*charge-coupled device*) Kamera aufgezeichnet und repräsentiert die DNA-Sequenz [149].

Der im Jahr 2007 auf dem Markt eingeführte *Geneome Analyzer* IIX und später der *HiSeq* 2000 der Firma Illumina basiert auf dem Prinzip der Sequenzierung durch Synthese und der reversiblen Termination. Für die klonale Amplifikation der mit Adaptern ligierten DNA-Bibliothek wird diese auf einem Glasträger, bestehend aus acht Kapillaren und auf deren Oberfläche sich die komplementären Sequenzen der Adaptoren befinden, immobilisiert und mittels Brücken-PCR vervielfältigt. Alle vier Nukleotide sind mit einem unterschiedlichen Flourophor gekoppelt und am 3'-Ende durch eine Azidomethylgruppe, die Terminatorgruppe, modifiziert. Während eines Reaktionszyklus werden der Polymerase gleichzeitig alle vier Nukleotide zur Strangsynthese angeboten. Nach dem Einbau eines komplementären Nukleotids ist eine Strangverlängerung durch die blockierte 3'-OH-Gruppe nicht mehr möglich. Die vier Farben der Flourophore werden mittels TIRF-Bildgebung (*total internal reflecting flourescence*) detektiert [150].

Das SOLiD-System der Firma *Life Technologies* (ehemals Applied Biosystems) unterscheidet sich maßgeblich von den 454- und *Genome Analyzer*-Sequenziergeräten, indem es auf der Sequenzierung durch Ligation beruht. Dabei werden 8-basige, mit Floureszenzfarbstoffen markierte Oligonukleotide nacheinander mit dem Sequenzierprimer ligiert. Jede der vier Sonden trägt einen anderen Floureszenzfarbstoff, der an das 3'-Ende gekoppelt ist. Dieser repräsentiert die Matrizensequenz, die komplementär zur vierten und fünften Base der Oligonukleotid-Sonde ist. Hybridisiert die Sonde mit der Matrize, entsteht ein Floureszenzsignal, das von einem Laser erfasst wird. Im Anschluss wird die ligierte Sonde zwischen der fünften und sechsten Base abgespalten, wodurch der floureszierende Teil entfernt wird. Dieser Prozess wird so lange wiederholt, bis eine Leselänge von 35-100 Basenpaaren erreicht ist [151].

1.7.1. Genomweite Sequenzierung des Bronchialkarzinoms

Die Etablierung und Entwicklung der Sequenzierungs-Technologien der zweiten Generation ermöglicht die Sequenzierung transkribierter Gene (Transkriptom), bekannter Exons (Exom), methylierter Regionen (Methylom) sowie des gesamten Genoms. Die entsprechenden Datenanalysen können Punktmutationen, Insertionen und Deletionen, Kopienzahlvarianten, Translokationen, Strukturvarianten und Veränderungen der Genexpression detektieren [152]. Diesbezüglich führten großangelegte Sequenzier- und Mutationsanalysen zur Identifizierung neuer somatischer Mutationen, wie beispielsweise Mutationsanalyse von 188 Adenokarzinomen, in der somatische Mutationen in

putativen Onkogenen wie ERBB4, KDR, FGFR4 und EPHA3 sowie Tumorsuppressorgenen wie NF1, RB1, ATM und APC entdeckt werden konnten [66]. Ein Vergleich zwischen einem primären Adenokarzinom und dem korrespondierenden Normalgewebe identifizierte eine große Anzahl somatischer Mutationen und ermittelte eine Mutationsfrequenz von ~18 pro Megabase (Mb), einschließlich mehr als 50.000 Einzelnukleotidvarianten [130]. Sequenzierung einer Kleinzelligen Bronchialkarzinom Zelllinie ergab über 22.000 somatische Basensubstitutionen, sowie eine weitere Studie, in der ebenfalls eine Kleinzellige Bronchialkarzinom Zelllinie sequenziert wurde, eine hohe Rate an somatischen Reorganisationen (103) und Keimbahnreorganisationen (306) [153, 154]. Die Sequenzierung exonischer Regionen (~1.500 Gene) in 441 Tumoren, einschließlich 134 Lungentumore, wies im Vergleich zu anderen malignen Tumorentitäten, eine besonders hohe Mutationsrate in proteinkodierenden Genregionen auf, und ist möglicherweise indikativ für die inhärente Heterogenität von Lungentumoren [129]. Eine kürzlich veröffentlichte Studie in der Genomanalysen von mehr als 6.000 Bronchialkarzinom Patienten durchgeführt wurden zeigte, dass in mehr als 55% der betroffenen Fälle mindestens eine onkogene Veränderung vorlag, die potentiell für eine zielgerichtete Therapie interessant sein könnte. Die meisten durch Mutationen betroffenen Gene waren u. a. TP53, KRAS, STK11(LKB1), EGFR, KEAP1 (kelch-like ECH-associated protein 1) und NFE2L2 (nuclear factor, erythroid 2-like 2) und konnten, entsprechend dem histologischen Subtyp. identifiziert werden. Interessanterweise wurde der NFE2L2/KEAP1-Signalweg als einer der am häufigsten auftretenden onkogenen Signalweg identifiziert [155]. Einen Nachteil der Hochdurchsatz-Sequenzierungs-Technologie bringt die extreme Größe der Datensätze, die aufbewahrt und analysiert werden müssen, um biologisch relevante Informationen aus der Menge der weniger relevanten zu selektionieren. Dennoch zeigen die bisherigen Analysen das Potential die stratifizierte und personalisierte Medizin ein Stück der Anwendung näher zu bringen.

1.8. Mausmodelle

Die Evaluierung neuer chemotherapeutischer Wirkstoffe im Vergleich zu den Standardtherapien erfolgt anhand von klinischen Studien und erfordert organisatorische Prozesse, die sehr zeitintensiv sind und vor allem der Zustimmung des Patienten bedürfen. Normalerweise sieht der Entwicklungsplan innerhalb der prä-klinischen Phase umfangreiche *in vitro* Analysen vor, in denen

die Basiswirkung des zu untersuchenden Wirkstoffs identifiziert wird. Im nächsten Schritt wird die potentielle Aktivität Nagetieren in bestimmt, toxikologische Studien pharmakologische und Aufnahme, Verteilung, Metabolismus und Ausscheidung sowie die Dosierung des Wirkstoffs definieren [156]. Für die Evaluierung neuer Wirkstoffe werden vorwiegend Mausmodelle in der prä-klinischen Phase verwendet, da das Mausgenom dem humanen Genom sehr ähnlich ist und wichtige Signaltransduktionen hoch konserviert sind. Darüber hinaus kann die Keimbahn der Maus modifiziert werden um diverse Aspekte der Tumorprogression zu modellieren. Mit der Entdeckung der immunsupprimierten Nacktmaus (NMRI:nu/nu), die T-Zell defizient ist und der Severe combined immunodeficiency (SCID)-Maus, die zusätzlich einen B-Zell Defekt aufweist, wurden die Grundlagen für die Arbeit mit Xenograft-Modellen geschaffen, die zusammen mit den gentechnisch veränderten Mäusen die Hauptkomponenten der prä-klinischen Forschung darstellen [157, 158].

1.8.1. Gentechnisch veränderte Mausmodelle

Eine gentechnisch veränderte Maus ist eine Maus deren Genom durch genetisch verändernde Techniken modifiziert wird. Das Genom in der Tumorfoschung veränderten Mäusen ist in Genen verändert. die Tumortransformationen involviert sind. Dies können Mutationen, Deletionen oder Überexpressionen sein, die eine Analyse des Einflusses der manipulierten Gene auf die Tumorgenese über einen bestimmten Zeitraum zu beurteilen und eine therapeutische Antwort in vivo zu verfolgen, ermöglichen [159-161]. Derzeit werden zwei Techniken zur Generierung von gentechnisch veränderten Mäusen angewandt. Die erste Technik basiert auf einer Injektion von DNA in den Vorkern einer befruchteten Eizelle einer Maus, die zufällig ins Genom integriert wird, und deren Ergebnis eine sog. transgene Maus ist [162]. Die zweite Technik basiert auf einer Modifizierung embryonaler Stammzellen mit einem DNA-Konstrukt, das die homologe DNA-Sequenz des Zielgens enthält [163]. Diese Methode wird vorwiegend für die Manipulation einzelner Gene, z.B. zur Ausschaltung (knock out) des Zielgens oder zum Austausch einzelner Nukleotide verwendet. Ein besonderes Merkmal der gentechnisch veränderten Mausmodelle ist die Möglichkeit der Analyse der Tumorentwicklung von einem frühen Zeitpunkt an. Weiterhin besteht die Möglichkeit der Kreuzung mit anderen inzüchtigen Mausstämmen. um so den Einfluss verschiedener gentechnischer Veränderungen in der Tumorentwicklung zu untersuchen. Allerdings ist zu beachten, dass es sich bei den Tumoren um murine Tumore handelt, die nicht

unbedingt alle Charakteristika eines humanen Tumors repräsentieren [164, 165]. Zudem ist die Entwicklung gentechnisch veränderter Mausstämme sehr Kostenund Zeitaufwendig.

1.8.2. Xenograft-Modelle

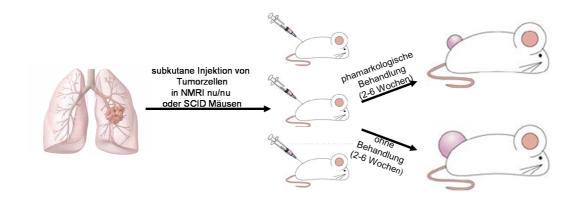
Die Xenotransplantation ist definiert als ein Prozess der Transplantation aktiver Zellen, Gewebe oder Organe von einer Spezies in einer anderen Spezies. Das Wachstum von humanen Tumoren in eine andere Spezies z.B. der Maus, erfordert eine Immundefizienz des Wirts zur Verhinderung der Abstoßung des Transplantat. Derzeit stehen für die Tumorforschung mehrere immundefiziente Mausstämme, mit einzelnen Mutationen (nude, scid, beige, xid, rag-1 null, rag-2 null) oder mit kombinierten Mutationen (bg/nu, bg/nu/xid, nu/scid, nod/scid), die sich ieweils unterschiedlichen immunologischen in Einschränkungen unterscheiden, zur Verfügung [166-168]. Tumor Xenograft-Modelle können weitgehend durch humane Zelllinien abgeleitet werden oder durch die Injektion primärer Tumorfragmente. Die Generierung der Xenografts erfolgt entweder intraperitoneale, intravenöse. subkutane oder orthotope Transplantation. Im Vergleich zu primären Tumorgeweben, die direkt vom Patienten transplantiert werden, zeigen abgeleitete Zelllinien (der gleichen Histologie), wenn diese als Suspension injiziert werden, eine höhere Aufnahmerate [169]. Abgeleitete in vivo Tumore von Zelllinien, die in einer kontinuierlichen und hohen Passage kultiviert wurden, waren vermehrt dedifferenziert und zeigten keine histologischen Ähnlichkeiten zu ursprünglichen Tumoren. Zudem verlieren Zelllinien durch eine in Kultivierung ihr tumorspezifisches Genprofil, das auch nach einer sekundären Transplantation als Xenograft nicht wieder hergestellt werden konnte [170]. Das Tumorwachstum Patienten-abgeleiteter Xenograft-Modelle kann genau die Heterogenität des primären Tumors reproduzieren und eignet sich somit hervorragend für die Evaluierung neuer Wirkstoffe, da eine hohe Korrelation zwischen den prä-klinsichen und klinischen therapeutischen Wirkungen besteht [171]. Zudem ist eine nachträgliche Passagierung und somit eine Verbreitung des Tumors in weiteren Mäusen möglich, die somit auch die Etablierung von Wirkstoffkombinationen in einer hohen Anzahl von generierten Xenografts desselben primären Tumors erlaubt. Bei der Verwendung von Xenografts ist allerdings zu beachten, dass Vaskulation und Stroma von der Maus stammen, und dass die Tumore bei einer subkutanen Transplantation in einer artifiziellen Umgebung wachsen, wodurch das Ergebnis der Metastasierung selten zu beobachten ist. Abhängig vom Wirkmechanismus der Therapeutika können nicht alle Mechanismen mit Hilfe der Xenografts untersucht werden. Medikamente, die das intakte Immunsystem des Wirts für ihre Wirksamkeit benötigen, können nur in syngenen Mausmodellen eingesetzt werden. Anhand umfangreicher Analysen zur Anti-Tumorwirkung zytotoxischer Wirkstoffe in Patienten-abgeleiteten Xenograft-Modellen unterschiedlicher Tumorentitäten konnte eine gute Konsistenz zu den klinischen Ergebnisse gezeigt werden [172].

1.8.3. Patienten-abgeleitete Xenograft-Modelle des Nicht-kleinzelligen Bronchialkarzinoms

Da jede Maus spezifische Charakteristika bei der subkutanen Transplantation primärer Tumorfragmente in unterschiedliche immundefiziente Mausstämme aufweist, ist es erforderlich, das Tumorwachstum anhand unterschiedlicher Parameter genau zu beobachten. Einer der wichtigsten Parameter ist die Beobachtung der prozentualen Tumorwachstumsrate, die bei Lungentumoren zwischen 30-40% der Patienten-abgeleiteter Tumore als erfolgreich erachtet werden kann. Interessanterweise konnte in einer im Jahr 2011 durchgeführten Studie eine Korrelation zwischen der Fähigkeit zur Generierung Patienten-abgeleiteter Xenografts und dem Risiko der Erkrankung in frühen Stadien von Nicht-kleinzelligen Bronchialkarzinomen beobachtet werden. In dieser Studie führten 40% der Nicht-kleinzelligen Karzinome mit einer KRAS Mutation zu einer erfolgreichen Transplantation in Xenografts und waren damit effizienter als Karzinome mit einer EGFR Mutation. Die positive Entgraftung korrelierte mit einem verringerten progressionsfreiem Überleben [173].

Im Rahmen einer Arbeit von Fichtner et al. 2008 etablierte aus 102 operativ entfernten, Nicht-kleinzelligen Bronchialkarzinomen, vorwiegend der Stadien T2 und T3 25 Patienten-abgeleitete Xenografts, die anhand von histopathologischen-, immunhistochemischen- und Mutations-analysen den primären humanen Tumoren sehr ähnlich waren. Weiterhin wurde eine sehr gute Korrelation zwischen den Behandlungen der Xenografts mit unterschiedlichen Wirkstoffen und der Klinik erreicht [171].

Die Daten bestätigen eine potentielle Relevanz gut annotierter Patientenabgeleiteter Xenograft-Modelle anhand der beobachteten Ansprechrate, basierend auf unterschiedlichen spezifischen molekularen Veränderungen, zu stratifizieren. Dies bietet eine großartige Möglichkeit, nicht nur für die Bewertung konventioneller Wirkstoffe, sondern auch um die Wirkung neuer Chemotherapien, sowie die Kombination unterschiedlicher Wirkstoffe zu evaluieren.


1.9. PREDICT – Ein systembiologischer Ansatz zur präklinischen Krebsforschung

Das Problem der derzeit angewendeten, adjuvanten Therapien von malignen Tumoren ist es, dass diese nicht den individuellen Reaktionen des Patienten angepasst sind und oft mit unerwünschten Nebeneffekten einhergehen, was ebenfalls bei der Etablierung neuer Wirkstoffe limitierend ist. Deshalb ist eines der Hauptziele der medizinisch-onkologischen Systembiologie das individuelle Ansprechen des Patienten, unter Berücksichtigung der zugrunde liegenden biologischen Netzwerke, vorherzusagen. Die prä-klinische Phase ist bei der Entwicklung von Wirkstoffen entscheidend, da hier durch gezielte Experimente eingegriffen und somit eine Modellierung ermöglicht werden kann, um potentiell, späteren Ausfällen von Wirkstoffen besser vorbeugen zu können.

Das PREDICT-Projekt adressiert zum einen die Aufgabe der Charakterisierung relevanter Modellsysteme, indem zunächst wichtige Zellmodelle verschiedener Tumorentitäten experimentell und im Computer charakterisiert werden, um in einem iterativen Ansatz aus Experiment und Modellierung die Effekte von Wirkstoffen besser vorhersagen zu können. Die zweite Aufgabe besteht darin, individuelle Tumore einzelner Patienten (mit dem Fokus auf Bronchialkarzinomen) mit demselben Ansatz zu charakterisieren und zu erweitern. Das Konsortium des PREDICT-Projektes besteht aus Vertretern der Klinik, der Pharmaindustrie sowie der akademischen Forschung.

Innerhalb der klinischen Kooperation der Evangelischen Lungenklinik Berlin-Buch (ELK) wurden 102 Patientenproben des Nicht-kleinzelligen Bronchialkarzinoms bereitgestellt. Zeitnah nach der Entnahme erfolgte durch die Firma Experimentelle Pharmakologie & Onkologie GmbH (EPO) die subkutane Transplantation in NMRI:nu/nu Mäuse und die Konservierung von tumorigenem Patientengewebe als auch Normalgewebe. Innerhalb eines Zeitraums von 2½ Jahren konnten 25 Xenografts erfolgreich etabliert werden, die die Grundlage der vorliegenden Arbeit bilden. Ebenfalls führte die EPO die Erstellung eines Sensitivitätsprofils der Xenografts gegenüber vier Zytostatika (Carboplatin, Gemcitabin, Paclitaxel und Etoposid) und zwei EGFR Inhibitoren (Erlotinib und Cetuximab) durch. Hierfür wurden die Xenograft-Modelle in Gruppen mit jeweils sechs Tieren eingeteilt und mit dem entsprechenden Medikament behandelt. Während des gesamten Versuchszeitraumes wurden das Körpergewicht der

Tiere und das Tumorvolumen dokumentiert. Die Beurteilung der Sensitivität wurde durch das Verhältnis des relativen Tumorvolumens der behandelten Gruppe (T) zu der Kontrollgruppe (C) als T/C-Wert [%] vorgenommen. Dabei wurden Tumore mit einem TC-Wert < 35% als sensitiv und Tumore mit einem TC-Wert ≥ 35% als resistent beurteilt.

Abbildung 6: In Xenograft Studien werden die Tumorzellen in immundefiziente Mäuse vorwiegend subkutan injiziert und anschließend mit dem zu analysierenden Wirkstoff für 2-6 Wochen behandelt. Anhand der Abbildung ist eine positive Wirkung aufgrund des verringerten Tumorwachstums des Wirkstoffs zu verzeichnen. Modifiziert nach [174].

Meine Aufgabe innerhalb des PREDICT-Projektes war es, das Mutationsprofil der Patienten-abgeleiteten Xenograft-Modelle mit dem korrespondierenden primären Normalgewebe der Patienten zu erstellen. Dafür wurden, wie bereits erwähnt, einer basierend auf zielgerichteten Anreicherung Anwender-definierter genomischer Regionen von ca. 2.000 Genen (9Mb) und anschließender Hochdurchsatz-Sequenzierung die somatischen Mutationen als auch die Keimbahnmutationen ermittelt. Anschließend erfolgte die Stratifizierung der einzelnen Mutationsprofile der verwendeten 23 Xenografts nach der Sensitivität der getesteten Chemotherapeutika. Weiterhin sollen die generierten Datensätze innerhalb PREDICT-Konsortiums des in einem mathematischen Vorhersagemodell implementiert werden, mit dem Ziel, einen numerischen Ansatz zum Testen verschiedener Wirkstoffe zu etablieren.

2. Zielsetzung

Das Bronchialkarzinom zählt derzeit zur zweithäufigsten Tumorerkrankung und zur häufigsten Todesursache maligner Tumore. Die 5-Jahres Überlebensrate beträgt 16%. Das Ansprechen auf die Chemotherapie des fortgeschrittenen Nicht-kleinzelligen Bronchialkarzinoms (NSCLC) liegt derzeit zwischen 20-50%, da sowohl intrinsische als auch erworbene Resistenzen den Therapieerfolg limitieren. Das Ziel dieser Arbeit ist es, unter Verwendung von Xenograft-Mausmodellen und dem korrespondierendem primären Normalgewebe von 23 Patienten mit einem Nicht-kleinzelligen Bronchialkarzinom, Mechanismen und Genkandidaten zu identifizieren, die mit einer Tumorprogression assoziiert werden. Dies soll durch eine zielgerichtete Hochdurchsatz-Sequenzierung erfolgen, durch die somatische- als auch Keimbahnmutationen identifiziert werden können. Des Weiteren wurden im Rahmen des PREDICT-Projektes die Patienten-abgeleiteten Xenograft-Modelle mit sechs Medikamenten behandelt und das Ansprechen auf die entsprechende Therapie bewertet. Hierzu wurden die vier Zytostatika Carboplatin, Gemcitabin, Paclitaxel und Etoposid sowie die zwei EGFR Inhibitoren Erlotinib und Cetuximab eingesetzt. Somit sollte im nächsten Schritt, die erstellten Mutationsprofile der 23 dahingegehend welche Xenografts untersucht werden, Mutationen möglicherweise für eine Therapieresistenz verantwortlich sind. Identifizierte Mutationen sollten in funktionellen Experimenten weiter charakterisiert werden. Für die anstehenden Analysen war es zunächst erforderlich, die gezielte DNA-Anreicherung und Hochdurchsatz-Sequenzierung für klinisches Gewebematerial zu etablieren. Dafür wurde am Beispiel des Prostatakarzinoms überprüft, ob Formalin fixiertes und in Paraffin eingebettetes Gewebe ebenfalls verwendet werden kann. Es wurde außerdem eine Optimierung der Techniken auf eine geringe DNA-Menge durchgeführt. Vorab sollte weiterhin noch die Validität der Xenograft-Modelle anhand von Gesamt-Exom-Sequenzierung genetischen Gemeinsamkeiten bzw. Unterschiede zwischen dem Xenograft-Tumor und dem Primärtumor überprüft werden. Zudem war es das weitere Ziel, die innerhalb des Projektes generierten Expressions- und Methylierungsdaten der Xenografts mit den Mutationsdaten zu komplementieren, um für einige interessante Gene, die mit einer Resistenz assoziiert werden, auf eine biologische Funktione bzw. Relevanz hin zu prüfen. Neben den im Rahmen dieser Arbeit erstellten Mutationsprofile, liegen für die gleichen Patienten auch Genexpressions- und genomweite DNA-Methylierungsdaten vor. Eine Integration

Zielsetzung

dieser Datensätze sollte helfen, Pathomechanismen der Therapieresistenz bei NSCLC-Patienten zu identifizieren.

3. Material und Methoden

3.1. Materialien

3.1.1. Material und Geräte

Tabelle 4: Verwendete Materialien und Geräte

labelle 4: Verwendete Materialien und Gerate		
Geräte und Materialien	Hersteller	
(Immobilion-P) Transfer Membran (PVDF) Millipore		
384-Kammer-Platte für qPCR und PCR	Applied Biosystems	
96-Kammer-Platte schwarz 3603	Costar	
96-Kammer-Platte weiß 3610	Costar	
ABI-PRISM 7900HT Sequence Detection System	Applied Biosystems	
Agarosegelkammer und Kämme	MPI-MG Werkstatt	
Agilent 2100 Bioanalyzer	Aglient Technologies	
Agilent 7500 DNA Chip	Agilent Technologies	
Analysewaage AT 250	Mettler	
Blotapparatur (Tank-Blotter)	Hoefer	
Bunsenbrenner	Bochem	
Cellomics ArrayScan®	Thermo Scientifics	
Covaris microTUBE	Applied Biosystems	
Covaris S2 System	Applied Biosystems	
Dark Reader Transilluminator	Clear Chemical Research	
Floureszenzspektometer LS 55	Perkin Elmer	
Fotofilme Super RX	Fujifilm Corperation	
Fotofilm-Entwicklermaschine Curix 60	Agfa	
Fotokassette	Fujifilm Corperation	
Geldokumentationssystem Alphalmager	Alpha Innotech	
Gelkammer, Einsätze, Kämme Protean2	Bio-Rad	
Heizblock	Eppendorf	
Hybridiersungsofen	Applygene	
Illumina Genome Analyzer XII	Illumina	
Immersionsöl	Zeiss	
Inkubator Kelvitron t	Heraus Instruments	

Material und Methoden

Geräte und Materialien	Hersteller	
Klebefolien Microamp für q-PCR	Applied Biosystems	
Kryoröhrchen	NALGENE	
LSM 510 Meta Mikroskop	Zeiss	
Magnetrührer	IKA-Combimag-Reo	
Magnetständer DynaMag	Dynal	
NanoDrop ND-2000 UV Spektrometer	Nano Drop Technologies	
Netzgerät Power Pac 200	Bio-Rad	
Objektträger	Roth	
Parafilm	American National Can Company	
Pasteurpipetten	Brand	
PCR Maschine vapo protect	Eppendorf	
PCR Maschinen PTC-100, PTC-225	MJ-Research	
Petrischalen	Greiner Bio-One	
Photometer Ultraspec 3000	Amersham	
Pipetten	Eppendorf	
Präzisionswaage PM3000	Mettler	
Reaktionsgefäße (1,5 und 2,0ml)	Greiner Bio-One	
Reaktionsgefäße (0,2 und 1,5ml, low bind)	Eppendorf	
Reaktionsgefäße (15 und 50ml)	Greiner Bio-One	
Rotationsmischgerät	Heidolph	
Schüttelinkubatoren Innova44, 4330	New Brunswick Scientific	
Skalpelle	Brand	
SOLiD 3+ Sequenzierer	Applied Biosystems	
Sterile Glaskugeln	MPI-MG Werkstatt	
Sterile Impfösen	Nunc	
Sterile Pipetten (5, 10, 25ml)	Sarstedt	
Tiefkühler -20°C	Bosch	
Tiefkühler -80°C	Forma Scientific	
Tischzentrifuge PC-100	FugeOne	
Tischzentrifugen 5425, 5417C, 5810R	Eppendorf	
UV-Transilluminator UVT-28M	Herolab	
Vortexer Vortex-Genie2	Scientific Industries	

Material und Methoden

Geräte und Materialien	Hersteller
Wasserbad WNB 7	Memmert
Whatman Filterpapier 3 mm	Whatman
Zellkulturflaschen- und Platten	TPP
Zellkulturinkubator Cytoperm2	Heraus Instruments
Zentrifuge Avanti L-25	Beckmann Coulter

3.1.2. Chemikalien

Tabelle 5: Verwendete Chemikalien

Substanz	Hersteller
Acrylamid/Bisacrylamid Rotiphorese	Bio-Rad
Agarose	Roth
Agencourt AMPure XP 60 ml	Beckman Coulter Genomics
AlamarBlue®-Reagenz	Invitrogen
Ammoniumpersulfat (APS)	Merck
Ampizillin	AppliChem
Bovine Serum Albumin (BSA)	AppliChem
Bradford-Reagenz	Sigma
Bromphenolblau	Sigma
Cetuximab	Merck
Chloroform	Merck
Cisplatin	LC Laboratories
Dharmafect Transfektionsreagenz	Dharmafect
Dihydrotestosteron (DHT)	Sigma
Dimethylsulfoxid (DMSO)	Sigma
Dinatriumhydrogenphosphat (Na ₂ HPO ₄)	Merck
Dithiothreitol (DTT)	AppliChem
dNTPs	Bioline
doppelt destilliertes H ₂ O	MPI-MG
Dynabeads M-280	Initrogen
ECL-Lösung (Western Lightning)	PerkinElmer
Entwickler- und Fixierlösung für Fotofilme	Agfa
Essigsäure	Merck
^=	

Substanz	Hersteller
Ethanol	Merck
Ethidiumbromid	Roth
Ethylendiamintetraazetat (EDTA)	Sigma-Aldrich
Fötales Kälberserum	Biochrom
Gemcitabin	Sigma
Glyzerol	Merck
Glyzin	Merck
HEPES	Calbiochem
Hiperfect Transfektionsreagenz	Qiagen
Hoechst (bisBenzimide) 33258	Sigma-Aldrich
Isopropanol (2-Propanol)	Merck
Kaliumchlorid (KCI)	Merck
Kaliumdihydrogenphosphat (KH ₂ PO ₄)	Merck
L-Glutamin	Biochrom
Lipofectamin 2000 Transfektionsreagenz	Invitrogen
Low Range Ultra Agarose	Bio-Rad
Magermilchpulver	Uelzena
Magnesiumchlorid (MgCl ₂)	Merck
Methanol	Merck
Natriumchlorid (NaCl)	Merck / Roth
Natriumdodecylsulfat SDS	Roth
Natriumhydroxid (NaOH)	Merck
Nukleasefreies Wasser	Promega
Penezellin/Streptomyzin (Pen/Strep)	Biochrom
Protease-Inhibitor (complete Mini EDTA-free)	Roche
Tetramethylethylendiamin (TEMED)	Invitrogen
Tris (Trizma Base)	Merck
Tris-HCl	Merck
Triton X-100	Sigma
Trypsin	Sigma
Tween 20	Roth

3.1.3. Verwendete Puffer und Lösungen

Blockpuffer: 5% Magermilchpulver (w/v) in 1x PBS

3% BSA (w/v) in 1x PBS

Transferpuffer: 25mM Tris

192mM Glyzin

Zellkulturlysepuffer A: 10mM HEPES, pH 7,4

10mM NaCl 3mM MgCl2 1mM DTT

1/7 complete Mini EDTA-free Protease-

Inhibitor Cocktail

Zellkulturlysepuffer B: 10mM HEPES, pH 7,4

300mM NaCl 20mM MgCl2 1mM DTT

1/7 complete Mini EDTA-free Protease-

Inhibitor Cocktail 0,2U DNase

Zellkultureinfriermedium: 900µl Zellkulturmedium (10% FCS, 1% Pen/Strep)

150µl FCS 105µl DMSO

10x PBS, pH 7,4: 1,37M NaCl

27mM KCI

80mM Na₂HPO₄ 18mM KH₂PO₄

SDS Ladepuffer (6x): 300mM Tris-HCl, pH 6,8

12% SDS (w/v)

0,6% Bromphenolblau (w/v)

60% Glyzerin (v/v)

SDS Laufpuffer (10x): 250mM Tris

2,5M Glyzin 1% SDS (w/v)

Sammelgelpuffer: 5% Acrylamid/bis-acrylamid

125mM Tris-HCI, pH 6,8

0,1% APS 0,01% TEMED

Trenngelpuffer: 10% Acrylamid/bis-acrylamid

375mM Tris-HCl, pH 8,8

0,1% APS

0,01% TEMED

TAE-Puffer (50x), pH 8,0: 50mM Tris

25mM Eisessig 2,5mM EDTA

3.1.4. Verwendete Kits

Tabelle 6: Verwendete Kits

Kit	Hersteller
MinElute PCR Purification	Qiagen
QIAquick PCR Purification	Qiagen
QIAprep Spin Miniprep	Qiagen
EndoFree Plasmid Maxi	Qiagen
Dneasy Blood & Tissue	Qiagen
Dual-Luciferase® Reporter Assay	Promega
GoTaq® q-PCR MasterMix	Promega
Superscript™ reverse Transkriptase	Invitrogen
Illumina Genomic DNA Sample Prep	Illumina
SureSelect Target Enrichment (50x) Illumina	Agilent Technologies
SureSelect Target Enrichment (50x) SOLiD	Agilent Technologies
QuickChange XL Site-Directed Mutagenesis	Agilent Technologies

3.1.5. Verwendete Protein- und DNA-Marker

Die in Tabelle 7 aufgeführten Marker wurden nach Herstellerangaben eingesetzt.

Tabelle 7: Verwendete Marker

Marker	Hersteller
DNA-Marker 1 kb	New England Biolabs
DNA-Marker 100 bp	New England Biolabs
Protein Marker Page Ruler Prestained Plus	Fermentas

3.1.6. Verwendete Enzyme

Die in Tabelle 8 aufgeführten Enyzme wurden in dieser Arbeit nach Herstellerangaben eingesetzt und verwendet.

Tabelle 8: Verwendete Enzyme

Enzym	Hersteller
BamHI	Promega
NotI	Promega
T4-DNA-Ligase	Promega
Phusion DNA-Polymerase	Finnzymes
Taq DNA-Polymerase	MPI-MG
Hercualse Phusion II DNA-Polymerase	Stratagene
Hot-Star Taq DNA-Polymerase	Qiagen
Dnase I	Sigma
Rnase A	Qaigen
Rnase H	Qiagen

3.1.7. Verwendete Medien

3.1.7.1. Bakterienmedien

Zur Kultivierung von *Echerichia coli.* (*E.coli*) Bakterien wurden die folgenden Medien verwendet.

Luria-Bertani-Medium* (LB), pH 7,0: 1% Bakto-Pepton

0,5% Hefeextrakt

0,5% NaCl

Für die entsprechenden Festmedien* wurden pro Liter 17g Bakto-Agar hinzugefügt. Je nach Applikation wurde dem Medium das Antibiotika Kanamyzin (10µg/ml) oder Ampizillin (100µg/ml) zugegeben.

3.1.7.2. Zellkulturmedien

Für die Kultivierung und Aufbewahrung von humanen Zelllinien wurden folgende Medien verwendet.

RPMI1640 Vollmedium: RPMI1640 (1g/D-Glukose, L-Glutamin, Phenolrot,

Gibco®), 10% FCS (v/v), 1% Pen/Strep (v/v)

MEM Vollmedium: Earle's MEM (+ 1g/D-Glukose, Biochrom), 10%

FCS (v/v), 1% Pen/Strep (v/v), 1% L-Glutamin (v/v)

3.1.8. Bakterienstämme

Innerhalb dieser Arbeit wurden die Bakterienstämme $DH5-\alpha$ für Klonierungsexeperimente, Plasmidamplifikationen und GM2929 zur Generierung unmethylierter Plasmid-DNA verwendet.

DH5-α: F- dlacZ DeltaM15 Delta(lacZYA-argF) U169 recA1 endA1

hsdR17(rK-mK+) supE44 thi-1lgyrA96 relA1

GM2929: F- dam-13::Tn 9 dcm-6 hsdR2 recF143 mcrA0 mcrB9999

galK2 galT22 ara-14 lacY1 xyl-5 thi-1 tonA31 rpsL136 hisG4

3.1.9. Humane Zelllinien

Die folgende Übersicht zeigt, die in dieser Arbeit verwendeten humanen Zelllinien und deren Kultivierungsmedien.

Tabelle 9: Verwendete Zelllinien.

Zelllinie	Organ	ATCC® Nummer	Medium
PC3	Prostata	CRL-1435™	RPMI1640
LNCaP	Prostata	CRL-1740™	RPMI1640
HCC827	Lunge	CRL-2868™	RPMI1640
A549	Lunge	CCL-185™	MEM
Wi38	Lunge	CCL-75™	MEM

3.1.10. Oligonukleotide

Für Klonierungsexperimente wurden die folgenden Oligonukleotide eingesetzt. Der unterstrichene Bereich der Sequenz markiert die Schnittstellen der Restriktionsenzyme, die am 5`-Ende angefügt wurden.

CTNNB1_s_BamHl: 5`-TACGCGGATCCGCTACTCAAGCTGATTTG-3´
CTNNB1_as_Notl: 5´-CTTACGCCGGCGCAGTCAGTATCAAACCAG-3´
TP53_s_BamHl: 5´-TTACGCGGATCCGAGGAGCCGCAGTCAGAT-3´
TP53_as_Notl: 5´-CTTACGCCGGCGGTCTGAGTCAGGCCCTTC-3´

Für die zielgerichtete Mutagenese wurden folgende Oligonukleotide verwendet.

CTNNB1_s_T41I: 5′-GGAATCCATTCTGGTGCCACTATCACAGCTCCTTC-3′
CTNNB1_as_T41I: 5′-GAAGGAGCTGTGATAGTGGCACCAGAATGGATTCC-3′
TP53_s_ H168Q: 5′-CACAACCTCCGTCATCTGCTGTGACTGCTTG-3′
TP53_as_H168Q: 5′-CAAGCAGTCACAGCAGATGACGGAGGTTGTG-3′
TP53_s_V157I: 5′-CCGGCACCCGCATCCGCGCCCATG-3′
TP53_as_V157I: 5′-CATGGCGCGCGGTGCCGG-3′

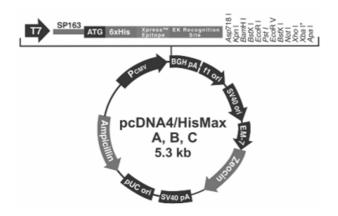
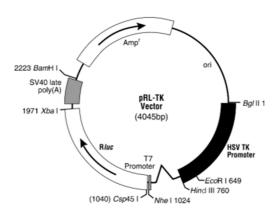
Zur Quantifizierung der Genexpression wurden folgen aufgelistete Oligonukleotide verwendet.

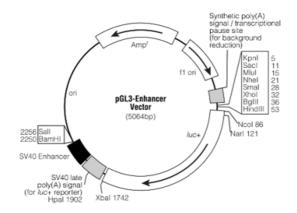
Tabelle 10: Zur Quantifizierung der Genexpression mittels q-PCR verwendete Oligonukleotide.

Oligonukleotid	Sequenz_sense (5`3`)	Sequenz_antisense (5`3`)
CDC42BPA	CCAAACAGGCCATCCAAGAAG	CCAGAGCATCGGTAGGCGTAT
MAML2	CAGAGGCAGATCATGGAGCAG	GTTGGTTGCATATTGCCCACA
HGF	TGTCAGCGTTGGGATTCTCAG	TTGGGAGCAGTAGCCAACTCG
MLL2	GATGTGGAGCCTGGCAAAGAG	CACTCAACACCTCCGCCTGT
ATM	GTTCCAGGACACGAAGGGAGA	CACAGGGCAAACAAAGCCTGT
BMI1	CCTGATGTGTGTGCTTTGTGGA	TTGCTGGTCTCCAGGTAACGAA

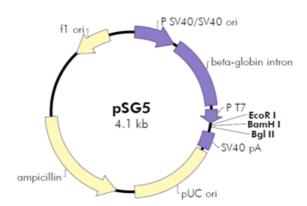
3.1.11. Vektoren

pcDNA4.1C-HisMax wurde für die Herstellung der Expressionsplasmide pcDNA4.1-TP53 und pcDNA4.1-CTNNB1 verwendet.


Abbildung 7: pcDNA4C-HisMax Vektorkarte. Der pcDNA4C-HisMax wurde für Transfektion eines Gens zur Expression humanen Zelllinien verwendet. Der Vektor ist 5.257bp groß und trägt die Antibiotika-Resistenzgene Ampizillin und Zeocin. Der Vektor kodiert C- Terminal einen XPRESS- sowie einen 6x His-tag, dessen Expression durch einen CMV-Promotor unterstützt wird.

pRL-TK wurde von Frau Dr. Sylvia Krobitsch zur Verfügung gestellt und für die Normalisierung des Dualen-Luziferase-Reporterexperiments verwendet.


Abbildung 8: pRL-TK Vektorkarte. Der Vektor pRL-TK trägt das *Renilla reniformis* (Seefeder) Luziferasegen für die Expression in humane Zelllinien. Er ist 4.045bp groß und wurde für die Normalisierung der Luziferase-Reporterexperimente eingesetzt. Zusätzlich trägt dieser das Ampizillin-Resistenzgen.

pGL3-E-ARE₂TATA enthält die Promotorsequenz sowie zwei ARE₂-Elemente (androgen response elements) des Androgen Rezeptors und wurde für Luziferase-Reporterexperimente von Herrn Professor Dr. Helmut Klocker zur Verfügung gestellt.

Abbildung 9: pGL3-Enhancer Vektorkarte. Der pGL3-Enhancer-Vektor wurde für die Promotoranalysen in humanen Zelllinien verwendet. Der Vektor ist 5.064bp groß und trägt das *firefly* Luziferasegen, dessen Aktivität durch die klonierte Promotorsequenz reguliert wird. Zusätzlich trägt der Vektor das Antibiotika-Resistenzgen für Ampizillin.

pSG5-ARwt(Q18) enthält die vollständig kodierende Sequenz des Androgen-Rezeptors und wurde für die Expression in den Androgen-unabhängigen PC3-Zellen verwendet und wurde von Herrn Professor Dr. Helmut Klocker zur Verfügung gestellt.

Abbildung 10: pSG5 Vektorkarte. Der psG5-Vektor wurde für die Expression des humanen Androgen-Rezeptors in den PC3-Zellen eingesetzt. Es ist 4.100bp groß und trägt das Ampizillin-Resistenzgen. Die Expression des Fusionsproteins steht unter einem SV40-Promotor.

Der kommerziell erhältliche Vektor pcDNA3.1-CTNNB1 (Addgene: 16828) wurde als Templat für die Herstellung des Expressionsplasmids pcDNA4.1-CTNNB1 eingesetzt.

3.1.12. Antikörper

Innerhalb dieser Arbeit wurden folgende Antikörper zur Detektion der Proteinexpression verwendet.

Tabelle 11: Vernwendete Antikörper

Antikörper	Hersteller	Organismus	Verdünnung
anti-XPRESS	Invitrogen	Maus	1:5000
<i>anti</i> -Tubulin <i>anti</i> -maus-POD	Sigma Sigma-Aldrich	Maus Ziege	1:500 1:10000

3.1.13. siRNA Moleküle

Für die Reprimierung der Genexpression wurden folgende siRNA Moleküle verwendet.

Tabelle 12: Verwendete siRNA Moleküle.

siRNA	Hersteller
ON-TARGETplus SMARTpool, human CDC42BPA	Dharmacon, L003814-00-0005
ON-TARGETplus SMARTpool, human MAML2	Dharmacon, L013568-00-0005
ON-TARGETplus SMARTpool, human MLL2	Dharmacon, L004828-00-0005
ON-TARGETplus SMARTpool, human ERBB4	Dharmacon, L003128-00-0005
ON-TARGETplus SMARTpool, human ATM	Dharmacon, L003201-00-0005
ON-TARGETplus SMARTpool, human BMI1	Dharmacon, L005230-00-0005
ON-TARGETplus Non Targeting Pool	Dharmacon, D-001810-10-20

3.1.14. Behandlung der Zellen mit zytotoxischen Agenzien

Die zytotoxischen Agenzien wurden wie folgt in den Zellen eingesetzt.

Tabelle 13: verwendete Medikamente.

Zellen	Medikament	Konzentration	
Wi38	Cisplatin	10μΜ	
A549	Cisplatin	10μM	
HCC827	Cetuximab	1µM	
Wi38	Gemcitabin	30µM	

3.2. Methoden

3.2.1. Polymerase-Kettenreaktion (PCR)

Zur Herstellung der Expressionsplasmide wurden zunächst die entsprechenden DNA-Fragmente mittels Polymerasen-Kettenreaktion (PCR) und eines Phusion-PCR-Reaktionsansatzes (Tabelle 14) amplifiziert. Für die Amplifizierung der kodierenden Region von *TP53* wurde als Vorlage cDNA einer humanen fötalen Gehirnzelllinie (HFB von Clontech), sowie die Oligonukleotide TP53_s_BamHI und TP53_as_NotI verwendet. Als Vorlage zur Amplifizierung der kodierenden Region des β-Catenin-Gens diente das Konstrukt pcDNA3.1-CTNNB1 (Addgene 16828) mit den Oligonukleotiden CTNNB1_s_BamHI und CTNNB1_as_NotI.

Sollte nach einer Transformation in *E. coli* überprüft werden, ob ein Plasmid das gewünschte DNA-Fragment enthält, wurde mit der hitzestabilen Taq-Polymerase eine Kolonie-PCR durchgeführt.

Tabelle 14: PCR-Reaktionsbedingungen unterschiedlich eingesetzter Polymerasen.

	DNA Polymerase		
	Phusion	Taq	
Reaktions-Puffer (5x)	10µl	10µl	
dNTPs (40mM)	1,5µl	1µl	
sense-Primer (100µM)	0,75µl	1,25µl	
antisense-Primer (100µM)	0,75µl	1,25µl	
DNA-Polymerase	0,5µl	2,0µl	
DNA-Templat	10-100ng	10-100ng / Kolonie	
H ₂ O	auf 50µl	auf 50µl	

Tabelle 15: Parameter der PCR-Maschine zur Durchführung einer PCR.

Schritt	Phusion	Taq	
1. Denaturierung	98°C → 30s	95°C → 2min	
	34 Zyklen vo	n Schritt 2 - 4	
2. Denaturierung	$98^{\circ}\text{C} \rightarrow 10\text{s}$	$95^{\circ}\text{C} \rightarrow 30\text{s}$	
3. Annealing	$58\text{-}68^{\circ}\text{C} \rightarrow 30\text{s}$	$60^{\circ}\text{C} \rightarrow 30\text{s}$	
4. Extension	$72^{\circ}\text{C} \rightarrow 30\text{s/kb}$	$72^{\circ}\text{C} \rightarrow 60\text{s/kb}$	
5. Extension	72°C → 5min	$72^{\circ}C \rightarrow 10min$	

3.2.2. Zielgerichtete Mutagenese

Die zielgerichtete Mutagenese wurde entsprechend den Herstellerangaben mit dem site-directed mutagenesis Quick Change XL-System der Firma Agilent Technologies durchgeführt und wurde eingesetzt, um eine Mutation p.T411 im Expressionsplasmid pcDNA4.1-CTNNB1, sowie je zwei Mutationen (p.H168Q und p.V157I) im pcDNA4.1-TP53-Plasmid zu generieren. Die verwendeten Mutagenese-Primer sind in Abschnitt 3.1.10 dieser Arbeit angegeben, und wurden mit dem QuickChange Primer *Design*-Programm (www.genomics.agilent.com) erstellt. Ein Reaktionsansatz enthielt: 1µl DNA (10-50ng), 5µl 10x Reaktionspuffer, 1,25µl Mutagenese-Primer_s (125ng), 1,25µl Mutagenese-Primer_as (125ng), 3µl Quick-Solution-Reagenz, 1µl PfuUltra HF DNA-Polymerase und 35,5µl H₂O. Die Mutagenese wurde bei folgenden Bedingungen durchgeführt: 95°C 1min, 18 Zyklen (95°C 50s, 60°C 50s, 68°C 1min/kb Plasmid-DNA), 68°C 7min und Halten bei 4°C. Anschließend wurden 5µl des Reaktionsansatzes für eine Transformation von E. coli eingesetzt. Zur Überprüfung der Mutagenese wurden die entsprechenden Konstrukte mittels Sanger-Sequenzierung (Abschnitt 3.2.10) verifiziert.

3.2.3. Aufreinigung von PCR-Amplifikaten und DNA-Fragmenten aus einem präparativem Agarosegel

Für die Aufreinigung von PCR-Produkten und DNA-Fragmenten aus einem Agarosegel wurde das Zymoclean™Gel DNA Recovery-System von der Firma Zymo Research verwendet. Dazu wurden die entsprechenden Ansätze (DNA-Fragmente) mittels eines präparativen Agarosegels (1% Agarose in TAE) bei 100mA der Länge nach aufgetrennt. Nach Beendigung der Gelelektrophorese wurde die entsprechende DNA-Bande mittels UV-Licht visualisiert und mit einem Skalpell aus dem Gel herausgeschnitten. Anschließend wurde das Gelstück in ein 1,5ml Reaktionsgefäß überführt und mit dem gleichen Volumen an Membrane-Binding-Puffer versetzt. Nach der Auflösung des Gels durch eine Inkubation von 10min bei 60°C, wurde der Ansatz auf eine Säule gegeben und für 1min bei 12.000rpm zentrifugiert. Durch die zweimalige Zugabe von je 200µl Wasch-Puffer wurde die Säule mittels Zentrifugation (1min; 12.000rpm) gewaschen. Um sicherzustellen, dass sämtliches Ethanol aus der Säule entfernt wurde, erfolgte ein weiterer Zentrifugationsschritt (1min; 12.000rpm). Im letzten Schritt wurde die DNA mit 30µl nukleasefreiem Wasser eluiert.

3.2.4. Enzymatische Restriktion von DNA

Für eine Restriktionsanalyse wurden die Restriktionsenyzme, Restriktionspuffer und die DNA entsprechend den Herstellerangaben eingesetzt. Die Ansätze wurden dann für 1-2 Stunden bzw. über Nacht bei 37°C inkubiert. Ein 50 μl Reaktionsansatz enthielt: 10μl DNA (100ng/μl), 5μl 10x Puffer, 1,5μl Restriktionsenzym 1 (10U/μl), 1,5μl Restriktionsenzym 2 (10U/μl), 5μl 10x BSA und 28μl bidest H₂O. Sollten die entsprechenden DNA-Fragmente für eine Ligation eingesetzt werden, wurde der komplette Ansatz nach Beendigung der enzymatischen Reaktion für ein präparatives Agarosegel eingesetzt. Um zu überprüfen, ob ein Plasmid das gewünschte DNA-Fragment enthielt, wurde folgender Restriktionsansatz hergestellt: 2μl DNA (Konzentration ungebekannt), 1μl 10x Puffer, 0,5μl Restriktionsenzym 1 (10U/μl), 0,5μl Restriktionsenzym 2 (10U/μl), 1μl 10x BSA und 1μl bidest H₂O. Anschließend wurde der Restriktionsansatz gelelektrophoretisch analysiert.

3.2.5. Ligation

Für einen 20 μ l Ligationsansatz wurde die Konzentration der Vektor-DNA und Fragment-DNA im Verhältnis 1:3 eingesetzt und mit 20 μ l 2x Ligationspuffer (*QuickLigation Buffer, NEB*) und 1 μ l T4-Ligase versetzt. Ein entsprechender Kontrollansatz enthielt 1 μ l Vektor-DNA, 10 μ l 2x Ligationspuffer, 1 μ l T4-Ligase und 8 μ l H₂O. Nach einer 15-minütigen Inkubationszeit bei RT wurden 5 μ l des Ligationsansatzes für die Transformation von *E. coli* eingesetzt.

3.2.6. Transformation von Escherichia coli

30μl chemisch kompetente *E. coli*-Zellen des Stammes *DH-5α* wurden mit 5μl des Ligationsansatzes versetzt und 30min auf Eis inkubiert. Zur Permeabilisierung der Membran erfolgte ein Hitzeschock für 45s bei 42°C. Nach Zugabe von 800μl LB-Medium wurden die Ansätze eine Stunde bei 37°C und 750rpm inkubiert. Anschließend wurden die Transformationsansätze 5min bei 5000rpm zentrifugiert und 700μl des Überstandes abgenommen und mit dem restlichen Überstand resuspendiert. Zum Schluss wurden die Ansätze auf antibiotikahaltigen LB-Platten ausplattiert und über Nacht bei 37°C inkubiert.

3.2.7. Isolierung von Plasmid-DNA aus E. Coli

Für die Extraktion von Plasmid-DNA wurden unterschiedliche Aufreinigungsverfahren verwendet. Für eine Mini-Präparation (*QIAprep Spin Miniprep*, Qiagen) wurde eine 5ml Übernachtkultur pelletiert (10min bei 4.000rpm) und mit dem entsprechenden Resuspensionspuffer (250µl)

resuspendiert. Anschließend erfolgte die Lyse und Neutralisation der Proben mit 250µl Lysepuffer und 350µl Neutralisationspuffer. Die Proben wurden mehrmals invertiert. Unlösliche, zelluläre Bestandteile wurden durch Zentrifugation für 10min und 4.000rpm entfernt und der Überstand auf eine Affinitätssäule *QlAquick Spin Column* gegeben. Durch einen weiteren Zentrifugationsschritt (30s; 13.000rpm) wurde die DNA an die Säule gebunden. Im Anschluss erfolgten zwei Waschschritte mit jeweils 500µl Neutralisationspuffer und 750µl PE-Puffer und entsprechender Zentrifugation für 30s bei 13.000rpm. Zur vollständigen Entfernung des Ethanols wurden die Proben erneut für 1min bei 13.000rpm zentrifugiert. Abschließend erfolgte die Elution der Plasmid-DNA mit 30µl Elutionspuffer.

Für eine Maxi-Präparation (EndoFree Plasmid Maxi, Qiagen) wurden 100ml Übernachtkultur bei 4.000rpm und 4°C für 20min zentrifugiert. Das Pellet wurde anschließend in 10ml Resuspensionspuffer aufgenommen. Nach Zugabe von 10ml Lysepuffer wurden die Proben bei RT für 5min inkubiert. Im Weiteren wurden die Proben mit 10ml Neutralisationspuffer versetzt und das Lysat auf eine entsprechende Kartusche QIAfilter cartridge gegeben und 10min inkubiert. Durch Entfernen der Kappe und Insertion des Kolbens wurde das Lysat durch den Filter gedrückt und in einem 50ml Reaktionsgefäß überführt. Nach Hinzufügen von 2,5ml ER-Puffer wurde das Lysat für 30min auf Eis inkubiert. Eine Affinitätssäule Qiagen-tip 500 wurde mit 10ml Equilibrieriungspuffer equilibriert und anschließend mit dem Lysat beladen. Danach erfolgten zwei Waschschritte mit je 30ml QC-Puffer und die Elution mit 15ml QN-Puffer in einem neuen 50ml Reaktionsgefäß. Für die Präzipitation der DNA wurden die Proben mit 10,5ml Isopropanol versetzt und für 30min bei 20.000xg und 4°C zentrifugiert. Im Anschluss wurde dem Pellet 5ml 70%iges Ethanol zugesetzt und erneut bei 20.000xg für 10min zentrifugiert. Nachdem 4ml des Überstands verworfen wurde, konnte der verbleibende Ansatz in ein neues 1,5ml Reaktionsgefäß überführt und erneut pelletiert werden. Zum Schluss wurde die DNA luftgetrocknet und in 100µl endotoxinfreiem Elutionspuffer abschließende gelöst. Die Konzentrationsbestimmung erfolgte mit dem NanoDrop ND-2000 Gerät.

3.2.8. Bestimmung der DNA-bzw. RNA-Konzentration

Die Konzentrationsbestimmung von DNA bzw. RNA erfolgte mittels des NanoDrop ND-2000. $1\mu l$ der Nukleinsäurelösung wurde auf die Messvorrichtung des Gerätes gegeben und die optische Dichte (OD) bei 260nm und 280nm gemessen. Aus dem Verhältnis OD_{260} / OD_{280} lässt sich eine Aussage über

eventuelle Proteinkontaminationen treffen, da aromatische Aminosäuren ihr Absorptionsmaximum bei 280nm aufweisen. Bei proteinfreier DNA beträgt das Verhältnis 2.

3.2.9. Agarosegelelektrophorese

Die Auftrennung und Identifizierung von DNA-Fragmenten erfolgte mittels Agarosegelelektrophorese. Dazu wurde 1% Agarose in 1x TAE-Puffer durch Erhitzen in einer Mikrowelle gelöst, mit 0,5µg/ml Ethidiumbromid versetzt, die Lösung in eine Gelkammer gegossen und mit einem Kamm versehen. Nach der Auspolymerisierung des Gels, wurde die Gelkammer mit 1x TAE-Puffer gefüllt. Die zu analysierenden DNA-Proben wurden mit 6x Bromphenolblau-Ladepuffer versetzt und in die Geltaschen gefüllt. Als DNA-Längenstandard wurden 5µl des DNA-Markers (Abschnitt 3.1.5) benutzt. Der Gellauf erfolgte für 45 bzw. 60 Minuten bei 100mA. Abschließend wurden die DNA-Fragmente unter UV-Licht visualisiert und fotografiert.

3.2.10. Sanger Sequenzierung

Zur Verifizierung des Leserasters klonierter Fragmente in einem Zielvektor, und zur Validierung von Mutationen wurden die entsprechenden Konstrukte bzw. Amplifikate von der Firma Eurofins/MWG Operon analysiert und mit Hilfe des Programms *Vector NTI* ausgewertet.

3.2.11. Lagerung von kryokonservierten humanen Zelllinien

Zur langfristigen Lagerung der humanen Zelllinien wurden Kryoansätze angefertigt. Dafür wurden die Zellen in 75cm²-Zellkulturflaschen bis zu einer Konfluenz von 80-90% kultiviert. Die Zellen wurden mit PBS gewaschen und zur Ablösung der adhäranten Zellen für 10min mit 1ml Trypsin (0,25% in 1mM EDTA) inkubiert. Die Zellen wurden anschließend in 5ml entsprechenden Medium (FCS/Pen/Strep) aufgenommen, in ein Reaktionsgefäß überführt und bei 2.000rpm für 5min zentrifugiert. Anschließend wurde das Medium abgenommen, die Zellen in entsprechendem Einfriermedium aufgenommen und nachfolgend mit 1ml auf die Kryoröhrchen aufgeteilt. Im Folgenden wurden die Zellen für 24 Stunden in einem Kryo-Einfrierbehälter auf -80°C gekühlt und dann in einem Stickstoffstank überführt.

3.2.12. Auftauen von kryokonservierten humanen Zelllinien

Der kyrokonservierte Ansatz wurde aus dem Stickstofftank auf Trockeneis überführt. Die Zellen wurden in 1ml Zellkulturmedium (FCS/Pen/Strep) aufgenommen, resuspendiert und für 5min bei 300rpm zentrifugiert.

Anschließend wurden die Zellen in 5ml Medium (20% FCS, 1%Pen/Strep) aufgenommen und in eine 10cm² -Flasche überführt. Am darauf folgenden Tag konnten die Zellen dann in eine 75cm²-Flasche weiter im Voll-Medium kultiviert werden.

3.2.13. Kultivierung von humanen Zelllinien

Die humanen Zelllinien wurden im entsprechenden Zellkulturmedium mit 10% FCS (fötales Kälberserum) und 1% Penizillin/Streptomyzin (Pen/Strep) bei 37°C und 6% CO₂ inkubiert. Für die Kultivierung der Zelllinien wurden diese alle 3-4 Tage in eine neue 75cm²-Flasche mit einer Konfluenz von 20-30% überführt. Dazu wurde unter sterilen Bedingungen das Medium abgesaugt und die Zellen einmal mit PBS gewaschen. Um die adhäranten Zellen von dem Flaschenboden zu lösen, wurden die Zellen mit 1ml Trypsin (0,25% in 1mM EDTA) für 10min bei 37°C inkubiert. Anschließend wurden die Zellen in 10ml Medium aufgenommen und 1-2ml in eine neue Kultivierungsflasche mit 10ml Medium (FCS/Pen/Strep) überführt und entsprechend weiter kultiviert. Entsprechend den experimentellen Ansätzen wurde je nach Zelllinie unterschiedliche Anzahl der Zellen in unterschiedlichen Zellkulturplatten ausgesät und bei 6% CO₂ und 37°C kultiviert (Tabelle 16).

Tabelle 16: Anzahl ausgesäter Zellen in unterschiedlichen Zellkulturplatten.

Zelllinie	Zellkulturplatte	Zellzahl
PC3	24-Kammer-Platte	35000 - 40000
LNCaP	24-Kammer-Platte	50000 - 60000
Wi38	96-Kammer-Platte	2000
HCC827	96-Kammer-Platte	5000
A549	96-Kammer-Platte	2000

3.2.14. Transfektion humaner Zelllinien mit Plasmid-DNA

Für die transiente Transfektion der humanen Zelllinien PC3 und LNCaP mit Plamsid-DNA wurde das Transfektionsreagenz Lipofectamin verwendet. Dafür wurden die Zelllinien, wie in Tabelle 16 angegeben, in einer 24-Kammer-Platte kultiviert. Für einen Transfektionsansatz wurden 400ng der Plasmid-DNA mit 50µl RPMI1640 Medium (ohne FCS und Pen/Strep), sowie 1,5µl Lipofectamin mit 50µl RPMI1640 Medium (ohne FCS und Pen/Strep) vermengt und für 5min bei RT inkubiert. Anschließend wurde der Plasmid-DNA-Ansatz mit dem Lipofectamin-Ansatz vermengt und für weitere 20 min bei RT inkubiert. Während dieser Zeit wurde das alte Medium der kultivierten Zellen entfernt und 400µl

frisches RPMI1640 Medium (10% FCS) zugegeben. Abschließend wurde der Transfektionsansatz (100µI) zu den Zellen gegeben und diese bei 37°C und 6% CO₂ kultiviert. Um die Expression der Proteine zu gewährleisten, wurden die transfizierten Zellen für 48 bzw. 72 Stunden inkubiert und anschließend für weitere Experimente eingesetzt.

3.2.15. Zelllyse von humanen Zelllinien

Für die Zelllyse von Säugerzellen wurden zwei unterschiedliche Protokolle verwendet.

Protokoll A) Für die Luziferase-Reporterexperimente wurde das Zellkulturmedium entfernt und die Zellen einmal mit PBS gewaschen. Anschließend wurden die Zellen mit 1x passivem Lysepuffer behandelt und für 20min auf einem Schüttler bei RT inkubiert.

Protokoll B) Die Zellen wurden mit PBS gewaschen, für 10min mit dem Zelllkulturlysepuffer A versetzt und mehrmals durch eine Kanüle mechanisch geschert. Im Folgenden wurden die Ansätze mit 500mM NaCl versetzt und für 20min bei 4°C auf einem Rotationsrad inkubiert. Danach erfolgte die Zentrifugation für 5min bei 4°C und 5.000rpm, worauf der Überstand abgenommen und das Pellet für weitere 30min bei 37°C mit dem Zelllkulturlysepuffer B behandelt wurde. Nach anschließender Zentrifugation (5min, 4°C, 5.000rpm) wurde der Überstand mit dem Zelllkulturlysepuffer A behandelten Überstand vermengt. Für weiterführende Experimente erfolgte die Bestimmung Proteinkonzentration nach der Bradford-Methode. Hierbei wurde 1ml des Bradford-Reagenz mit 1µl des Zelllysats vermengt, die Absorption bei 595nm photometrisch gemessen und die Proteinkonzentration anhand der BSA-Standardreihe bestimmt.

3.2.16. Transfektion mit siRNA Molekülen

Die in dieser Arbeit verwendeten siRNA Moleküle zur Transfektion von humanen Zelllinien sind in Tabelle 12 aufgelistet und wurden mit 250µl DEPC-behandeltem Wasser auf eine Konzentration von 20µM eingestellt. Für die mit den entsprechenden siRNA Molekülen zu transfizierenden Zellen wurden wie in der Tabelle 16 angegeben in den entsprechenden Medien ausgesät und kultiviert. Für die Transfektion wurden Transfektionsreagenz, siRNA und Medium (ohne FCS und Pen/Strep) entsprechend den Angaben in Tabelle 17 eingesetzt und für 20min bei RT inkubiert. Das alte Medium wurde entfernt und 80µl frisches Medium (10% FCS) zu den Zellen gegeben. Anschließend wurden jeweils 20µl

des Transfektionsansatzes auf die Zellen getropft und für 48 − 72 Stunden bei 37°C und 6% CO₂ inkubiert.

Tabelle 17: Zusammenfassung der Transfektionsansätze für humane Zellen.

Zelllinie	siRNA	Medium	Dharmafect	Medium	Hiperfect	Medium
Wi38	20nM	10µl			0,5µl	10µl
HCC827	20nM	10µl	0,5µl	10µl		
A549	20nM	10µl	0,5µl	10µl		

3.2.17. SDS-Polyacrylamidgelelektrophorese (SDS-PAGE)

Mittels der SDS-PAGE werden die Proteingemische unter denaturierenden Bedingungen elektrophoretisch, der Masse nach aufgetrennt. Bei der Probenvorbereitung werden die Proteinansätze mit einem Überschuss an SDS auf 95°C erhitzt und so die Tertiär- und Sekundärstrukturen durch Aufspaltung der Wasserstoffbrücken und durch Streckung der Moleküle aufgelöst. Disulfidbrücken zwischen Cysteinen werden durch die Zugabe von einer reduzierenden Thiolverbindung, Dithiothreitol (DTT), aufgespalten. Für die Herrstellung eines SDS-Gels wurden zwei Glasplatten aus dem MiniProtean II System (Bio-Rad) für die SDS-Gelektrophorese in einem dafür vorgesehenen Gestell fixiert und das Trenngel (10%iges Trenngel: 1,25ml Trenngelpuffer, 1,63ml Acrylamid/bisacrylamid (30%), 2,09ml H₂O, 16,25µl APS (10%) und 4µl TEMED) zwischen die vorbereiteten Glasplatten gegossen. Anschließend wurde das Trenngel mit Isopropanol überschichtet. Nach der Polymerisierung wurde das Isopropanol vollständig entfernt und das Sammelgel (5%iges Sammelgel: 0,5ml Sammelgelpuffer, 0,34ml Acrylamid/bisacrylamid (30%), 1,17ml H₂O, 20µl APS (10%) und 2µl TEMED) gegossen und ein Taschenkamm eingesetzt. Nach der Polymerisierung wurden die Gele in die Vorrichtung des Elektrophoresetanks (MiniProtean II System) integriert und mit 1x SDS-Laufpuffer befüllt. Der Kamm wurde entfernt und die denaturierten Protein-Proben in die Taschen beladen. Zudem wurden 5µl des Proteinmarkers aufgetragen. Für die Elektrophorese wurde für ca. 20min eine Spannung von 90V angelegt, um die Protein-Proben ins Sammelgel einlaufen zu lassen. Danach wurde die Spannung auf 130V erhöht und der Gel-Lauf erfolgte für ca. eine Stunde. Für die weitere Analyse der Proteine wurden diese mithilfe des Western-Blot-Verfahrens aus den SDS-Gelen auf eine Membran transferiert.

3.2.18. Proteintransfer auf eine Membran (Western-Blot)

Der Western-Blot ist eine Methode, bei der die durch ein SDS-Gel aufgetrennten Proteine über Elektrotransfer auf eine PVDF-Membran transferiert werden. Hierfür wurde die PVDF-Membran für 20s in Methanol inkubiert und anschließend für 10min in Transferpuffer equilibriert. Für das Tank-Blot-Verfahren wurden auf die untere Seite der Blotkassette eine Faser-Matte, sowie zwei in Transferpuffer getränkte Whatmannpapiere gelegt. Auf diese wurde das Gel gelegt, gefolgt von der benetzten Membran, sowie zwei weiteren Whatmanpapieren und einer Faser-Matte. Die Blotkassette wurden zusammengesetzt mit einer Kühlkammer in die und entsprechende Blotapparatur, gefüllt mit Transferpuffer, eingefügt. Der Transfer erfolgte für eine Stunde bei 100V im Kühlraum (4°C).

3.2.19. Immunnachweis von Proteinen

Nach dem Transfer der Proteine wurde die Membran für eine Stunde bei RT in 1X PBS mit 5% Magermilchpulver inkubiert, um die unspezifischen Proteinbindungsstellen der Membran abzusättigen. Anschließend wurde die Membran dreimal mit 1x PBS für je 5min gewaschen. Danach erfolgte die Inkubation mit dem Primärantikörper über Nacht bei 4°C (Abschnitt 3.1.12). Um ungebundenen Antikörper zu entfernen, wurde die Membran dreimal für 5min mit 1x PBS gewaschen und im Anschluss mit einem entsprechenden peroxidasegekoppelten Sekundärantikörper (1:10000 in 1x PBS in 5% Magermilchpulver) für 1 – 3 Stunden bei RT inkubiert. Nach weiterem dreimaligem Waschen mit 1x PBS konnten die immunmarkierten Proteine enzymatisch mit Hilfe der eingesetzten Entwicklerlösung (Western Lightning) detektiert werden. Dieses Reagenz enthält Luminol, welches durch die Peroxidase oxidiert wird. Bei dieser Reaktion wird Licht bei 428nm emittiert, wodurch die Antikörperbindung und somit das Zielprotein auf einem lichtempfindlichen Film visualisiert werden kann.

3.2.20. RNA Aufreinigung

Für die Präparation von RNA wurde das Aufreinigungssystem *ZR RNA MicroPrep™* von der Firma *Zymo Research* verwendet. Hierfür wurden die Zellen in 400µl Lyse-Puffer lysiert und für 1min bei 12000xg zentrifugiert. Danach wurde der Überstand auf eine *Zymo-Spin™ IIIC*-Säule gegeben und erneut für 30s bei 8.000xg zentrifugiert. Der Überstand wurde mit 320µl Ethanol (100%) vermengt, daraufhin erneut auf die Säule überführt und bei 12.000xg für 30s zentrifugiert. Weiter erfolgte die Behandlung der Ansätze mit einem DNase-Reaktionsgemisch

(3μl RNase-freie DNase I (1U/μl), 3μl 10x Reaktions-Puffer und 24μl RNA-Wasch-Puffer) für 15min bei 37°C und einem Zentrifugationsschritt für 30s bei 12.000xg. Danach wurden 400μl *RNA-Prep*-Puffer auf die Säulen gegeben und erneut zentrifugiert (1min, 12.000xg). Im Anschluss wurden die Säulen einmal mit 800μl und ein zweites Mal mit 400μl RNA-Wasch-Puffer gewaschen und jeweils für 30s bei 12.000xg zentrifugiert. Zur vollständigen Evaporation des Ethanols wurden die Säulen für 2min bei 12.000xg zentrifugiert und die RNA anschließend in 10μl RNasefreiem Wasser eluiert (Zentrifugation: 10.000xg, 30s). Die RNA-Konzentration wurde photometrisch (NanoDrop ND-2000) bestimmt.

3.2.21. Herstellung einzelsträngiger cDNA

300ng RNA wurden mit 250ng *Random-Hexamer* Oligonukleotiden und 10mM dNTPs (1μl) vermengt, auf einem Volumen von 13μl mit RNasefreiem Wasser aufgefüllt und für 5min bei 65°C inkubiert. Anschließend wurden die Ansätze auf Eis gelagert und mit 4μl 5x Erst-Strang-Puffer, 1μl DTT und 1μl des Enzyms *SuperScript II* Reverse Transkriptase versetzt. Die Generierung der einzelsträngigen cDNA erfolgte in einer 3-Schritt Reaktion. Zuerst wurden die Ansätze für 5min bei 25°C inkubiert, folgend für 60min bei 50°C und der letzte Inkubationsschritt erfolgte bei 70°C für 15min. Anschließend wurden die Ansätze mit 1μl RNase H behandelt und für 20min bei 37°C inkubiert. Die Inaktivierung des Enzyms erfolgte bei 65°C für 20min. Abschließend wurde die einzelsträngige cDNA mit nukleasefreiem Wasser auf eine Konzentration von 5ng/μl eingestellt und für weitere Analysen eingesetzt.

3.2.22. Quantitative Echtzeit PCR (q-PCR)

Innerhalb dieser Arbeit wurde die quantitative Echtzeit-PCR mit der SYBR-Green-Methode durchgeführt. SYBR-Green ist ein interkalierender Fluoreszenzfarbstoff, der sich in die gebildeten PCR-Produkte einlagert und dabei sein Absorptionsverhalten ändert. Diese Änderung wird in Echtzeit erfasst und korreliert mit der Menge der in die Reaktion eingesetzten cDNA. Dabei ist es wichtig, dass die eingesetzten Oligonukleotide eine hohe Spezifität aufweisen und eine vergleichbare Amplifikationsgeschwindigkeit erlauben. Dies wurde mithilfe einer Schmelzkurvenanalyse und einer Amplifikations-Effizienzbestimmung unter Einsatz verschiedener cDNA-Konzentrationen untersucht. Für eine Reaktion in einer 384-Kammer-Platte wurden 1µl cDNA (5ng), 1,5μl Olignukleotid-Mix (jeweils 100μM), 2,5μl H₂O und 5μl SYBR-Green pro Kammer eingesetzt. Von jeder Reaktion wurden Triplikate untersucht. Es wurde das ABI-PRISM 7900HT Sequence Detection System von der Firma

Applied Biosystems zur Amplifikation und Aufzeichnung der Fluoreszenzemission verwendet. Die Auswertung erfolgte mit dem Programm SDS 2.1 nach der $\Delta\Delta$ Ct-Methode

Tabelle 18: Q-PCR-Bedingungen.

Schritt	Zeitdauer	Temperatur	
1	2min	50°C	
2	10min	95°C	
	40 Zyklen Schritt 3 - 4		
3	15s	95°C	
4	1min	60°C	
	Dissoziationskurve		
5	15s	95°C	
6	15s	60°C	
7	15s	95°C	

3.2.23. Luziferase-Reporterexperimente

Für Promotoranalysen wurde das Dual-Luciferase® Reportersystem der Firma Promega nach Herstellerangaben verwendet. Hierfür wurden die PC3- und LNCaP-Zellen, wie in Tabelle 16 angegeben, in 24-Kammer-Zellkulturplatten bei 5% CO2 und 37°C für 16-24 Stunden inkubiert. Anschließend wurden die PC3-Zellen mit einem Transfektionsansatz, bestehend aus 50µl RPMI1640 Medium (ohne FCS und Pen/Strep), 100ng pRL-TK-Renilla, 100ng pGL3-TATA(ARE), 100ng pSG-ARwt(Q18), sowie mit den einzelnen Plasmid-Konstrukten (100ng pcDNA4.1-CTNNB1-WT, 100ng pcDNA4.1-CTNNB1-T41I, 100ng pcDNA4.1-TP53-WT, 100ng pcDNA4.1-TP53-H169Q, 100ng pCDNA4.1-TP53-V157I) und 1,3µl Lipofectamin, versetzt in 50µl RPMI1640 Medium (ohne FCS und Pen/Strep). Für die LNCaP-Zellen bestand ein Transfektionsansatz aus 50µl RPMI1640 Medium (ohne FCS und Pen/Strep), 133ng pRL-TK-Renilla, 133ng pGL3-TATA(ARE), sowie den einzelnen Plasmid-Konstrukten (133ng pcDNA4.1-CTNNB1-WT, 133ng pcDNA4.1-CTNNB1-T41I, 133ng pcDNA4.1-TP53-WT, 133ng pcDNA4.1-TP53-H169Q, 133ng pCDNA4.1-TP53-V157I) und 1,3µI Lipofectamin, versetzt in 50µl RPMI1640 Medium (ohne FCS und Pen/Strep). Als Kontrolle diente das Reporter-Luziferase-Plasmid pGL3-Enhancer bzw. das Expressionsplasmid pcDNA4.1. Nach 24 Stunden Transfektion wurde das Medium abgenommen und durch ein Hungermedium (1% FCS) mit 100nM Dihydrotestoteron (DHT) ersetzt und für weitere 24 Stunden bei 37°C und 5% CO₂ inkubiert. Anschließend wurden die Zellen einmal mit PBS gewaschen, mit

100µl 1x passivem Luziferase-Lysepuffer versetzt und für 20min bei RT lysiert. 20µl des Lysats wurden in eine 96-Kammer-Zellkulturplatte überführt und die Reporteraktivität im *Centro LB960 Luminometer* (Bertold, Bad Wildbad) gemessen und in Relation zur Expression der *Renilla* Luziferase gesetzt.

3.2.24. Zellproliferationsexperimente

Zur funktionellen Charakterisierung der innerhalb in dieser Arbeit identifizierten Gene wurden Zellproliferationsexperimente mit zwei unterschiedlichen Methoden durchgeführt.

3.2.24.1. Bestimmung der Proliferation mittels AlamarBlue®-Reagenz

Für die Analyse der Proliferation mittels *AlamarBlue*®, dem Farbstoff Resazurin der in proliferierenden Zellen durch Reduktion zu fluoreszierenden Resofurin umgesetzt wird, wurden die PC3- und LNCaP-Zellen in 24-Kammer-Platten bei 37°C und 5% CO2 für 16-24 Stunden kultiviert. Anschließend erfolgte die Transfektion der PC3-Zellen jeweils mit den Expressionsplasmiden pcDNA4.1-TP53, pcDNA4.1-TP53_H168Q, pcDNA4.1-TP53_V157I, pcDNA4.1-CTNNB1, pcDNA4.1-CTNNB1_T41I oder pSG5-ARwt(Q18), sowie die LNCaP-Zellen, mit den Konstrukten pcDNA4.1-TP53, pcDNA4.1-TP53_H168Q, pcDNA4.1-TP53_V157I, pcDNA4.1-CTNNB1, oder pcDNA4.1-CTNNB1_T41I. (Abschnitt 3.2.14) Danach wurden 50µl des *AlamarBlue*®-Reagenz auf die Zellen gegeben und diese für 4 Stunden bei 37°C und 5% CO2 inkubiert. Die Messung der Proliferation erfolgte mit einem Fluoreszenzspektrometer LS55 (Perkin Elmer) bei einer Wellenlänge von 570nm.

3.2.24.2. Bestimmung der Proliferation mittels Hochdurchsatz-Mikroskopie

Das *CellomicsArray Scan* ist ein Hochdurchsatz-Mikroskopieverfahren, welches anhand der Zellkernfärbung (Hoechst) die Zellzahl der proliferierenden Zellen quantifiziert. Dafür wurden Wi38-, A549- und HCC827-Zellen in eine 96-Kammer-Platte bei 37°C und 5% CO₂ für 16-24 Stunden kultiviert. Anschließend erfolgte die Transfektion der Zellen mit siRNA-Molekülen nach den im Abschnitt 3.2.16 beschrieben Transfektionsprotokollen. 4-6 Stunden bzw. 24 Stunden nach der Transfektion wurden die Zellen mit zytotoxischen Agenzien behandelt und für 24-72 Stunden bei 37°C und 5% CO₂ inkubiert. Für die Messung wurden die Zellen zunächst für mindestens 5min mit eiskaltem Methanol bei -20°C fixiert und die Ansätze mit 1x PBS-TritonX (0,5%) für 15min bei RT gewaschen. Anschließend erfolgte die Zellkernfärbung mit dem Farbstoff Hoechst (1:10.000) für 1min. Die

Zellen wurden letztlich in 1x PBS aufgenommen und mit dem *CellomicsArray Scan* quantifiziert.

3.2.25. Patientenproben

3.2.25.1. IMGUS-Projekt

Die DNA der Gewebeproben von 32 Prostatakarzinomen und dem jeweils korrespondierendem Normalgewebe wurde von der Abteilung Urologie des Universitätsklinikums Innsbruck isoliert, und für die in dieser Arbeit durchgeführten Mutationsanalysen zur Verfügung gestellt (Anhang 1). Die Studie wurde durch das Ethik-Komitee des Universitätsklinikums Innsbruck anerkannt und folgt den Empfehlungen der Helsinki Deklaration (UN3174 und AM3174). Die Patienten wurden zur Entnahme des Prostatagewebes einer klinisch indizierten radikalen Prostatektomie unterzogen. Keiner der Patienten wurde einer neoadjuvanten, Strahlen- bzw. endokrinen Therapie unterzogen. Anschließend folgte die Einstufung nach dem *Gleason Grading* und die Bestimmung der Stadien der Prostatakarzinome durch einen Pathologen sowie die Aufbereitung als kryokonservierte- und als Formalin fixierte und in Paraffin eingebettete Gewebeproben [175, 176].

3.2.25.2. PREDICT-Projekt

Für die Mutationsanalysen innerhalb der PREDICT-Studie wurde in Kollaboration mit der Evangelischen Lungenklinik Berlin-Buch sowie der Firma Experimentelle Pharmakologie & Onkologie GmbH (EPO) 23 etablierte Patienten-abgeleiteten Xenograft-Modelle von Patienten mit Nicht-kleinzelligem Bronchialkarzinomen (NSCLC) sowie dem jeweils korrespondierendem primären Normalgewebe zur Verfügung gestellt (Abschnitt 4.2). Dafür wurde das operativ entfernte Tumorgewebe in immundefizienten NOD/SCID-Mäuse (non-obese diabetic, and severe combined immunodeficient) transplantiert. Für die Chemosensitivitätstests wurden die Tumore ab einer Größe von etwa 1cm3 entfernt und in native athymische T-Zell-defiziente Nacktmäuse (NMRI:nu/nu) passagiert. histologische Bestimmung der Lungenkarzinome erfolgte entsprechend den (World Health Organization) und WHO-Kriterien die pathologischen Stadiums erfolgte nach dem internationalem System für die Klassifizierung von Lungenkarzinomen [19, 171]. Alle Tierexperimente erfolgten mit Zustimmung und Anerkennung des UKCCCR (United Kingdom Co-ordinating Committee on Cancer Research) zur Haltung von Tieren und unter Beachtung des deutschen Tierschutzgesetzes.

3.2.25.3. Analyse der Einzelnukleotidvarianten mit der Affymetrix SNP-Array Technologie

Für eine Qualitätseinschätzung des *SureSelect* Anreicherungssystems (*Agilent Technologies*), zur zielgerichteten Anreicherung genomischer Regionen und anschließender Hochdurchsatz-Sequenzierung von kryokonservierten- und Formalin fixierten und in Paraffin eingebetteten Prostatageweben wurde für die Mutationsanalyse das *Affymetrix 6.0 SNParray System* als Vergleichssystem verwendet und nach Herstellerangaben der Firma *Atlas Biolabs* GmbH durchgeführt. Positionen mit einer detektierten Einzelpunktmutation und einem Qualitätswert (p-Wert) von < 0,01 wurden als sogenannter *Goldstandard* für den Abgleich mit den Sequenzierdaten verwendet. Hierbei wurden nur jene Positionen mit einer Mindest-Abdeckung von 3x weiter betrachtet. Somit konnten 6.127 Mutationen des kyrokonservierten Gewebes und 6.122 Mutationen des FFPE-Gewebes in die Analyse einbezogen werden. Zur Bestimmung der falschpositiv- bzw. die falsch-negativ-Rate wurde das Verhältnis des Referenzallels und der Einzelnukleotidvariante im Affymetrix-Datensatz als Vergleich herangezogen.

3.2.26. Agilent SureSelect Anreicherungssystem

Das SureSelect Anreicherungssystem der Firma Agilent Technologies ermöglicht hybridisierungsbasierte Anreicherung anwenderfinierter genomischer Zielregionen während der Probenvorbereitung für Hochdurchsatz-Sequenzier-Systeme.

Abbildung 11: Agilent SureSelect Anreicherungs-Protokoll. Die DNA wird in einem definierten Größenbereich fragmentiert und entsprechend prozessiert. Die fragmentierte DNA wird 24 Stunden zusammen mit Anwender-definierten biotinylierten RNA-Magnetpartikeln hybridisiert. Anschließend werden die DNA-RNA-Hybride mithilfe von Streptavidin-Magnetpartikeln selektioniert und die DNA-Hybride präzipitiert. Die angereicherten DNA-Fragmente werden amplifiziert und sequenziert.

3.2.26.1. Präparation der DNA-Bibliothek für die Illumina-Sequenzierung

Für die Anreicherung der Anwender-definierten 1.048 Gene (3,9Mb) sowie des gesamten Exoms (52Mb) für die Mutationsanalyse der IMGuS Proben wurde das

Protokoll: *SureSelect* Anreicherungssystem für *die Illumina single-end* Sequenzier-Platform (Version April 2009) verwendet.

DNA-Fragmentierung

Für die Fragmentierung der genomischen DNA wurde das Covaris S2-System (Applied Biosystems) verwendet. Dazu wurden 0,5 - 3,0µg genomische DNA in 100µl 1x TE Puffer gelöst und in die erforderlichen Covairs™ Mikro-Reaktionsgefäße überführt. Anschließend erfolgte die Fragmentierung mittels Ultraschall auf 200 – 300bp mit folgenden Parametern: Auslastungszyklus 20%, Intensität 5, Zyklus pro Bruch 200, Zeit in Sekunden 90. Anschließend wurden die fragmentierten Proben mit dem QIAquick PCR Purification-System aufgereinigt. Hierfür wurden die Ansätze mit 500µl PBI-Puffer versetzt, auf eine entsprechende Affinitätssäule ("QIAquick") gegeben und für 1min bei 13.000rpm zentrifugiert. Im Anschluss wurden die Säulen mit 750µl PE-Puffer gewaschen und zentrifugiert (1min, 13.000rpm). Zur vollständigen Entfernung des Ethanols erfolgte eine weitere Zentrifugation für 1min bei 13.000 rpm. Danach wurden die Ansätze mit 30µl EB-Puffer und anschließender Zentrifugation (1min, 13.000rpm) eluiert. Im Anschluss erfolgte die Quantifizierung der fragmentierten DNA mit Bioanalyzer. dem Agilent 2100 Hierzu wurde 1µl der DNA Herstellerangaben für das Agilent DNA7500 System eingesetzt entsprechend mit der Agilent 2100 expert Software (Version B.02.02) ausgewertet.

Modifizierung der DNA-Enden

Die einzelsträngigen Enden der 200 – 300bp DNA-Fragmente wurden mittels der T4 DNA-Ligase/Polymerase und dem Klenow-Enzym repariert und die 5`-Enden mit der T4 Polynukleotidkinase (PNK) phosphoryliert. Ein Reaktionsansatz enthielt (29μl DNA, 46μl H₂O, 10μl T4 DNA-Ligase-Puffer mit 10mM ATP, 4μl dNTPs, 5μl T4 DNA-Polymerase, 1μl Klenow DNA-Polymerase, 5μl T4 PNK). Die entsprechenden Ansätze wurden für 30min bei 20°C inkubiert und anschließend mit dem *QIAquick PCR Purification-Kit* aufgereinigt. Die Elution der DNA erfolgte mit 32 μl EB-Puffer.

Ligation der Adaptoren

Für die Ligation der Adaptoren war es zunächst erforderlich, ein Adeninnukleotid an die 3`-Enden der DNA-Fragmente anzufügen, sodass ein Einzelnukleotidüberhang entsteht. Dazu wurde folgendes Reaktions-Gemisch

erstellt: 32µl DNA, 5µl Klenow-Puffer, 10µl dATPs, 3µl Klenow exo (3`zu 5`exo minus). Es folgte ein Inkubation für 30min bei 37°C. Anschließend erfolgte die Aufreinigung mit dem Qiagen MinElute PCR Purificatio-System. Die DNA-Proben wurden in 10µl EB-Puffer eluiert. Für die Ligation der Sequenzier-Adaptoren (5'GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG3') und (5`ACACTCTTTCCCTA-CACGACGCTCTTCCGATCT3`) wurden diese in einem molaren 10:1 Verhältnis zur eingesetzten genomischen DNA eingesetzt. Bei einer DNA-Konzentration von 3µg enthielt der entsprechende Reaktionsansatz von 50μl: 10μl DNA, 25μl DNA-Ligase Puffer, 6μl Adaptor-Oligo-Mix und 4μl H₂O. Nach einer anschließenden Inkubation von 15min bei Raumtemperatur erfolgte eine Aufreinigung mit dem QIAquick PCR Purification-System abschließender Elution in 30µl EB-Puffer.

Größenselektion der DNA-Fragmente

Für eine weitere Selektion der adaptorligierten DNA-Fragmente wurde eine Agarosegelektrophorese mit einem 2%igen präparativem Agarosegel durchgeführt und DNA-Fragmente mit einer Länge zwischen 200 – 300bp auf einem LED Transilluminator, mit einer für die DNA im Vergleich zu UV-Licht unschädlichen Wellenlänge von 470nm, ausgeschnitten, aufgereinigt und in 30µl Elutions-Puffer eluiert (Abschnitt 3.2.3).

Amplifizierung der DNA-Bibliothek

Ein entsprechender PCR-Ansatz zur Amplifizierung der DNA-Bibliothek enthielt: 1μl DNA, 25μl Phusion Master-Mix, je 1μl Primer P1 und P2, 22μl H₂O und wurde bei folgenden Bedingungen inkubiert: 30s 98°C, 14 Zyklen (10s 98°C, 30s 65°C, 30s 72°C), finale Verlängerung für 30s bei 72°C und Halten bei 4°C. Anschließend erfolge die Aufreinigung des PCR-Ansatzes und Elution in 30μl EB-Puffer. Bevor die amplifizierten DNA-Bibliotheken für die Hybridisierungsreaktion eingesetzt wurden, erfolgte eine weitere Quantifizierung der Proben mit dem Agilent 2100 *Bioanalyzer*.

3.2.26.2. Präparation der DNA-Bibliothek für die SOLiD-Sequenzierung

Für die Anreicherung der Anwender-definierten 1.947 Gene (9Mb) sowie des gesamten Exoms (~37,6Mb) für die Mutationsanalyse der PREDICT Proben wurde das Protokoll: *SureSelect* Anreicherungssystem für die *Applied Biosystems SOLiD-Technologie* (Version Juli 2010) modifiziert .

DNA-Fragmentierung

2μg der genomischen DNA wurden in 120μl 1x TE Puffer gelöst, mit dem Covaris S2-System (*Applied Biosystems*) auf eine Größe von 150 – 180bp nach folgendem Protokoll fragmentiert: 6 Zyklen á 60s Auslastungszyklus 10%, Intensität 5, Zyklus pro Bruch 100. Anschließend wurden die fragmentierten Proben mit dem *QIAquick PCR Purification*-System aufgereinigt und in 50μl EB-Puffer eluiert.

Modifizierung der DNA-Enden

Die Enden der 150 – 180bp DNA-Fragmente wurden mit einem DNA-Enden-Reparatur-Mix (45µl DNA, 5,9µl 10x *End-Repair*-Puffer, 5,9µl dNTPs (1mM) und 2,4µl *End-Repair-Enzym-Mix, Enzymatics*) vermengt und für 40min bei RT inkubiert, mit darauf folgender Inaktivierung der Enzyme bei 75°C für 15min. Im Anschluss erfolgte eine Aufreinigung mit dem *QIAquick PCR Purification-*System und entsprechender Elution in 50µl EB-Puffer.

Ligation der Adaptoren

Für die Ligation der Sequenzieradaptoren (PI und IA) wurden diese in einem 30fachen molaren Überschuss pro Ligationsreaktion in einem Gesamtvolumen von 200µI eingesetzt. Das benötigte Volumen (X in µI) der 50µM Adaptor-Stammlösung wurde mit folgender Berechnung ermittelt:

 $X = DNA \text{ in } [\mu g] * 1.000.000 / 660 [g/(mol * bp)] * 30 / 50 [\mu mol/l] * 1 / Länge in [bp] (30x Überschuss, 50<math>\mu$ M Adaptoren, Länge ~ 200bp)

45μl der DNA wurden mit Xμl der entsprechenden Adaptoren (PI und IA) sowie $100\mu l$ 2x Rapid-Ligations-Puffer und $1\mu l$ Ligase vermengt, auf $200\mu l$ mit H_2O aufgefüllt und für eine Stunde bei RT inkubiert. Anschließend wurden die Ansätze mit dem QIAquick PCR Purification-System aufgereinigt und in $60\mu l$ EB-Puffer eluiert.

Größenselektion der DNA-Fragmente

Die Selektion der adaptorligierten DNA-Fragmente erfolgte mittels präparativer Agarosegelelektrophorese, wie bereits für die Illumina-Technologie beschrieben. Die entsprechenden DNA-Banden wurden mit einer Fragmentlänge zwischen 150 – 200bp herausgeschnitten, aufgereinigt und in 30µl Elutions-Puffer eluiert.

Nick - Translation und Amplifizierung

Um die während der Ligation der unphosphorylierten Adaptoren an die 5'-phosphorylierten DNA, entstandenen sogenannten *Nicks* (Bruchstellen) zu schließen, wurden 10µl der adaptorligierten DNA mit 2µl *SureSelect Pre-capture Primer* (50µM), 5µl 10x Puffer, 1,5µl MgCl₂, 0,5µl dNTPs, 1µl Platinum Taq-Polymerase, 0,2µl Pfu-Polymerase und 29,8µl H₂O vermengt und die Nick-Translation mit anschließender Amplifizierung mit folgendem Programm durchgeführt: 72°C 20min, 95°C 5min, 12 Zyklen (95°C 15s, 54°C 15s, 70°C 1min), 70°C 5min und Halten bei 4°C. Anschließend wurden die Ansätze aufgereinigt, in 50µl EB-Puffer eluiert und mittels des Agilent 2100 Bioanalyzers quantifiziert.

3.2.27. Hybridisierung der DNA-Bibliothek

Für die Hybridisierung der anwenderspezifischen genomischen Zielregionen wurde die präparierte DNA-Bibliothek auf eine Konzentration von 500ng in 3,4µl adjustiert und mit der SureSelect Block-Lösung vermengt (SureSelect Block-Lösung: 2,5µl SureSelect Block #1, 2,5µl SureSelect Block #2, 0,6µl SureSelect Block #3). Anschließend wurden dem Ansatz, einem für 5min bei 65°C vorgewärmten Hybridisierungs-Puffer (Hybridisierungs-Puffer: 25µl SureSelect Hyb #1, 1µl SureSelect Hyb #2, 10µl SureSelect Hyb #3, 13µl SureSelect Hyb #4) sowie einer für 2min bei 65°C erwärmten SureSelect anwenderspezifischen biotinylierten RNA-Nukleotid-Lösung (5µl Nukleotid-Lösung, 1,5µl H₂O, 0,5µl RNase) zugegeben und für 24h bei 65°C inkubiert. Die gebildeten DNA-RNA-Hybride wurden im Anschluss mit 500µl M-280 Streptavidin beschichteten Magnetpartikeln (Invitrogen) sowie eines starken Magneten Hybridisierungslösung herausgezogen. Dazu wurde der Ansatz für 30min mit den Magnetpartikeln bei RT inkubiert und anschließend mit 500µl SureSelect Wasch-Puffer #1 vermengt und für 15min bei RT gewaschen. Darauf folgten drei weitere Waschvorgänge mit dem bei 65°C vorgewärmten SureSelect Wasch-Puffer #2 (500µl) für je 10min bei 65°C. Die präzipitierten DNA-Hybride wurden in 50µl Elutions-Puffer eluiert und für 10min bei RT inkubiert. Folgend wurde der Überstand in ein neues 1,5ml Reaktionsgefäß überführt und mit 50µl Neutralisations-Puffer vermengt.

Für die Illumina Sequnzierung wurden die Ansätze mit dem Qiagen *MinElute PCR Purification-System* aufgereinigt und in 30µl EB-Puffer eluiert. Abschließend wurden die angereicherten Regionen mittels einer weiteren PCR amplifiziert. Dazu wurde 1µl der DNA-Hybrid-Bibliothek mit 49µl eines PCR-Master-Mixes

vermengt (91,25μl H₂O, 25μl 5x *Herculase II* Reaktions-Puffer, 1,25μl dNTPs (100mM), 2,5μl *SureSelect GA PCR Primer*, 2,5μl *Herculase II* Fusion DNA-Polymerase) und bei folgenden Bedingungen inkubiert: 30s 98°C, 12 Zyklen (10s 98°C, 30s 57°C, 30s 72°C), 7min 72°C und Halten bei 4°C. Darauf erfolgte eine weitere Aufreinigung der amplifizierten Ansätze mit einer Elution in 30μl EB-Puffer sowie einer Quantifizierung und Konzentrationsbestimmung der Ansätze mit dem Agilent 2100 *Bioanalyzer*.

Für die SOLiD Sequenzierung wurden die angereicherten Regionen mithilfe von Agencourt AMPure XP-Magnetpartikeln aufgereinigt. Dafür wurden die SPRI XP-Partikel bei RT für 30min equilibriert, 180µl der Partikel mit einem angereicherten DNA-Ansatz vermengt und 5min inkubiert. Anschließend wurde der Ansatz in einen Magnetständer gestellt und für weitere 5min inkubiert bis eine klare Lösung entsteht, die vorsichtig abgenommen und verworfen wurde. Danach folgten zwei Waschschritte mit jeweils 500µl Ethanol (70%) für 1min und einer Inkubation der Ansätze bei 37°C für 5min bis das restliche Ethanol evaporiert ist. Für die Elution wurden die Ansätze mit 50µl nukleasefreiem Wasser vermengt, für 2min bei RT inkubiert und wieder in ein Magnetständer gegeben bis eine klare Lösung entsteht, die vorsichtig in ein neues 1,5ml Reaktionsgefäß überführt wurde. Danach erfolgte die Amplifikation der DNA-Hybrid-Bibliothek mit entsprechenden Barkode-Oligonukleotiden in einem 50µl DNA-Ansatz mit: 23µl H₂O, 20µl 5x Herculase II Reaktions-Puffer, 1µI dNTPs (25mM jede), 2µI Herculase II Fusion DNA Polymerase und 4µl SureSelect Barkoding Primer (BC1-BC16) mit folgenden PCR-Bedingungen: 5min 95°C, (12 Zyklen (15s 95°C, 45s 54°C, 1min 70°C) 5min 70°C und Halten bei 4°C. Abschließend wurden die Ansätze mittels der Agencourt AMPure XP-Magnetpartikel aufgereinigt, in 50µl nukleasefreiem H₂O eluiert. Die Konzentrationsbestimmung sowie die Quantifizierung der angereicherten DNA-Bibliotheken erfolgte ebenfalls mit dem Agilent 2100 Bioanalyzer.

3.2.27.1. Quantifizierung der DNA-Hybrid-Bibliothek

Zur Bestimmung der Anreicherungseffizienz der DNA-Hybrid-Bibliotheken wurde eine quantitative PCR mit der Prä-Hybrid-DNA und Post-Hybrid-DNA durchgeführt. Hierzu wurde zum einen ein Oligonukleotidpaar innerhalb der anwenderspezifischen Region (vorwärts: ATCCCGGTTGTTCTTCTGTG und rückwärts: TTCTGGCTCTGCTGTAGGAAG) verwendet und ein Oligonukleotidpaar außerhalb der Regionen (vorwärts: AGGTTTGCTGAGGAACCTTGA und rückwärts: ACCGAAACATCCTGGCTACAG). Ein Ansatz enthielt: 1 μ l DNA (5ng), 1,5 μ l Oligonukleotidmix (5mM jedes Nukleotids), 5 μ l 2x *SYBR-Green*, 2,5 μ l H₂O) und wurde im folgendem Programm amplifiziert: 1 min 95°C, 18 Zyklen (50s 95°C, 50s 60°C, 1min 68°C) und 7min bei 68°C). Der Anreicherungsfaktor 2^{Anreicherungsfaktor} wurde wie folgt berechnet: X = C_t-Wert (Post-Hybrid-DNA_{außerhalb der Region}) – C_t-Wert (Post-Hybrid-DNA_{innerhalb der Region}). Als interne Kontrolle wurde jeweils die Prä-Hybrid-DNA mit den entsprechenden Oligonukleotiden verwendet. Es wurden jeweils Duplikate angesetzt und mit dem jeweiligen Mittelwert gerechnet.

3.2.28. Illumina - Sequenzierung

Die Hochdurchsatz-Sequenzierung der IMGuS-Proben erfolgte mit dem Illumina *Analyzer IIx* (Illumina), dessen Prinzip auf Sequenzierung durch Synthese beruht. Hierbei werden die vier Nukleotide A, C, G und T mit unterschiedlichen fluoreszierenden Terminatoren markiert und befinden sich in einem Reaktionsansatz. Bei einer Sequenzierreaktion wird ein Nukleotid eingebaut und erzeugt ein entsprechendes Fluoreszenzsignal. Nach Abspaltung des Terminators, welcher den Einbau von weiteren Nukleotiden verhindert, kann ein neues Nukleotid eingebaut werden.

Für eine Sequenzierreaktion wurde die Konzentration einer generierten DNA-Bibliothek auf 10nM eingestellt und auf einen Glasträger gegeben. Ein Glasträger besteht aus acht Kapillaren, auf deren Oberflächen sich die komplementären Sequenzen der Adaptoren befinden. Die Generierung der sogenannten Cluster (Amplifizierung der identischen DNA-Stränge) erfolgte mittels einer Brücken-Amplifikation nach Herstellerangaben (www.lllumina.com). Die Sequenzierungen (36bp single end) wurden am Max Planck Institut für molekulare Genetik in der Servicegruppe "Sequenzierung" durchgeführt.

3.2.29. SOLiD-Sequenzierung

Die Hochdurchsatz-Sequenzierung der PREDICT-Proben erfolgte mit der SOLiD 3+ Technologie (Applied Biosystems), dessen Prinzip auf Sequenzierung durch Ligation beruht. Dabei werden achtbasige, fluoreszenzmarkierte Oligonukleotide nacheinander an den Sequenzierprimer komplementär zum zu sequenzierenden **DNA-Fragment** ligiert. Jede der Sonden trägt einen anderen Fluoreszenzfarbstoff, der an das 3'- Ende gekoppelt ist und entsprechend die Matrizensequenz repräsentiert, die komplementär zur vierten und fünften Base der Oligonukleotid-Sonde ist. Hybridisiert die Sonde mit der Matrize, entsteht ein Fluoreszenzsignal, das von einem Laser erfasst wird. Im Anschluss wird die

ligierte Sonde zwischen der fünften und sechsten Base gespalten, wodurch der fluoreszierende Teil abgespalten wird. Eine neue Sonde kann nun ligieren. Dieser Prozess wird so lange wiederholt, bis eine Leselänge von 35bp erreicht ist. Mittels eines emulsionsartigen PCR-Ansatzes wurden die DNA-Bibliotheken an magnetische Kügelchen gekoppelt und amplifiziert, sodass monoklonale Magnetpartikel entstehen. Partikel mit amplifizierter DNA wurden mithilfe Polystyren-Partikeln angereichert und anschließend kovalent mit der Oberfläche eines Glasträgers verknüpft. Die Emulsions-PCR-Reaktionen wurden von Uta Marchfelder und die Sequenzierungen in der Arbeitsgruppe von Dr. Mark Sultan durchgeführt.

3.2.30. Prozessierung der Illumina-Sequenzierdaten

Die im Folgenden beschriebenen bioinformatischen Analysen wurden von Dr. Martin Kerick durchgeführt. Die Rohdaten der Illumina Sequenzierung wurden gegen das Referenzgenom hg19 (*Human Genome 19*) unter Verwendung des Prozessierungsprogramms BWA 0.5.8 (Burrow-Wheeler Algorithmus) mit den entsprechenden, vorimplementierten Standardparametern prozessiert [177, 178].

3.2.30.1. Analyse der Einzelnukleotidvarianten

Die Detektion der Einzelnukleotidvarianten sowie der Insertionen und Deletionen erfolgte mit dem Programm samtools 0.1.8. für jede Probe separat [179]. Hierbei wurden alle Einzelnukleotidvarianten mit einem Qualitätswert größer gleich 20 und einer Allelfrequenz von mindestens 15% an der entsprechenden Position selektioniert und für weitere Analysen verwendet. Wenn eine Mutation im Tumorgewebe und mit keinem Fragment im Normalgewebe mit einer Abdeckung von mindestens 10x auftrat, wurde diese als somatisch klassifiziert. Die Annotation wurde mit der Ensemble Version v63 (www.ensemble.org) durchgeführt. Für eine funktionelle Vorhersage der Proteinfunktion auf Grund der Aminosäuresubstitution wurde mit den Programmen Polyphen v2 und Mutationtaster gearbeitet [180, 181]. Des Weiteren wurde überprüft, ob die identifizierten Mutationen bereits in der Cancer Gene Census Liste enthalten ist [182].

3.2.30.2. Analyse der somatischen Kopienzahlvarianten

Für die Berechnung der somatischen Kopienzahlvarianten wurden die DNA-Sequenzen mit mindestens einem prozessierten Fragment, die nicht innerhalb der Anwender-definierten Zielregion lokalisiert waren, in chromosomale Intervalle eingeteilt. Anschließend wurde unter Verwendung des *DNAcopy* Programms die

somatischen Kopienzahlvarianten zwischen dem Tumorgewebe und dem Normalgewebe berechnet.

3.2.31. Prozessierung der SOLiD-Sequenzierdaten

Die bioinformatischen Auswertungen der Sequenzierung mit der SOLiD-Technologie wurden in der Bioinformatikgruppe von Herrn Dr. Ralf Herwig (Kerstin Neubert, Matthias Lienhardt) durchgeführt. Die Rohdaten der SOLiD-Sequenzierung wurden gegen das Referenzgenom hg19 unter Verwendung des Prozessierungsprogramms Bioscope™ jeweils im *loca*l und *classic* Modus mit den entsprechenden vorimplementierten Standardparametern prozessiert und die Schnittmenge beider Algorithmen für die weiteren Mutationsanalysen verwendet. Die Detektion der Einzelnukleotidvarianten erfolgte mit dem Programm *diByse*. Zudem wurden die Rohdaten gegen das Mausgenom (mm9) prozessiert und die entsprechenden homologen Sequenzen subtrahiert.

3.2.31.1. Analyse der Einzelnukleotidvarianten

Für die Selektion der somatischen Mutationen wurde das Programm Ingeniuty Variant Analysis verwendet und die Parameter wie folgt eingestellt: die entsprechende Position muss eine mindest Abdeckung von 10x betragen und die entsprechende Basenqualität größer als 14 betragen. Zudem sollte die Alternativbase nicht im Normalgewebe enthalten sein. Für die Keimbahnmutationen wurde ebenso verfahren, außer dass hier die angegebene Alternativbase ebenfalls im Normalgewebe (Referenzgewebe), auftrat.

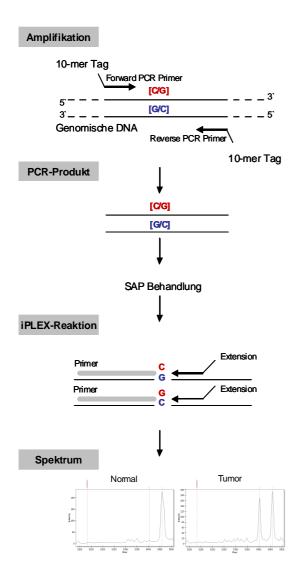
3.2.31.2. Analyse der somatischen Kopienzahlvarianten

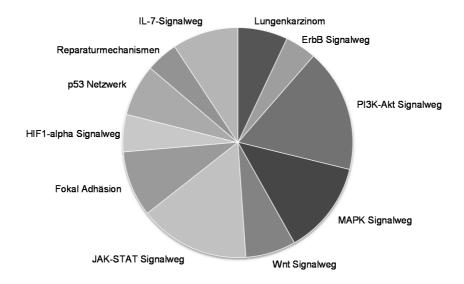
Die Berechnung der somatischen Kopienzahlvarianten wurde ebenfalls von der Bioinformatikgruppe Dr. Ralf Herwig (Kerstin Neubert, Matthias Lienhardt) durchgeführt. Hierfür wurde das Programm *Exome CNV* verwendet und das Log2 Verhältnis zwischen dem Tumorgewebe und dem Normalgewebe berechnet [183].

3.2.32. Validierung der Mutationen mittels Massen-Spektrometrie

Die MALDI-TOF- (*matrix-assisted laser desorption/ionization time of flight*) Massen-Spektrometrie ist eine Technologie, die zur Bestimmung von Mutationen genutzt werden kann und gewährleistet eine hohe Genauigkeit bzw. Sensitivität in der Detektion da in direkter Weise die molekularen Massen gemessen. Das *MassARRAY® System* der Firma SEQUENOM wurde verwendet, um die Mutationen, basierend auf den Sequenzierdatenanalysen, zu validieren. Die Validierung in den IMGuS-Prostatatumoren identifizierten Mutationen wurde in

Zusammenarbeit mit der Firma SEQUENOM durchgeführt, die der PREDICT-Lungentumor identifizierten Mutation erfolgte bei der Firma Atlas Biolabs GmbH.




Abbildung **12:** MassARRAY® **MALDI-TOF** Massen-Spektrometrie Protokoll. Die DNA wird mittels PCR amplifiziert. Im nächsten **Prozess** wird dem **Amplifikat** ein iPLEX-Gold Reaktionsgemisch zugemengt. Dieses enthält das Enzym SAP (shrimp alkaline phosphatase) um die uninkorperierten dNTPs zu neutralisieren indem diese zu dNDPs dephosphoryliert werden. Das SAP-behandelte Amplifikat wird weiter für die Extend PCR-Reaktion eingesetzt. Hierfür wird iPLEX-Gold PCR-Gemisch verwendet, das bereits alle vier Terminatornukleotide A, C, G und T enthält. Somit entsteht ein allelspezifisches Extensions-PCR-Produkt unterschiedlicher Anschließend Molekularmassen. werden die Proben ebenfalls mit einem iPLEX-Gold Reaktionsgemisch entsalzt, einen SpectroCHIP transferriert und die entsprechende Massen-Spektrometrie mittels MassARRAY Gerätes analysiert.

Für die MALDI-TOF Massen-Spektrometrie war es zunächst erforderlich die entsprechende genomische Region mittels PCR zu amplifizieren. Ein Reaktionsansatz enthielt: 1,85μl H₂O, 0,625μl 10x PCR-Puffer, 0,325μl MgCl₂, 0,1μl dNTPs (25mM jeden Nukleotids), 1μl Primer-Mix (jeder 500nM), 1μl DNA (5ng), 0,1μl Hotstar Taq-Polymerase (5U/μl) und wurde bei folgenden PCR-Bedingungen inkubiert: 15min 94°C, 45 Zyklen (20s 94°C, 30s 56°C, 1min 72°C), 3min 72°C und Halten bei 4°C. Anschließend wurde dem PCR-Produkt ein Reaktionsgemisch zugemengt, in dem das Enzym SAP (*shrimp alkaline phophatase*) enthalten ist, wodurch uninkorporierten dNTPs dephosphoryliert werden. Ein entsprechender Ansatz enthielt: 1,55μl H₂O, 0,17μl 10x SAP-Puffer, 0,3μl SAP-Enzyme (1U/μl) und wurde bei 37°C für 20min inkubiert und anschließender Inaktivierung des Enzyms für 5min bei 80°C. Für die Extensions-

Reaktion wurde ein der Zielsequenz komplementäres Oligonukleotid verwendet, das direkt 5` vor der zu untersuchenden Mutation endet. Durch die Zugabe von ddNTPs (Didesoxynukleotidtriphosphat) wird der Primer allelspezifisch durch eine thermostabile DNA-Polymerase um ein Nukleotid verlängert (extendiert). Hierfür wurden dem SAP behandeltem Ansatz 0,755μl H₂O, 0,2μl 10x iPLEX-Puffer, 0,804μl Extensions-Primer (7μM), 0,041μl iPLEX-Enzym sowie 0,2μl des iPLEX Terminator-Reagenz zugegeben und bei folgenden PCR-Parametern inkubiert: 30s 94°C, 40 Zyklen (5s 94°C, 5 Zyklen (5s 52°C, 5s 80°C), 3min 72°C und Halten bei 4°C. Aufgrund der spezifischen Massendifferenzen der eingesetzten ddNTPs lassen sich die Mutationen nach Reinigung mittels iPLEX-Clean-Resin-Reaktion mit MALDI-TOF Massen-Spektrometrie detektieren.

4. Ergebnisse

bereits beschrieben ist das Bronchialkarzinom die zweithäufigste Tumorerkrankung und eine der häufigsten Todesursachen maligner Tumore. Die relative 5 - Jahres Überlebensrate beträgt 16% [11]. Das Ansprechen der derzeitig eingesetzten Chemotherapien beim fortgeschrittenen Nicht-kleinzelligen Bronchialkarzinom liegt bei 20-50%, da sowohl intrinsische als auch erworbene Resistenzen den Erfolg einer Therapie stark limitieren [184]. Innerhalb des PREDICT-Projektes sollte ein experimenteller Datensatz (genomische Re-Sequenzierung und Genexpressionsanalysen) erstellt und in ein mathematisches Vorhersage-Modell implementiert werden, um potentielle Biomarker für die Diagnostik und Prognose des Bronchialkarzinoms zu identifizieren. Dazu wurde im Rahmen der vorliegenden Dissertation, unter Verwendung von Xenograft-Mausmodellen und dem korrespondierenden primären Normalgewebe, das Mutationsspektrum von 23 individuellen Patienten mit diagnostiziertem Bronchialkarzinom generiert und analysiert. Das Hauptziel dieser Arbeit ist es, anhand der erhaltenen Mutationsprofile der einzelnen Patienten, die betroffenen Gene entsprechend dem Therapieansprechen auf sechs unterschiedliche Medikamente hin zu stratifizieren, um bisher noch nicht beschriebene Genkandidaten, die möglichen einen Einfluss auf intrinsische Resistenzmechanismen haben, zu identifizieren und zu charakterisieren. Hierfür wurden die generierten Xenograft-Modelle mit vier Zytostatika (Carboplatin, Gemcitabin, Paclitaxel und Etoposid) sowie mit zwei EGFR Inhibitoren (Cetuximab und Erlotinib) behandelt. Die Beurteilung der individuellen Sensitivität erfolgte in Anlehnung an die RECIST-Kriterien (Respond Evaluation Criteria in Solid Tumors) und wurde von der Firma Experimentelle Pharmakologie & Onkologie GmbH (EPO) durchgeführt [185]. Die Mutationsanalysen erfolgten durch eine gezielte Anreicherung Anwender-definierter genomischer Regionen gefolgt von einer Hochdurchsatz-Sequenzierung. Dieses, innerhalb des PREDICT-Konsortiums erstellte, spezifische Probenset beinhaltet Kandidatengene, extrahiert aus unterschiedlichen Datenbanken, und umfasst insgesamt eine genomische Region von 9.227Mb, verteilt über 1.947 Gene, die für die Tumorentstehung oder die Chemotherapie von entscheidender Bedeutung sind. Die Abbildung 13 zeigt hierzu eine Übersicht, in welche Signalwege die ausgewählten 1.947 Gene involviert sind.

Abbildung 13: Übersicht der innerhalb des PREDICT-Projektes extrahierten Genkandidaten und deren beteiligten Signalwege sowie zellbiologische Prozesse.

Zur Klärung der Validität der Xenograft-Modelle wurde zunächst eine Gesamt-Exom-Sequenzierung (~37,6Mb), jeweils von dem Normalgewebe, dem Primär-Tumorgewebe und dem Patienten-abgeleiteten Xenograft-Tumor von zwei Patienten durchgeführt, um die Konkordanz des Mutationsprofils der beiden Tumore zu berechnen. Die Anreicherung des Exoms sowie die selektionierten Regionen erfolgte Hilfe genomischen mit der Agilent SureSelect Anreicherungstechnologie, einer Methode zur zielgerichteten Anreicherung von Anwender-definierten genomischen Regionen, basierend Hybridisierungssystem und anschließender Hochdurchsatz-Sequenzierung mit der SOLiD Technologie.

Bevor jedoch mit dieser Arbeit begonnen werden konnte, musste die Methode an klinisches Material adaptiert werden. So sollte zunächst geprüft werden, ob Gewebematerial per se, kleine Gewebemengen und FFPE (Formalin fixiertes und mit Paraffin eingebettetes) Material verwendet werden können. Diese Arbeit erfolgte im Rahmen eines anderen Projektes, des IMGuS-Projektes, bei dem Prostatatumore systembiologisch untersucht werden sollten.

4.1. Etablierung der Hochdurchsatz-Squenzierungs-Technologie für klinisches Gewebematerial

Zur Etablierung der Anreicherung genomischer Zielregionen mit anschließender Hochdurchsatz-Sequenzierung von klinischem Primärgewebematerial wurde innerhalb des IMGuS-Konsortiums die isolierte, genomische DNA von 32 Prostatakarzinomen mit dem jeweils korrespondierenden Gewebe ohne Tumor für die in dieser Arbeit durchgeführten Analysen zur Verfügung gestellt. Hierzu wurde in Übereinstimmung mit dem Konsortium eine Selektion von 1.048 Genen getroffen, die bereits in der Tumorbiologie und speziell in der Tumorprogression des Prostatakarzinoms in der Literatur beschrieben worden sind. ausgewählten Gene umfassen einen genomischen Bereich von 3,9Mb mit 12.366 unabhängigen exonischen Regionen. Zusätzlich wurde an einer kleinen Anzahl von Proben eine Sequenzierung des gesamten Exoms durchgeführt. Die Mutationsanalyse der entsprechenden Regionen erfolgte mit Hilfe der Agilent SureSelect Anreicherungstechnologie und anschließender Hochdurchsatz-Sequenzierung mit der Illumina Technologie. Somit sollten erstmals innerhalb der vorliegenden Dissertation klinisch relevante Aspekte zur Etablierung der Technologie für klinisches Gewebematerial untersucht werden. Der erste Aspekt bezog sich darauf zu überprüfen, ob Formalin fixiertes und mit Paraffin eingebettetes (FFPE) Tumorgewebe ebenfalls für die zielgerichtete Anreicherungstechnologie mit anschließender Hochdurchsatz-Sequenzierung genutzt werden kann. Der zweite Aspekt bestand darin, die etablierte Anreicherungs- bzw. Sequenzierungs-Technologie auf eine geringere DNA-Konzentration des klinischen Gewebematerials hin zu optimieren. Und der dritte Aspekt befasste sich mit der bestehenden Heterogenität von Tumorgeweben, da bisher ausreichend aufgeklärt werden nicht konnte, primäre Prostatakarzinome einen multifokalen Ursprung besitzen und dieser mit multiplen, genetischen Unterschieden der Tumorzellen assoziiert ist.

4.1.1. FFPE-Gewebe kann für die SureSelect zielgerichtete DNA Anreicherung mit anschließender Hochdurchsatz-Sequenzierung genutzt werden.

Weltweit ist das Fixieren von klinischen Gewebeproben mit Formalin und das Einbetten in Paraffin zur nachfolgenden patho-histologischen Untersuchung ein Standardverfahren, um erkranktes von gesundem Gewebe zu unterscheiden. Das Problem mit dieser Fixierungsmethode ist, dass durch eine Quervernetzung

und Degradierung der DNA viele molekularbiologische Techniken erschwert werden. Somit sollte innerhalb dieser Arbeit erst einmal überprüft werden, ob FFPE Gewebe ebenfalls für die zielgerichtete Anreicherungs-Technologie, basierend auf einem Hybridisierungssystem mit anschließender Hochdurchsatz-Sequenzierung, genutzt werden kann. Hierfür wurden die entsprechenden Gesamt-Exom (52 Mb) DNA-Hybrid-Bibliotheken aus dem kryokonservierten Gewebe und aus dem durch FFPE konservierten Gewebe eines Patienten (Pat-ID: 650) hergestellt, und mit dem Illumina Genome Analyszer IIx sequenziert. Die im Folgenden durchgeführten bioinformatischen Analysen wurden in Zusammenarbeit mit Dr. Martin Kerick durchgeführt. Die Rohdaten der Hochdurchsatz-Sequenzierung wurden gegen das Referenzgenom hg19 (human genome 19) unter Verwendung des Prozessierungsprogramms BWA 0.5.8 (Burrows-Wheeler Algorithms) mit den entsprechenden Standardparametern prozessiert [177, 178].

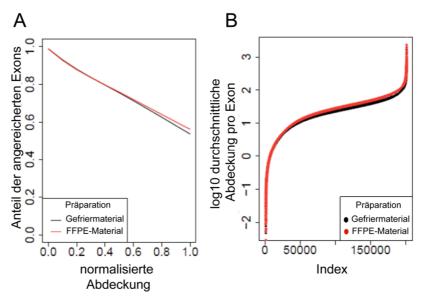

Die Tabelle 19 zeigt eine Übersicht der Gesamt-Exom Sequenzierungs-Ergebnisse der beiden Gewebepräparationen. Aus dieser Tabelle wird ersichtlich, dass etwa 75% der prozessierten Sequenzier-Fragmente innerhalb der Zielregion lokalisiert sind. Weiter konnten ca. 18.000 SNVs bei einer Abdeckung von 20x, die in den folgenden Analysen miteinbezogen wurden, ermittelt werden.

Tabelle 19: Deskriptive Statistik der Exom-Sequenzierung für die Kryo- bzw. FFPE-Konservierung des benignen Gewebes (B) des Patienten 650.

Patient- ID	Gewebe Spezifikation	An- reicherung	Anzahl der einzeln prozessierten Fragmente	% der Fragmente innerhalb der Zielregionen	Anzahl der detektierten SNVs (20x)
650_B	Kryo	52Mb	66.114.467	75,4%	18.287
650 B	FFPE	52Mb	71.590.872	74,7%	17.810

Für eine Visualisierung des Abdeckungsprofils der beiden Gewebe-Präparationen wurde die normalisierte Abdeckung (berechnet durchschnittliche Abdeckung pro Exon, geteilt durch den Durchschnitt der Abdeckung aller Exons) gegen den Anteil der Exons, die diese Abdeckung aufweisen, dargestellt. Außerdem wurde die Verteilung als Log10 der durchschnittlichen Abdeckung pro Exon über einen Index aufgetragen. Die Abbildung 14A zeigt für beide Konservierungs-Methoden eine vergleichbare normalisierte Abdeckung der angereicherten Regionen. Bei einer normalisierten Abdeckung von 0,2 konnten in beiden Gewebe-Präparationen über 80% (0,8) der sequenzierten Fragmente innerhalb der angereicherten Zielregionen

identifiziert werden, selbst bei einer normalisierten Abdeckung von 0,8 waren es immer noch über 60% der Exons, die diese Mindest-Abdeckung zeigten. Entsprechend uniform ist auch die Verteilung der angereicherten Zielregionen, die über den Log10 der durchschnittlichen Abdeckung pro Exon aufgetragen wurde, wie in Abbildung 14B ersichtlich. Somit konnte anhand der Analysen ein vergleichbar homogenes Abdeckungsprofil beider Gewebe-Präparationen aufgezeigt werden.

Abbildung 14: Darstellung der Abdeckung für Gefrier- bzw. FFPE-Material basierend auf einer Sequenzierung von angereicherten, zielgerichteten genomischen Regionen. (A) Visualisierung der kumulativen Abdeckung für die jeweilige Präparation. Gezeigt ist die normalisierte Abdeckung für die entsprechende Anzahl der angereicherten Exons. (B) Verteilung der angereicherten exonischen Regionen für beide Gewebe-Präparationen.

Um diese Ergebnisse auch statistisch zu untermauern, wurde der Variationskoeffizient, eine Größe der Variation zwischen den unterschiedlichen Präparationen, der normalisierten durchschnittlichen Abdeckung berechnet. Resultierend aus dieser Berechnung konnte bei einer Abdeckung von 20x ein Variationskoeffizienz von 0,2 zwischen den beiden Gewebe-Präparationen ermittelt werden. Eine Anhebung der Stringenz der Abdeckung auf 60x ergibt eine Verringerung der Varianz auf 0,1 (Abbildung 15A). Als Kontrolle der Varianzberechnung und als Maß für die Güte, wurde ebenfalls der Variationskoeffizient technischer Replikate ermittelt. Dieser liegt bei einer Abdeckung von 20x bei unter 0,1 und ist damit geringfügig besser.

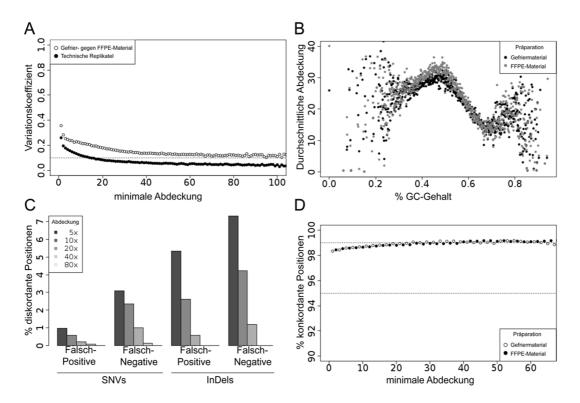


Abbildung 15: Darstellung der Ergebnisse der FFPE- und Gefrier-Präparationen. (A) Berechnung des Variationskoeffizients für jedes Exon, die gegen die geringste Abdeckung jedes Exon-Exon-Vergleichs aufgetragen wurde. Als Kontrolle wurde der Variationskoeffizient technischer Replikate des Gefriermaterials berechnet. (B) Darstellung der durchschnittlichen Abdeckung in Bezug auf den GC-Gehalt für beide Präparations-Methoden. Alle Exons wurden in 800bp große Fenster eingeteilt, für die der GC-Gehalt berechnet wurde, der gegen die durchschnittliche Exon-Abdeckung innerhalb jedes Fensters aufgetragen wurde. (C) Darstellung der detektierten SNVs und InDels des Gefrier- bzw. FFPE-Gewebes. Falsch-positive SNVs/InDels wurden im Gefriermaterial detektiert, aber nicht im FFPE-Material. Falsch-negative SNVs/InDels wurden in der FFPE-Präparation, aber nicht in der kryokonservierten Präparation detektiert. (D) Visualisierung der konkordanten SNV-Positionen im Gefrier- sowie FFPE-Material in Bezug auf den Affymetrix SNP Array im Vergleich zur minimalen Abdeckung.

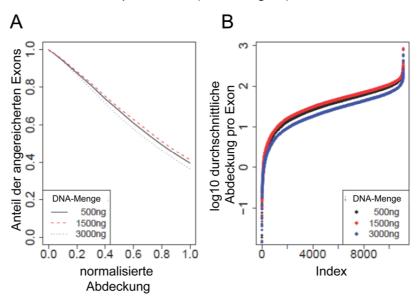
Es ist bekannt, das es in FFPE-Gewebe während des Präparationsprozesses und/oder der Aufbewahrung zur spontanen Deaminierung von Guanin und Cytosin kommen kann. Andererseits zeigt die Illumina Sequenzier-Technologie eine hohe Fehlerrate für unterrepräsentierte und oder quantitativ reduzierte Lokalisationen mit extremen Basenkompositionen [186]. Diesbezüglich wurde der GC-Gehalt über die Abdeckung der exonischen Regionen zwischen Gefrier- und FFPE-Material analysiert. Dazu wurde für alle Exons der GC-Gehalt ermittelt, und die Exons wurden dem GC-Gehalt nach schrittweise, mit 0,1% beginnend, kombiniert und aufgetragen. Das Ergebnis in Abbildung 15B zeigt eine geringere aber nicht signifikante Verlagerung des GC-abhängigen Abdeckungs-Profils zwischen den beiden Präparations-Technologien.

Im Folgenden sollte nun die Reproduzierbarkeit der detektierten SNVs sowie der Insertionen und Deletionen (InDels) überprüft werden. Hierfür wurden folgende Kriterien für die Detektion der jeweiligen Präparations-Methoden angewendet: Die prozessierten Rohdaten wurden für die Detektion Einzelnukleotidvarianten mit dem Programm samtools 0.1.8 ausgewertet [179]. Für die SNVs wurden jene in die Analyse integriert, die einen Qualitätswert größer oder gleich 20 und eine Allelfrequenz von mindestens 0,15 (15%) Dann wurden die anhand der beschriebenen Filterkriterien detektierten SNVs des kryokonserviertem Gewebes als Referenz angenommen und überprüft, ob diese in dem FFPE-Gewebe mit mindestens einem sequenzierten DNA-Fragment detektiert werden konnten. Die diskordanten Positionen wurden nun für einen Umkehr-Vergleich herangezogen; d.h. die detektierten SNVs der Präparation A, die nicht in Präparation B gefunden wurden umgekehrt. Die daraufhin divergenten Positionen des Gewebe-Präparationen-Vergleichs wurden in falsch-positive und falsch-negative Positionen stratifiziert und visuell in Abbildung 15C dargestellt. Die Ergebnisse zeigen bei einer Abdeckung von 20x 179 (1,2%) diskordante Positionen, wovon 149 (0,99%) als falsch-negative stratifiziert wurden; d.h. jene Positionen, die im FFPE-Gewebe detektiert wurden aber nicht im Gefriermaterial. Von diesen falsch-negativen SNVs konnten 76 Positionen (53%) als C > T bzw. A > G Substitutionen detektiert werden, die möglicherweise durch eine Deaminierung während der FFPE-Präparation erklärt werden können. Stratifizierte falschpositive Positionen, d.h. SNVs, die im Gefriermaterial aber nicht im FFPE-Material detektiert werden konnten, sind 30 (0,2%) Positionen. Wie aus der Abbildung 15D ersichtlich ist, zeigt eine Erhöhung der Abdeckungs-Kriterien auf 40x 12 (0,19%) diskordante Positionen auf, während bei einer Abdeckung von 80x keine Diskordanz der detektierten SNVs zwischen den beiden Gewebe-Präparationen mehr ersichtlich ist. Für einen Vergleich der InDels zwischen den beiden Präparationstechniken wurden ebenfalls die ermittelten InDels des Gefriermaterials gegen die ermittelten InDels des FFPE-Materials verglichen und in Abbildung 15C aufgetragen. Bei einer Abdeckung von 20x wurden 8 (1,17%) diskordante InDels als falsch-positive und 4 (0,58%) als falsch-negative InDels stratifiziert. Hier zeigt ebenfalls eine Erhöhung der Stringenz der Abdeckung eine Verringerung der diskordanten InDels; und so konnte bei einer Abdeckung von 40x kein divergenter InDel mehr ermittelt werden. Die Ergebnisse zeigen, dass Schädigungen der DNA durch die FFPE-Präparation zufällig über alle DNA-

Fragmente verteilt vorliegen und durch eine höhere Stringenz der Abdeckungs-Kriterien korrigiert werden können.

Um die Sequenzierung der beiden Gewebe-Präparationen auf die Sensitivität und Spezifität der detektierten SNVs zu überprüfen, wurde Einzelnukleotidvarianten-Analyse mit der Affymetrix SNP Array 6.0 Technologie am Gefriermaterial des Patienten 650 durchgeführt und mit jeder Position der Exom-Sequenzierdaten des Gefrier- sowie des FFPE-Materials des selben Patienten verglichen. Die Prozessierung der Hochdurchsatz-Sequenzierungs-Datensätze erfolgte mit dem Programm samtools 0.1.8 [179]. Es wurden alle detektierten SNVs mit einer Abdeckung größer als 3-fach verwendet. Hierbei konnten 6.127 Einzelnukleotidvarianten des kryokonservierten Gewebes und 6.122 Einzelnukleotidvarianten des FFPE-Gewebes in die Analyse einbezogen werden. Die Vergleichsanalyse in Abbildung 15D zeigt sowohl für das kyrokonservierte- als auch für das FFPE-Prostatagewebe eine sehr gute Konkordanz von über 98% der integrierten SNVs. Die bisher gezeigten Ergebnisse zeigen, dass die Qualität der Sequenzierung zwischen den beiden Gewebepräparationen sehr gut übereinstimmt und eine vergleichbare Abdeckung der sequenzierten DNA-Fragmente erzielt werden konnte.

4.1.2. Zielgerichtete DNA-Anreicherungs-Technologien sind geeignet für geringe DNA-Mengen


Für die Weiterentwicklung der Hochdurchsatz-Sequenzierung ist es erforderlich, diese auf geringe DNA-Mengen hin zu optimieren, da bei vielen Primärgeweben, wie beispielsweise aus Biopsien, die erhaltenen DNA-Mengen sehr gering sind. Deshalb war ein weiterer wichtiger Punkt dieser Arbeit zu prüfen, ob mit einer geringen DNA-Menge ebenfalls eine gute Sequenzierleistung erbracht werden kann und ob diese sich zur Mutationsanalyse eignet. Hierfür wurden die entsprechenden DNA-Hybrid-Bibliotheken aus dem Gefriermaterial einer Tumor-Probe des Patienten 212 mit jeweils 500ng, 1500ng und 3000ng DNA erstellt und entsprechend sequenziert.

Wie der deskriptiven Statistik in Tabelle 20 entnommen werden kann, konnten für die Sequenzierungen der Anwender-definierten 3,9 Mb Zielregionen der drei unterschiedlichen DNA-Präparationen etwa 80% der sequenzierten DNA-Fragmente innerhalb der entsprechenden Zielregionen lokalisiert werden. Es konnten ca. 12.000 exonische Regionen detektiert werden. Es wurde bei einer Abdeckung von 20x durchschnittlich 2.700 SNVs detektiert.

Tabelle 20: Deskriptive Statistik der 3,9 Mb Sequenzierung für die 500ng, 1500ng und 3000ng DNA-Präparationen des Tumorgewebes des Patienten 212.

Patient- ID	Gewebe Spezifikation	An- reicherung	Anzahl der einzeln prozessierten Fragmente	% der Fragmente innerhalb der Zielregionen	Anzahl der detektierten SNVs (20x)
212_T	500ng	3.9Mb	8.760.773	81,1%	2.652
212_T	1500ng	3.9Mb	9.686.320	79,9%	2.848
212_T	3000ng	3.9Mb	6.810.410	80,4%	2.602

Anschließend erfolgte die Auswertung der Abdeckung der sequenzierten Fragmente für alle drei Präparationen (Abbildung 16).

Abbildung 16: Darstellung der Abdeckung für die drei DNA-Präparationen (500ng, 1500ng und 3000ng) basierend auf der zielgerichteten genomischen Re-Sequenzierung. (A) Visualisierung der kumulativen Abdeckung für die jeweilige Präparation. Gezeigt ist die normalisierte Abdeckung für die entsprechende Anzahl der angereicherten Exons. (B) Verteilung der angereicherten exonischen Regionen für die drei DNA-Präparationen.

Um die Uniformität des Abdeckungsprofils der drei DNA-Präparationen zu ermitteln, wurde, wie In Abbildung 16A ersichtlich, die normalisierte Abdeckung gegen die Anteile der angereicherten exonischen Regionen aufgetragen (Sequenzen der RNA-Magnetpartikel) und zeigt für alle drei Ansätze eine Anreicherung von über 80% der sequenzierten DNA-Fragmente bei einer normalisierten Abdeckung von 0,2. Auch bei einer normalisierten Abdeckung von 0,8 sind ca. 50% der angereicherten exonischen Bereiche innerhalb der Zielregionen lokalisiert. Zudem zeigt die Verteilung der angereicherten Zielregionen, welche über den Log10 der durchschnittlichen Abdeckung pro Exon aufgetragen wurde, einen vergleichbaren Verlauf (Abbildung 16B). Dennoch

konnte für die 3000ng DNA-Präparation im Vergleich zu den 500ng bzw. 1500ng DNA-Präparationen eine geringe Verschiebung der Verteilung beobachtet werden, was auf eine geringfügig bessere Abdeckung der 500ng und 1500ng Präparation deuten würde. Zusammenfassend konnte anhand der Auswertungen dennoch gezeigt werden, dass alle drei DNA-Präparationen ein vergleichbares Abdeckungsprofil aufzeigen.

Im nächsten Schritt sollte die Qualität der SNV- und InDel-Detektion überprüft werden.

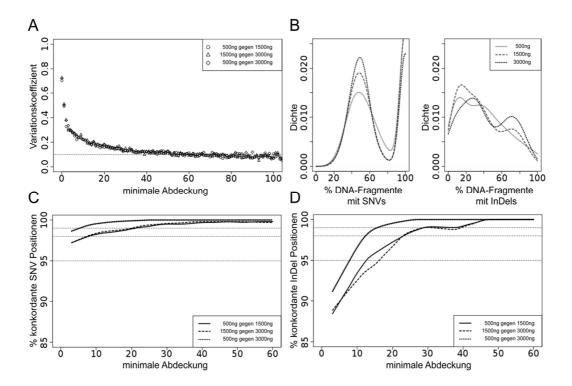


Abbildung 17: Unterschiedliche DNA-Konzentrationen. (A) Vergleich der exonweisen Abdeckung der Präparationen mit unterschiedlichen DNA-Mengen. Berechnung des Variationskoeffizients für jede Präparation, die gegen die minimale Abdeckung jedes Exon-Exon Vergleichs aufgetragen ist. (B) Variant/Referenz Verteilung der Präparationen. Dargestellt ist die Häufigkeit der prozentualen Anteile der DNA-Fragmente mit einer detektierten Einzelnukleotidvariante bzw. Insertion/Deletion für jede Präparation. (C) Vergleich der Einzelnukleotidvarianten. Auf der y-Achse ist der prozentuale Anteil der konkordanten SNV Positionen gegen die minimale Abdeckung der sequenzierten Fragmente aufgetragen. (D) Vergleich der Insertionen und Deletionen. Auf der y-Achse ist der prozentuale Anteil der konkordanten SNV Positionen gegen die minimale Abdeckung aufgetragen.

Alle drei DNA-Präparationen zeigen ein vergleichbar gutes Abdeckungs-Profil. Der berechnete Variationskoeffizient als Maß für die Korrelation der Anreicherung pro Exon zwischen den Experimenten beträgt 0,2 bei einer Abdeckung von 20x (Abbildung 17A). Zusätzlich wurde die Verteilung des Sequenz-Varianz/Referenz-Anteils der drei Präparationen bei einer Abdeckung von 50x

entsprechend für SNVs und InDels kalkuliert und visualisiert (Abbildung 17B). In einem nativen, heterozygoten Zustand sollten 50% der DNA-Fragmente den SNV zeigen; d.h. der SNV/Referenz-Anteil beträgt 0,5 und folgt somit einer bimodalen Verteilung. Wie in Abbildung 17B dargestellt, konnte eine etwas breitere Verteilung in Richtung höherer SNV/Referenz-Anteile der DNA-Hybrid-Bibliothek aus 500ng DNA im Vergleich zu den DNA-Hybrid-Bibliotheken aus größeren DNA-Mengen (3000ng) beobachtet werden. Diese etwas geringere Komplexität der Ansätze mit niedriger DNA-Menge konnte ebenfalls in der Anzahl der Startpunkte einzelner Fragmente beobachtet werden. Für 500ng Ausgangsmaterial wurden 40% der erwarteten singulären Startpunkte erreicht (berechnet im Verhältnis zur 3,9Mb Zielregion), für 1500ng 54% und für 3000ng 62%. Diese etwas geringere Komplexität sollte beachtet werden, wenn homozygote gegen heterozygote Lokalisationen verglichen werden. Verteilung der InDels/Referenz-Anteile zeigt keine bimodale Verteilung, hier entspricht die Verteilung eher einer Bernoulli Verteilung. Es wurden alle InDel/Referenz-Anteile geringer als 0,15 (15%) für weitere Analysen verworfen. Wie eingangs erwähnt, stammen alle DNA-Präparationen von der gleichen Tumor-DNA ab, nur die eingesetzten DNA-Mengen unterscheiden sich innerhalb der Ansätze. Es sollten somit die identischen SNVs und InDels in den Ansätzen detektiert werden. Um dies zu überprüfen, wurde die Reproduzierbarkeit der unterschiedlichen Präparationen für die SNV bzw. InDel Detektion analysiert. Es wurden für jeden einzelnen Ansatz die SNVs und InDels ermittelt und jeweils mit den anderen Ansätzen verglichen. Dabei wurde unterschieden, ob es sich um bereits annotierte SNVs handelt, oder ob die Positionen noch nicht in der dbSNP-Datenbank aufgelistet sind (Abbildung 17C). Die Abbildung 17C zeigt für bereits bekannte SNV-Positionen, dass für die SNV Detektion mit einer minimalen Abdeckung von ca. 5x eine Konkordanz von mehr als 98% zwischen zwei Ansätzen (1500ng gegen 3000ng) erreicht werden konnte. Ab einer Abdeckung von 55x konnten mehr als 98% der detektierten SNVs in allen Präparationen gefunden werden. Bei den bisher nicht annotierten SNV-Positionen verhält es sich hier anders. Die Konkordanz zwischen zwei Präparationen ist für niedrige Abdeckungen (< 10x) gering. Erst bei einer Abdeckung ab 20x steigt die Konkordanz auf über 98% an (nicht abgebildet). Für die Berechnung der konkordanten InDels konnte ab einer Abdeckung von 20x eine Konkordanz von 98% in allen Präparationen identifiziert werden, und das Verhältnis zwischen den annotierten- und den nicht-annotierten InDels ist im Vergleich zu den SNVs ähnlich (Abbidlung 17D).

4.1.3. Unterschiedliche Biopsien eines Tumors weisen ein identisches somatisches SNV-Profil, aber unterschiedliche Kopienzahl-Profile auf

Es ist bekannt, dass 40-60% der diagnostizierten Prostatakarzinome eine fokale Heterogenität aufweisen, die aufgrund histopathologischer- sowie genetischer Unterschiede bestimmt werden konnten. Diesbezüglich konnte bereits anhand der Expression des Fusiongens *TMPRSS2-ERG* die genetische Variabilität in unterschiedlichen Tumorarealen eines Tumors aufgezeigt werden. Somit sollte in dieser Arbeit weiterhin geklärt werden, wie sehr sich diese Heterogenität in dem genomweiten genetischen Profil wiederfindet. Hierfür wurde die DNA aus zwei unterschiedlichen Lokalisationen des Tumors und dem korrespondierendem Normalgewebe von drei Patienten isoliert, und die entsprechenden DNA-Bibliotheken generiert. Die Selektion der unterschiedlichen Tumorareale basierte auf unterschiedlichen histopathologischen sowie morphologischen Phänotypen. Anhand der Tabelle 21 ist ersichtlich, dass jedes Tumorareal eines Patienten zwei unterschiedliche Gleason-Muster aufzeigt.

Tabelle 21: *TMPRSS2-ERG* Fusionsstatus der Patienten und deren somatische Substitution der unterschiedlichen Tumorareale.

Patient-ID	Gleason- Score	TMPRSS2-ERG Fusion	somatische Mutation
1737_ B			
1737_Areal 1	4+5	Deletion	SH3BGR
1737_Areal 2	3+4	keine Fusion	chr21:40883678
21905_ B			
21905_Areal 1	3+4	keine Fusion	SH3BGR
21905_Areal 2	3+4(5)	keine Fusion	chr21:40883671
13147_ B			
13147_Areal 1	3+4	keine Fusion	NUB1
		Deletion and	chr7:151053043
13147_Areal 2	4+5	Insertion	

Im Rahmen dieser Analysen wurden die Einzelnukleotidvarianten basierend auf der zielgerichteten Anreicherung der selektionierten 1.048 Genen ermittelt. Für die Bestimmung der Kopienzahlvarianten wurden Genom-Sequenzierungen mit geringer Abdeckung durchgeführt.

Tabelle 22: Deskriptive Statistik der 3,9Mb Sequenzierung für die unterschiedlichen Biopsien eines Tumors von drei Patienten.

Patient-ID	Gewebe Spezifikation	An- reicherung	Anzahl der einzeln prozessierten Fragmente	% der Fragmente innerhalb der Zielregionen	Anzahl der detektierten SNVs (20x)
1737_B	Benigne	3.9Mb	19.617.926	67,7%	2.002
1737_T	Fokus 1	3.9Mb	28.798.280	68,9%	2.328
1737_T	Fokus 2	3.9Mb	31.939.154	69,6%	2.513
21905_B	Benigne	3.9Mb	8.878.742	66,2%	2.662
21905_T	Fokus 1	3.9Mb	8.768.332	64,2%	2.645
21905_T	Fokus 2	3.9Mb	9.178.790	65,3%	2.706
13147_B	Benigne	3.9Mb	25.957.461	63,2%	2.646
13147_T	Fokus 1	3.9Mb	65.372.578	64,4%	2.388
13147_T	Fokus 2	3.9Mb	25.957.461	63,0%	2.342

Es wurden durchschnittlich 24 Millionen einzigartig prozessierte DNA-Fragmente generiert, von denen ca. 65% innerhalb der Zielregion lokalisiert werden konnten. Zudem zeigt die Visualisierung der Anreicherung für alle Proben eine vergleichbar gute Effizienz (Abbildung 18A). Die Berechnung des Variationskoeffizienten liegt bei einer minimalen Abdeckung von 20x zwischen 0,1-0,5 für die unterschiedlichen Biopsien der drei Patienten und konnte bei einer Anhebung der Abdeckung verbessert werden (Abbildung 18B).

Für einen Vergleich der SNV-Profile wurde eine "Zwei Schritt"-Strategie angewendet: 1) Berechnung der SNVs mit einer Abdeckung von 20x und einer Allelfrequenz von mindestens 0,15 (15%) des Tumorareals A und 2) Abgleich der identifizierten Positionen mit den Sequenzdaten des Tumorareals B. Wenn in der Region des Tumorareals B mindestens ein Fragment die entsprechende Veränderung (SNV) zeigte, so galt diese Position als bestätigt. Mit Ausnahme des Patienten 21905 konnten keine diskordanten Positionen in den beiden Tumorarealen der anderen Patienten mit dieser Analysestrategie detektiert werden. Für diesen Patienten konnte ab einer Abdeckung von 40x kein divergenter SNV mehr detektiert werden (Abbildung 18C). Daraufhin wurde die Konkordanz der SNVs mit einer geringeren Stringenz der Abdeckung analysiert. Bei einer minimalen Abdeckung von 5x wurden 0,4% diskordante Positionen ermittelt, die wahrscheinlich durch PCR Artefakte bedingt sind.

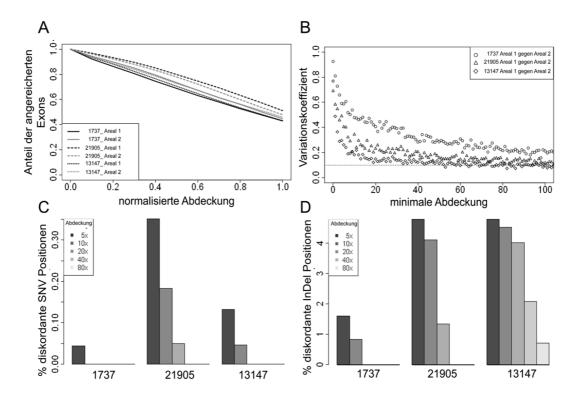
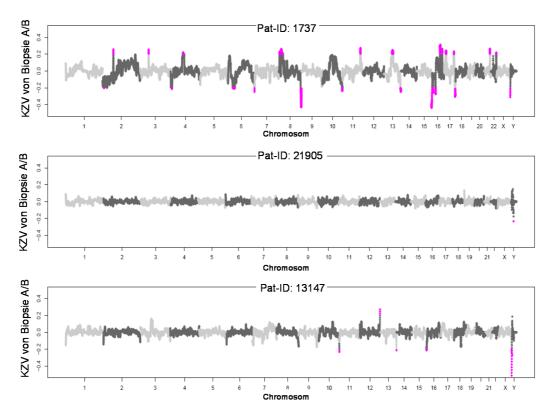



Abbildung 18: Unterschiedliche Tumorbiopsien. (A) Normalisierte Abdeckungs-Verteilung der unterschiedlichen Tumorbiopsien für drei Patienten. Die Normalisierung erfolgte auf die unterschiedliche Abdeckung jeder einzelnen Probe. (B) Exonweiter Vergleich der Abdeckung der zwei Biopsien der drei Patienten. Aufgetragen ist der Variationskoeffizient für jeden Vergleich gegen die minimale Abdeckung für jede Exon-Exon Kombination. (C) Vergleich der detektierten SNVs für jede Tumorbiopsie der drei Patienten: Diskordante SNVs, die in Biopsie A aber nicht in Biopsie B gefunden wurden und vice versa. (D) Vergleich der detektierten Insertionen und Deletionen für jede Tumorbiopsie. Diskordante InDels, die in Biopsie A aber nicht in Biopsie B gefunden wurden und umgekehrt.

Mit der gleichen Strategie wurden die InDels analysiert, wobei diese eine höhere Rate diskordanter Positionen zwischen den unterschiedlichen Tumorarealen aufzeigten (Abbildung 18D). Mit Ausnahme des Patienten 13147 wurden keine Positionen der InDels mehr bei diskordanten einer Anhebung Abdeckungsstringenz über 20x detektiert. Im nächsten Schritt wurden die somatischen Mutationen analysiert, d.h. jene Mutationen, die nur Tumorgewebe und nicht im korrespondierenden benignen Gewebe detektiert werden. Für jeden Patienten konnte eine somatische Mutation nachgewiesen werden, die in beiden Tumorarealen gefunden wurden (Tabelle 21). Die Analysen zeigen, dass bei den Einzelnukleotidvarianten keine Heterogenität der unterschiedlichen Tumorareale vorliegt. Ein Unterschied zwischen den InDels wurde in nur einem Patienten gefunden.

Im Weiteren sollte überprüft werden, ob sich die unterschiedlichen Tumorareale in ihren Kopienzahlen unterscheiden. Dafür wurden Gesamt-Genom-Sequenzierungen der Gewebeproben durchgeführt, und die somatischen Kopienvarianten für beide Tumorareale im Vergleich zu benignem Gewebe berechnet.

Abbildung 19: Vergleich der Kopienzahlvarianten (KZV) der unterschiedlichen Biopsien von drei Patienten. Unterschiede der KZV wurden berechnet als Median der Log Ratios von 20 Intervallen (Fenster zwischen 55-190kb) aus den somatischen Kopienzahlen einzelner Gewebebiopsien. Unterschiede größer oder gleich 0,2 sind markiert (rosa).

Die detektierten somatischen Kopienzahlen wurden anschließend für jedes Tumorareal eines Patienten verglichen und visualisiert. Der Patient 1737 zeigt deutliche Unterschiede zwischen den beiden Tumorarealen z.B. für Chromosom 4, 10 und 13. Im Vergleich dazu sind die Biopsien der Patienten 21905 und 13147 homogener, hier konnten keine Unterschiede der somatischen Kopienzahlen ermittelt werden (Abbildung 19). Zusammenfassend bedeutet dies, dass sich verschiedene Biopsien in den Kopienzahlen unterscheiden können, aber ggf. die Mutationen identisch sind. Dies müsste aber an größeren Patientenzahlen weiter überprüft werden.

Basierend auf den bisher aufgeführten Ergebnissen zur Etablierung der zielgerichteten Anreicherung und Sequenzierung an klinischem Gewebe, erfolgte

eine zielgerichtete Anreicherung und Sequenzierung von 23 Patientenabgeleiteten Xenograft-Mausmodellen, die im Folgendem beschrieben wird.

4.2. Klinische Daten der Patienten

In Kollaboration mit der Evangelischen Lungenklinik Berlin-Buch (ELK) sowie der Experimentellen Pharmakologie & Onkologie GmbH (EPO) wurde von 23 Patienten mit Bronchialkarzinom das Xenograft-Tumorgewebe mit dem primären korrespondierenden Normalgewebe zur Verfügung gestellt. Vier der 23 Patienten (16%) hatten vor der Resektion des Tumors eine neoadjuvante Chemotherapie oder Strahlentherapie erhalten (siehe Tabelle 23).

Tabelle 23: Klinische und pathologische Daten der 23 Patienten mit einem Bronchialkarzinom.

Votaliana					
Pat-ID	Alter	Geschlecht	Raucherstatus	Tumorstadium	vorausgegangene Behandlung
PLC 7064	69	F	seit 9 J NR	pT3 pN0 M0 G3 R0	keine
SQC 7126	42	F	R	pT3 pN0 cM0 G2 R0	Cisplatin / vinorelbine
LCC 7166	70	M	seit 11 J NR	pT2 pN2 cM0 G3 R0	keine 5 Zyklen Carboplatin
SQC 7177	42	M	R	ypT2 ypN2 cM0 G3 R0	/ Paclitaxel
PLC7187	38	F	R	pT3 pN0 cM0 G3 R0	keine
ADC 7198	60	F	R	pT2 pN0 cM0 G3 R0	keine
SQC 7298	73	M	NR	pT2 pN2 cM0 G3 R1	keine
PLC 7336	79	M	R	pT2 pN1 cM0 G3 R1	keine
SQC 7343	52	F	R	pT3 pN0 cM0 G3 R1	keine
		_	_	uu. o. o.	2 Zyklen Cisplatin /
ADC 7406	53	F	R	ypT2 ypN2 cM0 G3 R0	Vinorelbine
SQC 7414	64	M	R	pT2 pN0 cM0 G3 R0	keine
SQC 7433	72	M	R	pT3 pN2 cM0 G3 R0	keine
ADC 7462	55	F	R	pT3 pN0 cM0 G3 Rx	keine
ADC 7466	57	M	R	pT2 pN1 cM0 G3 R0	keine
SQC 7506	70	F	R	pT2 pN1 pM1 G3 R0	keine 2 Zyklen Carboplatin
SCLC 7530	69	M	seit 5 J NR	ypT2 ypN1 cM0 G3 R0	/ Etoposide
PLC 7558	74	M	seit 11 J NR	pT4 pN1 cM0 G3 R0	keine
SQC 7612	51	M	R	pT3 pN0 cM0 G3 R0	keine
DDC 7668	66	F	R	pT2 pN0 cM1 G4 R0	keine
ADC 7700	44	F	R	ypT1 ypN2 cM0 G2 R0	keine
SQC 7747	73	F	R	pT3 pN0 cM0 G2 R0	keine
SQC 7766	71	M	seit 20 J NR	pT2 pN2 cM0 G3 R0	keine
SQC 7860	71	M	seit 20 J NR	pT1 pN0 cM0 G3 R0	keine
SQC 7913	58	F	R	pT2 pN2 cM0 G2 R1	keine

Abkürzungen: M, Männer; F, Frauen; R, Raucher; NR, Nicht-Raucher; J, Jahr; PLC, pleomorphes Karzinom; SQC, Plattenepithelkarzinom; LCC, großzelliges Karzinom; ADC, Adenokarzinom; SCLC, kleinzelliges Karzinom; DDC, undifferenziertes Karzinom

Die Klassifizierung der Tumore erfolgt nach den Kriterien der WHO (world health organization) und weist innerhalb der zu analysierenden Patienten Kohorte vorwiegend T2- und T3 Stadien auf. Die histo-pathologische Einteilung der 23

Bronchialkarzinome resultierte in einer Unterklassifizierung von 5 (20%) Adenokarzinomen (ADC), 4 (16%) Pleomorphen Karzinomen (PLC), einem (4%) Großzelligen Bronchialkarzinom (LCC), 11 (44%) Plattenepithelkarzinomen (SQC), einem (4%) Undifferenzierten Karzinom (DDC) und einem (4%) Kleinzelligen Karzinom (SCLC). Bis auf einen Patienten (Pat-ID: 7530) mit einem diagnostizierten SCLC sind damit die anderen Subgruppen dem Nichtkleinzelligen Bronchialkarzinom zuzuordnen (NSCLC). Das durchschnittliche Alter der 23 Patienten liegt bei 61 Jahren. Es sind 11 Männer sowie 12 Frauen betroffen. Bei 17 Patienten handelt es sich um aktive Raucher, ein Patient (Pat-ID: 7298) weist einen Nicht-Raucher Status auf und fünf Patienten weisen seit mindestens 5 Jahren eine Abstinenz gegenüber dem Tabakkonsum auf.

4.3. Zielgerichtete Anreicherung genomischer Regionen mit anschließender Hochdurchsatz-Sequenzierung

4.3.1. Gesamt-Exom-Sequenzierung von zwei Patienten mit Normal Tumor- und Xenograft-Gewebe

Für die Überprüfung der Qualität und Untersuchung genomischer Veränderungen Patienten-abgeleiteten Xenograft-Modellen wurden zunächst Exom-Sequenzierungen zweier Bronchialkarzinom Patienten (Pat-ID: 7913, 7860) mit dem jeweiligen Xenograft-Tumor und dem Primärtumor durchgeführt und das somatische Mutationsprofil durch einen Abgleich mit den Exom-Sequenzierungen der Referenzgewebe (Normalgewebe des jeweils gleichen Patienten) ermittelt. Hierfür wurde die genomische DNA aus den Gewebeproben extrahiert, die entsprechenden Hybrid-DNA-Bibliotheken präpariert und mit der SOLiD 3+ Technologie sequenziert. Die in dieser Arbeit durchgeführten bioinformatischen Analysen wurden in Kollaboration mit der Bioinformatik Gruppe von Dr. Ralf Herwig durchgeführt. Zunächst wurden die Rohdaten (sequenzierte DNA-Fragmente) gegen das Referenzgenom hg19 sowie gegen das Mausgenom (mm9), unter Verwendung des Prozessierungsprogramms Bioscope™ (Version 1.3) mit den entsprechenden, vorimplementierten Standardparametern des classic und des local Modus, prozessiert. Die Sequenzen, die dem Mausgenom homolog sind, wurden aus dem Datensatz verworfen. Anschließend wurden die prozessierten DNA-Sequenzen selektioniert, die einmalig im Genom lokalisiert sind. Im Anschluss daran wurde die Schnittmenge beider Bioscope™ Algorithmen berechnet und für die Folgeanalysen verwendet. Das Ergebnis der

Sequenzierung ist in der Abbildung 20 für die Patienten 7860 und 7913 dargestellt.

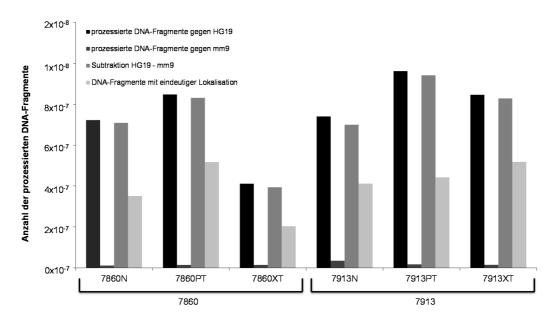


Abbildung 20: Ergebnisse der Exom-Sequenzierung des Normalgewebes, des primären Tumorgewebes und des Xenograft-Tumorgewebes von zwei Patienten (Pat-ID: 7860 und 7913). Schwarz: Anzahl der prozessierten DNA-Fragmente, die gegen das Referenzgenom (hg19) abgeglichen werden konnten. Dunkelgrau: Anzahl der sequenzierten DNA-Fragmente, die gegen das Mausgenom (mm9) prozessiert wurden. Mittelgrau: Anzahl der sequenzierten DNA-Fragmente nach der Subtraktion der homologen Sequenzen zwischen dem Humangenom und dem Mausgenom. Hellgrau: Anzahl der DNA-Fragmente, die einzigartig im Referenzgenom lokalisiert sind. N: Normalgewebe; PT: Primärtumor; XT: Xenograft-Tumor.

Xenograft-Gewebes des Patienten 7860 Mit Ausnahme des konnten durchschnittlich 75 Millionen der seguenzierten DNA-Fragmente gegen das Referenzgenom (hg19) prozessiert werden. Nach der Subtraktion der homologen Maussequenzen, die einen prozentualen Anteil von 1,6-4,7% aller sequenzierten Fragmente aufweisen, sowie einer Extraktion von ausschließlich einmalig im Genom lokalisierten Fragmenten wurden durchschnittlich 40 Millionen Sequenzen Gewebe in Folgenanalysen mit berücksichtigt. pro durchschnittliche Sequenziertiefe betrug zwischen 36-54x. Das Ergebnis der Sequenzierung des Xenograft-Gewebes des Patienten 7860 zeigen eine durchschnittliche Sequenziertiefe von 17x auf und somit eine deutlich geringere Seguenziereffizienz im Vergleich zu den anderen Proben. Nach den beschriebenen Filterkriterien konnten hier 20 Millionen einzigartig prozessierte Sequenzen weiter verfolgt werden.

Anschließend sollte überprüft werden, wie viele der ermittelten DNA-Sequenzen innerhalb der Exom-Zielregionen lokalisiert sind. Die Quantifizierung der

Anreicherung erfolgte, indem die DNA-Fragmente gezählt wurden, die mit mindestens einem Nukleotid innerhalb der Zielregion lokalisiert sind. Für die Visualisierung des Abdeckungsprofils in Abbildung 21 aller Gewebeproben wurde die normalisierte Abdeckung gegen die Fraktionen der angereicherten Exone aufgetragen.

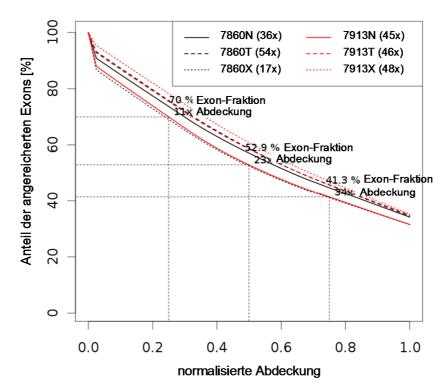


Abbildung 21: Qualitätskontrolle der Sequenzierung: Gezeigt ist die Fraktion an Exons, die durch eine bestimmte Sequenziertiefe abgedeckt sind. Zur Vergleichbarkeit unterschiedlicher Proben wurde die Abdeckungstiefe auf den Mittelwert der jeweiligen Gesamt-Abdeckung (angegeben in Klammern) berechnet und die normalisierte Abdeckung für die entsprechende Anzahl der angereicherten Exons dargestellt. N: Normalgewebe; T: Primärtumor; X: Xenograft-Tumor.

Die Abbildung 21 zeigt für alle Gewebeproben der zwei Patienten eine vergleichbare, normalisierte Abdeckung der angereicherten Zielregionen. Bei einer normalisierten Abdeckung von 0,2 konnten in allen Gewebeproben durchschnittlich 80% der sequenzierten Fragmente innerhalb der angereicherten Zielregionen identifiziert werden, selbst bei einer Abdeckung von 0,6 waren es immer noch durchschnittlich 50%, die innerhalb der Regionen lokalisiert waren. Eine Anreicherungseffizienz von etwa 90% konnte mit nur einem sequenzierten Fragment innerhalb der Zielregionen ermittelt werden, wohingegen bei einer *in silico* Verlängerung der sequenzierten Exons um 200bp auf beiden Seiten sogar eine Anreicherungseffizienz von über 97% erzielt werden konnte (Tabelle 24).

Tabelle 24: Übersicht der Anreicherung der sequenzierten Exons innerhalb der Zielregion.

Gewebe	% angereicherte Exons	% angereicherte Exons (+/-200bp)
7860N	89	97
7860PT	91	98
7860XT	83	92
7913N	93	97
7913PT	89	97
7913XT	85	93

Abkürzungen: N: Normal; PT: Primärtumor; XT: Xenograft-Tumor

Aufgrund der guten und relativ konservierten Sequenzier- bzw. Anreicherungs- Ergebnisse wurden die Daten für die Detektierung der Einzelnukleotidvarianten sowie zur Berechnung der somatischen Kopienzahlvarianten eingesetzt (Abschnitt 4.5. und 4.6.). Neben den Gesamt-Exom-Sequenzierungen wurde bei 21 Patienten ein Teil des Exoms (Gesamt: 9Mb) sequenziert. Diese Ergebnisse sind im Folgenden dargestellt bevor die Mutations- und Kopienzahl-Auswertung der Daten beschrieben wird.

4.3.2. Sequenzierung der Anwender-definierten Zielregionen (9Mb) von 21 Patienten mit Normal- und Xenograft-Gewebe

Für die zielgerichtete Anreicherung der 9Mb Anwender-definierten genomischen Regionen wurden ebenfalls die entsprechenden Hybrid-DNA-Bibliotheken generiert und sequenziert. Die Sequenzierung beruhte auf einer Multiplex-Strategie, die es ermöglichte, anhand von markierten Adaptoren mehrere Proben in einem Gemisch zu prozessieren und am Ende die Ergebnisse jeder einzelnen Probe wieder zuordnen zu können. Wie bereits im Exom-Sequenzier-Abschnitt 4.3.1. beschrieben, wurden die im Genom einzigartig lokalisierten DNA-Fragmente mit dem Bioscope™ Algorithmus sowohl im *local* als auch im *classic* Modus prozessiert und die Schnittmenge beider Berechnungen ermittelt.

Die Ergebnisse der Anreicherungen und Sequenzierungen der 21 Patienten, von denen jeweils ein Xenograft-Tumor und das korrespondierende primäre Normalgewebe analysiert worden ist, sind in einem Kastenplot (*Boxplot*) zusammengefasst und visualisiert. Die entsprechenden Daten für die einzelnen Proben können dem Anhang entnommen werden.

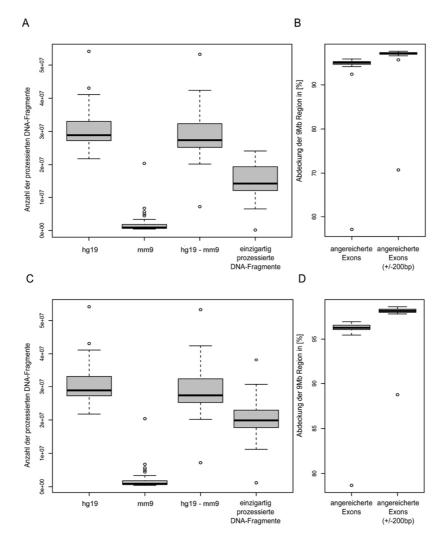
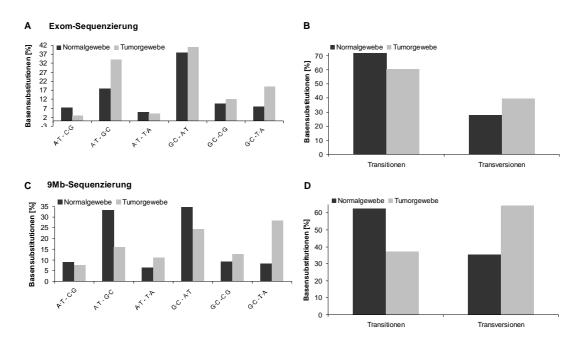


Abbildung 22: Ergebnisse der 9Mb-Sequenzierungen von 21 Xenograft-Mausmodellen dazugehörigen und den Normalgewebe-Proben. Prozessierung der sequenzierten Fragmente erfolgte durch das Programm Bioscope[™] des *classic* (A), (B) oder *local* (C), (D) Modus. hg19: Anzahl der sequenzierten Fragmente, die gegen das humane Referenzgenom (hg19) abgeglichen werden konnten, mm9: Anzahl der DNA-Fragmente, die gegen das Referenzgewebe der Maus (mm9) prozessiert wurden, hg19 - mm9: Anzahl der sequenzierten Fragmente nach der Subtraktion der homologen Sequenzen zwischen dem Humangenom und dem Mausgenom, einzigartig prozessierte DNA-Fragmente: Anzahl der DNA-Fragmente, die einzigartig gegen das Referenzgenom prozessiert wurden jeweils mit dem Prozessierungsprogramm Bioscope™ des *classic* (A) und *local* (C) Algorithmus. (B) und (D) zeigen die Fraktionen an Exons, die mit mindestens einem sequenzierten Fragment abgedeckt worden sind.

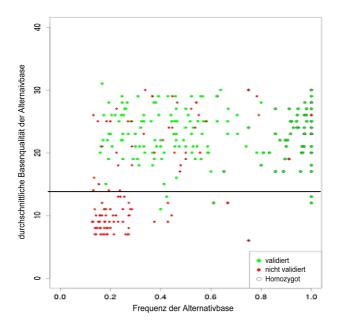

Die dargestellten Kastenplots in Abbildung 22 zeigen die Ergebnisse der Anreicherung und Sequenzierungen berechnet jeweils im *local* und im *classic* Modus der Biscope™ Software. Mit beiden Algorithmen wurden durchschnittlich 30 Millionen sequenzierte DNA-Fragmente gegen das Referenzgenom (hg19) prozessiert. Die Subtraktion der homologen Maussequenzen, die einen Anteil zwischen 2 und 74% aufwiesen, sowie die Filterung der einzigartig prozessierten

Fragmente resultierte in durchschnittlich 28 Millionen Sequenzen, die für die Analyse der Einzelnukleotidvarianten weiter betrachtet werden konnten. Für beide Bioscope™ Varianten ergab sich, dass durchschnittlich 95% der DNA-Fragmente innerhalb der Zielregionen lokalisiert waren. Bei einer *in silico* Verlängerung der sequenzierten Exons um jeweils 200bp in beide Richtungen wurden sogar durchschnittlich 97% der Fragmente innerhalb der Zielregionen lokalisiert. In den Xenografts 7126 und 7506 wurden 74% bzw. 25% der DNA-Fragmente als Maus-spezifisch identifiziert. Diese relativ hohen Anteile an Maussequenzen führen somit zu einer relativ geringen Anzahl an einzigartig prozessierten Fragmenten, die für die weiteren Auswertungen verwendet werden konnten.

4.3.3. Statistik der detektierten Einzelnukleotidvarianten

Die Detektierung der Einzelnukleotidvarianten erfolgte mit dem Bioscope™ Programm 1.3 *diBayes*, sowohl für die *classic* Prozessierung als auch für die *local* Prozessierung der Datensätze. Der Überhang beider Berechnungen wurde in weiteren Analysen verwendet. Zunächst wurde für die Exom-Sequenzierung und die 9Mb-Sequenzierung die Anzahl der sechs möglichen Basensubstitutionen jeweils für das Normalgewebe und das Tumorgewebe ermittelt und daraus die Anzahl der Transitionen und Transversionen berechnet und miteinander verglichen (Abbildung 23).

Die Basensubstitutionen der detektierten somatischen Varianten unterscheiden sich von den Keimbahnvarianten. Die im Normalgewebe identifizierten Basensubstitutionen zeichnen sich durch einen hohen Anteil an A>G (T>C) Substitutionen aus und resultieren in einem Anstieg der Transitionen, wohingegen die Basensubstitutionen im Tumorgewebe signifikant mehr G>T (C>A) Substitutionen und somit mehr Transversionen aufweisen (Abbildung 23). Das identische Basensubstitutionsprofil wurde sowohl für die zwei Patienten anhand der Exom-Sequenzierung als auch für die 21 Patienten der 9Mb-Sequenzierung gezeigt. Die Ergebnisse korrelieren sehr gut mit den bisher publizierten Daten, in denen, anhand von Hochdurchsatz-Sequenzanalysen eines primären Bronchialkarzinoms sowie einer Zelllinie (NCI-H209), das gleiche Muster der Basensubstitutionen gezeigt wurde [130, 154].


Abbildung 23: Statistik der Art der Basensubstitutionen (A) und (C) und die Anzahl der Transitionen und Transversionen (B) und (D), die jeweils für das Normalgewebe und das Tumorgewebe identifiziert wurden. Prozentualer Anteil der sechs möglichen Substitutionen basierend auf der Exom-Sequenzierung (A) und der 9Mb-Sequenzierung (C) sowie das Transition / Transversion Verhältnis der Exom-Sequenzierung (B) und der 9Mb-Sequenzierung (D).

4.4. Validierung somatischer Mutationen mit der Massen-Spektrometrie-Technologie

Zur Detektierung somatischer Mutationen wurde zunächst eine minimale Abdeckung der chromosomalen Position von 10x sowohl im Tumorgewebe als auch im korrespondierenden Normalgewebe, gewählt. Die alternative Base, die nicht dem Referenzgenom entspricht, sollte mit einer Allelfrequenz von mindestens 0,1 (10%) vorhanden und ausschließlich im Tumorgewebe detektierbar sein. Im Anschluss daran wurden jene somatischen nichtsynonymen Mutationen selektioniert, die nicht in der dbSNP-Datenbank annotiert sind, und die anhand der bioinformatischen Vorhersageprogramme *PolyPhen* und *SIFT* putativ mit einem Funktionsverlust des kodierenden Proteins einhergehen [180, 187]. Basierend auf diesen Filterkriterien wurden 535 putativ somatische nicht-synonyme Mutationen innerhalb der Mutationsprofile der 23 Xenografts detektiert, wovon 342 zur Validierung selektioniert worden sind.

Für die Validierung der putativen somatischen nicht-synonymen Mutationen wurde eine massenspektrometrische Messung der zu analysierenden Base verwendet, die mit der MassARRAY Technologie (Sequenom) der Firma Atlas

Biolabs GmbH durchgeführt wurde. Hierfür wurden zunächst für jede zu analysierende chromosomale Position entsprechende Oligonukleotid-Paare für eine Polymerasekettenreaktion (PCR) generiert und das entsprechende Fragment amplifiziert. Anschließend folgte eine Verlängerungs- (Extensions-) Reaktion, die die Position der putativen Mutation abdeckt, so dass die PCR-Reaktion um genau ein Nukleotid verlängert wird, das entweder das native Nukleotid oder das Alternativ-Nukleotid enthält. Durch eine massenspektrometrische Bestimmung konnte anschließend das Nukleotid bestimmt werden, um das der Strang verlängert wurde. Das Ergebnis zeigte, dass 204 Mutationen validiert werden konnten, zwei Positionen davon resultierten in einem Verlust der Heterozygotie (LOH), sechs Mutationen davon auch im korrespondierenden Normalgewebe identifiziert, Veränderungen konnten nicht validiert werden und 32 Reaktionen waren nicht auswertbar. Basierend auf diesen Ergebnissen konnte eine Validierungsrate von 71% erzielt werden. Dieses Ergebnis wurde genutzt, um den Algorithmus zur Selektierung von somatischen Mutationen zu verbessern. Hierfür wurden unter anderem die alternativen Basen mit der durchschnittlichen Basenqualität gegen die Mutationsfrequenz aufgetragen und visualisiert (Abbildung 24).

Abbildung 24: Ergebnis der Validierungsexperimente. Darstellung der durchschnittlichen Basenqualität gegen die Frequenz der Alternativbase für einzelne chromosomale Lokalisationen, die als Punkte visualisiert sind. Rot = nicht validiert und grün = validiert. Die schwarze Linie repräsentiert eine Basenqualität von 14.

Anhand dieser Ergebnisse kann man erkennen, dass bei einer Basenqualität unter 14 so gut wie keine Mutation validiert werden konnte. Für weitere Auswertungen wurden daher nur chromosomale Positionen verwendet mit einer durchschnittlichen Basenqualität von mehr als 14, wodurch die Rate an falschpostiven Positionen signifikant reduziert werden konnte.

4.5. Berechnung der Konkordanz zwischen dem Xenograft- und Primärtumorgewebe

Nachdem nun die technische Seite des Projektes erfolgreich abgeschlossen werden konnte, sollte in einem nächsten Schritt geprüft werden, ob die generierten Xenograft-Modelle die identischen genetischen Charakteristika wie das entsprechende primäre Tumorgewebe des Patienten aufweisen. Die Studie von Ding et al. 2010, in der das tumorspezifische Mutationsprofil eines Brust-Primärtumors mit dem eines Patienten-abgeleiteten Xenograft-Tumors verglichen wurde, zeigte, dass die identifizierten tumorspezifischen Mutationen des Primärtumors auch in dem generierten Xenograft-Tumor detektiert werden konnten [188]. Diese Arbeit gibt erste Hinweise darauf, dass Xenografts gute Modelle für genetische Untersuchungen von Tumoren darstellen. Dies sollte nun auch für das vorliegende Datenset der Bronchialkarzinome untersucht werden. Für diese Fragestellung wurde die DNA aus dem Normalgewebe, aus dem primären Tumorgewebe und aus dem Xenograft-Tumorgewebe zweier Patienten (Pat-ID: 7860 und 7913) extrahiert und das Exom (~37,6Mb) mittels der zielgerichteten Anreicherungstechnologie der Firma Agilent Technologies angereichert und mit der SOLiD-Technologie sequenziert (Abschnitt 4.3). Um einen ersten Einblick über die Verteilung der Basensubstitutionen in den einzelnen Geweben der beiden Patienten zu bekommen, wurden diese für jedes Gewebe ermittelt und ihr Überlapp berechnet.

Die Abbildung 25 zeigt für jedes Gewebe die ermittelten Basensubstitutionen und die Übereinstimmung mit den jeweils anderen Geweben. Der Patient 7913 weist einen Überlapp von 26.824 Substitutionen zwischen dem Normalgewebe, dem Primärtumor und dem Xenograft-Tumor auf. Von den insgesamt 13.489 tumorspezifischen Basensubstitutionen des Primärtumors konnten 8.893 Substitutionen ebenfalls im Xenograft-Tumor, für den 14.526 spezifische Substitutionen ermittelt wurden, detektiert werden (Abbildung 25A).

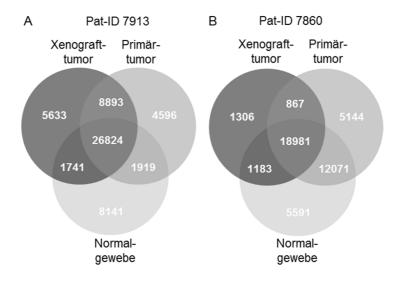


Abbildung 25: Venn-Diagramm der berechneten Basensubstitutionen für zwei Patienten mit Gesamt-Exom-Sequenzierungen. (A) Anzahl der Basensubstitutionen des Patienten 7913 für das Normalgewebe (hellgrau), das Primärtumor-Gewebe (mittegrau) und das Xenograft-Gewebe (dunkelgrau). (B) Anzahl der Basensubstitutionen des Patienten 7860 für das Normalgewebe (hellgrau), das Primärtumor-Gewebe (mittelgrau) und das Xenograft-Gewebe (dunkelgrau).

Für den Patienten 7860, in Abbildung 25B dargestellt, wurden 18.981 Basensubstitutionen identifiziert, die sowohl im Normalgewebe, im Primärtumor als auch im Xenograft-Gewebe übereinstimmen. Ein Vergleich zwischen dem Xenograft-Gewebe und dem Primärtumor zeigt, dass nur 867 Substitutionen von insgesamt 6.011 somatischen Substitutionen des Primärtumors im Xenograft wieder identifiziert werden konnten. Besonders auffällig hierbei ist die hohe Übereinstimmung von 12.071 Substitutionen zwischen dem Normalgewebe und dem Primärtumor, die möglicherweise auf eine Kontaminierung des Primärtumors mit dem korrespondierenden Normalgewebe schließen lässt. Die geringe Anzahl von insgesamt 2.173 Basensubstitutionen im Xenograft-Gewebe höchstwahrscheinlich durch die geringe Sequenziertiefe bedingt.

Eine weitere Filterung, basierend auf somatischen Mutationen, erfolgte mit dem Software-Programm *Ingeniuty Variant Analyses* der Firma Ingenuity System[™]. Anhand der Validierungsergebnisse (Abschnitt 4.4.) wurde eine Stringenz der Basenqualität für die putative Alternativbase größer als 14 angewendet. Innerhalb des Programms können weitere Parameter gesetzt werden. So wurde eingegeben, dass die minimale Abdeckung der putativen somatischen Mutation mindestens 10x betragen sollte, und dass die Alternativbase im Referenzgewebe

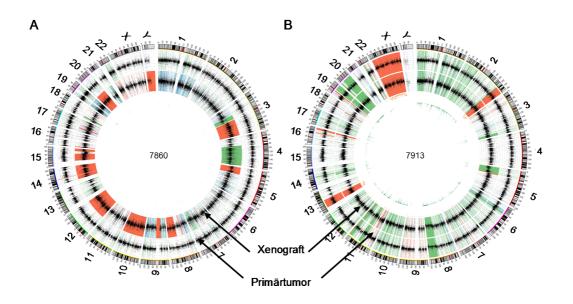

nicht enthalten sein sollte. Für die anschließende Berechnung der Konkordanz zwischen dem Primärtumor und dem Xenograft-Tumor der beiden Patienten wurden jeweils die stringent selektionierten somatischen Mutationen, die im Xenograft-Tumor identifiziert wurden, mit den Mutationsdaten des Primärtumors, ohne (höhere) Selektionskriterien, verglichen und umgekehrt (Abbildung 26)

Abbildung 26: Datenanalyse mit der Ingenuity Variant Analyse-Software. Ermittlung der Übereinstimmung der somatischen Mutationen zwischen dem Xenograft-Gewebe und dem Primärtumor-Gewebe der Patienten 7913 und 7860. Für die Identifikation von Mutationen wurden unterschiedliche Stringenzen verwendet. (A) Re-Identifikation Mutationen des der Xenografts Primärtumor des Patienten 7913. (B) Re-Identifikation der Mutationen des Primärtumors im Xenograft des Patienten 7913. (C) Re-Identifikation der Mutation des Xenografts im Primärtumor des Patienten 7860. (D) Re-Identifikation der Mutationen des Primärtumors im Xenograft des Patienten 7860.

Durch diese Datenanalyse konnten für den Patienten 7913 6.479 somatische Mutationen im Xenograft-Tumor, die auch im Primärtumor, und 6.504 spezifische, somatische Mutationen im Primärtumor, die auch im Xenograft-Tumor, identifiziert werden konnten (Abbildung 26A). Für den Patienten 7860 wurden 895 somatische Mutationen im Xenograft-Tumor und 1.886 Mutationen im Primärtumor identifiziert worden, die ebenfalls jeweils in dem anderen Gewebe detektiert werden konnten (Abbildung 26B).

Die bisher dargestellten Ergebnisse tumorspezifischer Einzelnukleotidvarianten weisen auf eine sehr gute Reproduzierbarkeit des Primärtumors in einem von Patienten-abgeleiteten Xenograft hin. Diesbezüglich sollte innerhalb dieser Arbeit ebenfalls die Übereinstimmung der genomischen Strukturvarianten überprüft werden. Dafür wurden, basierend auf den Exom-Sequenzierung, die somatischen Kopienzahlvarianten (KZV) des Primärtumors und des Xenograft-Tumors der beiden Patienten 7860 und 7913 anhand des *ExomeCNV* Algorithmus berechnet und die log2-Verhältnisse der prozessierten DNA-Sequenzen in einem Kreisdiagram gegen die chromosomalen Regionen aufgetragen.

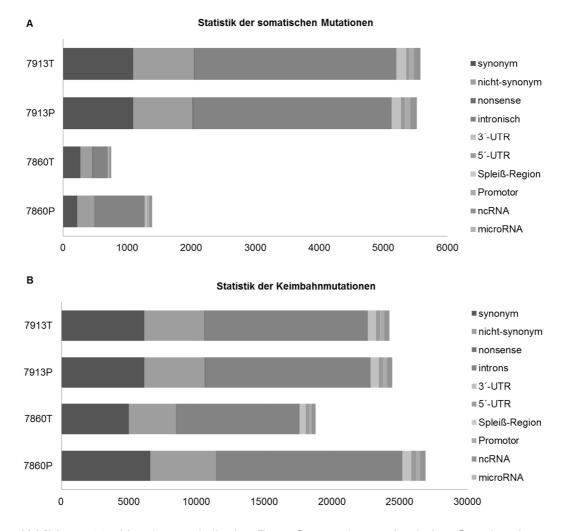
Abbildung 27: Kreisdiagramm (*Circos-Plot*) der berechneten somatischen Kopienzahlvarianten bzw. Verlust der Heterozygotie der Patienten 7860 (A) und 7913 (B). Von Außen nach Innen: Visualisierung der Chromosomen 1-22 sowie der Chromosomen X und Y am äußeren Rand, zweite Ebene: somatische Kopienzahlvarianten des Primärgewebes, dritte Ebene: somatische Kopienzahlvarianten des Xenograftgewebes. Rot: Amplifikation, grün: Deletion, blau: Verlust der Heterozygotie.

Die Kreisdiagramme in Abbildung 27 repräsentieren jeweils für den Patienten 7860 (A) und den Patienten 7913 (B) die berechneten somatischen KZV-Regionen, jeweils für den Primärtumor und den Xenograft-Tumor. Am äußeren Rand sind die Chromosomen 1-22 visualisiert. In der zweiten Ebene sind die identifizierten KZVs des Primärtumors und in der dritten Ebene die des Xenograft-Tumors aufgetragen. Wie der Abbildung 27A entnommen werden kann, wurden für das Primärgewebe des Patienten 7860 keine somatischen Kopienzahlvarianten berechnet. Im Xenograft-Tumor des Patienten wurden einige signifikant veränderte genomische Regionen, die amplifiziert (Bsp.

Chromosome 3, 10 und 12) oder auch deletiert (Bsp. Chromosome 4) vorliegen, identifiziert. Die Berechnung der tumorspezifischen KZVs für den Primärtumor und den Xenograft-Tumor des Patienten 7913 zeigen eine hohe Homogenität der identifizierten somatischen KZV-Profile. Dennoch sind einige Unterschiede sichtbar z.B. wurde im Xenograft-Tumor Deletionen auf Chromosom 3 und 5 detektiert, die im Primärtumor nicht vorliegen und es wurde im Primärtumor auf Chromosom 16 eine Amplifikation identifiziert, die nicht im Xenograft-Tumor gefunden wurde.

Insgesamt scheint auch bei der Kopienzahl-Analyse die Übereinstimmung der Veränderungen zwischen dem Primärtumor und dem Xenograft-Tumor bei den Patienten 7913 sehr gut zu sein. Die Ergebnisse von Patient 7860 weisen auch hier auf eine mögliche Kontamination durch Normalgewebe hin. Im Folgenden wurden die Xenograft-Modelle daher für weitere molekulargenetische Analysen verwendet.

4.6. Detektierung der somatischen- sowie der Keimbahn-Mutationen für 23 Patienten


Die Berechnung der somatischen Mutationen und der Keimbahnmutationen für die 23 Xenograft-Modelle erfolgte nach der selben Strategie wie im Abschnitt 4.5. beschrieben. Die Berechnungen wurden jeweils für die zwei Patienten mit Exom-Sequenzierungen und die 21 Patienten mit Anwender-definierten 9Mb-Sequenzierungen vorgenommen und dargestellt. Anschließend wurden die Mutationsprofile der Xenograft-Modelle in einer Gesamtübersicht zusammengetragen und für jeden einzelnen Patienten visualisiert.

4.6.1. Mutationsstatistik der Gesamt-Exom-Sequenzierung

Anhand der selektionierten somatischen- sowie Keimbahnmutationen wurde eine Übersicht der unterschiedlichen Mutationstypen mit der entsprechenden Mutationsfrequenz für beide Patienten (Pat-ID: 7860 und 7913) ermittelt (Abbildung 28).

Am Beispiel des Patienten 7913 wurden zwischen dem Xenograft-Tumor und dem Normalgewebe 6.479 somatische Mutationen identifiziert, von denen 2.056 Mutationen innerhalb kodierender genomischer Regionen und 4.423 in nicht-kodierenden genomischen Bereichen lokalisiert sind. Von den somatischen Mutationen, die in kodierenden genomischen Regionen liegen, wurden 948 nicht-

synonyme Mutationen, 13 *nonsense* und 1.095 synonyme Mutationen identifiziert. Die Mutationen in den nicht-kodierenden Regionen wurden noch einmal unterteilt in intronische Bereiche (mit 3.149 Mutationen), intergenische Bereiche (mit 902 Mutationen), sowie 3′- bzw. 5′- UTR-Regionen (untranslatierte Regionen mit 205 Mutationen), Spleiß-Regionen (mit 5 Mutationen), Promotor-Regionen (mit 68 Mutationen), nicht-kodierende RNA-Regionen (mit 92 Mutationen) und microRNA-Regionen (mit 2 Mutationen). Die Analyse der Keimbahnmutationen ergab eine Anzahl von 27.307 Varianten, von denen 10.582 in kodierenden und 16.725 in nicht-kodierenden Bereichen lokalisiert waren. Insgesamt wurden 4.425 nicht-synonyme sowie 55 *nonsense* Mutationen identifiziert.

Abbildung 28: Mutationsstatistik der Exom-Sequenzierung für jedes Gewebe der beiden Patienten 7860 und 7913: (A) Mutationsprofil der tumorspezifischen Varianten, (B) Mutationsprofil der Keimbahnmutationen. Die farbliche Markierung kennzeichnet die unterschiedlichen Typen der Basensubstitutionen.

Anhand der stringent selektionierten Einzelnukleotidvarianten wurden für das Xenograft-Gewebe des Patienten 7860 895 tumorspezifische Mutationen und 18.741 Keimbahnmutationen identifiziert. Die geringe Mutationsfrequenz ist bedingt durch die Sequenziereffizienz und die daraus resultierende geringe durchschnittliche Abdeckung der sequenzierten DNA-Fragmente von 17x, wie bereits in Abschnitt 4.3. beschrieben.

4.6.2. Mutationsstatistik der 9Mb-Sequenzierung von 21 Patienten

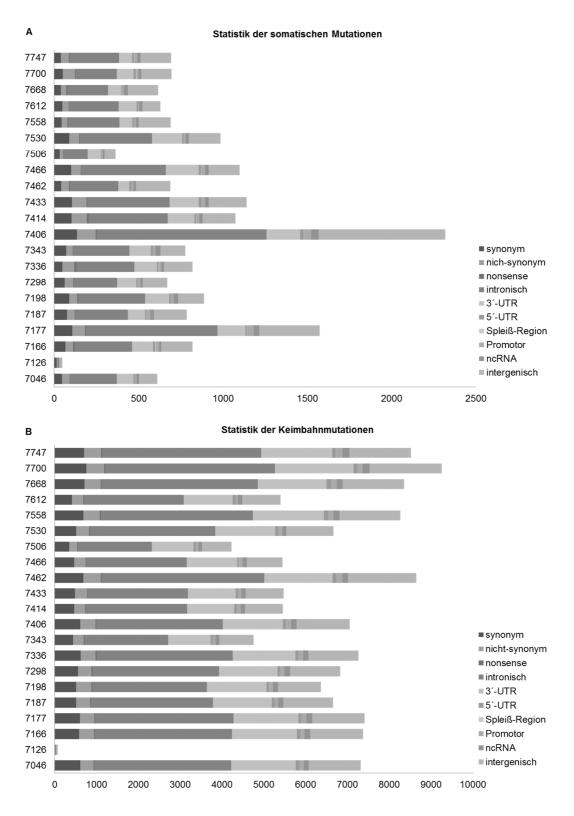

Die Übersicht der berechneten Mutationsprofile, basierend auf der Anwenderdefinierten 9Mb-Region für 21 Patienten, ist in Tabelle 25 zusammengestellt, und die individuellen Profile der identifizierten somatischen- und Keimbahnmutationen ist in Abbildung 29 gezeigt.

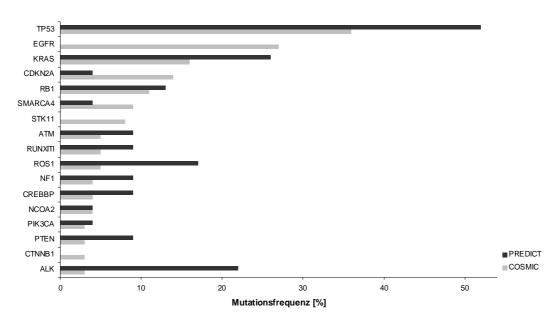
Tabelle 25: Gesamtübersicht der detektierten somatischen Mutationen und der Keimbahnmutationen basierend auf der 9Mb-Sequenzierung von 21 Patienten.

Somatisch	Anzahl	%	Keimbahn	Anzahl	%
Varianten	17.990	100,0	Varianten	136.776	100,0
kodierend	2.625	14,6	kodierend	18.335	13,4
synonym	1.404	7,8	synonym	11.290	8,3
nicht-synonym	1.123	6,2	nicht-synonym	6.614	4,8
Stopp-Zunahme	52	0,3	Stopp-Zunahme	114	0,1
Stopp-Verlust	46	0,3	Stopp-Verlust	317	0,2
nicht kodierend	15.365	85,4	nicht-kodierend	118.441	86,6
intronisch	7.751	43,1	intronisch	60.321	44,1
3´UTR	2.514	14,0	3´UTR	28.508	20,8
5´UTR	197	1,1	5´UTR	1.342	1,0
Spleiß-Regionen	30	0,2	Spleiß-Regionen	36	0,0
Promotor	357	2,0	Promotor	2.189	1,6
ncRNA	394	2,2	ncRNA	2.383	1,7
intergenisch	4.122	22,9	intergenisch	23.662	17,3

Zur Validierung der somatischen Mutationen wurden die identifizierten nichtsynonymen Mutationen mit dem Ergebnis der Validierungsexperimente
(Abschnitt 4.4.) verglichen. Hierbei konnten 180 Positionen einbezogen werden
und eine Validierungsrate von 93,8% (169 Positionen) erzielt werden. Dieses
Ergebnis bestätigt eine Verbesserung des verwendeten Algorithmus, wenn eine
Basenqualität größer als 14 zur Berechnung der somatischen Mutationen zu
verwendet wird.

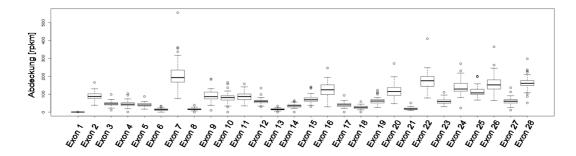
Es wurden, basierend auf der 9Mb-Sequenzierung, innerhalb der 21 Patienten insgesamt 17.990 somatische Mutationen und 136.776 Keimbahnvarianten detektiert. In der Abbildung 29 wurden die somatischen Mutationen und die Keimbahnmutationen der einzelnen Patienten visualisiert und die unterschiedlichen Arten der Mutationen farblich dargestellt.

Abbildung 29: Mutationsstatistik der 9Mb-Sequenzierung separat für jeden der 21 Patienten: (A) Mutationsprofil der somatischen Mutationen, (B) Mutationsprofil der Keimbahnmutationen. Die Farbliche Markierung kennzeichnet die unterschiedlichen Typen der Basensubstitutionen.


Die Visualisierung der somatischen Mutationsprofile der einzelnen Patienten zeigt ein sehr heterogenes Bild. Es gibt einige Patienten wie z.B. 7406 und 7177,

die somatische Mutationen aufweisen. Die sehr viele Anzahl der Keimbahnmutationen ist hingegen nicht auffällig. Die auffällig geringe Mutationsfrequenz der Xenografts 7126 und 7506 ist bedingt durch die geringe einzigartig prozessierter Fragmente, die zur Berechnung Einzelnukleotidvarianten verwendet werden konnten. Interessant ist hierbei, dass der Xenograft 7506 dennoch durchschnittlich viele Keimbahnmutationen zeigt, da dieser einen Mausanteil von 25% aufwies im Vergleich zu dem Xenograft 7126 mit 74% Mausanteil.

Für die weiteren innerhalb dieser Arbeit durchgeführten Analysen wurden nur nicht-synonyme somatische Mutationen und Keimbahnmutationen weiter betrachtet sowie Mutationen in nicht-kodierenden Bereichen, die in putativ transkriptionellen, regulatorischen Bindemotiven (basierend auf der implementierten ENCODE Datenbank innerhalb des *Ingeniuty Variant Analysis* Programm) lokalisiert sind.


Um die Qualität der Daten weiter zu analysieren, wurden die betroffenen Gene mit den bisher publizierten Daten verglichen. Hierfür wurde die Datenbank COSMIC (catalogue of somatic mutations in cancer, (www.cancer.sanger.ac.uk)), die für jede Tumorentität die bisher identifizierten chromosomalen somatischen Aberrationen enthält, verwendet. Die annotierten somatischen Mutationen für die Tumorentität Lungentumor wurden mit den, innerhalb dieser Arbeit identifizierten, Genkandidaten verglichen und anhand der Mutationsfrequenz visualisiert (Abbildung 30).

Das Ergebnis der Analyse zeigt, dass für 14 Gene der insgesamt 17 in COSMIC annotierten Gene in unserem Datensatz somatische Mutationen identifiziert worden sind. Das am häufigsten mutierte Gen ist *TP53* und ist laut COSMIC-Datenbank in 36% aller Lungentumore mutiert. Für die im Rahmen dieser Arbeit verwendete Kohorte zeigen 52 % der Xenografts eine somatische Mutation. Die höhere Mutationsfrequenz des *TP53* Gens in dieser Arbeit könnte dadurch erklärt werden, dass Patienten mit einem Raucherstatus öfter Mutationen innerhalb des *TP53* Gens aufweisen als Nicht-Raucher mit einem Bronchialkarzinom. Innerhalb der PREDICT Patienten-Kohorte sind 95% der Patienten Raucher, somit ist das Verhältnis zwischen Rauchern und Nicht-Rauchern sehr hoch. Das Verhältnis zwischen dem Raucherstatus innerhalb der COSMIC-Datenbank ist nicht bekannt, ist aber wahrscheinlich ausgeglichener.

Abbildung 30: Darstellung der Mutationsfrequenz der in dieser Arbeit identifizierten betroffenen Gene (schwarz) im Vergleich zur Mutationsfrequenz, annotiert in der COSMIC-Datenbank für Lungentumore (grau).

KRAS und das Tumorsuppressorgen RB1 sind in beiden Datensätzen ähnlich häufig mutiert. Bemerkenswerterweise konnte keine somatische Mutation innerhalb des EGFR Gens detektiert werden, das in der COSMIC-Datenbank in 27% der Fälle mutiert vorliegt. Auch dies könnte durch die Zusammensetzung der Kohorte erklärt werden. EGFR Mutationen treten vorwiegend in Adenokarzinomen, sowie häufiger in der asiatischen Population auf und sind häufiger mit einem Nicht-Raucher Status assoziiert. Die für diese Arbeit zur Verfügung gestellte Kohorte besteht aus Mitteleuropäern. Nur fünf Patienten haben ein Adenokarzinom und weisen einen Raucherstatus auf. Um technische bzw. methodische Artefakte auszuschließen, wurde die Sequenziereffizienz der genomischen Region des EGFR Gens überprüft.

Abbildung 31: Kastenplot der durchschnittlichen Anzahl der sequenzierten DNA-Fragmente pro Exon des *EGFR* Gens (Transkriptvariante I, NM_005228) für alle Normal-und Tumorproben, normalisiert auf die Gesamt-Sequenziertiefe und die Transkriptlänge (rpkm).

Der Kastenplot in der Abbildung 31 zeigt die durchschnittliche Anzahl der sequenzierten DNA-Fragmente pro Exon des *EGFR* (Transkriptvariante I) für alle Normal- und Tumorproben der Patienten, normalisiert auf die Sequenziertiefe und die Transkriptlänge (rpkm). Hierbei ergibt sich ein recht heterogenes Bild der Abdeckung für die einzelnen Exons. Dennoch weisen die angereicherten Exons die erforderliche Mindest-Abdeckung der Sequenzier-Fragmente von 10x auf. Somit konnte ein technischer Defekt der Methode ausgeschlossen werden, da das *EGFR* Gen anhand der generierten RNA-Magnetpartikel angereichert und auch mit einer guten Abdeckung sequenziert werden konnte.

4.6.3. Analyse der durch Mutationen betroffenen Signalwege

Um einen ersten Einblick in die biologische Relevanz der ermittelten mutierten Gene zu erhalten wurden diese in die ConsensusPathDB-Datenbank (CPDB) eingespeist. Diese Datenbank wurde von Wissenschaftlern des Max-Planck Instituts für Molekulare Genetik in Berlin generiert und integriert ein Interaktions-Netzwerk biologischer Prozesse, wie Protein-Protein Interaktionen, Signaltransduktionswege und Genregulationsmechanismen. Es beinhaltet Informationen von über 30 unterschiedlichen Datenbanken (z.B. Reactome, Kegg, PID).

Tabelle 26: Wichtigste betroffene Signaltransduktionswege der Gene mit somatischen Mutationen über alle 23 Patienten, berechnet mit der CPDB-Datenbank.

Detreffens Signawage	Anzahl der	n Mart	Detemberd
Betroffene Signawege	betroffenen Gene	p-Wert	Datenbank
Tumorsignalweg	327/126 (38,5%)	1,23E-42	KEGG
Fokal Adhäsion	207/85 (41,3%)	1,93E-31	KEGG
Kleinzelliges Bronchialkarzinom	86/44 (51,2%)	2,34E-21	KEGG
ECM Rezeptor Interaktion	87/41 (47,7%)	1,57E-18	KEGG
Integrin	126/50 (40,0%)	3,04E-18	INOH
PI3K-AKT Signaltransduktion	347/88 (25,5%)	4,11E-16	KEGG
PDGF Signaltransduktion	179/57 (32,0%)	2,00E-15	Reactome
ErbB Signaltransduktion	88/37 (43,0%)	1,16E-14	KEGG
Proteoglykane in Tumorerkrankungen	225/63 (28,0%)	7,8E-14	KEGG
NGF Signaltransduktion	200/56 (28,1%)	1,56E-12	Reactome
Regulation des Actin Zytoskeletts	216/58 (27,1%)	3,47E-12	KEGG
FGFR Signaltransduktion	145/45 (31,2%)	4,92E-12	Reactome
Nicht-kleinzelliges Bronchialkarzinom	54/25 (46,3%)	1.84E-11	KEGG

Abkürzungen: ECM: extrazelluläre Matrix; Pl3K: Phosphatidylinositol-3-kinase; AKT: c-akt murine thymoma viral oncogene; PDGF: Platelet-derived Growth Factor; ErbB: v-erb-b2 avian erythroblastic leukemia viral oncogene homolog; NGF: Nerve Growth Factor; FGFR: Fibroblast growth factor receptor; ERBB2: v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2; KEGG:_Kyoto Encyclopedia of Genes and Genomes; INOH: Integrating Network Objects with Hierarchies

Die Auswertung zeigt, dass der Tumorsignalweg (beinhaltet Onkogene und Tumorsuppressorgene) mit 126 betroffenen Genen (38,5%) aus insgesamt 327 Genen mit einem p-Wert von 1,23x10⁻⁴² signifikant betroffen ist. Des Weiteren konnte generell gezeigt werden, dass vorwiegend Signalketten betroffen sind. Anschließend wurden die Protein-Komplexe, in die die betroffenen

Genkandidaten involviert sind, selektioniert und in einer Tabelle nach dem signifikantesten p-Wert aufgelistet (Tabelle 27). Diesbezüglich wurde insbesondere der Integrin Protein-Komplex als durch Mutationen betroffen identifiziert. Hier sind von insgesamt 86 Genen 40 (47%) durch Mutationen verändert.

Tabelle 27: Wichtigste betroffene Protein-Komplexe der Gene mit somatischen Mutationen über alle 23 Patienten, berechnet mit der CPDB-Datenbank.

Betroffene Protein-Komplexe	Anzahl der betroffenen Gene	p-Wert	Datenbank
Integrin Protein-Komplex	86/40 (47,1%)	4,58E-17	INOH
EGF: p-EGFR: p-ERBB2: GRB2: GAB1: PI3K	7/6 (85,7%)	1,12E-05	Reactome
PIK3R1: PIK3R2: PIK3R3: PIK3CA: PIK3CB: PIK3CD: PIK3CG	7/6 (85,7%)	1,12E-05	NetPath
HGF (Dimer) / MET (Dimer) / GRB2 / GAB1 / SHP2	6/5 (100,0%)	1,16E-05	PID

Abkürzungen: EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; ERBB2: : v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2; GRB2: growth factor receptor-bound protein 2; GAB1: GRB2-associated binding protein 2; PI3K: Phosphatidylinositol-3-kinase; PIK3R1: phosphoinositide-3-kinase, regulatory subunit 1 (alpha); PIK3R2: phosphoinositide-3-kinase, regulatory subunit 2 (beta); PIK3R3: phosphoinositide-3-kinase, regulatory subunit 3 (gamma); PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit (alpha); PIK3CB: phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit (beta); PIK3CD: phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit (delta); PIK3CG: phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit (gamma); HGF: hepatocyte growth factor; MET: hepatocyte growth factor receptor; SHP2: signaling threshold regulating transmembrane adaptor 1; INOH: Integrating Network Objects with Hierarchies: PID: pathway interaction database

Des Weiteren wurde mit den Keimbahnmutationen ebenfalls eine Analyse der Signalwege sowie der Protein-Komplexe durchgeführt, die ähnliche betroffene Signalwege aufzeigt (Tabelle 28 und 29).

Tabelle 28: Wichtigste betroffene Signalwege der Gene mit Keimbahnmutationen über alle 23 Patienten, berechnet mit der CPDB-Datenbank.

Betroffene Signawege	Anzahl der betroffenen Gene	p-Wert	Datenbank
Signalweg des Geruchsinns	407/205 (50,6%)	3,69E-29	KEGG
Tumorsignalweg	327/185 (48,3%)	4,83E-20	KEGG
Fokal Adhäsion	207/108 (52,4%)	2,96E-17	KEGG
ECM Rezeptor Interaktion	87/54 (62,8%)	1,71E-13	KEGG
Integrin Zelloberflächen Interaktion	55/36 (65,5%)	3,46E-10	PID
GPCR Signal	1076/352 (32,7%)	3,38E-09	Reactome
Kleinzelliges Bronchialkarzinom	86/47 (54,7%)	4,85E-09	KEGG
PI3K-AKT Signaltransduktion	347/131 (38,0%)	7,11E-08	KEGG
Kollagen Formation	88/44 (50,0%)	4,55E-07	Reactome
ErbB2 Signaltransduktion	88/40 (45,5%)	2,81E-05	KEGG

Abkürzungen: ECM: extrazelluläre Matrix; GPCR: G protein-coupled receptor; PI3K: Phosphatidylinositol-3-kinase; AKT: c-akt murine thymoma viral oncogene; ErbB2: v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2; KEGG: Kyoto Encyclopedia of Genes and Genomes; PID: pathway interaction database

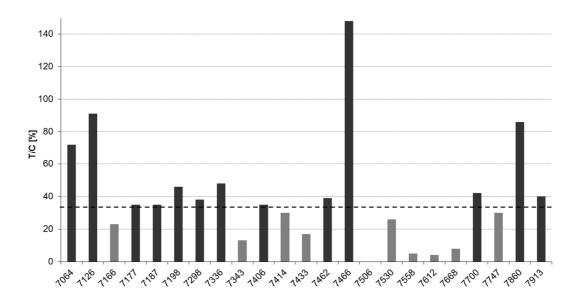
Tabelle 29: Wichtigste betroffene Protein-Komplexe der Gene mit Keimbahnmutationen über alle 23 Patienten, berechnet mit der CPDB-Datenbank.

Betroffene Protein-Komplexe	Anzahl der betroffenen Gene	p-Wert	Datenbank
Integrin Protein-Komplex	86/49 (57,6%)	1,26E-10	INOH
ECM Proteine: Integrin alpha: Integrin beta	79/46 (59,0%)	1,61E-10	INOH
Notch: CBF1: CoA	10/9 (90,0%)	2,93E-05	INOH

Abkürzungen: ECM: extrazelluläre Matrix; Notch: translocation-associated NOTCH Protein; CBF1: corepressor interacting with RBPJ, 1; CoA: Coactivator; INOH: Integrating Network Objects with Hierarchies

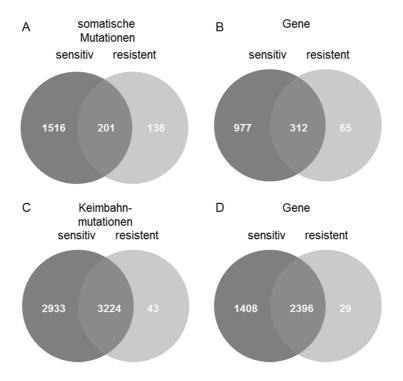
Die Auswertung zeigt, dass der Signalweg des Geruchssinns mit 205 betroffenen Genen (50,6%) aus insgesamt 407 Genen mit einem p-Wert von 3,69x10⁻²⁹ signifikant betroffen ist. An zweiter Stelle wurde der Tumorsignalweg mit 185 Genen von insgesamt 327 Genen (48,3%) mit einem p-Wert von 4,83Ex10⁻²⁰ identifiziert. Außerdem konnten weitere Signalwege aufgezeigt werden, die möglicherweise mit der Progression von Tumorerkrankungen assoziiert werden können (Tabelle 28). Anhand der Selektion der Protein-Komplexe, in die die betroffenen Genkandidaten involviert sind, konnte ebenfalls der Integrin Protein-Komplex als durch Mutationen betroffen, identifiziert werden (Tabelle 29).

4.7. Stratifizierung der Mutationsprofile der einzelnen Xenografts nach der Sensitivität gegenüber den eingesetzten Chemotherapien


Innerhalb des PREDICT-Projektes wurden die generierten 23 Xenograft-Modelle mit sechs unterschiedlichen Medikamenten (Carboplatin, Paclitaxel, Gemcitabin, Etoposid, Cetuximab und Erlotinib) behandelt. Die vier Zytostatika Carboplatin, Paclitaxel, Gemcitabin und Etoposid wirken u. a. durch eine Hemmung der DNA-Replikation und der Zytokinese. Des Weiteren wurden die zielgerichteten EGFR Inhibitoren Erlotinib, ein Inhibitor der *Tyrosinkinase*, sowie Cetuximab, ein monoklonaler Antikörper, der die Ligand-Rezeptor Bindung inhibiert, eingesetzt. Eine Beurteilung der Chemosensitivität fand mit Hlife des T/C-Wertes [%] statt. Der T/C-Wert setzt das Volumen des Tumors nach einer Therapie zu dem ohne Therapie ins Verhältnis. In Anlehnung an die *RECIST* Kriterien (*Respond Evaluation Criteria in solid Tumors*), die in der Klinik Anwendung finden, wurden die Modelle mit T/C-Werten kleiner als 35% als sensitiv bewertet.

Für eine Identifikation von Mutationen, die eine Chemotherapie-Resistenz verursachen könnten, wurde mit dem Programm *Ingenuity Variant Analysis* gearbeitet. Zunächst wurden die Xenografts jeweils in eine Fallgruppe, die die

resistenten Xenografts (T/C > 35%) enthält, und in eine Kontrollgruppe, die die sensitiven Xenografts (TC < 35%) umfasst, klassifiziert. Innerhalb des Programms wurden die Parameter der genetischen Analyse so gewählt, dass ein Gen, unabhängig von der identifizierten Basensubstitution, mindestens in zwei Xenografts der Fallgruppe auftreten muss und nicht in der Kontrollgruppe enthalten sein darf. Zudem erfolgte die Selektion der Gene sowohl für die somatischen Mutationen als auch für die Keimbahnmutationen. Für die Analyse wurden auch die Keimbahnmutationen verwendet, da Ng et al. 2012 und Kollegen gezeigt haben, dass eine Keimbahnveränderung des proapoptotischen Proteins BIM (BCL2-like 11) einen maßgeblichen Einfluss auf das Therapieansprechen eines Tumors hat [189].


4.7.1. Ergebnisse für das Zytostatikum Carboplatin

Das Zytostatikum Carboplatin gehört zur Gruppe der Alkylanzien und führt zu Vernetzungen von DNA-Strängen und beeinträchtigt auf diese Weise die Zellteilung. Für eine Sensitivitätstestung wurden die Xenografts über zwei Wochen mit 75 (mg/kg/Injektion) Carboplatin mit Injektionen am Tag 1 und Tag 8 behandelt. Ein Vergleich zwischen dem Tumorvolumen der behandelten Tiere (T) und nicht behandelten Tieren (K) resultierte in TC-Werten, die in Abbildung 32 dargestellt sind. Bei einer festgelegten Größe von 35 zeigte sich, dass 10 Xenografts sensitiv und 13 Xenografts resistent gegenüber Carboplatoin sind.

Abbildung 32: Chemosensitivität der Xenograft-Modelle gegenüber dem Zytostatikum Carboplatin. Das Ansprechen wurde mit T/C-Werten [%] (Tumorgewicht mit Behandlung/Tumorgewicht ohne Behandlung) beurteilt, wobei Werte < 35% als sensitiv (grau) und Werte > 35 als resistent (schwarz) bewertet wurden.

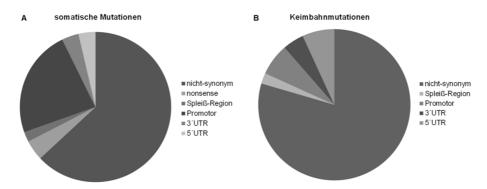

In der Gruppe der resistenten Xenografts konnten 138 somatische Mutationen in 65 Genen und 43 Keimbahnmutationen in 29 Genen, die in mindestens zwei Xenografts auftraten, identifiziert werden. Die Ergebnisse sind als Venn-Diagramme in Abbildung 33 zusammengefasst.

Abbildung 33: Therapieansprechen für Carboplatin: Venn-Diagramm der Anzahl der Mutationen (A, C) bzw. Genen (B, D), die in mindestens zwei Xenografts identifiziert wurden: (A) somatische Mutationen, (B) die betroffenen Gene mit somatischen Mutationen, (C) Keimbahnmutationen, (D) die betroffenen Gene mit Keimbahnmutationen.

Eine Untersuchung der Arten der Mutationen zeigte, dass es sich vorwiegend um nicht-synonyme Mutationen handelte. Die entsprechenden Verteilungen sind in Abbildung 34 dargestellt. Das Kreisdiagramm in Abbildung 34A zeigt, dass von den insgesamt 138 somatischen Mutationen, die möglicherweise einen Einfluss auf intrinsische Resistenzmechanismen gegenüber Carboplatin haben könnten, 93 Mutationen innerhalb kodierender genomischer Regionen lokalisiert sind, und davon 87 nicht-synonyme Mutationen und sechs *nonsense* Mutationen sind. Zudem wurden 32 Mutationen innerhalb Promotorregionen, zehn Mutationen in 3'- und 5' UTR-Regionen und drei Mutationen in Spleiß-Regionen detektiert. Für die Keimbahnmutationen wurden insgesamt 43 Mutationen identifiziert, von denen 35 Mutationen nicht-synonym sind, drei Mutationen in Promotorregionen,

eine Mutation in einer Spleiß-Region und fünf Mutationen in 3´- und 5´ UTR-Regionen lokalisiert sind (siehe Abbildung 34B).

Abbildung 34: Verteilung der resistenzspezifischen Mutationen: (A) 138 somatische Mutationen und (B) 43 Keimbahnmutationen.

4.7.1.1. Analyse der Gene mit somatischen Mutationen

In der folgenden Tabelle sind die Gene mit somatischen Mutationen aufgelistet, die ggf. für eine Chemotherapie-Resistenz verantwortlich sein könnten (Tabelle 30).

Tabelle 30: Übersicht der Genkandidaten mit somatischen Mutationen, die in mindestens zwei resistenten Xenografts identifiziert wurden.

Genname	Anzahl der somatischen Mutationen	Anzahl an resistenten Tumoren	% Tumore	Genname	Anzahl der somatischen Mutationen	Anzahl an resistenten Tumoren	% Tumore
AIMP1	2	2	17	MAML2	3	3	25
AKAP2	2	2	17	MCF2	3	3	25
ATM	2	2	17	MSR1	2	2	17
BANK1	1	2	17	NACA	3	2	17
BCL6	2	2	17	NBR1	2	3	25
BMI1	2	2	17	OR9G1	2	2	17
BRCA1	2	2	17	OR9G9	2	2	17
CDH10	3	3	25	ORMDL1	3	3	25
CDH9	3	3	25	PAK7	2	2	17
CHD8	2	2	17	PDGFRB	3	3	25
CHGB	2	2	17	PIK3R1	3	3	25
COL4A1	2	3	25	PMS1	3	3	25
CR1	2	2	17	POLR2B	2	2	17
CUX1	2	2	17	POU6F2	3	2	17
CYLD	2	2	17	PRKCE	1	2	17
DLG2	3	3	25	PRKDC	2	2	17
DZIP3	2	2	17	PRMT6	1	3	25
ESR2	2	2	17	PTPRB	2	2	17
ETV1	3	3	25	RB1	3	3	25
FES	1	2	17	RPS6KA1	2	3	25
FGF10	1	2	17	RUNX1T1	2	2	17
FLNC	2	2	17	RXRG	2	2	17
GTPBP10	1	2	17	SFMBT2	3	3	25
HOXA1	1	2	17	SHC4	2	2	17
HYDIN	2	3	25	SMAD3	2	2	17

Genname	Anzahl der somatischen Mutationen	Anzahl an resistenten Tumoren	% Tumore	Genname	Anzahl der somatischen Mutationen	Anzahl an resistenten Tumoren	% Tumore
ING1	3	4	33	STK39	1	2	17
ITGA1	3	3	25	TBC1D3	3	4	33
ITGA9	1	2	17	TBCK	2	2	17
ITGAD	4	4	33	VPS13B	3	4	33
KLK1	2	4	33	XPC	1	2	17
KMT2A	2	2	17	ZNF131	3	3	25
LAMA5	1	2	17	ZNF429	2	2	17
LAMC3	1	2	17	ZNF655	2	2	17
LMOD1	2	2	17	ZNF845	2	2	17

Um einen Einblick über die biologische Relevanz der betroffenen Gene zu bekommen, wurde eine Signalweg-Analyse durchgeführt (Programm: *Ingenuity Variant Analysis*) und die Signalwege entsprechend dem signifikantesten p-Wert aufgelistet.

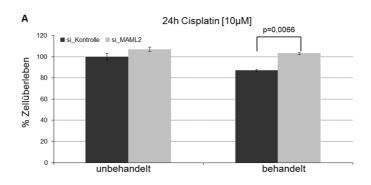
Tabelle 31: Wichtigste betroffene Signalwege in den Carboplatin-resistenten Tumoren durch somatische Mutationen.

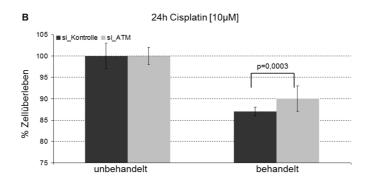
Signalweg	Anzahl der betroffenen Gene (Mutationen)	Anzahl an resistenten Tumoren (%)	p - Wert	Biologische Funktion
PAK Signalweg	7 (18)	8 (67%)	2.54E-07	Proliferation, Apoptose, Invasion
ERK/MAPK Signalweg	8 (18)	9 (75%)	8.79E-07	Proliferation, Apoptose, Differenzierung
Paxillin Signalweg	6 (15)	8 (67%)	2.13E-06	Zell-Adhäsion, Motilität
Rho-GTPase Signalweg	8 (21)	8 (67%)	3.65E-06	Proliferation, Motilität
FAK Signalweg	6 (15)	8 (67%)	4.52E-06	Zell-Adhäsion

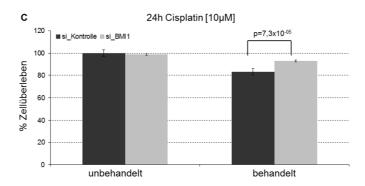
Abkürzungen: PAK: p21-activating Kinase; ERK: extracellular-signal-regulated kinase; MAPK: mitogen-activated protein kinase; Rho: rhodopsin; FAK: focal adhesion kinase

Die Analyse zeigt, dass der p21-aktivierende Signalweg (*PAK*-Signalweg) mit einem p-Wert von 2,5x10⁻⁷ signifikant oft betroffen ist. Innerhalb dieses Signalwegs wurden sieben Gene mit insgesamt 18 somatischen Mutationen in acht resistenten Xenografts (67%) identifiziert. Die PAK-Proteine (p21-aktivierende Proteinkinasen) gehören zur Familie der *Serin-Threonin Kinasen* und sind an der Regulation der Zytoskelett-Dynamik, dem Zellüberleben und der Proliferation beteiligt und fungieren unter anderem als Effektoren der Rac- und CDC42 Proteine [190]. Weiterhin ist anhand der Tabelle 31 ersichtlich, dass die betroffenen Signalwege, an denen die Resistenz-spezifischen Gene beteiligt sind, maßgeblich an biologischen Prozessen wie Proliferation, Differenzierung, Apoptose und Zell-Adhäsion beteiligt sind, was erste Hinweise darüber gibt, dass Mutationen innerhalb dieser Signaltransduktionen und Prozesse einen Effekt auf die Sensitivität einer Carboplatin Behandlung haben könnten.

Innerhalb des *Ingenuity Variant Analysis* Programms kann ein biologischer Kontext, basierend auf der NCBI-Datenbank (*National Center of Biotechnology*


Information), gewählt werden. Für die folgende Analyse wurde daher "Chemoresistenz in Lungentumor Zelllinien" gewählt und entsprechend die Gene selektioniert, die einen Bezug zu diesem biologischen Kontext haben. Anhand dieser Auswertung konnten 16 Gene identifiziert werden, die maßgeblich an der Entwicklung humaner Zellen sowie an der Transformation beteiligt sind. Bemerkenswerterweise haben fünf Gene eine Mutationsfrequenz von 25% in den 12 resistenten Xenografts (ITGA1, MCF2, PDGFRB, PIK3R1 und RB1). Das MCF2 Protein gehört zu den GEFs (Guanin Nucleotid exchange factors) und ist unter anderem mit dem an die Membran assoziierten GTPase Protein CDC42 (cell Devision cycle 42) assoziiert. Des Weiteren wurden drei somatische Mutationen innerhalb des Tumorsuppressorgens RB1 identifiziert, das eines der Hauptregulatoren der Zellzyklus Progression ist und ist in einer hohen Anzahl von NSCLC Tumoren funktionell inaktiv [191]. Der Patient 7198 hat eine Basensubstitution c.G256T (p.G86*), die in einem vorzeitigen Stopp resultiert und damit zu einem verkürzten Protein führt. Der Patient 7336 trägt eine c.G264T (p.L88F) Substitution und der Patient 7462 eine c.A2260G (p.V754I) Substitution. Die Aminosäurensubstitutionen p.86* und p.L88F sind in der N-terminalen Region des kodierenden Proteins lokalisiert, die Substitution p.V754l konnte innerhalb der LXCXE Bindesequenz der B Domäne lokalisiert werden, die die Interaktion vieler zellulärer Proteine (Chromatinregulatoren, Histon-Deacetylasen, Methyltransferasen usw.) vermittelt und maßgeblich an der Regulation der Zellzyklus Progression beteiligt ist [192].


Die Ergebnisse geben erste Hinweise darauf, dass eine große Anzahl an somatischen Mutationen einen Einfluss auf intrinsische Resistenzmechanismen gegenüber einer Carboplatin-Behandlung haben könnten. Diesbezüglich wurden einige ausgewählte Genkandidaten anhand von Zellproliferationsexperimenten näher charakterisiert.


4.7.1.1.1. Zellproliferationsexperimente

Für eine biologische Validierung wurden die betroffenen Gene *ATM*, *BMI1* und *MAML2* näher charakterisiert. Hierfür wurde anstelle von Carboplatin mit dem Platinderivat Cisplatin gearbeitet, da die epitheliale Lungentumorzelllinie A549 eine höhere Sensitivität gegenüber diesem Chemotherapeutikum aufweist. Die Zellen wurden mit den entsprechenden siRNA Molekülen gegen *ATM* (Abbildung 35A), *BMI1* (Abbdilung 35B) und *MAML2* (Abbildung 35C) sowie mit einer Kontroll-siRNA behandelt und nach 24h Inkubation mit 10μM Cisplatin für weitere 24h Stunden inkubiert. Die photometrische Messung der Zellproliferation erfolgte

anhand des Farbumschlags des Farbstoffs *Alamarblue*, der ein Maß der metabolischen Zellaktivität darstellt.

Abbildung 35: Zellüberleben von Cisplatin-sensitiven A549 Zellen. Behandlung der Zellen mit siRNA-Molekülen gegen (A) *MAML2*, (B) *ATM* und (C) *BMI1* sowie einer Kontroll-siRNA

Nach einer Cisplatin-Behandlung überleben signifikant mehr Zellen bei einer siRNA-Behandlung gegen *MAML2*, *ATM* und *BMI1*. Dies ist ein erstes Indiz dafür, dass sie vermutlich an einem intrinsischen Resistenzmechanismus gegen das Zytostatikum Carboplatin bzw. Cisplatin beteiligt sein könnten.

4.7.1.2. Analyse der Gene mit Keimbahnmutationen

In der folgenden Tabelle sind die betroffenen Gene mit den Keimbahnmutationen (Tabelle 32) und der entsprechenden Mutationsfrequenz aufgelistet.

Tabelle 32: Übersicht der Genkandidaten mit Keimbahnmutationen, die in mindestens zwei resistenten Xenografts identifiziert wurden.

Genname	Anzahl der Keimbahn- mutationen	Anzahl an resistenten Tumoren	% Tumore	Genname	Anzahl der Keimbahn- mutationen	Anzahl an resistenten Tumoren	% Tumore
AIPL1	1	2	17	IL21R	2	2	17
ARHGEF12	2	3	25	ITPA	1	2	17
CLP1	1	2	17	NOTCH3	1	2	17
CSDC2	1	2	17	OR2G3	2	2	17
DIEXF	1	2	17	OXER1	2	3	33
DPY19L2	1	4	33	PHYH	1	2	17
ECE1	1	2	17	RALGPS2	1	2	17
FANCE	3	2	17	S100A7A	1	2	17
FLT1	2	3	25	SBF1	2	2	17
FN1	2	2	17	SEC24D	1	2	17
FNIP2	2	2	17	TCF7	1	2	17
FZD4	2	2	17	TMEM45B	1	2	17
HERPUD1	1	2	17	WNT8B	1	5	42
IFLTD1	1	2	17	ZCCHC9	1	2	17
IGFBP5	1	2	17	ZNF267	2	2	17

Innerhalb der Keimbahnmutationen wurde der WNT-Signalweg (*wingless-type MMTV integration site family*) in 58% der resistenten Xenografts (p-Wert = 1,60x10⁻⁰⁴) mit fünf Keimbahnmutationen in vier Genen *Wnt8B, FZD4, MMP7* und *TCF7* identifiziert. Bemerkenswerterweise wurde das Gen *Wnt8B* mit der Keimbahnmutation, die zu einem Aminosäureaustausch in der kodierenden Sequenz des entsprechenden Proteins (p.C11S) in der N-terminalen Region führt, in insgesamt fünf resistenten Xenografts (42%) identifiziert. Diese Variante ist in der dbSNP-Datenbank mit der Nummer rs3793371 annotiert.

4.7.2. Ergebnisse für das Zytostatikum Gemcitabin

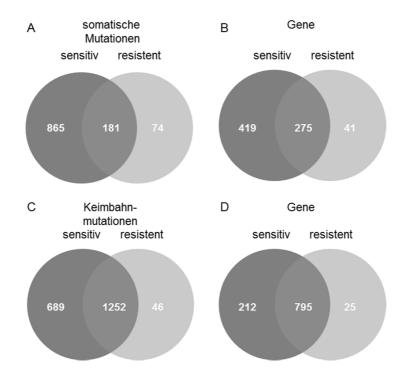
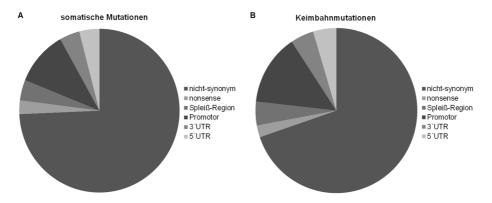

Das Pyrimidin-Analogon Gemcitabin gehört zu den Antimetaboliten und inhibiert die DNA-Synthese vorwiegend in der S-Phase. Die Xenografts wurden über zwei Wochen (Tag 1, 4, 7 und 10) mit 80mg/kg/Injektion Gemcitabin behandelt. Dabei waren 12 Xenografts als sensitiv und 10 Xenografts als resistent eingestuft worden. Ein Xenograft (Pat-ID 7668) wurde nicht behandelt (Abbildung 36).

Abbildung 36: Chemosensitivität der Xenograft-Modelle gegenüber dem Zytostatikum Gemcitabin. Das Ansprechen wurde mit T/C-Werten [%] (Tumorgewicht mit Behandlung /Tumorgewicht ohne Behandlung) beurteilt, wobei Werte < 35% als sensitiv (grau) und Werte > 35 als resistent (schwarz) bewertet wurden.


Anhand der Beurteilung der Sensitivität gegenüber Gemcitabin wurden die Xenografts 7860 und 7913, bei denen Gesamt-Exom-Sequenzierungen durchgeführt worden sind, als resistent klassifiziert. Hierbei wurden die identifizierten Gene mit den Genen, basierend auf der 9Mb-Sequenzierung der anderen 21 Xenografts, abgeglichen, und der Überlapp beider für die weiteren Analysen eingesetzt. Die Gene, die nur in den Xenografts 7860 und 7913 identifiziert wurden und nicht in der 9Mb-Region enthalten waren, wurden nicht berücksichtigt, da bei diesen Genkandidaten keine Aussage getroffen werden kann, ob diese nicht auch in den anderen Patienten mutiert sind.

Innerhalb der resistenten Xenografts wurden 74 somatische Mutationen in 41 Genen und 46 Keimbahnmutationen in 25 Genen, die mindestens in zwei resistenten Xenografts auftraten, identifiziert und in einem Venn-Diagramm dargestellt (Abbildung 37).

Abbildung 37: Therapieansprechen für Gemcitabin: Venn-Diagramm der Anzahl der Mutationen (A, C) bzw. Genen (B, D), die in mindestens zwei Xenografts identifiziert wurden: (A) somatische Mutationen, (B) die betroffenen Gene mit somatischen Mutationen, (C) Keimbahnmutationen, (D) die betroffenen Gene mit Keimbahnmutationen.

Die Kreisdiagramme in Abbildung 38 stellen die Verteilung der somatischen bzw. der Keimbahnmutationen dar, die in den Gemcitabin-resistenten Xenografts identifiziert worden sind.

Abbildung 38: Verteilung der resistenzspezifischen Mutationen: (A) 74 somatische Mutationen, (B) 46 Keimbahnmutationen.

Die Abbildung 38A zeigt, dass bei den insgesamt 74 somatischen Mutationen, 57 Mutationen innerhalb kodierender genomischen Regionen lokalisiert sind und von diesen 55 nicht-synonyme und zwei *nonsense* Mutationen sind. Weiter wurden

acht Mutationen innerhalb der Promotorregionen, sechs Mutationen in 3'- bzw. 5'-UTR-Regionen und drei Mutationen in Spleiß-Regionen detektiert. Für die Keimbahnmutationen wurden insgesamt 46 Mutationen identifiziert, von denen 30 Mutationen nicht-synonym sind und eine eine *nonsense* Mutation ist. Innerhalb der nicht-kodierenden genomischen Regionen wurden sechs Mutationen in Promotorregionen, zwei Mutationen in einer Spleiß-Region und vier Mutationen in 3'- bzw. 5'- UTR-Regionen detektiert (siehe Abbildung 38B).

4.7.2.1. Analyse der Gene mit somatischen Mutationen

In der Tabelle 33 sind die betroffenen Gene mit somatischen Mutationen und den entsprechenden Mutationsfrequenzen in den resistenten Xenografts aufgelistet.

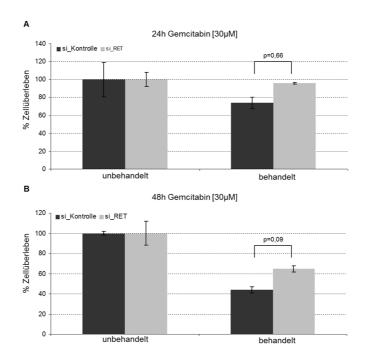
Tabelle 33: Übersicht der Genkandidaten mit somatischen Mutationen, die in mindestens zwei resistenten Xenografts identifiziert wurden.

Genname	Anzahl der somatischen Mutationen	Anzahl an resistenten Tumoren	% Tumore	Genname	Anzahl der somatischen Mutationen	Anzahl an resistenten Tumoren	% Tumore
ALOX12	1	2	20	PIK3C2A	1	2	20
ARFGAP2	1	2	20	PPP2R2B	2	2	20
BTC	2	2	20	POU5F1B	2	2	20
CASC5	2	2	20	PRKAR1A	2	2	20
CDC42BPA	2	2	20	PTEN	2	2	20
CYB5RL	1	2	20	PYDC2	1	2	20
EXTL3	2	2	20	RASSF1	1	2	20
FGFBP2	3	3	30	RET	2	2	20
GDAP2	1	2	20	SKIL	2	2	20
PSCA	1	2	20	SLC29A3	2	2	20
GGT1	1	2	20	SPRY2	1	2	20
GJB7	2	2	20	STEAP1B	2	2	20
GNL3	3	2	20	TCL1B	1	2	20
KDM6A	2	2	20	TECPR2	2	2	20
KIAA1549	3	3	30	TRPC6	1	2	20
LIFR	2	2	20	WNT8A	2	2	20
MKI67	4	3	30	WRN	2	2	20
MYOF	3	3	30	ZNF366	2	2	20
NF1	3	2	20	ZNF468	2	2	20
NOS1	2	2	20	ZNF860	1	2	20
NT5E	1	2	20				

Um einen Überblick über die biologische Relevanz der betroffenen Gene zu bekommen, wurde eine Signalweg-Analyse durchgeführt (CPDC-Datenbank) und die Signalwege entsprechend dem signifikantesten p-Wert aufgelistet.

Tabelle 34: Wichtigste betroffene Signalwege durch somatische Mutationen in den Gemcitabin-resistenten Tumoren.

Signalweg	Anzahl der betroffenen Gene (Mutationen)	Anzahl an resistenten Tumoren (%)	p - Wert	Biologische Funktion
Glioblastoma	4 (7)	5 (50%)	7,29E-05	Glioblastoma
FGFR Signalweg NO-Signalweg	4 (7) 2 (4)	6 (60%) 3 (15%)	9,86E-04 1,30E-03	Angiogenese, Proliferation Vaskularisierung
Eicosanoid Synthese	2 (2)	3 (15%)	1,44E-03	Inflammation, Vaskularisierung
EGFR Signalweg	4 (7)	6 (60%)	1,47E-03	Proliferation, Apoptose, Motilität


Abkürzungen: FGFR: Fibroblast growth factor receptor; NO: nitric oxide; EGFR: Epidermal growth factor receptor

Hierbei wurde der FGFR-Signalweg (*Fibroblast Growth Factor*) mit einem p-Wert von 9,86x10⁻⁰⁴ detektiert, der u. a. die Proliferation, Migration und Zelldifferenzierung reguliert. Die involvierten Gene sind *SPRY2*, *PRKAR1A*, *BTC* und *PTEN* und wurden in 5 (50%) resistente Xenografts identifiziert. Innerhalb der Signalweganalyse wurden die vier Gene ebenfalls für den EGFR-Signalweg (p-Wert = 1,47x10⁻⁰³) beschrieben.

Außerdem wurde innerhalb des *Ingenuity Variant Analysis* Programms ebenfalls der biologische Kontext "Chemoresistenz in Lungentumor Zelllinien" gesetzt und entsprechend die Gene selektioniert, die Hinweise einer Beteiligung gegenüber dem biologischen Kontext geben. Anhand dieser Auswertung konnten die Gene *ALOX12*, *BTC*, *CDC42BPA*, *GGT1*, *NF1*, *NT5E*, *PRKAR1A*, *PTEN*, *RET* und *SPRY2* selektioniert werden, die vorwiegend an der Proliferation maligner Zellen sowie an der Kolonisierung involviert sind. Somit konnte auch hier ein erster Hinweis erbracht werden, dass somatische Mutationen einen Einfluss auf intrinische Resistenzmechanismen gegenüber einer Gemcitabin-Behandlung haben könnten. Diesbezüglich wurde das Protoonkogen *RET* näher charakterisiert.

4.7.2.1.1. Zellproliferationsexperimente

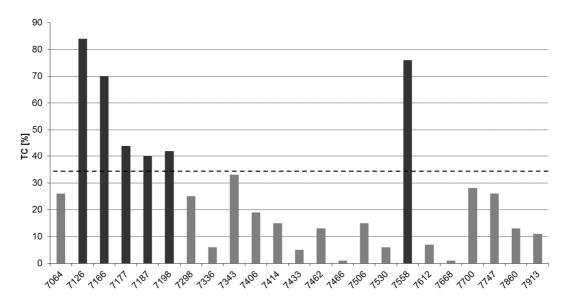
Für eine biologische Validierung wurde das Gen *RET*, eine *Rezeptor Tyrosin-Kinase*, näher charakterisiert. Dafür wurde die Gemcitabin sensitive SV-40 transformierte Lungenfibroblasten-Zellline Wi38 kultiviert und mit den entsprechenden siRNA Molekülen gegen *RET* sowie mit einer Kontroll-siRNA behandelt und nach 24h Inkubation mit 30µM Gemcitabin für weitere 24h Stunden bzw. 48h inkubiert. Die photometrische Messung der Zellproliferation erfolgte anhand des Farbumschlags des Farbstoffs *Alamarblue* (Abbildung 39).

Abbildung 39: Zellüberleben von Gemcitabin-sensitiven Wi38-Zellen nach (A) 24h und (B) 48h. Behandlung der Zellen mit siRNA-Molekülen gegen *RET* und KontrollsiRNA.

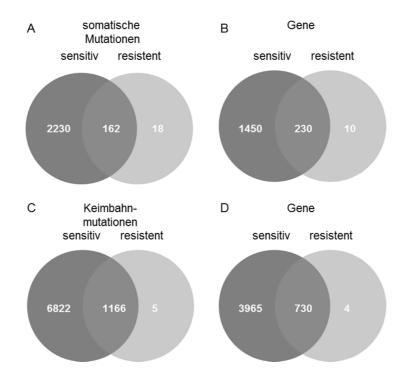
Da nach einer Gemcitabin-Behandlung die mit siRNAs gegen *RET* behandelten Ansätze deutlich mehr Zellen aufweisen, ist dieses Gen vermutlich an einem intrinsischen Resistenzmechanismus gegen das Zytostatikum Gemcitabin beteiligt. Da die Behandlung der Zellen mit den siRNA-Molekülen gegen *RET per se* in einem geringeren Zellüberleben resultierte, wurden diese Ansätze auf 100% gesetzt und das prozentuale Verhältnis der Gemcitabin behandelten Ansätze nicht gegen den unbehandelten si_Kontroll-Ansatz, sondern gegen den unbehandelten si_RET-Ansatz berechnet. Dadurch konnte kein signifikanter p-Wert berechnet werden. Dennoch konnte eine deutlich geringere Zelltodrate der Gemcitabin behandelten Zellen nach einem *knock down* gegen *RET* im Vergleich zur Kontrolle verzeichnet werden.

4.7.2.2. Analyse der Gene mit Keimbahnmutationen

In der Tabelle 35 sind die betroffenen Gene mit den Keimbahnmutationen mit der entsprechenden Mutationsfrequenz in den resistenten Xenografts aufgelistet.


Tabelle 35: Übersicht der Genkandidaten mit Keimbahnmutationen, die in mindestens zwei resistenten Xenografts identifiziert wurden.

Genname	Anzahl der Keimbahn- mutationen	Anzahl an resistenten Tumoren	% Tumore	Genname	Anzahl der Keimbahn- mutationen	Anzahl an resistenten Tumoren	% Tumore
ABL1	1	2	20	PDE9A	2	2	20
ALOX15B	2	2	20	PPID	1	3	30
B3GNT3	2	3	30	RAB23	1	2	20
CAMTA2	2	2	20	SEC24D	1	2	20
DUSP6	2	2	20	SPIB	2	2	20
ERCC4	1	2	20	TRIM59	2	2	20
ESR1	3	3	30	TRO	2	2	20
ETV3L	2	2	20	ZDHHC21 ZFP91-	2	3	30
HTR1E	1	2	20	CNTF	2	2	20
METTL21D	2	2	20	ZNF3	2	2	20
MOK	2	2	20	ZNF816	1	3	30
MPL	2	2	20	ZNF83	2	3	30


Für die betroffenen 25 Gene mit den Keimbahnmutationen wurden innerhalb der Signalweganalyse zwei Gene *ABL1* und *ESR1* identifiziert, die an der Regulation der Telomerase (p-Wert = 0,00363) involviert sind und in insgesamt 5 (50%) der resistenten Xenografts vorliegen. Diese beiden Gene konnten interessanterweise ebenfalls anhand der Analyse des biologischen Kontexts der "Chemoresistenz in Lungentumor Zelllinien" selektioniert werden.

4.7.3. Ergebnisse für das Zytostatikum Paclitaxel

Paclitaxel ist ein Taxan und bindet kovalent an die β-Untereinheit von Tubulin. Taxane gehören zu den "Mitosehemmern" und führen zu einem Arrest der Zellteilung in der Metaphase. Für eine Sensitivitätstestung wurden die Xenografts für eine Woche (Tag 1 bis 5) mit 12,5mg/kg/Injektion Paclitaxel behandelt. Das Ergebnis ist in Abbildung 40 dargestellt und resultierte in 17 Xenografts, die als sensitiv und sechs Xenografts, die als resistent bewertet wurden.

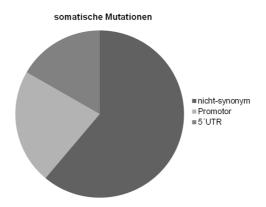


Abbildung 40: Chemosensitivität der Xenograft-Modelle gegenüber dem Zytostatikum Paclitaxel. Das Ansprechen wurde mit T/C-Werten [%] (Tumorgewicht/Kontrollgewicht) beurteilt, wobei Werte < 35% als sensitiv (grau) und Werte > 35 als resistent (schwarz) bewertet wurden.

Abbildung 41: Therapieansprechen für Paclitaxel: Venn-Diagramm der Anzahl der Mutationen (A, C) bzw. Genen (B, D), die in mindestens zwei Xenografts identifiziert wurden: (A) somatische Mutationen, (B) die betroffenen Gene mit somatischen Mutationen, (C) Keimbahnmutationen, (D) die betroffenen Gene mit Keimbahnmutationen.

Basierend auf den Kriterien zur Stratifizierung der Genkandidaten anhand der Paclitaxel Behandlung wurden innerhalb der resistenten Xenografts 18 somatische Mutationen in zehn Genen und fünf Keimbahnmutationen in vier Genen, die in mindestens zwei resistenten Xenografts auftraten, identifiziert. Die Ergebnisse sind in einem Venn-Diagramm zusammengefasst (Abbildung 41). Die entsprechende Verteilung der somatischen Mutationen ist in einem Kreisdiagramm (Abbildung 42) zusammengefasst.

Abbildung 42: Verteilung somatischen Mutationen.

Von den insgesamt 18 somatischen Mutationen wurden 11 nicht-synonyme Mutationen, vier Mutationen in Promotorregionen und drei Mutationen in der 5'UTR-Region detektiert. Die fünf Keimbahnmutationen sind alle in kodierenden Regionen lokalisiert und sind nicht-synonyme Mutationen.

4.7.3.1. Analyse der Gene mit somatischen Mutationen

In der Tabelle 36 sind die betroffenen Gene mit den somatischen Mutationen mit der entsprechenden Mutationsfrequenz in den resistenten Xenografts aufgelistet.

Tabelle 36: Übersicht der Genkandidaten mit somatischen Mutationen, die in mindestens zwei resistenten Xenografts identifiziert wurden.

Genname	Anzahl der somatischen Mutationen	Anzahl an resistenten Tumoren	% Tumore
CDC42BPA	2	2	33
DSG3	3	2	33
LAMC1	1	3	50
LMOD1	2	2	33
POLR2B	2	2	33
RUNX1T1	2	2	33
STEAP1B	2	2	33
TET3	1	2	33
ZNF28	1	2	33

Aufgrund der geringen Anzahl der resistenzspezifischen Gene wurde keine Anreicherungsanalyse der betroffenen durchgeführt. Signalwege Interessanterweise wurde in drei resistenten Xenografts (50%) eine tumorspezifische Basensubstitution innerhalb des LAMC1 Gens identifiziert. LAMC1 ist ein Glykoprotein der extrazellulären Matrix, das vorwiegend an der Regulation der Zellkommunikation wie Zell-Adhäsion und Zellmigration beteiligt ist. Im Anschluss wurde der biologische Kontext als "Chemoresistenz in Lungentumor Zelllinien" innerhalb des Ingenuity Variant Analysis Programms gesetzt und die Gene CDC42BPA und DSG3 identifiziert. CDC42BPA ist eine Serin-Threonin Kinase und fungiert als Effektor von CDC42 und ist an der Reorganisation des Zytoskeletts sowie der Zellmigration beteiligt. DSG3 ist ein Bestandteil der Desmosomen und an der Zell-Adhäsion beteiligt.

4.7.3.2. Analyse der Gene mit Keimbahnmutationen

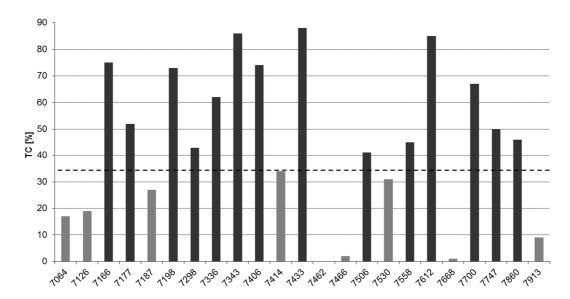
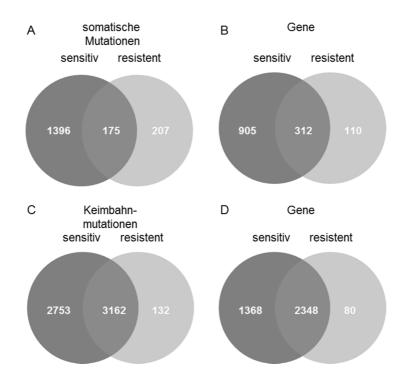

In der Tabelle 37 sind die betroffenen Gene mit Keimbahnmutationen mit der entsprechenden Mutationsfrequenz in den resistenten Xenografts aufgelistet.

Tabelle 37: Übersicht der Genkandidaten mit Keimbahnmutationen, die in mindestens zwei resistenten Xenografts identifiziert wurden.


Genname	Anzahl der Keimbahn- mutationen	Anzahl an resistenten Tumoren	% Tumore
ANAPC5	1	2	33
FNIP2	2	2	33
GLB1L2	1	2	33
RASSF1	1	2	33

4.7.4. Ergebnisse für den EGFR Inhibitor Cetuximab

Cetuximab (Erbitux®) ist ein monoklonaler Antikörper, der den EGFR-Signalweg durch eine Blockierung der Bindung zwischen dem Liganden und dem Rezeptor inhibiert. Für eine Sensitivitätstestung wurden die Xenografts über eine Woche (Tag 1 bis 5) mit 50mg/kg/Injektion Cetuximab behandelt. Bei einer festgelegten Grenze von 35% zeigte sich, dass neun Xenografts sensitiv und 14 Xenografts resistent sind (Abbildung 43).

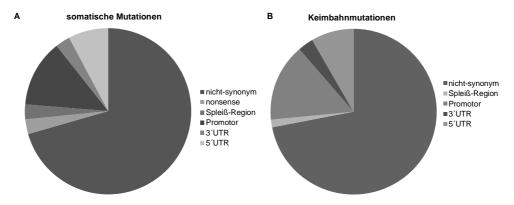

Abbildung 43: Chemosensitivität der Xenograft-Modelle gegenüber dem EGFR Inhibitor Cetuximab. Das Ansprechen wurde mit T/C-Werten [%] (Tumorgewicht mit Behandlung/Tumorgewicht ohne Behandlung) beurteilt, wobei Werte < 35% als sensitiv (grau) und Werte > 35 als resistent (schwarz) bewertet wurden.

Abbildung 44: Therapieansprechen für Cetuximab: Venn-Diagramm der Anzahl der Mutationen (A, C) bzw. Genen (B, D), die in mindestens zwei Xenografts identifiziert wurden: (A) somatische Mutationen, (B) die betroffenen Gene mit somatischen Mutationen, (C) Keimbahnmutationen, (D) die betroffenen Gene mit Keimbahnmutationen.

Basierend auf den Kriterien zur Identifizierung von Genkandidaten anhand der Cetuximab Behandlung wurden innerhalb der resistenten Xenografts 207 somatische Mutationen in 110 Genen und 132 Keimbahnmutationen in 80 Genen, die mindestens in zwei resistenten Xenografts auftraten, identifiziert. Die Ergebnisse sind in einem Venn-Diagramm zusammengestellt (Abbildung 44).

Im Anschluss wurde die Verteilung der resistenzspezifischen Mutationen analysiert und für die somatischen Mutationen als auch für die Keimbahnmutationen in einem Kreisdiagramm zusammengefasst (Abbildung 45).

Abbildung 45: Verteilung der resistenzspezifischen Mutationen: (A) 207 somatische Mutationen und (B) 132 Keimbahnmutationen.

Das Kreisdiagramm in Abbildung 45A zeigt, dass von den insgesamt 207 somatischen Mutationen 112 Mutationen innerhalb kodierender Regionen lokalisiert sind und davon 106 Mutationen nicht-synonym sind und sechs nonsense Mutationen sind. Zudem wurden 27 Mutationen innerhalb Promotorregionen, 22 Mutationen in 3´- und 5´-UTR-Regionen und sechs Mutationen in Spleiß-Regionen detektiert. Für die Keimbahnmutationen wurden insgesamt 132 Einzelnukleotidvarianten identifiziert, von denen 95 Varianten nicht-synonym sind, 20 Mutationen in Promotorregionen, zwei Mutationen in Spleiß-Regionen und 13 Mutationen in 3´- und 5´- UTR-Regionen lokalisiert sind (Abbildung 45B).

4.7.4.1. Analyse der Gene mit somatischen Mutationen

In der folgenden Tabelle 38 sind die betroffenen Gene mit den somatischen Mutationen und der jeweiligen Frequenz der resistenten Xenografts aufgelistet.

Tabelle 38: Übersicht der Genkandidaten mit somatischen Mutationen, die in mindestens zwei resistenten Xenografts identifiziert wurde.

Genname	Anzahl der somatischen Mutationen	Anzahl an resistenten Tumoren	% Tumore	Genname	Anzahl der somatischen Mutationen	Anzahl an resistenten Tumoren	% Tumore
AGMAT	1	2	14	NACA	3	2	14
AKAP9	2	2	14	NOS1	2	2	14

Genname	Anzahl der somatischen Mutationen	Anzahl an resistenten Tumoren	% Tumore	Genname	Anzahl der somatischen Mutationen	Anzahl an resistenten Tumoren	% Tumore
AMACR	3	4	29	NPR3	3	3	21
AMPD3	2	2	14	NR1H4	2	2	14
ARHGEF5	1	2	14	NRG1	3	3	21
BANK1	1	2	14	NUMA1	2	2	14
BRCC3	1	1	7	ORMDL1	3	3	21
CAMKK2	2	2	14	PABPC3	4	2	14
CBLB	1	2	14	PADI4	2	2	14
CDC42BPA	2	2	14	PAK6	3	3	21
CDH11	3	4	29	PAK7	2	2	14
CHEK2	1	2	14	PAX8	1	4	29
CMC4	2	2	14	PHF8	2	2	14
CPNE4	1	2	14	PIK3CG	6	6	43
CUX1	2	2	14	PML	2	2	14
CYB5RL	1	2	14	PMS1	3	3	21
CYLD	2	2	14	POU5F1B	2	2	14
DLG2	3	3	21	PRKDC	2	2	14
DEG2 DSG3	3	2	14	PTFN	2	2	14
	_						
DUSP6	2	3	21	PTPN11	2	2	14
DZIP3	2	2	14	PTPRB	2	2	14
ECT2L	1	3	21	RASSF1	1	2	14
EHMT2	3	3	21	RHOH	3	3	21
EPHA2	2	3	21	S100A7A	2	2	14
ETV1	3	3	21	SEC61G	2	2	14
FLNC	2	2	14	SERPINA3	3	3	21
GNRH1	1	2	14	SERPINB5	2	3	21
GSTA2	2	2	14	SFMBT2	3	3	21
HDAC10	1	2	14	SHC4	2	2	14
HGF	4	4	29	SIGLEC12	2	2	14
HKR1	2	2	14	SLC29A3	3	4	29
HSCB	1	2	14	SLC33A1	1	3	21
HSP90AB1	2	6	43	SSX3	2	3	21
HSPD1	1	3	21	STEAP1B	2	2	14
HYLS1	1	2	14	TCL1A	1	2	14
ITGA1	3	3	21	TECPR2	2	2	14
ITGA7	3	3	21	TET3	1	2	14
ITGA9	1	2	14	TPM3	1	2	14
KAT6B	2	2	14	TRPC6	1	2	14
KDM6A	2	2	14	TTLL12	2	2	14
KMT2A	2	2	14	UGT2B11	2	2	14
KMT2D	6	4	29	WNT16	3	5	36
KRT24	1	2	14	ZNF107	2	2	14
LRRC59	1	2	14	ZNF28	1	2	14
MAML2	2	2	14	ZNF655	2	2	14
MAP3K6	2	3	21	ZNF714	2	2	14
MASP1	2	2	14	ZNF730	2	2	14
MKI67	4	3	21	ZNF772	1	2	14
MS4A6E	2	3	21	ZNF79	4	4	29
MTCP1	2	2	14	ZNF860	1	2	14
MUC17	8	4	29	ZNF90	2	2	14

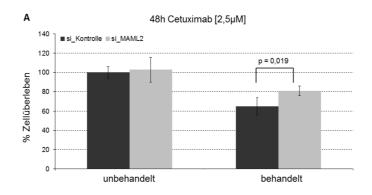
Um einen ersten Überblick über die biologische Bedeutung der Resistenzspezifischen Gene mit somatischen Mutationen zu bekommen, wurden die betroffenen Signalwege mit dem *Ingenuity Variant Analysis* Programm analysiert und entsprechend der Signifikanz der p-Werte aufgelistet (Tabelle 39).

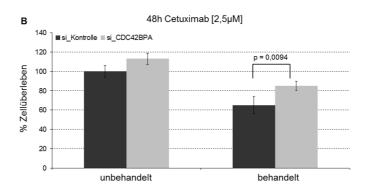
Tabelle 39: Wichtigste betroffene Signalwege in den Cetuximab-resistenten Tumoren durch somatische Mutationen.

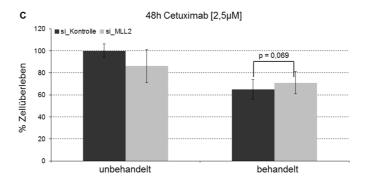
Signalweg	Anzahl der betroffenen Gene (Mutationen)	Anzahl an resistenten Tumoren (%)	p - Wert	Biologische Funktion
FAK Signalweg	7 (20)	11 (79%)	5,80E-06	Zell-Adhäsion
Neuregulin Signalweg Integrin Signalweg Rho-GTPase Signalweg p53 Signalweg Ephrin Rezeptor Signalweg	7 (16) 8 (23) 9 (25) 6 (15) 8 (22)	10 (71%) 11 (71%) 11 (71%) 12 (86%) 10 (71%)	6,06E-06 1,30E-05 1,64E-05 1,75E-05 2,77E-05	Zell-Zell Kommunikation Zell-Adhäsion Proliferation, Motilität Proliferation, Apoptose Zell-Zell Kommunikation
ERK/MAPK Signalweg Paxillin Signalweg	8 (21) 6 (18)	11 (79%) 10 (71%)	2,93E-05 3,18E-05	Proliferation, Apoptose, Differenzierung Zell-Adhäsion, Motilität

Abkürzungen: FAK: fokal adhesion kinase; Rho: rhodopsin; p53: tumor protein 53; ERK: extracellular-signal-regulated kinase; MAPK: mitogen-activated protein kinase

Die Analyse zeigt, dass der Fokal Adhäsion Kinase –(FAK)- Signalweg mit einem p-Wert von 5,80x10⁻⁶ signifikant betroffen ist. Innerhalb dieses Signalwegs wurden sieben Gene mit insgesamt 20 somatischen Mutationen in 11 resistenten Xenografts (79%) identifiziert. Die Aktivierung des FAK Signalwegs erfolgt unter anderem über Proteine der Integrin-Familie und reguliert so diverse biologische Prozesse wie Zellzyklus Progression, Apoptose und Proliferation [193]. Weiterhin ist anhand der Tabelle 39 ersichtlich, dass die betroffenen Signalwege maßgeblich an biologischen Prozessen wie Proliferation, Differenzierung, Apoptose und Zell-Adhäsion beteiligt sind, was erste Hinweise darüber gibt, dass Mutationen innerhalb dieser Signaltransduktionen und Prozesse ein Effekt auf die Sensitivität einer Cetuximab Behandlung haben könnten. Innerhalb der aufgelisteten Signalwege sind folgende Gene in mehr als einen Signalweg involviert: *ITGA1*, *ITGA7*, *ITGA9*, *PAK6*, *PAK7*, *PIK3CG*, *PTEN*, *PTPN11* und *RHOH*.


Zur weiteren Validierung der biologischen Relevanz der betroffenen Gene wurde innerhalb des *Ingenuity Variant Analysis* Programms der biologische Kontext "Chemoresistenz in Lungentumor Zelllinien" gesetzt. Anhand dieser Auswertung konnten 20 Gene (*HSP90AB1*, *HGF*, *PAX8*, *ITGA1*, *PAK6*, *NRG1*, *SERPINB5*, *DSG3*, *PTEN*, *PML*, *CDC42BPA*, *CUX1*, *PTPN11*, *PTPRB*, *PAK7*, *PRKDC*, *CBLB*, *GNRH1* und *PTPRR*) selektioniert werden, die vorwiegend an der Zellkommunikation und Zell-Adhäsion beteiligt sind. Bemerkenswerterweise wurden somatische Mutationen des *HSP90AB1* Gens in sechs resistenten


Xenografts (43%) identifiziert. HSP90AB1 gehört zur Gruppe der Hitze-Schock Protein 90 (HSP90) und fungiert als Chaperon vieler mutierter Onkogene [194]. Innerhalb dieses Gens konnte eine somatische Mutation (c.G167A) in fünf resistenten Xenografts detektiert werden, die in der Promotorregion lokalisiert ist. Sie enthält Bindemotive für die Transkriptionsfaktoren NFkB1 (nuclear factor of kappa light polypeptide gene enhancer in B-cells 1), HSF1 (heat shock transcription factor 1) und SP1 (SP1 trancription factor). Unter Verwendung der Gen-Expressionsdaten von 13 Patienten der insgesamt 23 Patienten, sollte im nächsten Schritt überprüft werden, ob diese Mutation einen Einfluss auf die Transkription des HSP90AB1 Gens hat. Hierbei konnte nur für einen Patienten eine differentielle Expression, die in einer erhöhten mRNA-Menge (1,12-fach) resultierte, verzeichnet werden. Es kann somit, ohne weitere funktionelle Analysen, keine Aussage darüber getroffen werden, ob diese Mutation biologisch relevant ist und folglich einen Einfluss auf das Therapieansprechen haben könnte. Für eine funktionelle Charakterisierung anhand von Zellproliferationsexperimenten wurden die Gene CDC42BPA, MAML2 und KMT2D (MLL2) näher untersucht.


4.7.4.1.1. Zellproliferationsexperimente

Für eine biologische Validierung wurden die betroffenen Gene *MAML2*, *CDC42BPA* und *KMT2D* näher charakterisiert. Dafür wurde die Cetuximab sensitive eptheliale Lungentumor-Zelllinie HCC827 mit den entsprechenden siRNA Molekülen gegen *MAML2*, *CDC42BPA* und *KMT2D* sowie mit einer Kontroll-siRNA behandelt und nach 24h Inkubation mit 2,5µM Cetuximab für weitere 48h inkubiert. Die Quantifizierung der Zellzahl erfolgte mittels der *Cellomics* Hochdurchsatz-Mikroskopie (Abbildung 46).

Da nach einer Cetuximab-Behandlung in den siRNA behandelten Ansätzen gegen *CDC42BPA* und *MAML2* signifikant mehr Zellen überlebt haben, sind diese Gene vermutlich an einem intrinsischen Resistenzmechanismus gegen den EGFR Inhibitor Cetuximab beteiligt. Für die siRNA behandelten Zellen gegen *KMT2D* konnte zwar eine leicht erhöhte Überlebensrate im Vergleich zur Kontrolle verzeichnet werden, die aber mit einem p-Wert von 0,069 biologisch nicht signifikant ist. Allerdings muss der p-Wert hier in Frage gestellt werden, da bereits ohne Cetuximab-Behandlung die mit siRNAs gegen *KMT2D* behandelten Zellen zu einem verringerten Zellenüberleben führen.

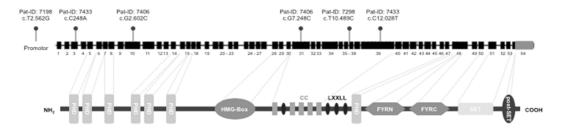
Abbildung 46: Zellüberleben von Cetuximab-sensitiven HCC827-Zellen nach 48h Behandlung mit 2,5μM Cetuximab. Behandlung der Zellen mit siRNA-Molekülen gegen (A) *CDC42BPA*, (B) *MAML2* und (C) *MLL2* (*KMT2D*) sowie einer Kontroll-siRNA.

Um dies weiter zu bestätigen sollten die Experimente wiederholt, sowie weitere funktionelle Experimente, insbesondere unter Einfügen der entsprechenden Mutationen der Xenografts, durchgeführt werden.

4.7.4.2. Analysen der Gene mit Keimbahnmutationen

In der Tabelle 40 sind die betroffenen Gene mit Keimbahnmutationen und der jeweiligen Frequenz der resistenten Xenografts aufgelistet.

Tabelle 40: Übersicht der Genkandidaten mit Keimbahnmutationen, die in mindestens zwei der resistenten Xenografts identifiziert wurden.

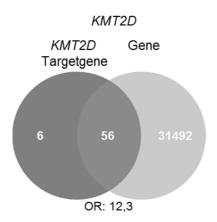

Gennamen	Anzahl der Keimbahn- mutationen	Anzahl an resistenten Tumoren	% Tumore	Gennamen	Anzahl der Keimbahn- mutationen	Anzahl an resistenten Tumoren	% Tumore
AKAP1	2	3	21	KDM5C	1	2	17
AKR1C1	1	2	17	KIT	2	3	21
ALDH18A1	2	6	43	KLK3	2	3	21
APPL1	1	2	17	KMT2E	2	3	21
ATF1	1	3	21	LAMB4	5	4	29
ATF2	2	4	29	METTL21D	2	2	17
B3GNT3	2	3	21	MID2	2	4	29
CAMK2A	2	3	21	MT1F	1	2	17
CAMTA2	2	2	17	NOS2	2	3	21
CASP3	2	2	17	NOTCH2	2	2	17
CD74	4	4	29	NOTCH3	1	2	17
CDKN2A	3	6	43	NRG3	1	3	21
CDKN2C	2	3	21	NUCB1	2	3	21
CLP1	1	2	17	OR2G3	2	2	17
CR1L	2	2	17	PDE9A	2	2	17
DES	1	2	17	PHYH	1	2	17
DNASE1L1	1	3	21	PLD1	4	3	21
EGR1	3	9	64	PPID	1	3	21
ERC1	2	3	21	RHOB	1	2	17
ERCC4	1	2	17	RPS6KA1	1	2	17
ESR1	3	3	21	S100A7A	1	2	17
ESR2	1	2	17	SBF1	2	2	17
FAM3B	1	2	17	SIPA1L1	2	2	17
FANCE	3	2	17	SLC2A2	1	2	17
FN1	2	2	17	SNRPB2	2	3	21
FNIP2	2	2	17	SPINK1	2	3	21
FOLH1B	2	3	21	TCL1A	1	2	17
FZD4	2	2	17	TGFBR3	2	4	29
G6PD	1	2	17	TPM3	1	2	17
GNRH1	2	4	29	VAV1	1	3	21
HGF	2	2	17	VIT	1	3	21
HTR1E	1	2	17	WSCD1 ZFP91-	1	2	17
IFLTD1	1	2	17	CNTF	2	2	17
IFNL1	2	4	29	ZMYM2	1	2	17
IGFBP5	1	2	17	ZNF283	1	2	17
ITGAM	3	4	29	ZNF492	1	2	17
ITPA	1	2	17	ZNF616	2	2	17
JAG1	1	2	17	ZNF813	4	3	21
KAT6A	2	2	17	ZNF85	1	5	36
KDM2A	1	2	17	ZSCAN12	1	2	17

Für die betroffenen 80 Gene mit den Keimbahnmutationen wurden anhand der Signalweganalyse (Programm: *Ingenuity Variant Analysis*) sechs Gene mit insgesamt 10 Keimbahnmutationen innerhalb des cAMP- (zyklische Adenosin-Monophosphat)- Signalwegs (p-Wert = 2,87x10⁻⁰⁴) in 10 resistenten Xenografts (71%) identifiziert, die, unter anderem, die biologischen Prozesse wie Proliferation, Differenzierung, Energiemetabolismus und Genexperssion

vermittelt. Zur weiteren Auswertung einer biologischen Bedeutung der Resistenz-spezifischen Gene wurde ebenfalls der biologische Kontext "Chemoresistenz in Lungentumor Zelllinien" gesetzt und die Gene CDKN2A, TGFBR3, GNRH1, PLD1, ESR1, CAMK2A, NOS2, VAV1, FN1, NOTCH2, HGF, CASP3, APPL1, ASB14 und RHOB identifiziert, die vorwiegend in die Regulation von Proliferation, Zellwachstum sowie der Genexpression involviert sind.

4.7.4.3. KMT2D Analyse unter Verwendung der Mutationsdaten, Expressionsdaten und Methylom-Daten

Basierend auf den Proliferationsexperimenten wurde eine deutlich erhöhte Zellüberlebensrate in den mit siRNAs gegen *KMT2D* behandelten Zellen mit anschließender Cetuximab-Behandlung aufgezeigt. *KMT2D* ist eine Histon-Methyltransferase, die das Lysin4 des Histons H3 methyliert (H3K4met), und die wiederum eine essentielle Komponente der epigenetischen transkriptionellen Regulation darstellt. Das Gen *KMT2D* wurde mit sechs somatischen Mutationen in vier resistenten Xenografts (29%) identifiziert. Die Abbildung 47 zeigt hierzu eine Übersicht der Mutationen innerhalb des Gens und visualisiert die entsprechenden Lokalisationen.


Abbildung 47: Mutationsprofil des *KMT2D* Gens. Oben: Genomische Struktur des *KMT2D* Gens einschließlich der 54 Exons (schwarze Balken), der 3`-UTR (grauer Balken) und den Introns (horizontaler Strich) mit den entsprechenden Lokalisationen der identifizierten somatischen Mutationen in den resistenten Xenografts gegenüber Cetuximab. Unten: Protein-Domänenstruktur von *KMT2D*. PHD: *plant homeodomain finger*, HMG-Box: *high mobility box*; CC: *Coiled Coil*; LXXLL Domäne; FYRN: *FY-rich domain* (N-terminale Region); FRYC: *FY-rich domain* (C-terminale Region); SET: (*SU(var)3-9, Enhancer of-zeste, Trithorax*)

Da neben den Mutations- und Expressionsdaten auch die Daten zu den Methylomen der Xenografts vorliegen, wurden die *KMT2D* Mutationen im Hinblick auf eine Auswirkung auf das Methylom näher untersucht.

Die erste Strategie war es, die selektionierten somatischen Mutationen aller 23 Xenografts mit einer *KMT2D* Target Genliste abzugleichen und das Quotenverhältnis (Odds-Verhältnis) zu berechnem, um eine statistische Aussage über die Gewichtung der betroffenen Gene mit somatischen Mutationen

bezüglich der *KMT2D* Targetgene treffen zu können [195]. Hierbei ergab die Berechnung des Odds-Verhältnisses 0,92 mit einem p-Wert von 0,86 und weist auf keine signifikante Anreicherung der *KMT2D* Targetgene hin.

Innerhalb des PREDICT-Projektes wurde anhand von Illumina MicroArray Experimenten die Genexpression der 23 Xenografts analysiert. Die Experimente wurden am DKFZ in der Abteilung von Prof. Dr. Holger Sültmann durchgeführt und für die vorliegende Arbeit zur Verfügung gestellt. Dafür wurde die RNA aller 23 Xenograft-Modelle extrahiert und quantifiziert. Allerdings konnten nach der RNA nur für 13 Xenograft-Tumore Quantifizierung der korrespondierendem Normalgewebe der Patienten die Transkriptionsdaten generiert werden. Nach der entsprechenden Normalisierung der Rohdaten wurden die Expressionswerte als Log2 berechnet und jene, die > -0,5 bzw. < 0,5 für die weiteren Analysen verwendet. Die Liste der differentiell exprimierten Gene umfasst 3.205 Gene, die im Folgendem mit der KMT2D Target Genliste verglichen, und das Odds-Verhältnis berechnet werden sollte, um eine statistische Aussage einer Gewichtung der differentiell exprimierten Gene bezüglich der KMT2D Targetgene zu erhalten.

Abbildung 48: Konkordanz der *KMT2D* Targetgene, die innerhalb der differentiell exprimierten Gene von 13 Xenografts identifiziert wurden, sowie die Berechnung des Odds-Verhältnisses.

Es konnten 56 Gene der insgesamt 62 *KMT2D* Target Gene, als differentiell exprimiert innerhalb der 13 Xenografts identifiziert werden, und ein Odds-Verhältnis mit 12,3 und einem p-Wert von 9,08x10⁻¹⁵ ermittelt werden.

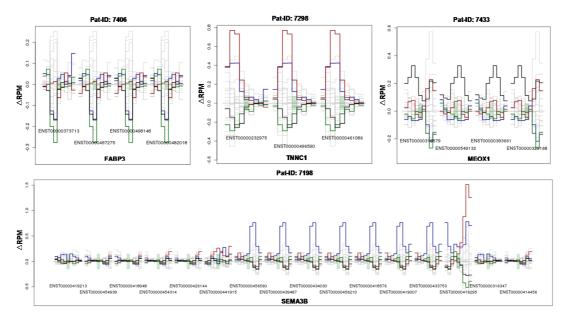

Somit wurden im nächsten Schritt die KMT2D Targetgene mit den Daten der differentiellen Methylierung, die innerhalb der Arbeitsgruppe zur Verfügung gestellt worden waren und Bestandteil einer weiteren Dissertation sind, in die Analysen mit einbezogen. Die Generierung der Methylom-Daten erfolgte durch DNA MeDIP-Technologie (Methylierte Immunopräzipitation) anschließende Hochdurchsatz-Sequenzierung mit der Illumina Technologie. In erster Linie sollte überprüft werden, ob sich die identifizierten resistenten Xenografts mit einer somatischen Mutation in KMT2D durch ein verändertes Methylierungsmuster der KMT2D regulierten Gene auszeichnen. Da zum Zeitpunkt der Fragestellung dieser Arbeit, die Methylierungsdaten durch die Bioinformatik noch in der Prozessierung sind, wurde für die folgende Auswertung die normalisierten Rohwerte verwendet. Hierbei erfolgte zunächst die Einteilung der sequenzierten Fragmente in 500bp große Bereiche und die entsprechende Berechnung der RPM-Werte (Anzahl der Sequenzen pro 500bp Region geteilt durch die Gesamtanzahl der sequenzierten Fragmente des Xenografts multipliziert mit 1.000.000). Anschließend wurde der Median aller RPM-Werte der Xenograft-Tumore gebildet, und das Verhältnis der Xenografts mit einer somatischen Mutation berechnet (RPM-Werte der Xenografts mit somatischen Mutationen geteilt durch den berechneten Median der RPM-Werte aller Xenografts).

Tabelle 41: Übersicht der *KMT2D* regulierten Gene und Kennzeichnung der Genkandidaten, die sich in den jeweiligen Patienten durch eine differentielle Methylierung auszeichnen. (Patienten mit somatischen *KMT2D* Mutationen: 7198, 7298, 7406 und 7433.

Р				
KMT2D regulierte Gene	7198	7298	7406	7433
A2M (alpha-2-macroglobulin)				
AHNAK (AHNAK Nukleoprotein)				
ALCAM (activated leukocyte cell adhesion molecule)				
ANXA8L2 (annexin A8-like 2)		x		
AXL (AXL receptor tyrosine kinase)	x			
BMP5 (bone morphogenetic protein 5)			x	
C5AR1 (complement component 5a receptor 1)				
CADM1 (cell adhesion molecule 1)	x			
CD9 (CD9 molecule)				
COL5A1 (collagen, type V, alpha 1)		x		
COL9A3 (collagen, type IX, alpha 3)	x			
CRIP1 (cysteine-rich protein 1 (intestinal))		X		
CRIP2 (cysteine-rich protein 2)				x
CSPG4 (chondroitin sulfate proteoglycan 4)				
DENND3 (DENN/MADD domain containing 3)		X		
DKK1 (dickkopf WNT signaling pathway inhibitor 1)	x			
ELF3 (E74-like factor 3 (ets domain transcription factor, epithelial-specific))	x			
ENO3 (enolase 3 (beta, muscle))	x			
134				

KMT2D regulierte Gene 7198 7406 7403 FABP3 (fatty acid binding protein 3, muscle and heart (mammary-derived growth inhibitor) 8 x 1 FLRT2 (fibronectin leucine rich transmembrane protein 2) x			Pat	-IDs	
inhibitori)	KMT2D regulierte Gene	7198			7433
FSTL1 (follistatin-like 1)	, , , , , , , , , , , , , , , , , , , ,			х	
SPNESE (G protein-coupled receptor 56)	FLRT2 (fibronectin leucine rich transmembrane protein 2)				
SSN (gelsolin)	FSTL1 (follistatin-like 1)	X		x	
MAMA1 (histocompatibility (minor) HA-1)	GPR56 (G protein-coupled receptor 56)	X			x
HMHA1 (histocompatibility (minor) HA-1) x	GSN (gelsolin)	X	X		
HPSE (heparanase) HSPB3 (heat shock 27kDa protein 3) IGFBP6 (insulin-like growth factor binding protein 6) IL18 (interleukin 18 (interferon-gamma-inducing factor)) INSL4 (insulin-like 4 (placenta)) KRT17 (keratin 17) LAMB3 (laminin, beta 3) LMO1 (LIM domain only 1 (rhombotin 1)) LOXL1 (lysyl oxidase-like 1) LOXL2 (lysyl oxidase-like 2) MEOX1 (mesenchyme homeobox 1) MLL2 (lysine (K)-specific methyltransferase 2D) NFB3 (natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C)) NTSE (5'-nucleotidase, ecto (CD73)) OAS1 (2'-5'-oligoadenylate synthetase 1, 40/46kDa) PCDH7 (protocadherin 7) PLAU (plasminogen activator, urokinase) PPL (periplakin) PPP2R2B (protein phosphatase 2, regulatory subunit B, beta) PRKCDBP (protein kinase C, delta binding protein) SCHIP1 (schwannomin interacting protein 1) SEMA3B (sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3B) SLC16A5 (solute carrier family 16 (monocarboxylate transporter), member 5) SLC03A1 (solute carrier organic anion transporter family, member 3A1) SMAD6 (SMAD family member 6) SNCA (synuclein, alpha (non A4 component of amyloid precursor)) TAGLN2 (transpelin 2) TNNC1 (troponin T type 2 (cardiac)) TNNT2 (troponin T type 2 (cardiac))	HDAC9 (histone deacetylase 9)				x
HSPB3 (heat shock 27kDa protein 3) IGFBP6 (insulin-like growth factor binding protein 6) IL 18 (interleukin 18 (interferon-gamma-inducing factor)) INSL4 (insulin-like 4 (placenta)) IRST17 (keratin 17) LAMB3 (laminin, beta 3) LMO1 (LIM domain only 1 (rhombotin 1)) LOXL1 (lysyl oxidase-like 1) LOXL2 (lysyl oxidase-like 2) MEOX1 (mesenchyme homeobox 1) MELQ (lysine (K)-specific methyltransferase 2D) NEDD9 (neural precursor cell expressed, developmentally down-regulated 9) NPR3 (natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C) NT5E (5'-nucleotidase, ecto (CD73)) OAS1 (2'-5'-oligoadenylate synthetase 1, 40/46kDa) PCDH7 (protocadherin 7) PLAU (plasminogen activator, urokinase) PPL (periplakin) PPP2R2B (protein phosphatase 2, regulatory subunit B, beta) PRKCDBP (protein kinase C, delta binding protein) SCHIP1 (schwannomin interacting protein 1) SEMA3B (sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3B) SLC16A5 (solute carrier family 16 (monocarboxylate transporter), member 5) SLC3A1 (solute carrier organic anion transporter family, member 3A1) SMAD6 (SMAD family member 6) SNCA (synuclein, alpha (non A4 component of amyloid precursor)) TAGLN2 (transgelin 2) TNNC1 (troponin T type 2 (cardiac)) TNNT1 (troponin T type 2 (cardiac))	HMHA1 (histocompatibility (minor) HA-1)	X	X		
IGFBP6 (insulin-like growth factor binding protein 6) IL 18 (interleukin 18 (interferon-gamma-inducing factor)) INSL4 (insulin-like 4 (placenta)) KRT17 (keratin 17) x x x LAMB3 (laminin, beta 3) LMO1 (LIM domain only 1 (rhombotin 1)) LOXL1 (lysyl oxidase-like 1) LOXL2 (lysyl oxidase-like 2) MEOX1 (mesenchyme homeobox 1) MLL2 (lysine (K)-specific methyltransferase 2D) NFDD9 (neural precursor cell expressed, developmentally down-regulated 9) NPR3 (natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C) NT5E (5'-nucleotidase, ecto (CD73)) OAS1 (2'-5'-oligoadenylate synthetase 1, 40/46kDa) PCDH7 (protocadherin 7) PLAU (plasminogen activator, urokinase) PPL (periplakin) PPP2R2B (protein phosphatase 2, regulatory subunit B, beta) PRKCDBP (protein kinase C, delta binding protein) SCHIP1 (schwannomin interacting protein 1) SEMA3B (sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3B) SLC16A5 (solute carrier family 16 (monocarboxylate transporter), member 5) SLC03A1 (solute carrier organic anion transporter family, member 3A1) SMAD6 (SMAD family member 6) SNCA (synuclein, alpha (non A4 component of amyloid precursor)) TAGLN2 (transgelin 2) TNNC1 (troponin C type 1 (slow)) TNNT2 (troponin T type 2 (cardiac))	HPSE (heparanase)				
IL 18 (interleukin 18 (interferon-gamma-inducing factor)) INSL4 (insulin-like 4 (placenta)) KRT17 (keratin 17) LAMB3 (laminin, beta 3) LMO1 (LIM domain only 1 (rhombotin 1)) LOXL1 (lysyl oxidase-like 1) LOXL2 (lysyl oxidase-like 2) MEOX1 (mesenchyme homeobox 1) KET17 (keratin 17) MEOX1 (mesenchyme homeobox 1) KET18 (lysine (K)-specific methyltransferase 2D) NFDD9 (neural precursor cell expressed, developmentally down-regulated 9) NPR3 (natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C)) NT5E (5'-nucleotidase, ecto (CD73)) OAS1 (2'-5'-oligoadenylate synthetase 1, 40/46kDa) PCDH7 (protocadherin 7) PLAU (plasminogen activator, urokinase) PPL (periplakin) PPP2R2B (protein phosphatase 2, regulatory subunit B, beta) PRKCDBP (protein kinase C, delta binding protein) SCHIP1 (schwannomin interacting protein 1) SEMA3B (sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3B) SLC16A5 (solute carrier family 16 (monocarboxylate transporter), member 5) SLC03A1 (solute carrier organic anion transporter family, member 3A1) SMAD6 (SMAD family member 6) SNCA (synuclein, alpha (non A4 component of amyloid precursor)) TAGLN2 (transgelin 2) TNP2 (tight junction protein 2) TNNC1 (troponin C type 1 (slow)) TNNT2 (troponin T type 2 (cardiac))	HSPB3 (heat shock 27kDa protein 3)				
INSL4 (insulin-like 4 (placental)) KRT17 (keratin 17)	IGFBP6 (insulin-like growth factor binding protein 6)				
KRT17 (keratin 17)	IL18 (interleukin 18 (interferon-gamma-inducing factor))				
LAMB3 (laminin, beta 3) LMO1 (LIM domain only 1 (rhombotin 1)) LOXL1 (lysyl oxidase-like 1) LOXL2 (lysyl oxidase-like 2) MEOX1 (mesenchyme homeobox 1) MEDX1 (mesenchyme homeobox 1) NEDD9 (neural precursor cell expressed, developmentally down-regulated 9) NPR3 (natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C)) NT5E (5'-nucleotidase, ecto (CD73)) OAS1 (2'-5'-oligoadenylate synthetase 1, 40/46kDa) PCDH7 (protocadherin 7) PLAU (plasminogen activator, urokinase) PPL (periplakin) PPP2R2B (protein phosphatase 2, regulatory subunit B, beta) PRKCDBP (protein kinase C, delta binding protein) \$\$CHIP1 (schwannomin interacting protein 1)\$ \$\$SEMA3B (sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3B) \$\$LC16A5 (solute carrier family 16 (monocarboxylate transporter), member 5)\$ \$\$LC03A1 (solute carrier organic anion transporter family, member 3A1) \$\$MAD6 (SMAD family member 6)\$ \$\$NCA (synuclein, alpha (non A4 component of amyloid precursor)) \$\$TAGLN2 (transgelin 2)\$ \$\$TJP2 (tight junction protein 2)\$ \$\$x\$ \$\$TNNC1 (troponin T type 2 (cardiac))	INSL4 (insulin-like 4 (placenta))				
LMO1 (LIM domain only 1 (rhombotin 1)) LOXL1 (lysyl oxidase-like 1) LOXL2 (lysyl oxidase-like 2) MEOX1 (mesenchyme homeobox 1) MELOX (lysyl oxidase-like 2) X MELOX (mesenchyme homeobox 1) MLL2 (lysine (K)-specific methyltransferase 2D) NREDD9 (neural precursor cell expressed, developmentally down-regulated 9) NPR3 (natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C)) NT5E (5'-nucleotidase, ecto (CD73)) OAS1 (2'-5'-oligoadenylate synthetase 1, 40/46kDa) PCDH7 (protocadherin 7) PLAU (plasminogen activator, urokinase) PPL (periplakin) PPP2R2B (protein phosphatase 2, regulatory subunit B, beta) PRKCDBP (protein kinase C, delta binding protein) SCHIP1 (schwannomin interacting protein 1) SEMA3B (sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3B) \$\text{SLC16A5} (solute carrier family 16 (monocarboxylate transporter), member 5)} SLC03A1 (solute carrier organic anion transporter family, member 3A1) SMAD6 (SMAD family member 6) SNCA (synuclein, alpha (non A4 component of amyloid precursor)) TAGLN2 (transgelin 2) TJP2 (tight junction protein 2) TX TNNC1 (troponin C type 1 (slow)) TNNT2 (troponin T type 2 (cardiac)) TNNT2 (troponin T type 2 (cardiac))	KRT17 (keratin 17)		X		x
LOXL1 (lysyl oxidase-like 1) LOXL2 (lysyl oxidase-like 2) MEOX1 (mesenchyme homeobox 1) MLL2 (lysine (K)-specific methyltransferase 2D) NPR3 (natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C)) NT5E (5'-nucleotidase, ecto (CD73)) OAS1 (2'-5'-oligoadenylate synthetase 1, 40/46kDa) PCDH7 (protocadherin 7) PLAU (plasminogen activator, urokinase) PPL (periplakin) PPP2R2B (protein phosphatase 2, regulatory subunit B, beta) PRKCDBP (protein kinase C, delta binding protein) SCHIP1 (schwannomin interacting protein 1) SEMA3B (sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3B) SLC16A5 (solute carrier family 16 (monocarboxylate transporter), member 5) SLCO3A1 (solute carrier organic anion transporter family, member 3A1) SMAD6 (SMAD family member 6) SNCA (synuclein, alpha (non A4 component of amyloid precursor)) TAGLIN2 (transgelin 2) TJP2 (tight junction protein 2) TNNC1 (troponin C type 1 (slow)) TNNT2 (troponin T type 2 (cardiac)) TRGV9 (T cell receptor gamma variable 9)	LAMB3 (laminin, beta 3)				
LOXL2 (lysyl oxidase-like 2) MEOX1 (mesenchyme homeobox 1) X MLL2 (lysine (K)-specific methyltransferase 2D) NEDD9 (neural precursor cell expressed, developmentally down-regulated 9) NPR3 (natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C)) NT5E (5'-nucleotidase, ecto (CD73)) OAS1 (2'-5'-oligoadenylate synthetase 1, 40/46kDa) PCDH7 (protocadherin 7) PLAU (plasminogen activator, urokinase) PPL (periplakin) PPP2R2B (protein phosphatase 2, regulatory subunit B, beta) PRKCDBP (protein kinase C, delta binding protein) SCHIP1 (schwannomin interacting protein 1) SEMA3B (sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3B) SLC16A5 (solute carrier family 16 (monocarboxylate transporter), member 5) SLC03A1 (solute carrier organic anion transporter family, member 3A1) SMAD6 (SMAD family member 6) SNCA (synuclein, alpha (non A4 component of amyloid precursor)) TAGLN2 (transgelin 2) TJP2 (tight junction protein 2) XX TNNC1 (troponin C type 1 (slow)) TRGV9 (T cell receptor gamma variable 9)	LMO1 (LIM domain only 1 (rhombotin 1))				
MEOX1 (mesenchyme homeobox 1) MLL2 (lysine (K)-specific methyltransferase 2D) NEDD9 (neural precursor cell expressed, developmentally down-regulated 9) NPR3 (natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C)) NT5E (5'-nucleotidase, ecto (CD73)) OAS1 (2'-5'-oligoadenylate synthetase 1, 40/46kDa) PCDH7 (protocadherin 7) PLAU (plasminogen activator, urokinase) PPL (periplakin) PPP2R2B (protein phosphatase 2, regulatory subunit B, beta) PRKCDBP (protein kinase C, delta binding protein) \$\text{SCHIP1} (schwannomin interacting protein 1) \$\text{SEMA3B} (sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3B) \$\text{SLC16A5} (solute carrier family 16 (monocarboxylate transporter), member 5) \$\text{SLC03A1 (solute carrier organic anion transporter family, member 3A1)} \$\text{SMAD6} (SMAD family member 6) \$\text{SNCA} (synuclein, alpha (non A4 component of amyloid precursor))} \$\text{TAGLN2 (transgelin 2)} \$\text{TJNC1 (troponin C type 1 (slow))} \$\text{X} \text{TNNC1 (troponin T type 2 (cardiac))} \$\text{X} \text{TNNT2 (troponin T type 2 (cardiac))}	LOXL1 (lysyl oxidase-like 1)				
MLL2 (lysine (K)-specific methyltransferase 2D) NEDD9 (neural precursor cell expressed, developmentally down-regulated 9) NPR3 (natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C)) NT5E (5'-nucleotidase, ecto (CD73)) OAS1 (2'-5'-oligoadenylate synthetase 1, 40/46kDa) PCDH7 (protocadherin 7) PLAU (plasminogen activator, urokinase) PPL (periplakin) PPP2R2B (protein phosphatase 2, regulatory subunit B, beta) PRKCDBP (protein kinase C, delta binding protein) \$\text{x}\$ \$\text{SCHIP1} (schwannomin interacting protein 1) \$\text{SEMA3B} (sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3B) \$\text{\$\text{\$X\$}}\$ \$\text{\$\text{SLC16A5} (solute carrier family 16 (monocarboxylate transporter), member 5)} \$\text{\$\text{\$SLCO3A1} (solute carrier organic anion transporter family, member 3A1)} \$\text{\$\text{\$SMAD6} (SMAD family member 6)} \$\text{\$\text{\$NCA} (synuclein, alpha (non A4 component of amyloid precursor))} \$\text{\$\text{\$TAGLN2 (transgelin 2)}}{\text{\$\text{\$TNNC1 (troponin C type 1 (slow))}} \$\text{\$\text{\$\text{\$X\$}}\$ \$\text{\$\text{\$TNNT2 (troponin T type 2 (cardiac))}}{\text{\$\text{\$TNNT2 (troponin T type 2 (cardiac))}}	LOXL2 (lysyl oxidase-like 2)	X			
NEDD9 (neural precursor cell expressed, developmentally down-regulated 9) NPR3 (natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide receptor C)) NT5E (5'-nucleotidase, ecto (CD73)) OAS1 (2'-5'-oligoadenylate synthetase 1, 40/46kDa) PCDH7 (protocadherin 7) PLAU (plasminogen activator, urokinase) PPL (periplakin) PPP2R2B (protein phosphatase 2, regulatory subunit B, beta) PRKCDBP (protein kinase C, delta binding protein) \$\text{x}\$ \$SCHIP1 (schwannomin interacting protein 1) \$SEMA3B (sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3B) \$\text{x}\$ \$\$\$ \$	MEOX1 (mesenchyme homeobox 1)				x
NPR3 (natriuretic peptide receptor C/guanylate cyclase Č (atrionatriuretic peptide receptor C)) NTSE (5'-nucleotidase, ecto (CD73)) OAS1 (2'-5'-oligoadenylate synthetase 1, 40/46kDa) PCDH7 (protocadherin 7) PLAU (plasminogen activator, urokinase) PPL (periplakin) PPP2R2B (protein phosphatase 2, regulatory subunit B, beta) PRKCDBP (protein kinase C, delta binding protein) \$\text{x}\$ \$\text{SCHIP1 (schwannomin interacting protein 1)}\$ \$\text{SEMA3B (sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3B)}\$ \$\text{x}\$ \$\text{SLC16A5 (solute carrier family 16 (monocarboxylate transporter), member 5)}\$ \$\text{SLCO3A1 (solute carrier organic anion transporter family, member 3A1)}\$ \$\text{SMAD6 (SMAD family member 6)}\$ \$\text{SNCA (synuclein, alpha (non A4 component of amyloid precursor))}\$ \$\text{TAGLN2 (transgelin 2)}\$ \$\text{TNNC1 (troponin C type 1 (slow))}\$ \$\text{x}\$ \$\text{TNNT2 (troponin T type 2 (cardiac))}\$ \$\text{x}\$	MLL2 (lysine (K)-specific methyltransferase 2D)			x	
OAS1 (2'-5'-oligoadenylate synthetase 1, 40/46kDa) PCDH7 (protocadherin 7) PLAU (plasminogen activator, urokinase) PPL (periplakin) PPP2R2B (protein phosphatase 2, regulatory subunit B, beta) PRKCDBP (protein kinase C, delta binding protein) \$\frac{x}{x}\$ \$\frac{sCHIP1}{schwannomin interacting protein 1}\$ \$\frac{sEMA3B}{sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3B) \$\frac{x}{x}\$ \$\frac{sLC16A5}{solute carrier family 16 (monocarboxylate transporter), member 5}\$ \$\frac{sLC03A1}{sOlute carrier organic anion transporter family, member 3A1}\$ \$\frac{sMAD6}{sMAD family member 6}\$ \$\frac{sNCA}{synuclein, alpha (non A4 component of amyloid precursor)}\$ \$\frac{TAGLN2}{transgelin 2}\$ \$\frac{typ2}{tight junction protein 2}\$ \$\frac{x}{typ2}\$ \$\frac{tight junction protein 2}{type 1 (slow)}\$ \$\frac{x}{typ2}\$ \$\frac{troponin T}{type 2 (cardiac)}\$ \$\frac{x}{typ2}\$ \$\frac{typ2}{typ2}\$ \$\frac{toponin T}{type 2 (cardiac)}\$ \$\frac{x}{typ2}\$ \$\frac{typ2}{typ2}\$ \$\frac{typ2}{typ2}\$ \$\frac{typ2}{typ2}\$ \$\frac{typ2}{typ2}\$ \$\frac{x}{typ2}\$ \$x	NPR3 (natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide				
PCDH7 (protocadherin 7) PLAU (plasminogen activator, urokinase) PPL (periplakin) PPP2R2B (protein phosphatase 2, regulatory subunit B, beta) PRKCDBP (protein kinase C, delta binding protein) \$\frac{x}{x}\$ \$\frac{x}{x}\$ \$\frac{x}{y}\$ \$\fra	NT5E (5'-nucleotidase, ecto (CD73))				
PLAU (plasminogen activator, urokinase) PPL (periplakin) PPP2R2B (protein phosphatase 2, regulatory subunit B, beta) PRKCDBP (protein kinase C, delta binding protein) SCHIP1 (schwannomin interacting protein 1) SEMA3B (sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3B) SLC16A5 (solute carrier family 16 (monocarboxylate transporter), member 5) SLC03A1 (solute carrier organic anion transporter family, member 3A1) SMAD6 (SMAD family member 6) SNCA (synuclein, alpha (non A4 component of amyloid precursor)) TAGLN2 (transgelin 2) TJP2 (tight junction protein 2) TJP2 (tight junction protein 2) x TNNC1 (troponin C type 1 (slow)) TNNT2 (troponin T type 2 (cardiac)) TRGV9 (T cell receptor gamma variable 9)	OAS1 (2'-5'-oligoadenylate synthetase 1, 40/46kDa)				
PPL (periplakin) PPP2R2B (protein phosphatase 2, regulatory subunit B, beta) PRKCDBP (protein kinase C, delta binding protein) \$\frac{x}{x}\$ \$SCHIP1 (schwannomin interacting protein 1) \$SEMA3B (sema domain, immunoglobulin domain (lg), short basic domain, \$secreted, (semaphorin) 3B) \$\frac{x}{x}\$ \$SLC16A5 (solute carrier family 16 (monocarboxylate transporter), member 5) \$SLC03A1 (solute carrier organic anion transporter family, member 3A1) \$SMAD6 (\$MAD family member 6) \$SNCA (synuclein, alpha (non A4 component of amyloid precursor)) \$TAGLN2 (transgelin 2) \$TJP2 (tight junction protein 2) \$TNNC1 (troponin C type 1 (slow)) \$TNNT2 (troponin T type 2 (cardiac)) \$TRGV9 (T cell receptor gamma variable 9)	PCDH7 (protocadherin 7)				
PPP2R2B (protein phosphatase 2, regulatory subunit B, beta) PRKCDBP (protein kinase C, delta binding protein) SCHIP1 (schwannomin interacting protein 1) SEMA3B (sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3B) \$\text{x}\$ \$SLC16A5 (solute carrier family 16 (monocarboxylate transporter), member 5)} \$SLC03A1 (solute carrier organic anion transporter family, member 3A1) \$SMAD6 (SMAD family member 6) \$SNCA (synuclein, alpha (non A4 component of amyloid precursor)) \$TAGLN2 (transgelin 2)\$ \$TJP2 (tight junction protein 2)\$ \$TNNC1 (troponin C type 1 (slow))\$ \$\text{x}\$ \$TNNT2 (troponin T type 2 (cardiac))\$ \$TGSV9 (T cell receptor gamma variable 9)	PLAU (plasminogen activator, urokinase)				
PRKCDBP (protein kinase C, delta binding protein) SCHIP1 (schwannomin interacting protein 1) SEMA3B (sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3B) X SLC16A5 (solute carrier family 16 (monocarboxylate transporter), member 5) SLC03A1 (solute carrier organic anion transporter family, member 3A1) SMAD6 (SMAD family member 6) SNCA (synuclein, alpha (non A4 component of amyloid precursor)) TAGLN2 (transgelin 2) TJP2 (tight junction protein 2) TNNC1 (troponin C type 1 (slow)) X TNNT2 (troponin T type 2 (cardiac)) TRGV9 (T cell receptor gamma variable 9)	PPL (periplakin)				
SCHIP1 (schwannomin interacting protein 1) SEMA3B (sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3B) \$\text{x}\$ \$\text{SLC16A5}\$ (solute carrier family 16 (monocarboxylate transporter), member 5)} \$\text{SLCO3A1}\$ (solute carrier organic anion transporter family, member 3A1)} \$\text{SMAD6}\$ (SMAD family member 6)} \$\text{SNCA}\$ (synuclein, alpha (non A4 component of amyloid precursor))} \$\text{TAGLN2}\$ (transgelin 2) \$\text{TJP2}\$ (tight junction protein 2) \$\text{TNNC1}\$ (troponin C type 1 (slow)) \$\text{X}\$ \$\text{TNNT2}\$ (troponin T type 2 (cardiac)) \$\text{TRGV9}\$ (T cell receptor gamma variable 9)}	PPP2R2B (protein phosphatase 2, regulatory subunit B, beta)				
SEMA3B (sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3B) \$\text{x}\$ \$\text{SLC16A5}\$ (solute carrier family 16 (monocarboxylate transporter), member 5)} \$\text{SLCO3A1}\$ (solute carrier organic anion transporter family, member 3A1)} \$\text{SMAD6}\$ (\$\text{SMAD}\$ family member 6) \$\text{SNCA}\$ (synuclein, alpha (non A4 component of amyloid precursor))} \$\text{TAGLN2}\$ (transgelin 2) \$\text{TJP2}\$ (tight junction protein 2) \$\text{TNNC1}\$ (troponin C type 1 (slow)) \$\text{x}\$ \$\text{TNNT2}\$ (troponin T type 2 (cardiac)) \$\text{TRGV9}\$ (T cell receptor gamma variable 9)}	PRKCDBP (protein kinase C, delta binding protein)		x		
SLCO3A1 (solute carrier organic anion transporter family, member 3A1) SMAD6 (SMAD family member 6) SNCA (synuclein, alpha (non A4 component of amyloid precursor)) TAGLN2 (transgelin 2) TJP2 (tight junction protein 2) TNNC1 (troponin C type 1 (slow)) x TNNT2 (troponin T type 2 (cardiac)) TRGV9 (T cell receptor gamma variable 9)	SEMA3B (sema domain, immunoglobulin domain (lg), short basic domain,	x			
SMAD6 (SMAD family member 6) SNCA (synuclein, alpha (non A4 component of amyloid precursor)) TAGLN2 (transgelin 2) TJP2 (tight junction protein 2) TNNC1 (troponin C type 1 (slow)) x TNNT2 (troponin T type 2 (cardiac)) TRGV9 (T cell receptor gamma variable 9)	SLC16A5 (solute carrier family 16 (monocarboxylate transporter), member 5)				
SMAD6 (SMAD family member 6) SNCA (synuclein, alpha (non A4 component of amyloid precursor)) TAGLN2 (transgelin 2) TJP2 (tight junction protein 2) TNNC1 (troponin C type 1 (slow)) x TNNT2 (troponin T type 2 (cardiac)) TRGV9 (T cell receptor gamma variable 9)	SLCO3A1 (solute carrier organic anion transporter family, member 3A1)				
TAGLN2 (transgelin 2) TJP2 (tight junction protein 2) TNNC1 (troponin C type 1 (slow)) TNNT2 (troponin T type 2 (cardiac)) TRGV9 (T cell receptor gamma variable 9)					
TJP2 (tight junction protein 2) x TNNC1 (troponin C type 1 (slow)) x TNNT2 (troponin T type 2 (cardiac)) x TRGV9 (T cell receptor gamma variable 9)	SNCA (synuclein, alpha (non A4 component of amyloid precursor))				
TNNC1 (troponin C type 1 (slow)) x TNNT2 (troponin T type 2 (cardiac)) x TRGV9 (T cell receptor gamma variable 9)	TAGLN2 (transgelin 2)				
TNNC1 (troponin C type 1 (slow)) x TNNT2 (troponin T type 2 (cardiac)) x TRGV9 (T cell receptor gamma variable 9)			x		
TNNT2 (troponin T type 2 (cardiac)) x TRGV9 (T cell receptor gamma variable 9)					
TRGV9 (T cell receptor gamma variable 9)				х	
· · · · · · · · · · · · · · · · · · ·					
	TRIM29 (tripartite motif containing 29)				

Die Tabelle 41 gibt eine Übersicht über die durch *KMT2D* regulierten Gene, die in den Xenografts differentiell methyliert sind. Dazu wurde in der folgenden Abbildung für jeden Tumor mit einer somatischen Mutation des *KMT2D* Gens ein typisches Beispiel dargestellt.

Abbildung 49: Darstellung der differenziellen Methylierung von vier Targetgenen des *KMT2D* Gens anhand der berechneten RPM-Werte für alle Xenografts. Auf der x-Achse ist die chromosomale Lokalisation, auf der y-Achse der entsprechende RPM-Wert der Methylierung aufgetragen. Grau: alle Xenografts, die keine somatische Mutation aufwiesen. Grün: Methylierung des Xenografts 7406. Rot: Methylierung des Xenografts 7298. Schwarz: Methylierung des Xenografts 7433. Blau: Methylierung des Xenografts 7198.

Anhand der Analyse konnte für das Xenograft-Modell 7406 eine stärkere Hypomethylierung des *FAB3* Gens im Vergleich zu den anderen Xenografts identifiziert werden. Weiterhin konnten für die Xenografts 7298, 7433 und 7198 eine höhere Hypermethylierung der entsprechenden Gene *TNNC1*, *MEOX1* und *SEMA3B* ermittelt werden. Zusammenfassend konnten einige Targetgene, die durch *KMT2D* reguliert werden, in den betroffenen Xenografts als differentiell methyliert identifiziert werden. Eine ausführliche genomweite Analyse soll im nächsten Schritt durchgeführt werden, war aber im Rahmen dieser Arbeit nicht mehr möglich.

5. Diskussion

Wie bereits oben ausgeführt, ist das Ziel dieser Arbeit, Mechanismen der Chemotherapie-Resistenz beim Nicht-kleinzelligen Bronchialkarzinom zu identifizieren. Dazu war es zunächst erforderlich, die Technologie der zielgerichteten Anreicherung genomischer Regionen und der Hochdurchsatz-Sequenzierung für klinisches Material zu etablieren. Anschließend sollten, anhand des Mutationsprofils von 23 Patienten – jeweils von Xenograft-Material und von primärem Normalgewebe des Patienten, stratifiziert nach dem Ansprechen auf unterschiedliche Chemotherapien – Mutationen bzw. Genkandidaten identifiziert werden, die möglicherweise einen Einfluss auf intrinsische Resistenzen haben.

5.1. Etablierung der Hochdurchsatz-Sequenzierungs-Technologie für klinisches Gewebematerial

Die derzeitigen Hochdurchsatz-Sequenzierungs-Technologien sowie die Applikation der zielgerichteten Re-Sequenzierung genomischer Regionen ermöglicht die Analyse genetischer Grundlagen vieler Krankheitsbilder, insbesondere solcher mit ausgeprägter Heterogenität wie sie beispielsweise bei malignen Tumoren vorliegt. Am Beispiel des Prostatakarzinoms wurden erstmals im Verlauf der vorliegenden Dissertation klinisch relevante Aspekte zur Etablierung der Technologie für klinisches Gewebematerial untersucht, die für die Pathologie sowie auch für die Onkologie von entscheidender Bedeutung sind. Ein wichtiger Aspekt bestand darin zu überprüfen, ob Formalin fixiertes und in Paraffin eingebettetes (FFPE) Tumorgewebe ebenfalls für die zielgerichtete Anreicherungstechnologie mit anschließender Hochdurchsatz-Sequenzierung genutzt werden kann, da die FFPE Präparation überwiegend in pathologischen Instituten zur Aufbewahrung klinischer Gewebeproben verwendet wird, und eine große Ressource biologischer Gewebeproben für molekulare Studien darstellt.

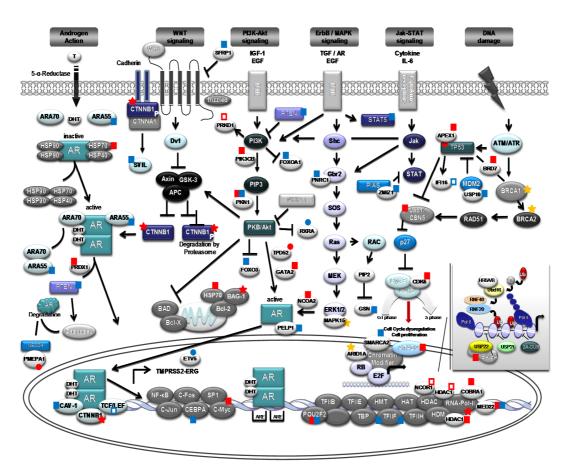
Für diese Fragegestellung wurden für einen direkten Vergleich zwischen dem Gefriermaterial und dem FFPE-Material eines Patienten Gesamt-Exom-Sequenzierungen durchgeführt, und die Anreicherungseffizienz sowie das Mutationsprofil analysiert. Hierbei konnte für beide Präparationstechniken ein vergleichbar gutes Anreicherungsergebnis erzielt werden. Da die Präparation der Formaldehyd Fixierung sowie die Langzeit-Aufbewahrung der Gewebeproben bei

Raumtemperatur zu Mutationen in der DNA führen (u. a. spontane Deaminierungen) und zur Identifikation falsch-positiver SNVs bzw. InDels führen, wurde die Reproduzierbarkeit der detektierten SNVs sowie der InDels zwischen den beiden Gewebepräparationen berechnet. Hierbei wurden, bei einer minimalen Abdeckung von 20x, 1,2% diskordante Positionen identifiziert. Von diesen wurden 53% als falsch-negativ klassifiziert, die als C>T (A>G) Substitutionen identifiziert wurden, und möglicherweise durch Deaminierungsprozesse erklärt werden können. Eine Anhebung der Abdeckung auf über 80x resultierte in einer Verbesserung der Übereinstimmung. So wurden alle Positionen in beiden Gewebepräparationen identifiziert. FFPE-Gewebe kann damit für die zielgerichtete Anreicherungstechnologie mit anschließender Hochdurchsatz-Sequenzierung genutzt werden. Innerhalb der Arbeitsgruppe konnte bereits gezeigt werden, dass Gesamt-Genom-Sequenzierungen mittels der Illumina Technologie mit FFPE Material für die Analyse genomischer Kopienzahlvarianten sowie Einzelnukleotidvarianten eingesetzt werden kann [196]. Im Rahmen dieser Arbeit konnte außerdem gezeigt werden, dass FFPE Material ebenfalls für eine Anreicherung zielgerichteter genomischer Regionen mit anschließender Hochdurchsatz-Sequenzierung der Illumina Technologie verwendet werden kann. Diesbezüglich konnte in einer nachfolgenden, späteren Arbeit die Reproduzierbarkeit zwischen FFPE- und Gefriermaterial unter Verwendung einer Exom-Sequenzierung der SOLiD Technologie bestätigt werden [197]. Damit wurden auch unsere Ergebnisse unabhängig von uns bestätigt.

Des Weiteren wurde die innerhalb dieser Arbeit etablierte Anreicherungs- bzw. Sequenzierungs-Technologie auf eine geringere DNA-Konzentration des klinischen Gewebematerials hin optimiert, da aus vielen Primärgeweben der isolierte DNA-Gehalt sehr gering ist. Dazu wurden jeweils 500ng, 1.500ng und 3.000ng für die Anreicherung einer 3,9Mb großen Zielregion mit anschließender Sequenzierung eingesetzt. Auch hier konnte für alle drei Ansätze eine vergleichbar gute Anreicherungseffizienz erzielt werden. Das Ergebnis zur Überprüfung der Reproduzierbarkeit der SNVs ergab bei einer minimalen Abdeckung von 3x eine Konkordanz von 98% zwischen der 1.500ng und der 3.000ng Präparation, und ab einer Abdeckung von 55x konnten 98% aller SNVs in allen drei Präparationen wiedergefunden werden. InDels konnten, von einer Abdeckung von 20x an, zu 98% in allen Präparationen identifiziert werden. Am Ende zeigten die Ergebnisse eine bessere Uniformität zwischen der 1.500ng und 3.000ng Präparation als im Vergleich mit der 500ng Präparation.

Die letzte Fragestellung befasste sich mit der diskutierten Heterogenität von Tumorgeweben, da bisher nicht ausreichend aufgeklärt werden konnte, ob primäre Prostatakarzinome einen multifokalen Ursprung besitzen und dieser mit multiplen genetischen Unterschieden der Tumorzellen assoziiert ist. Dafür wurde das Mutationsprofil von jeweils zwei unterschiedlichen Tumorbiopsien aus den Tumoren von drei Patienten näher untersucht. Die Berechnungen der Einzelnukleotidvarianten zeigte bei allen drei Patienten bei einer minimalen Abdeckung von 20x keine diskordante Position zwischen Tumorbiopsien eines Tumors. Selbst Biopsien mit einem unterschiedlichen TMPRSS2-ERG Status waren in Bezug auf die Einzelnukleotidvarianten auffallend identisch. Zusätzlich ergab die Analyse der somatischen Mutationen keinen Unterschied zwischen den Biopsien, wobei nur ein kleiner Teil (~10%) des Exoms betrachtet wurde. In vorangegangenen Mutationsanalysen hatte eine geringe Mutationsfrequenz pro Megabase (zwischen 0,31 - 0,9) an nichtsynonymen somatischen Mutationen für Prostatatumore ermittelt werden können [129, 198, 199]. In Übereinstimmung mit dieser geringen Mutationsfrequenz wurde jeweils nur eine somatische Mutation für jeden der drei Patienten detektiert. Die Berechnung der InDels ergab eine diskordante Position des Patienten 13147 bei einer Abdeckung von 80x. Für die anderen beiden Patienten konnte ab einer Abdeckung von 20x keine diskordante Position mehr identifiziert werden. Anhand der Einzelnukleotidvarianten konnte mit Hilfe, der in dieser Arbeit durchgeführten Analysen, keine Klärung der fokalen Diversität erbracht werden, was die noch nicht ausreichende Sensitivität der derzeitigen Re-Seguenzierungs-Technologien mit einschließt. Die Berechnung der somatischen Kopienzahlvarianten, basierend auf einer Genom-Sequenzierung, ergab für den Patient 1737 mit einem deutlichen Unterschied des TMPRSS2-ERG Status signifikante Unterschiede zwischen den beiden Tumorbiopsien (z.B. auf Chromosom 4, 10 und 13). Dagegen konnten für die beiden Biopsien der 21905 13147 Patienten und keine Unterschiede der somatischen Kopienzahlvarianten ermittelt werden. Die in Abbildung 16 markierten Unterschiede beim Patienten 13147, die an den Telomerbereichen der sind, möglicherweise Chromosomen lokalisiert stellen Artefakte Diesbezüglich konnte eine Studie, unter Verwendung einer vergleichenden genomischen Hybridisierungstechnologie (CGH-Array), zur Analyse der klonalen Komposition in Brusttumoren, in den meisten Tumoren eine homogene genetische Struktur aufdecken, während nur ein kleiner Prozentsatz an Tumoren genetisch heterogen war [200]. Die Ergebnisse implizieren, dass für die Detektion

der Einzelnukleotidvarianten die Anzahl an Biopsien nicht entscheidend ist, da diese ein sehr homogenes Muster aufzeigen und keine diskordanten Positionen ermittelt wurden. Für die Detektion der somatischen Kopienzahlvarianten sollte jedoch mehr als eine Biopsie analysiert werden. Diesbezüglich suggeriert eine kürzlich erschienene Publikation, dass genomische Reorganisationen ursächlich für die Entstehung des Prostatakarzinoms sind [198]. Derzeit ist es noch nicht möglich 3D Rekonstruktionen eines Tumors zu erstellen, um die Frage eines multifokalen Ursprungs von Prostatatumoren zu klären. Die untersuchten Proben weisen eine sehr komplexe Komposition der Tumorzellen auf. Die bisher erstellten genetischen Profile repräsentieren die Summe aller Zellen aus einer Sektion, so dass die wahre Tumorheterogenität möglicherweise maskiert wird. Eine Möglichkeit, mehr Einblicke in die klonale Architektur des Prostatakarzinoms zu erhalten, besteht in einer Einzel-Zell Analyse, für die bereits mehrere methodische Applikationen etabliert wurden [201]. Abschließend muss man sagen, dass weitere unterschiedliche Biopsien analysiert werden sollten, um einen umfassenden Einblick in die Tumorbiologie und der zu Grunde liegenden Heterogenität zu erhalten. Die vorgelegten Ergebnisse zur Etablierung der Anreicherungsbzw. Hochdurchsatz-Sequenzierung von klinischem Gewebematerial ermöglichen nun die Untersuchung größerer Patientenkohorten und erlauben die Adressierung klinisch relevanter Fragestellungen wie der Tumorprogression und der Therapieresistenz eines Tumors, welche wichtige Schritte für die Applikation der zielgerichteten Re-Sequenzierungsansätze in der Onkologie dargestellen [202].


5.2. Genetische Veränderungen des Androgen Rezeptor-Signalwegs in Prostatatumoren

Das Prostatakarzinom gehört weltweit zu der am häufigsten diagnostizierten Tumorerkrankung des Mannes und zählt zur dritthäufigsten Todesursache [11]. Aufgrund des Fortschritts der Behandlung und einer frühen Diagnose konnte die 5-Jahres Überlebensrate signifikant verbessert werden. Dennoch konnten bisher nicht alle molekularen Mechanismen, die zur Initiation und Progression eines führen. Prostatakarzinoms hinreichend aufgeklärt werden. Zusammenhang wurde in großangelegten Sequenzier-Studien zahlreiche genetische Veränderungen analysiert und zugrundeliegende Pathomechanismen, wie z.B. die Chromatin-Modifikation, der Zellzyklus und der Androgen Rezeptor-Signalweg identifiziert, die in die Tumorprogression involviert sind [203]. In Gesamt-Exom-Sequenzieranalysen von primären und Therapie-Resistenten Prostatatumoren wurden Untergruppen von Genen wie z.B. SPOP (speckle-type POZ protein), FOXA1 (forkhead box A1), MED12 (mediator complex subunit 12), KMT2D (lysine (K)-specific methyltransferase 2D), KDM6A (lysine (K)-specific demethylase 6A), TP53 (tumor protein 53), DLK2 (delta like homolog 2), GPC6 (glypican 6) und SDF4 (stromal cell derived factor 4) identifiziert, die durch somatische Mutationen wiederholt modifiziert sind [204-206]. Des Weiteren konnten, anhand von Genom-Sequenzierungen von 64 primären Prostatatumoren, häufig auftretende komplexe Reorganisationen identifiziert werden, die u. a. innerhalb benachbarter bekannter Tumorgenen lokalisiert waren. Die Bruchpunkte dieser Reorganisationen wurden vorwiegend in der Nähe des Androgen Rezeptors sowie in ERG (v-ets avian erythroblastosis virus E26 oncogene homolog) DNA-Bindemotiven lokalisiert, wenn eine TMPRSS2-ERG Fusion Eine Modellierung vorlag. der Genese der Reorganisationen ergab erste Hinweise darauf, dass große DNA Translokationen und Deletionen in einem unabhängigen Muster auftreten, ein Phänomen, das als "Chromoplexy" bezeichnet wird und so zur Deregulierung vieler Gene führt, die mit der Tumorprogression einhergeht [198, 203].

Die beschriebenen Arbeiten fukussierten sich nur auf einer Seite der Mutationsanalysen. Im Rahmen dieser Arbeit wurde versucht, unterschiedliche genomische Informationen zu integrieren und darzustellen. Es zeigte sich nämlich, dass unterschiedliche Veränderungen einschließlich der Mutationen, Genexpression und Kopienzahlvarianten, einen Einfluss auf die Tumorprogression haben.

Hierzu wurde anhand einer ersten Machbarkeitsstudie (Proof of Concept) das Mutationsprofil von 32 Prostatakarzinomen und dem korrespondierendem Normalgewebe unter Verwendung einer Anwender-definierten Anreicherung genomischer Zielregionen (3,9Mb) mit anschließender Re-Seguenzierung analysiert und die Einzelnukleotidvarianten sowie die somatischen Kopienzahlvarianten berechnet, um mehr Einblicke in die Regulation des Androgen Rezeptor-Signalwegs zu erhalten. Zusammenfassend wurden 56Gb (Gigabasen) seguenzierte DNA-Fragmente generiert, von denen 41Gb einzigartig im Referenzgenom lokalisiert waren und durchschnittlich 75% der Fragmente innerhalb der Zielregion identifiziert werden konnten. Zudem wurden die Daten mittels Microarray generierten Genexpressionsprofilen von 36 Patienten, die vom DKFZ zur Verfügung gestellt wurden, komplementiert. Die Patienten wurden

während der Entnahme des Prostatagewebes einer radikalen Prostatektomie unterzogen. Keiner der Patienten war mit einer Neo-adjuvanten-, Strahlen- bzw. endokrinen Therapie behandelt worden. Die anschließende Stadieneinteilung zeigte vorwiegend pT2-pT4 Stadien, 19 Tumore mit einem Gleason größer als 7 und 26 Tumore mit einem Gleason kleiner als 7. Von den Tumoren hatten 19 Tumore keine, 25 Tumore hingegen eine *TMPRSS2-ERG* Translokation (13 Tumore mit einer Deletionen, 12 Tumore mit einer Insertion). Basierend auf der Sequenzierung von 1.048 Prostatatumor-relevanten Genen in 32 Patienten konnten durchschnittlich 2.700 Einzelnukleotidvarianten identifiziert werden. Die Berechnung der somatischen Kopienzahlvarianten resultierte bei durchschnittlich 1.642 Genen aus amplifizierten Regionen und 2.234 Genen aus deletierten Regionen.

Abbildung 50: Zusammenfassung der betroffenen Androgen Rezeptor regulierten Gene visualisiert in einem Androgen Rezeptor Netzwerk einschließlich identifizierter somatischer Kopienzahlvarianten, die mit einer differentiellen Expression einhergehen, Expressionsveränderungen und Einzelnukleotidvarianten.

Die Abbildung 50 zeigt hierzu eine umfangreiche Übersicht des Androgenabhängigen und des nicht-abhängigen Androgen Rezeptor-Signalwegs. Eingezeichnet sind auch die entsprechenden durch Aktivator/Co-Aktivator und Repressor/Co-Repressor regulierten Gene und gekennzeichnet sind signifikante Veränderungen, die anhand der Einzelnukleotidvarianten-Analyse, somatischen Kopienzahlvarianten-Analyse sowie der Genexpressions-Analyse identifiziert wurden. Anhand der Abbildung ist zu erkennen, dass der Androgen Rezeptor-Signalweg durch unterschiedliche genomische Veränderungen betroffen ist was impliziert, dass für umfangreiche Mutationsanalysen von Tumoren unterschiedliche genetische bzw. epigenetische Veränderungen (z.B. Mutationen, Kopienzahlvarianten, Strukturvarianten, Genexpression) betrachtet werden sollten, um einen detaillierten Einblick in die Tumorbiologie zu bekommen.

Basierend auf den Ergebnissen zur Etablierung der Anreicherungstechnologie und Hochdurchsatz-Sequenzierung für klinisches Gewebematerial wurde die Mutationsanalyse der 23 Patienten-abgeleiteten Xenograft-Mausmodelle des Nicht-kleinzelligen Bronchialkarzinoms durchgeführt.

5.3. Berechnung der Konkordanz zwischen Xenograft- und Primärtumorgewebe

Da im Rahmen dieser Arbeit nicht nur primäres Tumorgewebe, sondern auch das Patienten-abgeleitete Xenograft-Gewebe verwendet wurde, sollte überprüft werden, ob das Xenograft-Gewebe die genetischen Merkmale des Primätumors repräsentiert. Hierzu zeigte die Studie um Ding et al. 2010 einen Vergleich des Mutationsspektrums zwischen dem Primärtumor und dem Patienten-abgeleiteten Xenograft-Tumor eines Mammarkarzinoms. In dieser Studie konnten alle identifizierten somatischen Mutationen des Primärtumors ebenfalls im Xenograft-Tumor gefunden werden ein Befund, der die Xenograft-Modelle als geeignet für genetische Untersuchungen unterstreicht [188]. Die Etablierung der in dieser Arbeit verwendeten 23 Patienten-abgeleiteten Xenografts wurde 2008 von der Arbeitsgruppe Fichtner et al. veröffentlicht und bestätigte eine vollständige histologische Übereinstimmung zwischen den Patienten und den abgeleiteten Xenografts. Es konnte ebenfalls gezeigt werden. dass Wachstumsmorphologie des jeweiligen Primärtumors im Xenograft erhalten bleibt. Die Ergebnisse deckten sich ebenfalls mit den Beobachtungen einer weiteren Studie der Arbeitsgruppe, in der Patienten-abgeleitete Xenografts von Kolonkarzinomen etabliert worden sind [171, 207]. Somit sollte nun zunächst überprüft werden, ob die generierten Xenograft-Modelle die identischen

genetischen Charakteristika wie das entsprechende primäre Tumorgewebe des Patienten aufweisen. Dafür wurden von zwei Patienten (Pat-ID 7860 und 7913) Exom-Sequenzierungen von jeweils dem Xenograft-Tumor, dem Primärtumor und dem Normalgewebe durchgeführt. Für den Patienten 7860 wurden 18.981 Basensubstitutionen identifiziert, die sowohl im Normalgewebe, im Primärtumor und im Xenograft-Tumor vorliegen. Der Vergleich zwischen dem Primärtumor und dem Xenograft-Tumor ergab einen Überlapp von 867 Substitutionen von insgesamt 6.011 tumorspezifischen Basensubstitutionen. Im Gegensatz hierzu ist es auffällig, dass zwischen dem Primärtumor und dem Normalgewebe 12.071 Substitutionen übereinstimmen, was einer relativ großen Anzahl entspricht. Dies könnte zum einen durch eine Kontamination des Primärtumors mit dem korrespondierenden Normalgewebe erklärt werden, andererseits aber auch damit, dass der Xenograft-Tumor und der Primärtumor sich stark voneinander unterscheiden. Eine weitere Ursache der geringen Übereinstimmung zwischen dem Xenograft-Tumor und dem Primärtumor könnte auch die geringe Sequenziertiefe des Xenograft-Tumors sein, da in Folge dessen weniger Basensubstitutionen identifiziert werden können.

Der Abgleich des Patienten 7913 zeigte einen Überlapp von insgesamt 26.824 Basensubstitutionen, die in allen drei Geweben identifiziert wurden. Weiterhin konnten von insgesamt 13.489 tumorspezifischen Basensubstitutionen des Primärtumors 8.893 Substitutionen ebenfalls im Xenograft-Tumor wieder gefunden werden.

Anschließend erfolgte die Berechnung der somatischen Mutationen unter Verwendung des Programms Ingenuity Variant Analyses. Durch die Datenanalyse konnte für den Patienten 7860 895 somatische Mutationen im Xenograft-Tumor und 1.886 Mutationen im Primärtumor identifiziert werden, die ebenfalls jeweils in dem anderen Gewebe detektiert werden konnten. Auffällig hierbei ist die geringe Mutationsfrequenz beider Tumorgewebe, die im Xenograft-Gewebe auf eine geringe Sequenziertiefe zurückzuführen sein kann und für den Primärtumor, wie bereits erwähnt, auf eine hohe Verunreinigung mit dem Normalgewebe schließen lässt. Für den Patienten 7913 wurden 6.479 somatische Mutationen sowohl im Xenograft-Tumor, als auch im Primärtumor gefunden, und 6.504 spezifische Mutationen im Primärtumor, die auch im Xenograft-Tumor identifiziert werden konnten. Somit zeigte die Berechnung der somatischen Mutationen eine sehr hohe Übereinstimmung zwischen dem Xenograft-Tumor und dem Primärtumor beider Patienten.

Weiterhin wurden die somatischen Kopienzahlvarianten des Primärtumors und des Xenograft-Tumors der beiden Patienten berechnet und miteinander verglichen. Für den Primärtumor des Patienten 7860 konnten keine somatischen Kopienzahlvarianten identifiziert werden. Da bereits auf der Ebene der (siehe oben) eine große Übereinstimmung zwischen dem Normalgewebe und dem Primärtumor festgestellt worden war, könnte dies auch durch eine Verunreinigung des Tumorgewebes mit dem Normalgewebe bedingt sein. Im Gegensatz hierzu zeigt das Xenograft-Gewebe einige signifikant veränderte genomische Regionen auf wie z.B. Amplifikationen auf den Chromosomen 3, 10 und 12 sowie Deletionen auf den Chromosomen 3 und 4. Eine Möglichkeit, um festzustellen, ob der Unterschied zwischen dem Xenograft-Tumor und dem Primärtumor auf genomischer Ebene durch eine Vermischung des Primärtumorgewebes mit Normalgewebe bedingt ist, würde eine Fluoreszenz in situ Hybridisierungs-Analyse (FISH) bieten. Hierbei müsste man spezielle einige der signifikant veränderten Regionen des Xenograft-Tumors auf ihr Vorkommen im Primärtumorgewebe überprüfen. Dabei sollten auch einige Zellen oder Bereiche des Tumors die signifikant veränderten Kopienzahlveränderungen aufweisen. Dies konnte allerdings im Rahmen der vorliegenden Dissertation nicht durchgeführt werden und soll in weiterführenden Arbeiten untersucht werden.

Im Vergleich dazu konnte für den Patienten 7913 anhand der tumorspezifischen Kopienzahlvarianten des Primärtumors und des Xenograft-Tumors eine hohe Homogenität der somatischen Kopienzahlvarianten festgestellt werden. Dennoch konnten einige Unterschiede gefunden werden, wie z.B. Deletionen auf Chromosom 3 und 5, die im Xenograft-Tumor aber nicht im Primärtumor identifiziert wurden, sowie eine Amplifikation auf Chromosom 16, die im Primärtumor aber nicht im Xenograft-Tumor detektiert wurde. Eine mögliche biologische Erklärung für die anhand der somatischen Kopienzahlvarianten festgestellten Unterschiede zwischen dem Primärtumor und dem Xenograft-Tumor, wäre eine Etablierung sekundärer Tumorareale, bedingt durch eine Minderheit aberrierender Tumorzellen innerhalb des Primärtumors [188].

5.4. Statistik der detektierten Einzelnukleotidvarianten

Der inhalative Tabakkonsum ist der mit Abstand wichtigste Risikofaktor für Bronchialkarzinome und ebenfalls mit weiteren Tumorerkrankungen, einschließlich Tumoren im Mund-, Nasen- und Rachenraum, Kehlkopftumoren, Lebertumoren, Bauchspeicheltumoren, Tumoren der Niere und Harnblase sowie

mit Brust- und Gebärmutterhalstumoren und mit bestimmten Formen der Leukämie assoziiert [208]. Tabakrauch ist ein komplexes Gemisch aus rund 4.900 gasförmigen und zu Partikeln aggregierten Substanzen, die beim Verbrennen entstehen [209]. Derzeit sind mehr als 60 kanzerogene Stoffe (z.B. polyzyklische aromatische Kohlenwasserstoffe und das Nikotinderivat N-Nitrosamine) bekannt, die an die DNA binden, diese chemisch modifizieren und charakteristisch Addukte an Purinbasen (Guanin und Adenin) bilden. Hierzu konnte eine Prävalenz von G zu T Transversionen in Tabakkonsumenten mit Bronchialkarzinom (30%) im Vergleich zu Bronchialkarzinomen von Nicht-Rauchern (12%) beobachtet werden [210]. Diesbezüglich wurde zunächst anhand der Exom-Sequenzierung und der 9Mb-Sequenzierung die Anzahl der möglichen Basensubstitutionen jeweils für das Normal- und das Tumorgewebe ermittelt. Die Basensubstitutionen der ermittelten tumorspezifischen Einzelnukleotidvarianten unterscheiden sich von den Keimbahnvarianten. Die im Normalgewebe identifizierten Basensubstitutionen zeichnen sich durch einen hohen Anteil an A>G (T>C) Substitutionen aus und resultieren damit in einem Anstieg der Transitionen, wohingegen die Basensubstitutionen im Tumorgewebe signifikant mehr G>T (C>A) Substitutionen und somit mehr Transversionen aufweisen (siehe Abbildung 5). Die Ergebnisse korrelieren damit sehr gut mit den publizierten Daten, in denen, anhand von Hochdurchsatz-Sequenzanalysen eines primären Bronchialkarzinoms sowie einer Zelllinie (NCI-H209), das gleiche Muster der Basensubstitutionen gezeigt wurde [130, 154].

5.5. Zielgerichtete Anreicherung genomischer Regionen mit anschließender Hochdurchsatz-Sequenzierung von 23 Patienten-abgeleiteten Xenograft-Modellen und dem korrespondierenden primären Normalgewebe

Für die Mutationsanalyse von 23 Patienten-abgeleiteten Xenograft-Modellen wurde von zwei Xenografts (Pat-ID: 7860,7913) Gesamt-Exom-Sequenzierung und von 21 Xenografts 9Mb-Sequenzierungen durchgeführt. Bei den Gesamt-Exom-Sequenzierungen wurde zusätzlich auch Gewebe des Primärtumors sequenziert. Bei allen Proben wurde neben dem Xenograft-Material auch Normalgewebe des Patienten sequenziert.

Bei der Exom-Sequenzierung konnte, mit Ausnahme des Xenograft-Gewebes des Patienten 7860, eine durchschnittliche Sequenziertiefe zwischen 36x und

54x erzielt werden. Das Ergebnis der Sequenzierung des Xenografts 7860 ergab eine durchschnittliche Sequenziertiefe von 17x und liegt somit deutlich unter dem Durchschnitt der anderen Proben. Diesbezüglich konnten (außer des Xenografts 7860) durchschnittlich 75 Millionen der sequenzierten DNA-Fragmente gegen das humane Referenzgenom (hg19) prozessiert werden. Nach der anschließenden Subtraktion der homologen Maussequenzen sowie der Filterung einzigartig prozessierter Fragmente wurden durchschnittliche 40 Millionen und für das Xenograft 7860 20 Millionen Sequenzen in Folgeanalysen mit berücksichtigt.

Die Quantifizierung der Anreicherung ergab für alle DNA-Fragmente, die mit mindestens einem Nukleotid innerhalb der Zielregion lokalisiert waren, eine durchschnittliche Anreicherungseffizienz von 90% und bei einer *in silico* Verlängerung der Nukleotide um 200bp aufwärts und abwärts sogar 97%. Bei einer normalisierten Abdeckung von 0,2 konnten in allen Gewebeproben durchschnittlich 80% der sequenzierten Fragmente innerhalb der angereicherten Zielregionen identifiziert werden, selbst bei einer Abdeckung von 0,6 waren es immer noch durchschnittlich 50%, die innerhalb der Regionen lokalisiert waren. Trotz der geringen Sequenziereffizienz des Xenograft-Gewebes des Patienten 7860 konnte dennoch eine vergleichbar gute Anreicherungseffizienz erzielt werden.

Die Ergebnisse der Anreicherung und Sequenzierungen der von 21 Patientenabgeleiteten Xenografts mit dem entsprechenden Normalgewebe (9Mb-Sequenzierung) ergab durchschnittlich 30 Millionen gegen das Referenzgenom prozessierte sequenzierte DNA-Fragmente, und nach der Subtraktion der homologen Maussequenzen sowie der Filterung der einzigartig prozessierten Fragmente konnten durchschnittlich 28 Millionen Sequenzen mit einer durchschnittlichen Sequenziertiefe von 69x für Folgenanalysen berücksichtigt werden. Das Ergebnis der Anreicherung zeigte, dass durchschnittlich 95% der DNA-Fragmente innerhalb der Zielregionen lokalisiert waren. Bei einer in silico Verlängerung der sequenzierten Exons um jeweils 200bp aufwärts und abwärts wurden sogar durchschnittlich 97% der Fragmente innerhalb der Zielregionen lokalisiert. In den Xenografts 7126 und 7506 wurden 74% bzw. 25% der DNA-Fragmente als Maus-spezifisch identifiziert. Diese relativ hohen Anteile an Maussequenzen verursachten somit eine relativ geringen Anzahl an einzigartig prozessierten Fragmenten (7126: ca. 12 Millionen; 7506 ca. 11 Millionen), die für die weiteren Auswertungen verwendet wurden. Eine mögliche Erklärung der hohen Anteile an Maussequenzen wäre z.B. eine Infiltration von humanen

Tumorzellen auf das Mausgewebe sowie eine nicht erfolgte nachträgliche histopathologische Beurteilung des Gewebes durch einen Pathologen.

5.5.1. Validierung somatischer Mutationen mit der Massen-Spektrometrie-Technologie

Für die Validierung somatischer Mutationen, die anhand Revon Sequenzierungsanalysen identifiziert wurden. werden unterschiedliche Technologien eingesetzt, um die falsch-positiv Rate zu minimieren, die durch technisch-spezifische systematische Fehler wie z.B. PCR-Artefakte während der DNA-Bibliothek Generierung, Artefakte der Sequenzierung oder Artefakte während der Datenprozessierung, auftreten können. Es erwies sich bisher als nicht praktikabel, alle identifizierten somatischen Mutationen zu validieren, da viele Mutationen oft spezifisch nur in einem Patienten identifiziert werden und somit die Validierungsexperimente sehr Kosten- und Zeit-aufwendig sind. Aus diesem Grund werden vorwiegend solche somatische Mutationen für die Validierung verwendet, die anhand von bioinformatischen Vorhersagealgorithmen möglicherweise mit einer Veränderung der Proteinstruktur oder- Funktion einhergehen, oder die für spezifische Fragestellungen von besonderem Interesse sind. Für die Validierung wird häufig, anhand von PCR-Amplifikationen der zu untersuchenden genomischen Positionen, wie z.B. Einzelnukleotidvarianten, Insertionen und Deletionen oder auch Strukturvarianten mit einer konventionellen Sanger-Sequenzierung untersucht. Ein Nachteil der Sanger-Sequenzierung ist die geringe Sensitivität für Mutationen, die nur mit einer geringen Frequenz (unter 25%) in den Tumorzellen vorliegen [211]. Eine weitere Methode ist die massenspektrometrische Messung für Einzelnukleotidvarianten, die in dieser Arbeit vorwiegend für die Validierung eingesetzt wurde und eine Sensitivität zwischen 5-10% aufweist [212]. Zudem besteht auch die Möglichkeit anhand einer zielgerichteten Anreicherung der genomischen Regionen, in denen die somatischen Mutationen identifiziert wurden, mit einer Hochdurchsatz-Seguenzierung einer anderen Seguenzier-Technologie für die Validierung zu verwenden. Für die Validierung von Kopienzahlvarianten wie Amplifikationen und Deletionen werden vorwiegend vergleichende genomische Hybridisierungs-Technologien (CGH-Array) oder quantitative PCRs eingesetzt.

Im Rahmen dieser Arbeit wurden 535 nicht-synonyme, somatische Mutationen identifiziert, von denen 342 Mutationen für eine Validierungsanalyse eingesetzt wurden. Anhand der Validierungsergebnisse konnte eine Validierungsrate von 71% erzielt werden. Interessanterweise zeigte es sich, dass bei einer

Basenqualität unter 14 fast keine Mutation validiert werden konnte, sodass für die weiteren Auswertungen chromosomale Positionen mit einer durchschnittlichen Basenqualität von unter 14 verworfen wurden, wodurch die Rate an falschpositiven Positionen signifikant reduziert werden konnte.

Weiterhin wurden die Daten der Validierungsexperimente für eine Qualitätskontrolle der Auswertung mit dem Programm Variant Analyses der System™ Firma Ingeniuty verwendet. Verglichen mit den Validierungsergebnissen konnte eine Validierungsrate von 93,8% (169 von 180 Positionen) erzielt und somit nachweislich die Rate der falsch-postiven Positionen minimiert werden.

5.5.2. Einblick in die biologische Relevanz der identifizierten Genkandidaten mit somatischen und Keimbahnmutationen

Für eine weitere Validierung der generierten Daten wurden die betroffenen Gene mit den annotierten Genen für Lungentumore der COSMIC-Datenbank, die für jede Tumorentität die chromosomalen somatischen Aberrationen enthält, abgeglichen. Diesbezüglich konnten 14 Gene (82%) der insgesamt 17 in COSMIC annotierten Gene identifiziert werden. Das Tumorsuppressorgen TP53 ist das am häufigsten betroffene Gen und mit einer Frequenz von 36% in der COSMIC-Datenbank annotiert. Innerhalb dieser Arbeit konnte Mutationsfrequenz von 52% verzeichnet werden, die sehr gut mit der in der Literatur angegebenen Frequenz von etwa 50% für Nicht-kleinzellige Bronchialkarzinome korreliert [213]. Die höhere Diskrepanz zu der COSMIC-Datenbank kann möglicherweise mit dem Raucherstatus der betroffenen Fälle erklärt werden, da TP53 Mutationen vorwiegend mit einem Raucherstatus assoziiert werden [123, 124]. Innerhalb der PREDICT Patienten-Kohorte ist das Verhältnis zwischen Rauchern und Nicht-Rauchern sehr hoch, da 95% der Patienten aktive Raucher sind. Das Verhältnis zwischen dem Raucherstatus innerhalb der COSMIC-Datenbank ist nicht bekannt, ist aber wahrscheinlich ausgeglichener. Weiterhin konnte eine ähnlich gute Übereinstimmung der Mutationsfrequenz beider Datensätze für die Gene KRAS und RB1 erzielt werden. Interessanterweise konnte keine somatische Mutation innerhalb des EGFR Gens gefunden werden, die in der COSMIC-Datenbank mit einer Mutationsfrequenz von 27% beschrieben ist [214]. Da anhand der durchgeführten methodischen Überprüfung technische Artefakte ausgeschlossen werden konnten, wäre eine mögliche biologische Erklärung die Zusammensetzung der Patienten-Kohorte. Diesbezüglich wurden somatische Mutationen des EGFR Gens vorwiegend mit einem Andenokarzinom, sowie in der asiatischen Population häufiger mit einem Nicht-Raucherstatus assoziiert. Im Vergleich zur asiatischen Population, die eine Frequenz von 30-40% aufweist, konnte nur in 10-15% einer westlichen Population eine aktivierende Mutation des *EGFR* Gens nachgewiesen werden [82, 83]. Zudem konnte gezeigt werden, dass aktivierende *EGFR* Mutationen nur sehr selten in Plattenepithelkarzinomen auftreten. Dazu zeigte eine vor kurzem erschienene Studie in 188 Plattenepithelkarzinomen eine Mutationsfrequenz von 1% (in diesen Fällen in 2 Proben) des *EGFR* Gens [74]. Da fast die Hälfte der PREDICT-Kohorte (44%) ein Plattenepithelkarzinom aufweist, ist in der Tat vermutlich die Zusammensetzung der Patienten-Kohorte verantwortlich für die geringe Rate an *EGFR* Mutationen. Dennoch konnte in drei Patienten eine Keimbahnmutation des *EGFR* Gens identifiziert werden. Die zwei unterschiedlichen Keimbahnmutationen (p.N552T und p.R521K) befinden sich in Exon 13, eine Region die u. a. für den stark glykosylierten, extrazellulären Bereich des Proteins kodiert und in der EGF-Binde-Domäne lokalisiert ist.

Um einen ersten Einblick in die biologische Relevanz der identifizierten Gene zu erhalten, wurden Signalweg-Analysen durchgeführt und die betroffenen Protein-Protein-Komplexe untersucht. Für die betroffenen Gene mit somatischen Mutationen konnte, wenig überraschend, der Tumorsignalweg mit 117 betroffenen Genen (36%) aus insgesamt 327 Genen als signifikantester Signalweg identifiziert werden. Weiterhin sind biologische Prozesse wie Zellkommunikation, Zellwachstum und Zellproliferation betroffen. Diesbezüglich wurde gezeigt, dass der Signalweg "Fokal Adhäsion" (FAK-Signalweg) ebenfalls signifikant betroffen ist. Dieser Signalweg ist ein wichtiger Mediator von Wachstumsfaktor-Signalweiterleitungen und maßgeblich an Proliferation, Zellüberleben, Migration und Zell-Adhäsion beteiligt. Der FAK-Signalweg wird vorwiegend durch Proteine der Integrin Familie, Transmembranproteine der extrazellulären Matrix, aktiviert. Die FAK-Proteine werden ubiquitär exprimiert und gehören zu den Nicht-Rezeptor-Protein-Tyrosin-Kinasen (PRK). Sie enthalten eine zentrale Kinase Domäne, eine C-terminale FAT-Domäne (focal adhesion targeting) und eine N-terminale FERM-Domäne (protein 4.1 ezrin, radixin and moesin homology). Die FAT-Domäne vermittelt die direkte Assoziation zwischen den FAK-Proteinen und dem Zell-Adhäsions Komplex [193, 215]. Interessanterweise konnte der Integrin-Protein-Komplex als durch somatische Mutationen signifikant betroffener Protein-Protein-Komplex identifiziert werden, was erste Hinweise geben könnte, dass Veränderungen der Integrin-Proteine zu einer gestörten Fokal Adhäsion führen, und so an der

Tumorprogression von Nicht-kleinzelligen Bronchialkarzinomen beteiligt sein könnten.

5.6. Stratifizierung der Mutationsprofile der einzelnen Xenografts nach der Sensitivität gegenüber den eingesetzten Chemotherapien

Neben der chirurgischen Entfernung gehört die Chemotherapie zu den wichtigsten Behandlungsformen bei Tumorerkrankungen. Das Ansprechen der derzeitig eingesetzten Chemotherapien bei fortgeschrittenem Nicht-kleinzelligen Bronchialkarzinom liegt bei 20-50%. Sowohl intrinsische als auch erworbene Resistenzen limitieren den Therapieerfolg [184]. Für die in dieser Arbeit durchgeführten Analysen wurden die 23 Patienten-abgeleiteten, generierten Xenograft-Mausmodelle mit sechs unterschiedlichen Medikamenten (Carboplatin, Paclitaxel, Gemcitabin, Etoposid, Cetuximab und Erlotinib) behandelt und jeweils nach ihrem Ansprechen auf die Therapie als sensitiv und resistent klassifiziert. In diesem Sinne wurden die generierten Mutationsdaten der 23 Xenografts stratifiziert, und die betroffenen Gene mit somatischen Mutationen als auch mit Keimbahnmutationen, die in mindestens zwei resistenten Xenografts auftraten, für weitere Analysen mit berücksichtigt.

5.6.1. Carboplatin

Die Platinverbindungen Carboplatin und Cisplatin gehören derzeit zu den am häufigsten angewandten Chemotherapien in der Behandlung maligner Tumore einschließlich des Nicht-kleinzelligen Bronchialkarzinoms. Die Zytotoxität wird durch die Interaktion mit der DNA und die Ausbildung von DNA-Addukten vermittelt, durch die Signalwege wie z.B. *ATR*, *p53*, *p73* und *MAPK-*Wege aktiviert werden, und die Apoptose eingeleitet wird. Derzeit konnten unterschiedliche Mechanismen identifiziert werden, die mit einer Resistenz gegenüber Cis- bzw. Carboplatin assoziiert werden. Dazu gehören der Verlust zur Erkennung von Schädigungen, Überexpression von Her2/neu, die Aktivierung des Pl3/Akt Signalwegs, der Verlust der p53 Aktivität, die Überexpression des antiapoptotischen Faktors *Bcl-2* sowie eine Beeinträchtigung der Caspase Aktivität [216]. Um die molekularen Grundlagen, die mit einer Resistenz gegenüber Cisplatin/Carboplatin einhergehen, näher zu untersuchen, wurde anhand von 23 Patienten-abgeleiteten Xenografts die Sensitivität gegenüber

Carboplatin untersucht, und das Mutationsprofil zwischen den sensitiven und resistenten Xenografts analysiert.

In der Gruppe der resistenten Xenografts konnten 138 somatische Mutationen in 65 betroffenen Genen, und 43 Keimbahnmutationen in 29 Genen, die in mindestens zwei resistenten Xenografts auftraten, identifiziert werden. Bei den Untersuchungen im Hinblick auf Resistenzmechanismen wurden auch Keimbahnmutationen mit einbezogen, da, wie bereits in der Einleitung beschrieben, anhand von zahlreichen epidemiologischen Studien gezeigt werden konnte, dass eine genetische Prädisposition, bedingt durch selten auftretende Keimbahnmutationen in den Tumorsuppressorgenen TP53 und RB1 sowie im Onkogen EGFR, mit einem erhöhten Bronchialkarzinom-Risiko assoziiert ist [137, 138, 217]. Zudem zeigte die Arbeit von Ng et al. eindrucksvoll, dass Keimbahnveränderungen auch einen Einfluss auf das Ansprechen einer Therapie haben können. Hierbei wurde eine Keimbahndeletion in der intronischen Seguenz des proapoptotischen Gens BIM (BCL2-like 11) in Patienten mit Nichtkleinzelligen Bronchialkarzinomen und Chronischer Myeloischer Leukämie identifiziert. Diese Deletion resultiert in der Expression einer BIM-Isoform, die keine proapoptotische BCL2 - Homologie Domäne (BH3) mehr besitzt, die jedoch für die Einleitung des Apoptoseprozesses erforderlich ist, und so die Resistenz gegenüber dem EGFR Inhibitor Erlotinib vermittelt [189]. Basierend auf diesen Ergebnissen wurden die Keimbahnmutationen ebenfalls in Mutationsanalysen der Xenograft-Modelle mit einbezogen.

Mit den selektionierten Genkandidaten wurden Signalweganalysen durchgeführt, um einen ersten Einblick in die biologische Relevanz der somatischen Mutationen zu bekommen. Hierbei zeigte sich, dass der p21-aktivierende Signalweg (PAK-Signalweg) signifikant durch somatische Mutationen betroffen ist. Innerhalb dieses Signalwegs wurden sieben Gene mit insgesamt 18 somatischen Mutationen in acht resistenten Xenografts (67%) identifiziert. Die Regulierung des PAK-Signalwegs erfolgt vorwiegend über die PAK-Proteine (p21-aktivierende Proteinkinasen). Die PAK-Proteine gehören zur Familie der Serin-Threonin Kinasen und beeinflussen so die Regulierung der Zytoskelett-Dynamik, das Zellüberleben und die Proliferation. Sie fungieren ebenfalls u. a. als Effektoren der Rac- und CDC42-Proteine, die zur Gruppe der Rho GTPasen gehören [190] und die mit der Zytoskelett-Reorganisation, Motilität und auch der Produktion von reaktiven Sauerstoffspezien (ROS) assoziiert werden [218, 219]. Von den PAK-Proteine sind derzeit sechs Isoformen (Pak1-Pak6) in der Literatur beschrieben worden [221]. Interessanterweise konnte eine Überexpession des

PAK1 Gens bereits mit dem Bronchialkarzinom assoziiert werden [222]. Die Ergebnisse einer weiteren Studie konnten zeigen, dass eine konstitutive Aktivität von PAK2 (vermittelt über die GTPasen CDC42 und RAC) zu einem verankerungsunabhängigen Wachstum führt und mit einer Resistenz der Brusttumorzellline (Hs578T) gegenüber einer Cisplatinbehandlung einhergeht. Die erhöhte PAK2 Aktivität wird mit einer reprimierten Caspase 3 Aktivität, und somit einer verringerten Apoptose, assoziiert [223]. Damit scheinen die PAK-Proteine Einfluss auf intrinsische Resistenzmechanismen zu haben.

Im nächsten Schritt wurde anhand der resistenzspezifischen Genkandidaten innerhalb des Programms Ingenuity Variant Analysis ein biologischer Kontext "Chemoresistenz in Lungentumor-Zelllinien" gesetzt, und die entsprechenden Gene selektioniert. Hierbei konnten 16 Gene selektioniert werden, die maßgeblich an der Entwicklung humaner Zellen sowie an der Transformation beteiligt sind. Innerhalb dieser Gene wurde das Tumorsuppressorgen RB1, eines der Hauptregulatoren des Zellzyklus, identifiziert, das in drei resistenten Xenografts mit je einer somatischen Mutation auftrat. Zwei der identifizierten somatischen Mutationen sind im N-terminalen Bereich des Proteins lokalisiert und eine Mutation wurde innerhalb der LXCXE Bindesequenz lokalisiert [192]. RB1 ist in vielen Tumoren und in etwa 90% der Nicht-kleinzelligen Bronchialkarzinome inaktiv [191]. In Bezug auf die Resistenz in Carboplatinbehandelten Tumoren konnte gezeigt werden, dass die Transfektion von RB1 in RB1-defiziente Zellen die G1 Kontrolle während der Chemotherapie verstärkt. Die Transfektion von RB1 in RB1-definziente NSCLC-Zellen oder SCLC-Zellen erhöht die Resistenz gegenüber Cisplatin oder resultiert während der Behandlung in einer erhöhten Resistenz [191, 224]. Des Weiteren waren die Ansprechraten gegenüber einer Chemotherapie (Cisplatin kombiniert mit Gemcitabin, Etoposid oder mit Mitomycin-C plus Ifosfamid) signifikant geringer in RB1 positiven Tumoren als in RB1 negativen Tumoren, während die Überlebensrate in beiden Tumorentitäten nicht mit der RB1 Expression korrelierte [225]. Diese Ergebnisse sind aber nicht einheitlich, so zeigte eine andere Studie, dass die Expression von RB1 in Patienten-abgeleiteten Zelllinien eines NSCLC und SCLC in vitro nicht mit einer Chemotherapieresistenz oder mit dem Überleben der Patienten korrelieren [224]. Anhand von IHC-(Immunhistochemie)-Studien konnte eine RB1 Expression in 38% unbehandelten NSCLC Tumoren und 10% in SCLC Tumoren identifiziert werden [225]. Die Daten der hier vorliegenden Arbeit deuten jedoch auf einen Einfluss von mutierten Rb-Proteinen auf eine intrinsische Resistenz gegenüber den Platinum-Verbindungen hin. Dies sollte jedoch in weiteren funktionellen Analysen, wie beispielsweise Proliferationsexperimenten, insbesondere unter Einfügen der entsprechenden Mutationen, detaillierter untersucht werden.

Im Rahmen der vorliegenden Arbeit wurden die betroffenen Gene ATM, BMI1 und MAML2, in denen ebenfalls somatische Mutationen identifiziert wurden, näher funktionell charakterisiert. Dafür wurden die Cisplatin-sensitiven Zellen A549 mit den entsprechenden siRNA Molekülen behandelt und Proliferationsrate während der Cisplatinbehandlung analysiert. Alle drei Experimente zeigten nach einer 24- stündigen Cisplatinbehandlung ein signifikant höheres Zellüberleben als die entsprechenden Kontrollen. Dies deutet auf eine Beteiligung an intrinsischen Resistenzmechanismen hin. ATM ist eine Proteinkinase, die an der Regulation der Zellantwort auf DNA-Schädigungen (DNA-Reparatur) beteiligt ist, indem sie eine Anzahl von Proteinen wie z.B. H2AX (H2A histon family, member X), MDC1 (mediator of DNA-damage checkpoint 1), Rad50 (RAD50 Homolog), Mbs1 (Moebius Syndrom 1), Chk2 (checkpoint kinase 2), p53 und MDM2 (MDM2 oncogen, E3 ubiquitin protein ligase), rekrutiert und phosphoryliert, die in Zell-Reparaturmechanismen, sowie in die Zellzyklus-Regulation und den programmierten Zelltod involviert sind [226-231]. Innerhalb der Mutationsanalysen konnten zwei somatische Mutationen in zwei resistenten Xenografts (Pat-ID: 7466 (p.I1343T) und 7198 (p.F2779C)) identifiziert werden. Die Behandlung mit Cisplatin führt in sensitiven Zellen u. a. zu einer Aktivierung der ATR-Kinase, die mit ATM in einem Komplex vorliegt, und die in Folge des genotoxischen Stresses TP53 am Serin-15 phosphoryliert und so die apoptotische Signalkaskade aktiviert [232-234]. Mutationen in ATM können damit den ATM/ATR-Komplex stören und zu einer Chemoresistenz führen.

Die Proliferationsexperimente dieser Arbeit zeigten auch ein erhöhtes Zellüberleben bei siRNA Behandlung BMI1 einer gegen unter Cisplatinbehandlung im Vergleich zur Kontrolle. BMI1 gehört zu den Polycomb-Proteinen, diese fungieren vorwiegend als Repressoren der Homeobox-Gene während der Entwicklung [235]. BMI1 wurde in einigen Tumorentitäten mit einer erhöhten Protein-Menge identifiziert und ist an der Zell-Zyklus Kontrolle sowie der Zellregeneration von Gewebe durch Stammzellen beteiligt [236]. Innerhalb dieser Arbeit wurden zwei somatische Mutationen innerhalb des BMI1 Gens in zwei resistenten Xenografts (Pat-ID: 7336 (p.D119Y), 7462 (p.S396F)) identifiziert. Die Expressionsdaten zeigten für diese beiden resistenten Xenografts, in denen eine somatische Mutation identifiziert wurde. eine erhöhte BMI1-Menge. Interessanterweise zeigte eine kürzlich erschienene Studie in etablierten, gegenüber Cisplatin resistenten A549 Lungentumor- Stammzellen, eine erhöhte *BMI1* mRNA-Menge, die mit einer verringerten Sensitivität assoziiert wurde. Die Behandlung der Zellen mit shRNA gegen *BMI1* führte zu einer Reduzierung der Zellproliferation und Tumorformation *in vitro* und *in vivo*, und resultierte folglich in einer erhöhten Sensitivität gegenüber Cisplatin [237]. Ähnliche Ergebnisse konnten im Rahmen dieser Arbeit erzielt werden. Die Mutationen in *BMI1* könnten damit für die Therapieresistenz der Xenografts verantwortlich sein.

Des Weiteren wurde MAML2 in funktionellen Experimenten näher untersucht. Hierbei konnte ebenfalls in den siRNA behandelten Zellen mit anschließender Cisplatin-Behandlung ein signifikant erhöhtes Zellüberleben identifiziert werden. Hierbei wurden zwei somatische Mutationen in zwei resistenten Xenografts (Pat-ID: 7177 (c.G2.456T), 7336 (p.G145R)) identifiziert. MAML2 gehört zur Familie der Mastermind-like Proteine und fungiert unter anderem als Koaktivator der Notch-vermittelten Transkription [238]. Bisher wurden zahlreiche Studien veröffentlicht, die auf eine mögliche Rolle des NOTCH-Signalwegs in Bezug auf eine Chemoresistenz hinweisen und u. a. postulieren, dass der NOTCH-Signalweg an der Formation von Tumorstammzellen beteiligt ist. Er scheint auch eine Rolle bei der epithelialen-mesenchymalen Transformation zu spielen, die eine essentielle Rolle bei der Anti-Tumorwirkung von Chemotherapien hat [239-241]. Diesbezüglich zeigte eine weitere Studie eine Korrelation zwischen einer Gemcitabinresistenz bei Pankreastumorzellen, die anhand von morphologischen genetischen Markern einen epithelialen-mesenchymalen Phänotyp aufwiesen und durch die Reprimierung des NOTCH-Signalwegs zu einem mesenchymalen-epithelialen Phänotyp revertierten [242, 243].

Ähnliches wurde für Hals-und Kopf-Plattenepithelkarzinomzellen beschrieben, die eine erhöhte NOTCH-1 Expression zeigten, die eine negative Korrelation mit einer Cisplatinsensitivität aufzeigten [244, 245]. Die bisherigen Daten zeigten sehr eindrucksvoll eine Assoziation zwischen der Aktivität des NOTCH-Signalwegs und der Chemoresistenz. Somit könnten eventuell die in dieser Arbeit identifizierten somatischen Mutationen des MAML2 Gens, die beide auf Grund von bioinformatischen Vorhersagen mit einer veränderten Proteinstruktur bzw. mit einem Funktionsverlust einhergehen, mit einer veränderten NOTCH Aktivität assoziiert werden, die wiederum einen Einfluss auf den intrinsischen Resistenzmechanismus für Cisplatin bzw. Carboplatin haben könnten. Eine Möglichkeit zur Klärung dieser Fragestellung wären funktionelle

Promotoranalysen unter Verwendung generierter DNA-Konstrukt des *MAML2* Gens mit der entsprechenden nicht-synonymen Mutation, sowie die Überprüfung, ob die *MAML2* Mutation innerhalb der Spleiß-Region zu einer veränderten Isoform führt und diese eine veränderte Aktivität des NOTCH-Signalwegs zur Folge hat.

Für die Keimbahnmutationen wurde der WNT-Signalweg in 58% der resistenten Xenografts identifiziert. Hierbei konnte interessanterweise das Gen Wnt8 mit der bereits in der dbSNP-Datenbank annotierten Keimbahnmutation rs3793371, die mit einer veränderten Proteinfunktion assoziiert wurde, in insgesamt fünf resistenten Tumoren identifiziert werden. Es konnte bisher noch kein Hinweis erbracht werden, dass dieses Gen im Zusammenhang mit einer Cisplatinresistenz in Nicht-kleinzelligen Bronchialkarzinomen steht. Es stellt möglicherweise einen interessanten Kandidaten dar und sollte in einer größeren Patientenkohorte analysiert werden. Erste Hinweise auf eine Rolle des WNT-Signalwegs bei Chemoresistenzen ergab eine Studie, in der anhand einer etablierten Cisplatinresistenten Zelllinie (Cal27) eines Hals-und Kopftumors eine verringerte Expression des WNT-Signalwegs-Inhibitors DKK1 (Dickkopf WNT Signaling Pathway Inhibitor 1) im Vergleich zur sensitiven Zelllinie (Cal27) identifiziert werden konnte, die wiederum durch eine transiente Überexpression des DKK1 Gens in der resistenten Zelllinie partiell aufgehoben werden konnte [246].

Zusammenfassend demonstrieren die Ergebnisse, dass intrinsische Resistenzmechanismen komplexen, biologischen Prozessen unterliegen und unter anderem somatische- aber auch Keimbahnmutationen diese beeinflussen. Zudem konnten einige Gene identifiziert werden, die bereits in der Literatur Hinweise auf eine Beteiligung bei der Ausbildung von Cisplatinresistenzen geben. Es konnten aber auch Genkandidaten aufgedeckt werden, die bisher noch nicht mit einer intrinsischen Resistenz gegenüber Cisplatin bzw. Carboplatin in Nicht-kleinzellige Bronchialkarzinome beschrieben worden sind, und die in weiteren Experimenten untersucht werden sollten.

5.6.2. Gemcitabin

Gemcitabin wird vorwiegend im Rahmen einer Erstlinientherapie in Kombination mit platinumbasierten Chemotherapien zur Behandlung des fortgeschrittenen Nicht-kleinzelligen Bronchialkarzinoms eingesetzt. Aufgrund seiner hydrophilen Eigenschaften diffundiert Gemcitabin nicht in die Zelle, sondern wird über Transportermoleküle in die Zelle transportiert, wo es anschließend über mehrere

Phosphorylierungskaskaden in die aktive Form Gemcitabin-Triphosphat umgewandelt wird und die DNA-Synthese inhibiert [25]. Bisher konnte gezeigt werden, dass die transkriptionelle Aktivität und Polymorphismen in proteinkodierenden Genen, die am Wirkmechanismus von Gemcitabin und der DNA-Reparatur beteiligt sind, mit der Sensitivität gegenüber Gemcitabin korrelieren [247, 248]. Unter anderem zeigten immunhistochemische Analysen, dass *TP53* exprimierende Tumore eine signifikant geringere Sensitivität gegenüber Gemcitabin aufweisen als *TP53* negative Tumore [249]. Weitere Studien konnten Polymorphismen innerhalb des Cytidindeaminase Gens identifizieren, die die Pharmakokinetik, die Toxizität und die klinische Ansprechrate gegenüber Gemcitabin beeinflussen [250, 251]. Um mehr Einblick in die molekularen Veränderungen zu erhalten, wurden die generierten Mutationsdaten der Gemcitabin-behandelten Xenografts näher analysiert.

Anhand der Mutationsanalyse konnten 74 somatische Mutationen in 41 betroffenen Genen und 46 Keimbahnmutationen in 25 Genen identifiziert werden, die in mindestens zwei resistenten Xenografts auftraten. Die anschließende Signalweganalyse ergab, dass der FGFR-Signalweg (fibroblast growth factor receptor) signifikant häufig durch somatische Mutationen betroffen ist. Hierbei wurden die relevanten Gene (SPRY2, PRKAR1A, BTC und PTEN) in insgesamt 50% der resistenten Xenografts identifiziert. Der FGFR-Signalweg ist an grundlegenden Entwicklungsprozessen, einschließlich der Angiogenese und der Wundheilung, beteiligt. Die FGF-Rezeptoren werden in unterschiedlichen Zellen exprimiert und regulieren hierbei Prozesse wie Proliferation, Differenzierung und Zellüberleben [252]. In der Literatur ist ein Zusammenhang zwischen dem FGFR-Signalweg und einer Gemcitabinresistenz bisher nicht beschrieben. Somit konnte innerhalb dieser Arbeit erstmalig gezeigt werden, dass der FGFR-Signalweg einen Einfluss auf die Resistenz gegenüber Gemcitabine haben könnte. Diesbezüglich sollte der Einfluss der innerhalb des Signalwegs vorliegenden somatischen Mutationen auf die Gemcitabinresistenz genauer untersucht werden. Derzeit werden auch unterschiedliche FGFR Inhibitoren und ihre entsprechende Anti-Tumorwirkung in unterschiedlichen Tumorentitäten evaluiert. Ein Beispiel hierzu ist der FGFR Inhibitor AZD4547, ein Tyrosinkinase Inhibitor gegen FGFR1-3, der in Zelllinien unterschiedlicher Tumorentitäten (z.B. Myelom und Brusttumor) mit einer deregulierten FGFR Expression, zu einer verringerten Zellproliferation führte, und dessen Anti-Tumorwirkung in weiteren Studien erprobt wird [253]. Zudem erwies sich der monoklonale Antikörper R3Mab gegen FGFR3 in Mausmodellen des Blasenkarzinoms und des multiplen Myeloms als

sehr effektiv [254]. Eine weitere mögliche Strategie wäre zu überprüfen, ob die neu entwickelten FGFR Inhibitoren die Gemcitabin-Resistenz aufheben können.

Innerhalb der Signalweganalyse wurde ebenfalls der EGFR-Signalweg (epidermal growth factor receptor) identifiziert. Interessanterweise ist dieser Signalweg durch die gleichen Gene betroffen wie der FGFR-Signalweg, die somit aufgrund ihrer multifunktionalen Regulation unterschiedlicher Signalkaskaden von besonderem Interesse sein könnten. In dieser Richtung konnte in vorangegangenen Studien bisher keine Korrelation zwischen einer aktivierenden EGFR Mutation oder veränderten EGFR Expression und einer Gemcitabin-Behandlung aufgezeigt werden [255, 256]. Auch konnte anhand der Ergebnisse kein Zusammenhang zwischen einer aktivierenden Mutation bzw. einer Überexpression des EGFR mit einer Resistenz gegenüber Gemcitabin aufgezeigt werden. Dennoch geben die Analysen einen Hinweis darauf, dass eventuell Koregulatoren untergeordneter Signalkaskaden des EGFR mit einer intrinsischen Resistenz assoziiert sein könnten.

Anhand des festgelegten biologischen Kontexts "Chemoresistenz Lungentumorzelllinien" wurden 10 Gene selektioniert, die maßgeblich an der Proliferation maligner Zellen sowie der Kolonisierung von Metastasen beteiligt sind. Hierbei wurde das Protoonkogen RET, das in zwei resistenten Xenografts (20%) mit zwei somatischen Mutationen (Pat-ID: 7506 (p.R313Q), 7913 (p.V1.095l)) auftrat, identifiziert. RET kodiert für eine Rezeptor-Tyrosinkinase und gehört zur Gruppe der Cadherin Superfamilie, die u. a. an der Signalweitergabe von Wachstumssignalen beteiligt ist. In Nicht-kleinzelligen Bronchialkarzinomen ist RET vorwiegend durch genomische Reorganissationen betroffen. Wie bereits in der Einleitung beschrieben, wurden in ersten in vitro Analysen eine vielversprechende Anti-Tumorwirkung unterschiedlicher Kinase Inhibitoren bei Vorliegen einer RET-Fusion gezeigt [116-118].

Zur funktionellen Validierung in Zellproliferationsexperimenten wurden siRNAs gegen *RET* verwendet. Hierbei zeigten die mit siRNAs gegen *RET* behandelten Zellen mit anschließender Gemcitabin-Behandlung nach 24h bzw. 48h ein erhöhtes Zellüberleben. Dies ist jedoch nur als Tendenz zu werten, da die mit siRNA behandelten Zellen ohne Gemcitabin-Behandlung bereits ein verringertes Zellwachstum zeigten. *RET* wurde bisher noch nicht mit einer Gemcitabin-Resistenz assoziiert. Innerhalb dieser Arbeit konnte möglicherweise ein erster Hinweis erbracht werden, dass somatische Mutationen des *RET* Gens potentiell an intrinsischen Resistenzmechanismen für Gemcitabin beteiligt sein könnte.

Weiterhin gilt zu klären, welche Auswirkung die somatischen Mutationen auf die Zellproliferation, unter Gemcitabinbehandlung sowie unter dem Einfluss der RET Inhibitoren, haben.

5.6.3. Paclitaxel

Paclitaxel gehört zur Gruppe der Taxane und inhibiert die Zellteilung in der Metaphase durch die Bindung an die β-Untereinheit von Tubulin und einer damit verbundenen Inhibierung des Mikrotubulus Aufbaus [28]. Es konnten einige Faktoren identifiziert werden, die mit einer deutlichen Sensitivität bzw. Resistenz gegenüber antimitotischen Wirkstoffen assoziiert sind [257]. Diesbezüglich wurde in zahlreichen, gegenüber antimitotischen Wirkstoffen resistenten Tumoren, eine Überexpression des Transportproteins ABC-Transporter (ATP-Binde Kassette) gefunden, die mit einer Abnahme der intrazellulären Wirkstoffkonzentration einhergeht und maßgeblich an der Etablierung einer Kreuzresistenz (Multi-Wirkstoff-Resistenz (MDR)) gegenüber Wirkstoffen mit unterschiedlicher Struktur (z.B. Paclitaxel) beteiligt ist [258, 259]. Zusätzlich konnten ebenfalls einige Resistenzmechanismen intrinsische aufgedeckt werden, die Mikrotubulus-Bildung verbunden sind [258]. Hierzu wurden zahlreiche Analysen an der Paclitaxel resistenten Lungentumorzelllinie A549 durchgeführt die zeigten, dass diese Zelllinie eine erhöhte Proteinexpression der Isoform ßIII-Tubulin aufweist, die mit einer gesteigerten Mikrotubulus-Dynamik einhergeht, die ursächlich verantwortlich für eine Resistenz sein könnte. Zusätzlich weist die A549 Zelllinien eine heterozygote Punktmutation in der Protein kodierenden Sequenz von α-Tubulin auf, die als putative Bindestelle für Interaktionen mit dem Mikrotubulus destabilisierenden Protein Stathmin und dem stabilisierenden Protein MAP4 (mictotubule-associated protein 4) identifiziert wurde [260-262].

Um weitere Einblicke in die molekularen Grundlagen der Paclitaxel-Resistenten Xenografts zu bekommen, wurden für die Mutationsanalysen, basierend auf der Sensitivitätstestung, 15 Xenografts eingesetzt, die sensitiv und sechs, die resistent gegenüber Paclitaxel waren. Die geringe Anzahl der resistenten Xenografts bestätigt ein gutes Ansprechen von Bronchialkarzinomen auf Paclitaxel. Hierbei konnten 18 somatische Mutationen in zehn betroffenen Genen und fünf Keimbahnmutationen in vier Genen identifiziert werden, die in mindestens zwei resistenten Xenografts auftraten. Anhand der geringen Anzahl der Genkandidaten wurde keine Signalweganalyse durchgeführt. Interessanterweise konnte eine somatische Mutation (p.L885P) innerhalb des

LAMC1 (laminin, gamma 1) Gens in 50% der resistenten Xenografts (Pat-IDs: 7198, 7187, 7166) identifiziert werden. LAMC1 ist ein Glykoprotein der extrazellulären Matrix, das u. a. an der Regulation der Zellkommunikation wie Zell-Adhäsion und Zellmigration beteiligt ist. In der Literatur wurde bisher kein Zusammenhang zwischen den Gykoproteinen der Laminin-Familie mit einer Paclitaxelresistenz beschrieben. In der Arbeit von Mutlu et al. 2012 wurde erstmalig gezeigt, dass LAMC1 an einer Chemoresistenz gegen Melphalan beteiligt sein könnte [263]. Anhand der hier beschriebenen Ergebnisse könnte weiterhin vermutet werden, dass nicht nur P-Gylokoproteine, wie z.B. der ATP-Transporter, eine Resistenz gegenüber Paclitaxel vermitteln können, sondern eventuell auch Glykoproteine der Laminin-Familie, und dass die identifizierten somatischen Mutationen des LAMC1 Gens Ursache für eine intrinsische Resistenz sein könnten.

5.6.4. Cetuximab

Cetuximab ist ein monoklonaler Antikörper, der an die extrazelluläre Domäne III des *EGFR* bindet, die Ligand-Binde-Domäne partiell blockiert und so die sterisch korrekte Konformationsänderung der Homo- bzw. Heterodimerisierung des Rezeptors inhibiert [36]. Cetuximab blockiert nicht nur die Bindung des Liganden und die Dimerisierung, sondern inhibiert ebenfalls die Phosphorylierung der untergeordneten Signalkaskaden, fördert die *EGFR* Internalisierung und reduziert so die Zellproliferation in malignen Tumoren unterschiedlicher Tumorentitäten [264, 265].

Cetuximab wird sowohl in der Monotherapie als auch in Kombinationen mit einer Chemo- bzw. Strahlentherapie in metastasierenden Kolorektalkarzinomen sowie auch in Hals-Kopfkarzinomen eingesetzt [37]. Zudem wurde Cetuximab ebenfalls in zahlreichen klinischen Studien der Phase II des fortgeschrittenen Nichtkleinzelligen Bronchialkarzinoms evaluiert mit dem Ergebnis einer Verbesserung der Ansprechrate und der Überlebensrate [40, 41]. Allerdings konnte keine Korrelation der verbesserten Anti-Tumorwirkung mit einer aktivierenden Mutation des *EGFR* sowie des *KRAS* Gens beobachtet werden [45-48]. Wie bereits erläutert, konnte innerhalb dieser Arbeit keine somatische Mutation innerhalb des *EGFR* Gens identifiziert werden. Es konnten aber somatische Mutationen des *KRAS* Gens in sechs Xenografts detektiert werden, von denen vier Xenografts sensitiv und zwei Xenografts resistent gegenüber Cetuximab waren. Hier muss in weiteren funktionellen Experimenten geklärt werden, welche Auswirkung die Mutationen auf die Funktion von *KRAS* haben.

Diesbezüglich wurden ebenfalls Mutationsanalysen durchgeführt, um Genkandidaten zu identifizieren, die möglicherweise mit einer intrinsischen Resistenz gegenüber Cetuximab assoziiert sein könnten. Anhand der Mutationsanalysen konnten insgesamt 207 somatische Mutationen in 110 betroffenen Genen und 132 Keimbahnmutationen in 80 Genen identifiziert werden. Die anschließende Signalweganalyse ergab, dass der FAK-Signalweg (focal adhesion kinase) signifikant durch somatische Mutationen betroffen ist. Innerhalb dieses Signalweges wurden sieben Gene mit insgesamt 20 somatischen Mutationen in 11 resistenten Xenografts (79%) identifiziert. Wie bereits in Abschnitt 5.5.2 erwähnt, nimmt der FAK-Signalweg eine essentielle Rolle in Prozessen wie Proliferation und Zell-Adhäsion ein und wird u. a. über Proteine der Integrin Familie aktiviert. In der Literatur ist der FAK-Signalweg bisher nicht mit einer Cetuximab-Resistenz assoziiert worden. Allerdings konnte in einer Arbeit von Nakahara et al. 2003, anhand einer etablierten Cisplatinresistenten Hals-und Kopftumorzelllinie (HSC-2), gezeigt werden, dass eine Modifizierung der Oligosachharide des Integrin-Proteins α5β1-Integrin mit einer Resistenz gegenüber Cisplatin einhergeht. Zudem konnte eine erhöhte Phosphorylierung der Fokal Adhäsion Kinase durch das Protein α5β1-Integrin identifiziert werden. Durch Zugabe eines Antikörpers gegen α5β1-Integrin konnte die Sensitivität gegenüber Cisplatin erhöht werden [266]. Möglicherweise könnte dieser aufgezeigte Mechanismus auch auf eine Cetuximabresistenz übertragen werden.

Eine weitere Validierung der biologischen Relevanz der betroffenen Gene erfolgte anhand der Selektion nach dem biologischen Kontext "Chemoresistenz in Lungentumorzelllinien" innerhalb des Programms Ingenuity Variant Analysis. Anhand dieser Auswertung konnten insgesamt 20 Gene, die vorwiegend in die Zellkommunikation und Zell-Adhäsion involviert sind, identifiziert werden. Unter anderem konnte das Gen HSP90AB1 identifiziert werden, bei dem in insgesamt sechs resistenten Xenografts Mutationen vorlagen. Interessanterweise konnte diesbezüglich eine somatische Mutation innerhalb der Promotorregion, die putative Bindesequenzen für Transkriptionsfaktoren, wie z.B. NFKB1, HSF1 und SP1, enthält, in fünf resistenten Xenografts identifiziert werden. Allerdings zeigte die die Expressionsanalyse für betroffenen Xenografts keine Expressionsänderung, so dass kein Zusammenhang zwischen der Mutation und der Expression von HSP90AB1 erbracht werden konnte. Weiterhin wurden innerhalb des HGF Gens vier somatische Mutationen in vier resistenten Xenografts aufgezeigt. Eine vor kurzem erschienene Arbeit von Gusenbauer et al. 2013 zeigte, dass *HGF* aktivierend auf den EGFR-Signalweg wirkt und in humanen Tumorzelllinien mit einer Resistenz gegenüber *Tyrosinkinase* Inhibitoren assoziiert ist [267]. *HGF* ist ein Ligand, der durch seine Bindung den *Tyrosinkinase* Rezeptor *MET* aktiviert und in Tumorzellen in Prozessen wie Motilität, Invasion und Stimulation der Angiogenese involviert ist [268]. Wie bereits in der Einleitung beschrieben, wurde in zahlreichen Studien eine Assoziation zwischen der Aktivierung und Expression des Onkogens *MET* und einer Resistenz gegenüber EGFR TKIs aufgezeigt. Engelmann und Kollegen zeigten, dass in Gefitinib resistenten Lungentumorzelllinien eine *MET* Amplifkation die Blockierung des *EGFR* durch Gefitinib über eine *HER3* (*v-erb-b2* avian erythroblastic leukemia viral oncogene homolog 3)- abhängige Aktivierung des PI3K/AKT-Signalwegs aufhebt. Anders herum, konnte eine Inhibierung von *MET/HGF* in resistenten Nicht-kleinzelligen Bronchialkarzinomzelllinien die Resistenz gegenüber Gefitinib aufheben [90].

Diese Ergebnisse implizieren, dass, neben EGFR und MET, HGF ebenfalls ein essentielles therapeutisches Target sein könnte, um der Resistenz entgegenzuwirken. Ein weiterer Ansatz impliziert die Inhibierung der HSP90 Funktion, da viele mutierte Onkogene HSP90 zur Maturation und konformativen Stabilisierung benötigen. Nach einer Inhibierung von HSP90 werden diese degradiert und eine reversible Sensitivität in EGFR TKI resistenten Tumoren mit einer EGFR Mutation und MET Amplifikation induziert [194, 269, 270]. Diesbezüglich konnte in der Arbeit von Koizumi et al. 2012 in vitro und in vivo gezeigt werden, dass die Inhibierung von HSP90 zu einer reversiblen Sensitivität der Erlotinib-resistenten Lungentumorzelllinien mit einer HGF Überexpression führte [271]. Anhand der Ergebnisse aus der Literatur wäre es eine gute Strategie, zur Charakterisierung der in dieser Arbeit identifizierten somatischen Mutationen von HGF und HSP90AB1 zu überprüfen, ob eine Inhibierung von HSP90 zu einer Aufhebung der Chemotherapie-Resistenz führen würde. Die im Rahmen der Dissertation durchgeführten Proliferationsexperimente von mit siRNAs behandelten Zellen gegen HGF führten per se bereits zu einer signifikanten Verringerung der Zellzahl, so dass keine Aussage über den Effekt einer Cetuximabbehandlung getroffen werden konnte (Daten nicht gezeigt).

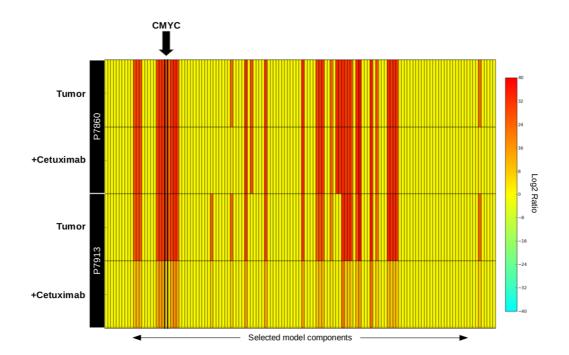
Neben *HGF* und *HSP90AB1* wurden ebenfalls *MAML2*, *CDC42BPA* und *MLL2* (*KTM2D*) in Zellproliferationsexperimenten näher charakterisiert. Dafür wurden die Cetuximab-sensitiven Zellen HCC827 mit den entsprechenden siRNA Molekülen behandelt und die Proliferationsrate während der Cetuximab-

behandlung analysiert. Die Experimente der Cetuximabbehandlung in den mit siRNAs gegen MAML2 behandelten Zellen zeigten ein signifikant höheres Zellüberleben im Vergleich zur entsprechenden Kontrolle und sind somit vermutlich an einem intrinsischen Resistenzmechanismus gegenüber Cetuximab beteiligt. MAML2 wurde ebenfalls in den Resistenz-spezifischen Genen der Carboplatin behandelten Xenografts selektioniert und zeigte bei siRNA Behandlung und anschließender Cisplatinbehandlung ebenfalls eine höhere Überlebensrate. Die Ergebnisse weisen somit auf eine mögliche Kreuzresistenz zwischen Cetuximab und den Platinum-Verbindungen hin. Wie bereits in Abschnitt 5.6.1 beschrieben fungiert MAML2 als Coaktivator des NOTCH-Signalwegs, der ebenfalls bereits bei Resistenzmechanismen beschrieben wurde. Hierbei konnte eine Überexpression des NOTCH-Rezeptors NOTCH3 mit der Pathogenese des Bronchialkarzinoms assoziiert werden und nach Inhibierung der NOTCH Aktivität durch einen y-Sekretase-Inhibitor eine antiproliferative Wirkung auf die untersuchten Lungentumorzelllinien aufgezeigt werden. Der γ-Sekretase-Komplex induziert die proteolytische Spaltung des NOTCH-Rezeptors [272].

Ebenfalls zeigten die Prolifertationsexperimente mit den siRNAs gegen CDC42BPA und einer Cetuximab Behandlung ein signifikant erhöhtes Zellüberleben im Vergleich zur Kontrolle. Die biologische Funktion von CDC42BPA ist bisher weitgehend unbekannt. So aktiviert CDC42BPA die GTPase CDC42 und ist an der Phosphorylierung von Myosin beteiligt und scheint so mit dem Prozess der Zell-Invasion assoziiert zu sein [273]. Bisher wurde CDC42BPA nicht mit einer Chemotherapie-Resistenz in Zusammenhang gebracht. Interessanterweise konnte dieses Gen ebenfalls in den Xenografts identifiziert werden, die gegenüber Gemcitabin und Paclitaxel resistent sind. Allerdings wurden keine Proliferationsexperimtente unter Verwendung der beiden Zytostatika durchgeführt und sollten deshalb weiterhin berprüft werden.

Die durchgeführten Proliferationsexperimente für *KMT2D* ergaben in den mit siRNAs behandelten Zellen mit anschließender Cetuximab Behandlung eine deutliche (aber nicht signifikante) höhere Zellüberlebensrate. *KMT2D* (*MLL2*) ist eine H3K4 Histon-Methyltransferase. Hierzu konnte in einer Arbeit von Issaeva et al. gezeigt werden, dass eine Reprimierung der *KMT2D* Expression mit einer veränderten Zell-Adhäsion und mit einem proliferativen Wachstum der Zellen einhergehen [195]. Es wurden sechs Mutationen in *KMT2D* in vier Cetuximabresistenten Xenografts identifiziert. Hierbei wurde eine Mutation des Xenografts

7198 in der Spleiß-Region (c.T2.562G) gefunden. Bei den weiteren Mutationen handelt es sich um nicht-synonyme Mutationen (Pat-ID: 7433 (p.R83Q, p.S4010P), Pat-ID: 7406 (p.P868A, p.Q2416H), Pat-ID: 7298 (p.F3497C)). Am Beispiel von KMT2D sollten nun die Mutationsdaten, die Expressionsdaten und die genomweiten Methylierungsdaten miteinander kombiniert werden, um eine biologische Interpretation treffen zu können. Unter Einbezug Expressionsdaten wurden 56 der KMT2D Targetgene in den differentiell exprimierten Genen identifiziert und die Berechnung des Quotenverhältnisses ergab einen OR (oddsratio) von 12,3 mit einem p-Wert von 9,08x10⁻¹⁵ und zeigte eine signifikante Anreicherung der Targetgene. Somit konnte anhand der Expressionsanalyse ein Hinweis erbracht werden, dass die KMT2D Mutationen eine funktionelle Relevanz besitzen, indem sie zu einer deregulierten Transktiption der KMT2D Targetgene führen. Da innerhalb der Arbeitsgruppe ebenfalls genomweite Methylierungsdaten der 23 Xenografts generiert worden sind, sollte nun anhand von ersten Analysen untersucht werden, ob die Xenografts mit einer somatischen Mutation innerhalb des KMT2D Gens mit einer differentiellen Methylierung von KMT2D oder seiner Targetgene assoziiert werden können. Dazu wurde mit den RPM-Werten (sequenzierte Fragmente pro Million) das Verhältnis der Methylierung zwischen den Xenografts mit somatische und ohne somatische Mutationen berechnet und visualisiert. Basierend auf den Ergebnissen konnten einige Targetgene sowie auch KMT2D selbst identifiziert werden. Dies würde bedeuten, dass die KMT2D Mutationen zu einer veränderten DNA-Methylierung und ggf. zu einer veränderten Genexpression führen. Allerdings müssen die Daten noch gründlicher analysiert werden, um zu einer eindeutigen Aussage kommen zu können. Da anhand zahlreicher Literaturhinweise bereits gezeigt werden konnte, dass die differentielle Methylierung einen maßgeblichen Einfluss auf das Therapieansprechen sowie auf Resistenzmechanismen unterschiedlicher Chemotherapien hat, sollte es das weitere Vorgehen innerhalb des PREDICT/EPITREAT-Konsortiums sein, die Daten nach dem Therapieansprechen zu stratifizieren und mit den anderen generierten Datansätzen zu komplementieren [274].


Anhand der Mutationsanalysen konnten zahlreiche Genkandidaten identifiziert werden, die einen Einfluss auf das Therapieansprechen der Zytostatika Carboplatin, Gemcitabin und Paclitaxel sowie auf den EGFR Inhibitor Cetuximab haben könnten und die in weiteren Analysen näher charakterisiert werden sollten. Zudem konnten anhand der funktionellen Experimente erste Hinweise auf eine biologische Relevanz einiger ausgewählter Genkandidaten aufgezeigt werden.

Weitere funktionelle Analysen sollen im Anschluss an diese Arbeit durchgeführt werden. Insbesondere sollen die identifizierten Mutationen in die entsprechenden Gene eingefügt werden, um so den Einfluss der Mutationen direkt auf das Therapieansprechen zu charakterisieren.

5.7. Erster Versuch eines systembiologischen Ansatzes zur Voraussage der Wirkung von Cetuximab

Ein Hauptziel der medizinisch-onkologischen Systembiologie ist es, das individuelle Ansprechen eines Patienten, unter Berücksichtigung der zugrunde liegenden biologischen Netwerke, vorherzusagen. Die präklinische Phase ist hierbei entscheidend, da hier durch gezielte Experimente eingegriffen und somit eine Modellierung ermöglicht werden kann, um späteren Ausfällen von Wirkstoffen besser vorbeugen zu können. Dazu wurden innerhalb des PREDICT-Projektes und zusammen mit der Firma ALACRIS die generierten Datensätze (Mutationsdaten, Protein-Array-Daten und Transkriptom-Daten) in einem mathematischen Computermodell implementiert (Pybios). In diesem Computermodell sind bereits relevante Krebsnetzwerke annotiert, die die wesentlichen Kennzeichen von Tumorerkrankungen beinhaltet. Das gesamte Netzwerk umfasst ca. 770 Modellierungskomponten, die durch 1900 Reaktionen miteinander verbunden sind. Erste Ergebnisse der Modellierungen ergaben eine gute Übereinstimmung mit den klinischen Daten der Patienten-abgeleiteten Xenografts. In der Abbildung 51 ist als Beispiel die Modellierung der in dieser Arbeit durchgeführten Gesamt-Exom-Sequenzierungen dargestellt worden (Pat:7860; 7913). Dabei wurden die Tumore ohne und mit Cetuximab-Therapie abgebildet.

Die Ergebnisse Modellierungen dass die einzelnen der zeigen, Modellkomponenten (tumorrelevante Wachstumsfaktoren) in beiden Xenografts im unbehandelten Zustand signifikant hochreguliert sind. Nach einer entsprechenden Cetuximabbehandlung der Tumore konnte für das Xenograft 7860 keine Reduzierung der proliferativen Marker verzeichnet werden, wohingegen das Xenograft 7913 eine deutlich geringere Aktivität der proliferativen Marker aufzeigt. Tatsächlich stimmte die am Computer simulierte von Cetuximab mit experimentellen Wirkung den Ergebnissen Senstivitätstestung der beiden Xenografts überein. Das Xenograft des Patienten 7860 war resistent gegenüber Cetuximab und das Xenograft des Patienten 7913 sensitiv.

Abbidlung 51: *PyBios* Tumormodell vor und nach der Behandlung mit Cetuximab für einen sensitiven Tumor (Pat-ID 7913) und einen resistenten Tumor (Pat-ID 7860). Integration unterschiedlicher Datensätze (Mutationsdaten, Protein-Array Daten und Transkriptom-Daten). Die oberen zwei Reihen re-präsentieren den resistenten Tumor (7860) vor (Reihe 1) und nach der Behandlung (Reihe 2). Die unteren beiden Reihen re-präsentieren den sensitiven Tumor (7913) vor (Reihe 3) und nach der entsprechenden Behandlung (Reihe 4). Jede Spalte repräsentiert ein Gen und die roten Spalten indizieren einen deutlichen Unterschied zum korrespondierenden Normalgewebe.

6. Ausblick

Die Ergebnisse dieser Arbeit zeigen, welchen komplexen genetischen Veränderungen die Chemosensitivität unterliegt. Diese komplexen Mechanismen können möglicherweise anhand von Computermodellen, wie z.B. dem PyBios-Modell, erfasst werden. Die Modellierung in dem PyBios-System soll auf alle Xenograft-Modelle ausgedehnt werden. Im Anschluss daran, kann entschieden werden, ob das Computersystem weiter ausgebaut werden muss, oder ob es für klinische Studien in einem größeren Rahmen verwendet werden kann. Für die Chemotherapie-Resistenz spielen einerseits somatische Mutationen aber auch die genetische Prädisposition der Patienten eine essentielle Rolle. Hierzu wird, im Anschluss an diese Arbeit, die biologische Relevanz der identifizierten Genkandidaten anhand von funktionellen Experimenten, insbesondere unter Einbezug der Mutationen in den entsprechenden Genen, analysiert und die Mutationsanalyse auf weitere Patienten ausgedehnt werden. Weiterhin wurden im Rahmen der Arbeit die somatischen Kopienzahlvarianten berechnet. Hierbei konnte anhand von ersten Analysen die Validität der Daten bestätigt werden, und im Anschluss an die Arbeit, ebenfalls auf das Therapieansprechen hin analysiert werden. Hierzu zeigte eine Arbeit von Jia et al. 2013 ein vermehrtes Auftreten von Veränderungen der Kopienzahl in resistenten Lungentumorzelllinien gegenüber dem EGFR Inhibitor Erlotinib [275]. Dieser Aspekt sollte weiter verfolgt werden, indem die Anzahl, aber auch die Lokalisation der veränderten Kopienzahlen berücksichtigt werden. Weiterhin wurden, wie bereits erwähnt, genomweite DNA-Methylierungs-Mappen der Xenografts generiert, die derzeit bioinformatisch ausgewertet werden. Diese sollten in einem weiteren Schritt mit den Mutationsdaten kombiniert werden und, wie anhand des Beispiels der KMT2D Mutationen dargestellt, für eine biologische Interpretation verwendet werden. Abschließend soll anhand der generierten Datensätze innerhalb des PREDICT-Konsortiums ein integratives Netzwerk erstellt werden, um prädiktive Biomarker zu identifizieren, die für das Therapieansprechen entscheidend sein könnten, um diese dann in weiteren prä-klinischen Studien und später auch in klinischen Studien zu evaluieren.

7. Zusammenfassung

der vorliegenden Dissertation wurden somatischeund Bronchialkarzinom-Patienten Keimbahnmutationen bei identifiziert, die möglicherweise für eine Chemotherapie-Resistenz der Patienten verantwortlich sind. Dazu wurden Patienten-abgeleitete Xenograft-Modelle und das primäre Normalgewebe von 23 Nicht-kleinzelligen Bronchialkarzinom-Patienten verwendet, und das jeweilige Mutationsprofil durch zielgerichtete Hochdurchsatz-Sequenzierung generiert. Hierfür war es zunächst erforderlich, die Technologien für klinisches Gewebematerial zu etablieren. Diesbezüglich konnte gezeigt werden, dass sowohl Gefriermaterial als auch in Formalin fixiertes und in Paraffin eingebettetes Gewebe für die zielgerichtete Anreicherung und Sequenzierung verwendet werden können. Ebenfalls konnte gezeigt werden, dass eine geringe DNA-Menge ausreicht, um eine gute Sequenzierungs-Anreicherungseffizienz zu erhalten. Unterschiedliche Biopsien eines Primärtumors besitzen ein identisches Profil der Einzelnukleotidvarianten. Bei Analysen der Kopienzahlvarianten muss aber die Tumorheterogenität von unterschiedlichen Biopsien beachtet werden.

Die Ergebnisse der Mutationsanalyse der Xenografts bestätigten die hohe Mutationsfrequenz, die dem Bronchialkarzinom zugrunde liegt. Bezugnehmend auf die somatischen Mutationen und die somatischen Kopienzahlvarianten konnte eine hohe Übereinstimmung zwischen dem Xenograft-Tumor und dem Primärtumor erzielt und dadurch bestätigt werden, dass Patienten-abgeleitete Xenograft-Modelle für die Mutationsanalyse verwendet werden können.

Anhand von Sensitivitätstests der 23 Xenograft-Modelle auf unterschiedliche Chemotherapien wie Carboplatin, Gemcitabin, Paclitaxel und Cetuximab konnten Mutationen identifiziert werden, die vermutlich für intrinsische Resistenzen verantwortlich sind. Unter anderem konnten biologische Prozesse und Genkandidaten aufgezeigt werden, die bisher mit noch keinem intrinsischen Resistenzmechanismus assoziiert wurden. Beispielsweise wurden in dem p21-aktivierenden (PAK)-Signalweg signifikant viele somatische Mutationen in den Carboplatin-resistenten Tumoren identifiziert. Bezüglich einer Gemcitabin-Resistenz wurden in den Tumoren u. a. viele Mutationen in dem FGFR-Signalweg identifiziert, die mit einer verringerten Sensitivität gegen das Therapeutikum assoziiert sind. Für beide Signalwege existieren Inhibitoren, die nun untersucht werden sollten, ob sie eine Carboplatin- bzw. Gemcitabin-

Resistenz aufheben können. Hinsichtlich einer Resistenz gegenüber dem EGFR Inhibitor Cetuximab konnten u. a. das Hitzeschockprotein *HSP90AB1* und der Wachstumsfaktor *HGF* als sehr interessante Genkandidaten identifiziert werden, die in einem Zusammenhang mit Chemotherapie-Resistenzen gebracht werden können. Funktionelle Experimente ergaben Hinweise darauf, dass *MAML2*, *CDC42BPA* und *KMT2D* einen Einfluss auf die Sensitivität gegenüber dem EGFR Inhibitor Cetuximab haben könnten.

Abschließend erfolgte eine erste Integration unterschiedlicher Datensätze, um Auswirkungen der identifizierten *KMT2D* Mutationen zu ermitteln. Interessanterweise zeigten Tumore mit Mutationen im *KMT2D* Gen, das für eine Histon-Methyltransferase kodiert, signifikante Veränderungen der Genexpression und der DNA-Methylierung, die mit der Chemotherapie-Resistenz in Verbindung gebracht werden können.

Schlussendlich wurden die generierten Datensätze in ein mathematisches Vorhersagemodell implementiert, um in einem ersten systembiologischen Ansatz eine Vorhersage zur Wirkstoffwirkung zu ermöglichen. Hierbei zeigten erste Ergebnisse von zwei Tumoren eine sehr gute Übereinstimmung der Sensitivität der Xenograft-Mäuse und der *in silico* Vorhersage der Wirksamkeit von Cetuximab. Die Modellierung soll nun auch für die weiteren 21 Patienten, die im Rahmen dieser Arbeit untersucht worden sind, durchgeführt werden. Falls für diese ebenfalls eine gute Übereinstimmung zwischen den experimentellen Daten und den *in silico* Modellierungen existieren sollte, hätte dies zweifellos weitreichende Konsequenzen für die zukünftige Therapie von Patienten mit Nicht-kleinzelligem Bronchialkarzinom.

8. Summary

In this thesis, the mutation profile of somatic- and germline mutations of 23 patient-derived xenograft-models and the corresponding normal tissues of non-small-cell lung cancer patients were generated. For this, a customer target high throughput re-sequencing approach was used. However, these technologies needed to be further improved with regard to reproducibility and applicability to clinical samles and settings. It could be shown that formalin-fixed paraffin embedded tissue material can supplement fresh frozen tissues for the detection of single nucleotide variants and that solution-based enrichment experiments can be accomplished with small amounts of DNA. Finally, the question was to addressed whether the heterogeneity of a tumor is reflected by different genetic alterations, e.g. if different foci of a tumor display different genomic patterns. It could be shown that the tumor heterogeneity plays an important role mainly for the detection of copy number alterations.

The results of the mutation analysis confirmed the high mutation rates that underlie lung cancer diseases. As a technical proof-of-principle experiment it could be shown that somatic mutations and somatic copy number alterations depicted a high overlap between the xenograft-tumor and the primary tumor and confirmed that patient-derived xenograft-models can be used for genetic analysis.

Sensitivity tests for 23 xenografts-models were performed for different chemotherapies like Carboplatin, Gemcitabine, Paclitaxel, and Cetuximab. For these, mutations could be identified which might be responsible for intrinsic resistances. For example, the p21-activated (PAK) signaling pathway was significantly affected by somatic mutations in Carboplatin resistant tumors. In regard to Gemcitabine, many mutations within the FGFR signaling pathway were associated with a reduced sensitivity of the mice. Concerning a resistance for the EGFR inhibitor Cetuximab, the heat shock protein *HSP90AB1* and the hepatocyte growth factor *HGF* could be identified as gene candidates transmitting a chemotherapy resistance. Functional assays were performed which provide first evidence that *MAML2*, *CDC42BPA* and *KMT2D* are involved in the resistance to the EGFR inhibitor Cetuximab.

Since *KMT2D* is a histone methyltransferase, a data integration approach was used to identify its functional relevance. Interestingly, for resistant tumors with

KMT2D mutations significant changes in gene expression and DNA methylation were measured.

In the end, the generated datasets were integrated in a computer prediction tool (PyBios) with the aim to establish a systems biology network for therapy responses. First preliminary results in two tumors confirmed a high concordance between the chemotherapy sensitivity of the xenografts mice and *in silico* prediction. These modelling will now be extended to the 21 patients analyzed in this thesis. In case that the experimental data and the *in silico* modelling remains with a high concordance (high predictive value for the *in silico* modelling) this approach will have without doubt, an important consequence for the therapy of patients with non-small-cell lung cancer in the future.

9. Literaturverzeichnis

- 1. Hanahan, D. and R.A. Weinberg, *The hallmarks of cancer.* Cell, 2000. 100(1): p. 57-70.
- 2. Hanahan, D. and R.A. Weinberg, *Hallmarks of cancer: the next generation.* Cell, 2011. 144(5): p. 646-74.
- Davies, M.A. and Y. Samuels, Analysis of the genome to personalize therapy for melanoma. Oncogene, 2010. 29(41): p. 5545-55.
- 4. Amit, I., et al., A module of negative feedback regulators defines growth factor signaling. Nat Genet, 2007. 39(4): p. 503-12.
- 5. Cabrita, M.A. and G. Christofori, *Sprouty proteins, masterminds of receptor tyrosine kinase signaling.* Angiogenesis, 2008. 11(1): p. 53-62.
- 6. Mosesson, Y., G.B. Mills, and Y. Yarden, *Derailed endocytosis: an emerging feature of cancer.* Nat Rev Cancer, 2008. 8(11): p. 835-50.
- 7. Wertz, I.E. and V.M. Dixit, Regulation of death receptor signaling by the ubiquitin system. Cell Death Differ, 2010. 17(1): p. 14-24.
- 8. Jiang, B.H. and L.Z. Liu, *PI3K/PTEN signaling in angiogenesis and tumorigenesis*. Adv Cancer Res, 2009. 102: p. 19-65.
- 9. Yuan, T.L. and L.C. Cantley, *Pl3K pathway alterations in cancer: variations on a theme.* Oncogene, 2008. 27(41): p. 5497-510.
- 10. Adams, J.M. and S. Cory, *The Bcl-2 apoptotic switch in cancer development and therapy.* Oncogene, 2007. 26(9): p. 1324-37.
- 11. Siegel, R., D. Naishadham, and A. Jemal, *Cancer statistics, 2012.* CA Cancer J Clin, 2012. 62(1): p. 10-29.
- 12. <RKI 2007_2008 Krebsstatistik.pdf>.
- 13. Begum, S., *Molecular changes in smoking-related lung cancer.* Expert Rev Mol Diagn, 2012. 12(1): p. 93-106.
- 14. Sun, S., J.H. Schiller, and A.F. Gazdar, *Lung cancer in never smokers--a different disease*. Nat Rev Cancer, 2007. 7(10): p. 778-90.
- 15. < Pathomaorphologie und Molekulargenetik des Lungenkarzinoms.pdf>.
- 16. Brambilla, E., et al., *The new World Health Organization classification of lung tumours*. Eur Respir J, 2001. 18(6): p. 1059-68.
- 17. Herbst, R.S., J.V. Heymach, and S.M. Lippman, *Lung cancer.* N Engl J Med, 2008. 359(13): p. 1367-80.
- 18. Rami-Porta, R., V. Bolejack, and P. Goldstraw, *The new tumor, node, and metastasis staging system.* Semin Respir Crit Care Med, 2011. 32(1): p. 44-51.
- 19. Mountain, C.F., Revisions in the International System for Staging Lung Cancer. Chest, 1997. 111(6): p. 1710-7.
- 20. Mountain, C.F. and C.M. Dresler, *Regional lymph node classification for lung cancer staging.* Chest, 1997. 111(6): p. 1718-23.
- 21. Henschke, C.I., et al., Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet, 1999. 354(9173): p. 99-105.

- 22. Kelland, L., *The resurgence of platinum-based cancer chemotherapy.* Nat Rev Cancer, 2007. 7(8): p. 573-84.
- 23. Knox, R.J., et al., Mechanism of cytotoxicity of anticancer platinum drugs: evidence that cis-diamminedichloroplatinum(II) and cis-diammine-(1,1-cyclobutanedicarboxylato)platinum(II) differ only in the kinetics of their interaction with DNA. Cancer Res, 1986. 46(4 Pt 2): p. 1972-9.
- 24. Natarajan, G., R. Malathi, and E. Holler, *Increased DNA-binding activity of cis-1,1-cyclobutanedicarboxylatodiammineplatinum(II)* (carboplatin) in the presence of nucleophiles and human breast cancer MCF-7 cell cytoplasmic extracts: activation theory revisited. Biochem Pharmacol, 1999. 58(10): p. 1625-9.
- 25. Ueno, H., K. Kiyosawa, and N. Kaniwa, *Pharmacogenomics of gemcitabine: can genetic studies lead to tailor-made therapy?* Br J Cancer, 2007. 97(2): p. 145-51.
- 26. Binet, S., et al., *Immunofluorescence study of the action of navelbine, vincristine and vinblastine on mitotic and axonal microtubules.* Int J Cancer, 1990. 46(2): p. 262-6.
- 27. Cros, S., et al., *Experimental antitumor activity of Navelbine*. Semin Oncol, 1989. 16(2 Suppl 4): p. 15-20.
- 28. Jordan, M.A. and L. Wilson, *Microtubules as a target for anticancer drugs*. Nat Rev Cancer, 2004. 4(4): p. 253-65.
- 29. Schiller, J.H., et al., Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med, 2002. 346(2): p. 92-8.
- 30. Jett, J.R., et al., *Treatment of non-small cell lung cancer, stage IIIB: ACCP evidence-based clinical practice guidelines (2nd edition).* Chest, 2007. 132(3 Suppl): p. 266S-276S.
- 31. Kelly, K., et al., Randomized phase III trial of paclitaxel plus carboplatin versus vinorelbine plus cisplatin in the treatment of patients with advanced non--small-cell lung cancer: a Southwest Oncology Group trial. J Clin Oncol, 2001. 19(13): p. 3210-8.
- 32. Sandler, A., et al., *Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer.* N Engl J Med, 2006. 355(24): p. 2542-50.
- 33. Scagliotti, G., et al., *Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer.* J Clin Oncol, 2010. 28(11): p. 1835-42.
- 34. Scagliotti, G.V., et al., *Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer.* J Clin Oncol, 2008. 26(21): p. 3543-51.
- 35. Sharma, S.V. and J. Settleman, *ErbBs in lung cancer*. Exp Cell Res, 2009. 315(4): p. 557-71.
- 36. Li, S., et al., Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell, 2005. 7(4): p. 301-11.
- 37. Brand, T.M., M. lida, and D.L. Wheeler, *Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab.* Cancer Biol Ther, 2011. 11(9): p. 777-92.
- 38. Jonker, D.J., et al., *Cetuximab for the treatment of colorectal cancer.* N Engl J Med, 2007. 357(20): p. 2040-8.
- 39. Burtness, B., et al., Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an

- Eastern Cooperative Oncology Group study. J Clin Oncol, 2005. 23(34): p. 8646-54.
- Butts, C.A., et al., Randomized phase II study of gemcitabine plus cisplatin or carboplatin [corrected], with or without cetuximab, as first-line therapy for patients with advanced or metastatic non small-cell lung cancer. J Clin Oncol, 2007. 25(36): p. 5777-84.
- 41. Rosell, R., et al., Randomized phase II study of cetuximab plus cisplatin/vinorelbine compared with cisplatin/vinorelbine alone as first-line therapy in EGFR-expressing advanced non-small-cell lung cancer. Ann Oncol, 2008. 19(2): p. 362-9.
- 42. Lynch, T.J., et al., Cetuximab and first-line taxane/carboplatin chemotherapy in advanced non-small-cell lung cancer: results of the randomized multicenter phase III trial BMS099. J Clin Oncol, 2010. 28(6): p. 911-7.
- 43. Pirker, R., et al., Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet, 2009. 373(9674): p. 1525-31.
- 44. Pirker, R., et al., EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase 3 FLEX study. Lancet Oncol, 2012. 13(1): p. 33-42.
- 45. Khambata-Ford, S., et al., Analysis of potential predictive markers of cetuximab benefit in BMS099, a phase III study of cetuximab and first-line taxane/carboplatin in advanced non-small-cell lung cancer. J Clin Oncol, 2010. 28(6): p. 918-27.
- 46. Lin, H., et al., Chemotherapy with cetuximab or chemotherapy alone for untreated advanced non-small-cell lung cancer: a systematic review and meta-analysis. Lung Cancer, 2010. 70(1): p. 57-62.
- 47. Mukohara, T., et al., Differential effects of gefitinib and cetuximab on non-small-cell lung cancers bearing epidermal growth factor receptor mutations. J Natl Cancer Inst, 2005. 97(16): p. 1185-94.
- 48. O'Byrne, K.J., et al., *Molecular biomarkers in non-small-cell lung cancer: a retrospective analysis of data from the phase 3 FLEX study.* Lancet Oncol, 2011. 12(8): p. 795-805.
- 49. Sequist, L.V., et al., *Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer.* J Clin Oncol, 2007. 25(5): p. 587-95.
- 50. Lynch, T.J., et al., Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med, 2004. 350(21): p. 2129-39.
- 51. Riely, G.J., et al., *Update on epidermal growth factor receptor mutations in non-small cell lung cancer.* Clin Cancer Res, 2006. 12(24): p. 7232-41.
- 52. Zhou, C., et al., Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol, 2011. 12(8): p. 735-42.
- 53. Rosell, R., et al., *Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial.* Lancet Oncol, 2012. 13(3): p. 239-46.

- 54. Fukuoka, M., et al., Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol, 2011. 29(21): p. 2866-74.
- 55. Maemondo, M., et al., *Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR.* N Engl J Med, 2010. 362(25): p. 2380-8.
- 56. Hirsch, F.R., et al., Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol, 2003. 21(20): p. 3798-807.
- 57. Pao, W., et al., Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med, 2005. 2(3): p. e73.
- 58. Oxnard, G.R., et al., New strategies in overcoming acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer. Clin Cancer Res, 2011. 17(17): p. 5530-7.
- 59. Zhou, W., et al., Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature, 2009. 462(7276): p. 1070-4.
- 60. Soda, M., et al., *Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer.* Nature, 2007. 448(7153): p. 561-6.
- 61. Shaw, A.T., et al., Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol, 2009. 27(26): p. 4247-53.
- 62. Kwak, E.L., et al., *Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer.* N Engl J Med, 2010. 363(18): p. 1693-703.
- 63. Shaw, A.T., et al., Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol, 2011. 12(11): p. 1004-12.
- 64. Larsen, J.E. and J.D. Minna, *Molecular biology of lung cancer: clinical implications*. Clin Chest Med, 2011. 32(4): p. 703-40.
- 65. Weinstein, I.B., Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science, 2002. 297(5578): p. 63-4.
- 66. Ding, L., et al., Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 2008. 455(7216): p. 1069-75.
- 67. Schmid, K., et al., EGFR/KRAS/BRAF mutations in primary lung adenocarcinomas and corresponding locoregional lymph node metastases. Clin Cancer Res, 2009. 15(14): p. 4554-60.
- 68. Yip, P.Y., et al., *Patterns of DNA mutations and ALK rearrangement in resected node negative lung adenocarcinoma.* J Thorac Oncol, 2013. 8(4): p. 408-14.
- 69. Tam, I.Y., et al., Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clin Cancer Res, 2006. 12(5): p. 1647-53.
- 70. Riely, G.J., et al., *Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma*. Clin Cancer Res, 2008. 14(18): p. 5731-4.
- 71. Subramanian, J. and R. Govindan, *Molecular genetics of lung cancer in people who have never smoked.* Lancet Oncol, 2008. 9(7): p. 676-82.

- 72. Rekhtman, N., et al., Clarifying the spectrum of driver oncogene mutations in biomarker-verified squamous carcinoma of lung: lack of EGFR/KRAS and presence of PIK3CA/AKT1 mutations. Clin Cancer Res, 2012. 18(4): p. 1167-76.
- 73. Rodenhuis, S. and R.J. Slebos, *Clinical significance of ras oncogene activation in human lung cancer.* Cancer Res, 1992. 52(9 Suppl): p. 2665s-2669s.
- 74. Comprehensive genomic characterization of squamous cell lung cancers. Nature, 2012. 489(7417): p. 519-25.
- 75. Downward, J., *Targeting RAS signalling pathways in cancer therapy.* Nat Rev Cancer, 2003. 3(1): p. 11-22.
- 76. Karnoub, A.E. and R.A. Weinberg, *Ras oncogenes: split personalities.* Nat Rev Mol Cell Biol, 2008. 9(7): p. 517-31.
- 77. Ihle, N.T., et al., Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J Natl Cancer Inst, 2012. 104(3): p. 228-39.
- 78. Linardou, H., et al., Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol, 2008. 9(10): p. 962-72.
- 79. Zhang, Y., et al., Antitumor activity of epidermal growth factor receptor-related protein is mediated by inactivation of ErbB receptors and nuclear factor-kappaB in pancreatic cancer. Cancer Res, 2006. 66(2): p. 1025-32.
- 80. Scagliotti, G.V., et al., *The biology of epidermal growth factor receptor in lung cancer.* Clin Cancer Res, 2004. 10(12 Pt 2): p. 4227s-4232s.
- 81. Yarden, Y. and M.X. Sliwkowski, *Untangling the ErbB signalling network*. Nat Rev Mol Cell Biol, 2001. 2(2): p. 127-37.
- 82. Russell, P.A., et al., Correlation of mutation status and survival with predominant histologic subtype according to the new IASLC/ATS/ERS lung adenocarcinoma classification in stage III (N2) patients. J Thorac Oncol, 2013. 8(4): p. 461-8.
- 83. Shigematsu, H., et al., Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst, 2005. 97(5): p. 339-46.
- 84. Heist, R.S., L.V. Sequist, and J.A. Engelman, *Genetic changes in squamous cell lung cancer: a review.* J Thorac Oncol, 2012. 7(5): p. 924-33.
- 85. Kosaka, T., et al., *Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications.* Cancer Res, 2004. 64(24): p. 8919-23.
- 86. Tokumo, M., et al., The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non-small cell lung cancers. Clin Cancer Res, 2005. 11(3): p. 1167-73.
- 87. Yamamoto, H., S. Toyooka, and T. Mitsudomi, *Impact of EGFR mutation analysis in non-small cell lung cancer*. Lung Cancer, 2009. 63(3): p. 315-21.
- 88. Balak, M.N., et al., Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res, 2006. 12(21): p. 6494-501.
- 89. Wu, J.Y., et al., Lung cancer with epidermal growth factor receptor exon 20 mutations is associated with poor gefitinib treatment response. Clin Cancer Res, 2008. 14(15): p. 4877-82.

- 90. Engelman, J.A., et al., *MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling.* Science, 2007. 316(5827): p. 1039-43.
- 91. Sadiq, A.A. and R. Salgia, *MET as a possible target for non-small-cell lung cancer.* J Clin Oncol, 2013. 31(8): p. 1089-96.
- 92. Beau-Faller, M., et al., *MET gene copy number in non-small cell lung cancer: molecular analysis in a targeted tyrosine kinase inhibitor naive cohort.* J Thorac Oncol, 2008. 3(4): p. 331-9.
- 93. Go, H., et al., *High MET gene copy number leads to shorter survival in patients with non-small cell lung cancer.* J Thorac Oncol, 2010. 5(3): p. 305-13.
- 94. Onozato, R., et al., *Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers.* J Thorac Oncol, 2009. 4(1): p. 5-11.
- 95. Choi, Y.L., et al., *EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors.* N Engl J Med, 2010. 363(18): p. 1734-9.
- 96. Koivunen, J.P., et al., *EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer.* Clin Cancer Res, 2008. 14(13): p. 4275-83.
- 97. Shaw, A.T. and B. Solomon, *Targeting anaplastic lymphoma kinase in lung cancer*. Clin Cancer Res, 2011. 17(8): p. 2081-6.
- 98. Inamura, K., et al., *EML4-ALK lung cancers are characterized by rare other mutations, a TTF-1 cell lineage, an acinar histology, and young onset.* Mod Pathol, 2009. 22(4): p. 508-15.
- 99. Selinger, C.I., et al., Testing for ALK rearrangement in lung adenocarcinoma: a multicenter comparison of immunohistochemistry and fluorescent in situ hybridization. Mod Pathol, 2013.
- 100. Wong, D.W., et al., *The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS.* Cancer, 2009. 115(8): p. 1723-33.
- 101. Choi, Y.L., et al., *Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer.* Cancer Res, 2008. 68(13): p. 4971-6.
- 102. Soda, M., et al., *A mouse model for EML4-ALK-positive lung cancer.* Proc Natl Acad Sci U S A, 2008. 105(50): p. 19893-7.
- 103. Sasaki, T., et al., A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res, 2011. 71(18): p. 6051-60.
- 104. Cooper, W.A., et al., *Molecular biology of lung cancer.* J Thorac Dis, 2013. 5(Suppl 5): p. S479-S490.
- 105. Davies, H., et al., *Mutations of the BRAF gene in human cancer.* Nature, 2002. 417(6892): p. 949-54.
- 106. Marchetti, A., et al., Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J Clin Oncol, 2011. 29(26): p. 3574-9.
- 107. Naoki, K., et al., Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res, 2002. 62(23): p. 7001-3.
- 108. Paik, P.K., et al., *Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations.* J Clin Oncol, 2011. 29(15): p. 2046-51.

- 109. Marks, J.L., et al., *Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma.* Cancer Res, 2008. 68(14): p. 5524-8.
- 110. Heinmoller, P., et al., *HER2* status in non-small cell lung cancer: results from patient screening for enrollment to a phase II study of herceptin. Clin Cancer Res, 2003. 9(14): p. 5238-43.
- 111. Shigematsu, H., et al., Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res, 2005. 65(5): p. 1642-6.
- 112. Stephens, P., et al., *Lung cancer: intragenic ERBB2 kinase mutations in tumours.* Nature, 2004. 431(7008): p. 525-6.
- 113. Tomizawa, K., et al., *Prognostic and predictive implications of HER2/ERBB2/neu gene mutations in lung cancers.* Lung Cancer, 2011. 74(1): p. 139-44.
- 114. Bergethon, K., et al., ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol, 2012. 30(8): p. 863-70.
- 115. Wells, S.A., Jr. and M. Santoro, *Targeting the RET pathway in thyroid cancer*. Clin Cancer Res, 2009. 15(23): p. 7119-23.
- 116. Ju, Y.S., et al., A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res, 2012. 22(3): p. 436-45.
- 117. Kohno, T., et al., *KIF5B-RET fusions in lung adenocarcinoma.* Nat Med, 2012. 18(3): p. 375-7.
- 118. Lipson, D., et al., *Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies*. Nat Med, 2012. 18(3): p. 382-4.
- 119. Knudson, A.G., *Antioncogenes and human cancer.* Proc Natl Acad Sci U S A, 1993. 90(23): p. 10914-21.
- 120. Raso, M.G. and Wistuba, II, *Molecular pathogenesis of early-stage non-small cell lung cancer and a proposal for tissue banking to facilitate identification of new biomarkers*. J Thorac Oncol, 2007. 2(7 Suppl 3): p. S128-35.
- 121. Wistuba, II, et al., *Molecular changes in the bronchial epithelium of patients with small cell lung cancer.* Clin Cancer Res, 2000. 6(7): p. 2604-10.
- 122. D'Amico, D., et al., *High frequency of somatically acquired p53 mutations in small-cell lung cancer cell lines and tumors.* Oncogene, 1992. 7(2): p. 339-46.
- 123. Husgafvel-Pursiainen, K., et al., *p53 mutations and exposure to environmental tobacco smoke in a multicenter study on lung cancer.* Cancer Res, 2000. 60(11): p. 2906-11.
- 124. Takagi, Y., et al., p53 mutations in non-small-cell lung cancers occurring in individuals without a past history of active smoking. Br J Cancer, 1998. 77(10): p. 1568-72.
- 125. Mogi, A. and H. Kuwano, *TP53 mutations in nonsmall cell lung cancer.* J Biomed Biotechnol, 2011. 2011: p. 583929.
- 126. Harbour, J.W., et al., Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science, 1988. 241(4863): p. 353-7.
- 127. Brambilla, E., et al., *Alterations of expression of Rb, p16(INK4A) and cyclin D1 in non-small cell lung carcinoma and their clinical significance.* J Pathol, 1999. 188(4): p. 351-60.

- 128. Otterson, G.A., et al., Absence of p16lNK4 protein is restricted to the subset of lung cancer lines that retains wildtype RB. Oncogene, 1994. 9(11): p. 3375-8.
- 129. Kan, Z., et al., *Diverse somatic mutation patterns and pathway alterations in human cancers*. Nature, 2010. 466(7308): p. 869-73.
- 130. Lee, W., et al., *The mutation spectrum revealed by paired genome sequences from a lung cancer patient.* Nature, 2010. 465(7297): p. 473-7.
- 131. Ferrara, N., *Vascular endothelial growth factor: basic science and clinical progress.* Endocr Rev, 2004. 25(4): p. 581-611.
- 132. Stefanou, D., et al., Expression of vascular endothelial growth factor (VEGF) and association with microvessel density in small-cell and non-small-cell lung carcinomas. Histol Histopathol, 2004. 19(1): p. 37-42.
- 133. Hasani, A. and N.B. Leighl, *Targeting vascular endothelial growth factor in lung cancer.* J Thorac Oncol, 2010. 5(12 Suppl 6): p. S484-6.
- 134. Schwartz, D.L., et al., *The selective hypoxia inducible factor-1 inhibitor PX-478 provides in vivo radiosensitization through tumor stromal effects.* Mol Cancer Ther, 2009. 8(4): p. 947-58.
- 135. Williams, K.J., et al., Combining radiotherapy with AZD2171, a potent inhibitor of vascular endothelial growth factor signaling: pathophysiologic effects and therapeutic benefit. Mol Cancer Ther, 2007. 6(2): p. 599-606.
- 136. Bell, D.W., et al., *Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR.* Nat Genet, 2005. 37(12): p. 1315-6.
- 137. Hwang, S.J., et al., Lung cancer risk in germline p53 mutation carriers: association between an inherited cancer predisposition, cigarette smoking, and cancer risk. Hum Genet, 2003. 113(3): p. 238-43.
- 138. Sanders, B.M., et al., *Non-ocular cancer in relatives of retinoblastoma patients*. Br J Cancer, 1989. 60(3): p. 358-65.
- 139. Amos, C.I., et al., Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet, 2008. 40(5): p. 616-22.
- 140. Hung, R.J., et al., A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature, 2008. 452(7187): p. 633-7.
- 141. Thorgeirsson, T.E., et al., *A variant associated with nicotine dependence, lung cancer and peripheral arterial disease.* Nature, 2008. 452(7187): p. 638-42.
- 142. Broderick, P., et al., Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. Cancer Res, 2009. 69(16): p. 6633-41.
- 143. Rafnar, T., et al., Genome-wide significant association between a sequence variant at 15q15.2 and lung cancer risk. Cancer Res, 2011. 71(4): p. 1356-61.
- 144. Amos, C.I., et al., A susceptibility locus on chromosome 6q greatly increases lung cancer risk among light and never smokers. Cancer Res, 2010. 70(6): p. 2359-67.
- 145. Bailey-Wilson, J.E., et al., *A major lung cancer susceptibility locus maps to chromosome 6q23-25.* Am J Hum Genet, 2004. 75(3): p. 460-74.
- 146. You, M., et al., Fine mapping of chromosome 6q23-25 region in familial lung cancer families reveals RGS17 as a likely candidate gene. Clin Cancer Res, 2009. 15(8): p. 2666-74.

- 147. Ronaghi, M., et al., *Real-time DNA sequencing using detection of pyrophosphate release.* Anal Biochem, 1996. 242(1): p. 84-9.
- 148. Dressman, D., et al., Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A, 2003. 100(15): p. 8817-22.
- 149. Margulies, M., et al., *Genome sequencing in microfabricated high-density picolitre reactors*. Nature, 2005. 437(7057): p. 376-80.
- 150. Bentley, D.R., et al., Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 2008. 456(7218): p. 53-9.
- 151. Shendure, J., et al., Accurate multiplex polony sequencing of an evolved bacterial genome. Science, 2005. 309(5741): p. 1728-32.
- 152. Meyerson, M., S. Gabriel, and G. Getz, *Advances in understanding cancer genomes through second-generation sequencing.* Nat Rev Genet, 2010. 11(10): p. 685-96.
- 153. Campbell, P.J., et al., *Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing.* Nat Genet, 2008. 40(6): p. 722-9.
- 154. Pleasance, E.D., et al., A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature, 2010. 463(7278): p. 184-90.
- 155. Clinical Lung Cancer Genome, P. and M. Network Genomic, *A genomics-based classification of human lung tumors*. Sci Transl Med, 2013. 5(209): p. 209ra153.
- 156. Venkatesh, S. and R.A. Lipper, *Role of the development scientist in compound lead selection and optimization.* J Pharm Sci, 2000. 89(2): p. 145-54.
- 157. Bosma, M.J. and A.M. Carroll, *The SCID mouse mutant: definition, characterization, and potential uses.* Annu Rev Immunol, 1991. 9: p. 323-50.
- 158. Flanagan, S.P., 'Nude', a new hairless gene with pleiotropic effects in the mouse. Genet Res, 1966. 8(3): p. 295-309.
- 159. Castrop, H., Genetically modified mice-successes and failures of a widely used technology. Pflugers Arch, 2010. 459(4): p. 557-67.
- 160. Gama Sosa, M.A., R. De Gasperi, and G.A. Elder, *Animal transgenesis: an overview.* Brain Struct Funct, 2010. 214(2-3): p. 91-109.
- 161. Wells, D.J., *Genetically modified animals and pharmacological research.* Handb Exp Pharmacol, 2010(199): p. 213-26.
- 162. Gordon, J.W., et al., *Genetic transformation of mouse embryos by microinjection of purified DNA*. Proc Natl Acad Sci U S A, 1980. 77(12): p. 7380-4.
- 163. Thomas, K.R. and M.R. Capecchi, *Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells*. Cell, 1987. 51(3): p. 503-12.
- 164. Bolon, B., Genetically engineered animals in drug discovery and development: a maturing resource for toxicologic research. Basic Clin Pharmacol Toxicol, 2004. 95(4): p. 154-61.
- 165. Lin, J.H., Applications and limitations of genetically modified mouse models in drug discovery and development. Curr Drug Metab, 2008. 9(5): p. 419-38.
- 166. Clarke, R., Animal models of breast cancer: experimental design and their use in nutrition and psychosocial research. Breast Cancer Res Treat, 1997. 46(2-3): p. 117-33.

- 167. Firestone, B., *The challenge of selecting the 'right' in vivo oncology pharmacology model.* Curr Opin Pharmacol, 2010. 10(4): p. 391-6.
- 168. Peterson, J.K. and P.J. Houghton, *Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development*. Eur J Cancer, 2004. 40(6): p. 837-44.
- 169. Giovanella, B.C., et al., Heterotransplantation of human breast carcinomas in nude mice. Correlation between successful heterotransplants, poor prognosis and amplification of the HER-2/neu oncogene. Int J Cancer, 1991. 47(1): p. 66-71.
- 170. Daniel, V.C., et al., A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res, 2009. 69(8): p. 3364-73.
- 171. Fichtner, I., et al., Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res, 2008. 14(20): p. 6456-68.
- 172. Steel, G.G., V.D. Courtenay, and M.J. Peckham, *The response to chemotherapy of a variety of human tumour xenografts.* Br J Cancer, 1983. 47(1): p. 1-13.
- 173. John, T., et al., The ability to form primary tumor xenografts is predictive of increased risk of disease recurrence in early-stage non-small cell lung cancer. Clin Cancer Res, 2011. 17(1): p. 134-41.
- 174. Sharpless, N.E. and R.A. Depinho, *The mighty mouse: genetically engineered mouse models in cancer drug development.* Nat Rev Drug Discov, 2006. 5(9): p. 741-54.
- 175. Bartsch, G., et al., *Tyrol Prostate Cancer Demonstration Project: early detection, treatment, outcome, incidence and mortality.* BJU Int, 2008. 101(7): p. 809-16.
- 176. Horninger, W., et al., Characteristics of prostate cancers detected at low PSA levels. Prostate, 2004. 58(3): p. 232-7.
- 177. Li, H. and R. Durbin, *Fast and accurate short read alignment with Burrows-Wheeler transform.* Bioinformatics, 2009. 25(14): p. 1754-1760.
- 178. Li, H. and R. Durbin, *Fast and accurate long-read alignment with Burrows-Wheeler transform.* Bioinformatics, 2010. 26(5): p. 589-595.
- 179. Li, H., et al., *The Sequence Alignment/Map format and SAMtools.* Bioinformatics, 2009. 25(16): p. 2078-9.
- 180. Adzhubei, I.A., et al., *A method and server for predicting damaging missense mutations*. Nat Methods, 2010. 7(4): p. 248-9.
- 181. Schwarz, J.M., et al., *MutationTaster evaluates disease-causing potential of seguence alterations*. Nat Methods, 2010. 7(8): p. 575-6.
- 182. Futreal, P.A., et al., *A census of human cancer genes*. Nat Rev Cancer, 2004. 4(3): p. 177-83.
- 183. Sathirapongsasuti, J.F., et al., Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics, 2011. 27(19): p. 2648-54.
- 184. Stewart, D.J., et al., *Phase II study of alternating chemotherapy regimens for advanced non-small cell lung cancer*. Lung Cancer, 2004. 44(2): p. 241-9.
- 185. Eisenhauer, E.A., et al., New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer, 2009. 45(2): p. 228-47.

- 186. Aird, D., et al., Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol, 2011. 12(2): p. R18.
- 187. Kumar, P., S. Henikoff, and P.C. Ng, *Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm.* Nat Protoc, 2009. 4(7): p. 1073-81.
- 188. Ding, L., et al., Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature, 2010. 464(7291): p. 999-1005.
- 189. Ng, K.P., et al., A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med, 2012. 18(4): p. 521-8.
- 190. Ye, D.Z. and J. Field, *PAK signaling in cancer.* Cell Logist, 2012. 2(2): p. 105-116.
- 191. Reed, M.F., W.A. Zagorski, and E.S. Knudsen, *RB activity alters checkpoint response and chemosensitivity in lung cancer lines.* J Surg Res, 2007. 142(2): p. 364-72.
- 192. Dick, F.A., Structure-function analysis of the retinoblastoma tumor suppressor protein is the whole a sum of its parts? Cell Div, 2007. 2: p. 26.
- 193. Zhao, J. and J.L. Guan, Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev, 2009. 28(1-2): p. 35-49.
- 194. Trepel, J., et al., *Targeting the dynamic HSP90 complex in cancer.* Nat Rev Cancer, 2010. 10(8): p. 537-49.
- 195. Issaeva, I., et al., *Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth.* Mol Cell Biol, 2007. 27(5): p. 1889-903.
- 196. Schweiger, M.R., et al., Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis. PLoS One, 2009. 4(5): p. e5548.
- 197. Menon, R., et al., Exome Enrichment and SOLiD Sequencing of Formalin Fixed Paraffin Embedded (FFPE) Prostate Cancer Tissue. Int J Mol Sci, 2012. 13(7): p. 8933-42.
- 198. Berger, M.F., et al., *The genomic complexity of primary human prostate cancer.* Nature, 2011. 470(7333): p. 214-20.
- 199. Taylor, B.S., et al., *Integrative genomic profiling of human prostate cancer.* Cancer Cell, 2010. 18(1): p. 11-22.
- 200. Navin, N., et al., *Inferring tumor progression from genomic heterogeneity*. Genome Res, 2010. 20(1): p. 68-80.
- 201. Shapiro, E., T. Biezuner, and S. Linnarsson, *Single-cell sequencing-based technologies will revolutionize whole-organism science*. Nat Rev Genet, 2013. 14(9): p. 618-30.
- 202. Kerick, M., et al., *Targeted high throughput sequencing in clinical cancer settings:* formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, input amount and tumor heterogeneity. BMC Med Genomics, 2011. 4: p. 68.
- 203. Baca, S.C. and L.A. Garraway, *The genomic landscape of prostate cancer.* Front Endocrinol (Lausanne), 2012. 3: p. 69.
- 204. Barbieri, C.E., et al., Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet, 2012. 44(6): p. 685-9.

- 205. Grasso, C.S., et al., *The mutational landscape of lethal castration-resistant prostate cancer.* Nature, 2012. 487(7406): p. 239-43.
- 206. Kumar, A., et al., Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proc Natl Acad Sci U S A, 2011. 108(41): p. 17087-92.
- 207. Fichtner, I., et al., *Anticancer drug response and expression of molecular markers in early-passage xenotransplanted colon carcinomas.* Eur J Cancer, 2004. 40(2): p. 298-307.
- Boyle, P., Cancer, cigarette smoking and premature death in Europe: a review including the Recommendations of European Cancer Experts Consensus Meeting, Helsinki, October 1996. Lung Cancer, 1997. 17(1): p. 1-60.
- 209. Adam, T., et al., Quantitative puff-by-puff-resolved characterization of selected toxic compounds in cigarette mainstream smoke. Chem Res Toxicol, 2006. 19(4): p. 511-20.
- 210. Pfeifer, G.P., et al., *Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers.* Oncogene, 2002. 21(48): p. 7435-51.
- 211. Salk, J.J., E.J. Fox, and L.A. Loeb, *Mutational heterogeneity in human cancers:* origin and consequences. Annu Rev Pathol, 2010. 5: p. 51-75.
- 212. Thomas, R.K., et al., *High-throughput oncogene mutation profiling in human cancer.* Nat Genet, 2007. 39(3): p. 347-51.
- 213. Yokota, J. and T. Kohno, *Molecular footprints of human lung cancer progression*. Cancer Sci, 2004. 95(3): p. 197-204.
- 214. Forbes, S.A., et al., COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res, 2011. 39(Database issue): p. D945-50.
- 215. Hildebrand, J.D., M.D. Schaller, and J.T. Parsons, *Identification of sequences required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal adhesions.* J Cell Biol, 1993. 123(4): p. 993-1005.
- 216. Siddik, Z.H., Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003. 22(47): p. 7265-79.
- 217. Bell, D.W., et al., *Increased prevalence of EGFR-mutant lung cancer in women and in East Asian populations: analysis of estrogen-related polymorphisms.* Clin Cancer Res, 2008. 14(13): p. 4079-84.
- 218. Bar-Sagi, D. and A. Hall, Ras and Rho GTPases: a family reunion. Cell, 2000. 103(2): p. 227-38.
- 219. Bokoch, G.M., Regulation of cell function by Rho family GTPases. Immunol Res, 2000. 21(2-3): p. 139-48.
- 220. Kumar, R., A.E. Gururaj, and C.J. Barnes, *p21-activated kinases in cancer*. Nat Rev Cancer, 2006. 6(6): p. 459-71.
- 221. Arias-Romero, L.E. and J. Chernoff, *A tale of two Paks.* Biol Cell, 2008. 100(2): p. 97-108.
- 222. Ong, C.C., et al., Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc Natl Acad Sci U S A, 2011. 108(17): p. 7177-82.
- 223. Marlin, J.W., et al., *Elevated p21-activated kinase 2 activity results in anchorage-independent growth and resistance to anticancer drug-induced cell death.* Neoplasia, 2009. 11(3): p. 286-97.

- 224. Shimizu, E., et al., *RB protein status and clinical correlation from 171 cell lines representing lung cancer, extrapulmonary small cell carcinoma, and mesothelioma.* Oncogene, 1994. 9(9): p. 2441-8.
- 225. Ludovini, V., et al., Vascular endothelial growth factor, p53, Rb, Bcl-2 expression and response to chemotherapy in advanced non-small cell lung cancer. Lung Cancer, 2004. 46(1): p. 77-85.
- 226. Burma, S., et al., ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem, 2001. 276(45): p. 42462-7.
- 227. Goldberg, M., et al., MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature, 2003. 421(6926): p. 952-6.
- 228. Harrison, J.C. and J.E. Haber, *Surviving the breakup: the DNA damage checkpoint*. Annu Rev Genet, 2006. 40: p. 209-35.
- 229. Hirao, A., et al., *DNA damage-induced activation of p53 by the checkpoint kinase Chk2*. Science, 2000. 287(5459): p. 1824-7.
- Khosravi, R., et al., Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci U S A, 1999. 96(26): p. 14973-7.
- 231. Matsuoka, S., et al., ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science, 2007. 316(5828): p. 1160-6.
- 232. Appella, E. and C.W. Anderson, *Post-translational modifications and activation of p53 by genotoxic stresses*. Eur J Biochem, 2001. 268(10): p. 2764-72.
- 233. Damia, G., et al., Cisplatinum and taxol induce different patterns of p53 phosphorylation. Neoplasia, 2001. 3(1): p. 10-6.
- 234. Zhao, H. and H. Piwnica-Worms, *ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1*. Mol Cell Biol, 2001. 21(13): p. 4129-39.
- 235. Pirrotta, V., *Polycomb silencing and the maintenance of stable chromatin states.* Results Probl Cell Differ, 1999. 25: p. 205-28.
- 236. Shiogama, S., et al., Aberrant expression of EZH2 is associated with pathological findings and P53 alteration. Anticancer Res, 2013. 33(10): p. 4309-17.
- 237. Xu, Y., et al., shRNA targeting Bmi1 impedes the self-renewal of cisplatin-enriched stem-like cells in human A549 cells. Oncol Rep, 2012. 28(2): p. 629-39.
- 238. Kochert, K., et al., *High-level expression of Mastermind-like 2 contributes to aberrant activation of the NOTCH signaling pathway in human lymphomas.* Oncogene, 2011. 30(15): p. 1831-40.
- 239. Wang, Z., et al., *Targeting Notch signaling pathway to overcome drug resistance for cancer therapy.* Biochim Biophys Acta, 2010. 1806(2): p. 258-67.
- 240. Wang, Z., et al., *Emerging role of Notch in stem cells and cancer.* Cancer Lett, 2009. 279(1): p. 8-12.
- 241. Wang, Z., et al., Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett, 2010. 292(2): p. 141-8.
- 242. Shah, A.N., et al., *Development and characterization of gemcitabine-resistant pancreatic tumor cells.* Ann Surg Oncol, 2007. 14(12): p. 3629-37.

- 243. Wang, Z., et al., Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res, 2009. 69(6): p. 2400-7.
- 244. Gu, F., et al., Expression of Stat3 and Notch1 is associated with cisplatin resistance in head and neck squamous cell carcinoma. Oncol Rep, 2010. 23(3): p. 671-6.
- 245. Zhang, Z.P., et al., Correlation of Notch1 expression and activation to cisplatinsensitivity of head and neck squamous cell carcinoma. Ai Zheng, 2009. 28(2): p. 100-3.
- 246. Gosepath, E.M., et al., Acquired cisplatin resistance in the head-neck cancer cell line Cal27 is associated with decreased DKK1 expression and can partially be reversed by overexpression of DKK1. Int J Cancer, 2008. 123(9): p. 2013-9.
- 247. Bepler, G., et al., *RRM1 modulated in vitro and in vivo efficacy of gemcitabine and platinum in non-small-cell lung cancer.* J Clin Oncol, 2006. 24(29): p. 4731-7.
- 248. de las Penas, R., et al., *Polymorphisms in DNA repair genes modulate survival in cisplatin/gemcitabine-treated non-small-cell lung cancer patients*. Ann Oncol, 2006. 17(4): p. 668-75.
- 249. d'Amato, T.A., et al., *Chemotherapy resistance and oncogene expression in non-small cell lung cancer.* J Thorac Cardiovasc Surg, 2007. 133(2): p. 352-63.
- 250. Sugiyama, E., et al., *Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism.* J Clin Oncol, 2007. 25(1): p. 32-42.
- 251. Tibaldi, C., et al., Correlation of CDA, ERCC1, and XPD polymorphisms with response and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin Cancer Res, 2008. 14(6): p. 1797-803.
- 252. Turner, N. and R. Grose, Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer, 2010. 10(2): p. 116-29.
- 253. Gavine, P.R., et al., AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res, 2012. 72(8): p. 2045-56.
- 254. Qing, J., et al., *Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice.* J Clin Invest, 2009. 119(5): p. 1216-29.
- 255. Ceppi, P., et al., *ERCC1* and *RRM1* gene expressions but not *EGFR* are predictive of shorter survival in advanced non-small-cell lung cancer treated with cisplatin and gemcitabine. Ann Oncol, 2006. 17(12): p. 1818-25.
- 256. Lee, K.H., et al., *Epidermal growth factor receptor mutations and response to chemotherapy in patients with non-small-cell lung cancer.* Jpn J Clin Oncol, 2006. 36(6): p. 344-50.
- 257. Dumontet, C. and B.I. Sikic, *Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death.* J Clin Oncol, 1999. 17(3): p. 1061-70.
- 258. Geney, R., et al., Overcoming multidrug resistance in taxane chemotherapy. Clin Chem Lab Med, 2002. 40(9): p. 918-25.
- 259. Safa, A.R., *Identification and characterization of the binding sites of P-glycoprotein for multidrug resistance-related drugs and modulators*. Curr Med Chem Anticancer Agents, 2004. 4(1): p. 1-17.

- 260. Kavallaris, M., C.A. Burkhart, and S.B. Horwitz, *Antisense oligonucleotides to class III beta-tubulin sensitize drug-resistant cells to Taxol.* Br J Cancer, 1999. 80(7): p. 1020-5.
- Martello, L.A., et al., Taxol and discodermolide represent a synergistic drug combination in human carcinoma cell lines. Clin Cancer Res, 2000. 6(5): p. 1978-87.
- 262. Martello, L.A., et al., *Elevated levels of microtubule destabilizing factors in a Taxol-resistant/dependent A549 cell line with an alpha-tubulin mutation.* Cancer Res, 2003. 63(6): p. 1207-13.
- 263. Mutlu, P., A.U. Ural, and U. Gunduz, *Differential gene expression analysis related to extracellular matrix components in drug-resistant RPMI-8226 cell line.* Biomed Pharmacother, 2012. 66(3): p. 228-31.
- 264. Goldstein, N.I., et al., *Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model.* Clin Cancer Res, 1995. 1(11): p. 1311-8.
- Sunada, H., et al., Monoclonal antibody against epidermal growth factor receptor is internalized without stimulating receptor phosphorylation. Proc Natl Acad Sci U S A, 1986. 83(11): p. 3825-9.
- 266. Nakahara, S., et al., *Involvement of oligosaccharide changes in alpha5beta1 integrin in a cisplatin-resistant human squamous cell carcinoma cell line*. Mol Cancer Ther, 2003. 2(11): p. 1207-14.
- 267. Gusenbauer, S., P. Vlaicu, and A. Ullrich, *HGF induces novel EGFR functions involved in resistance formation to tyrosine kinase inhibitors.* Oncogene, 2013. 32(33): p. 3846-56.
- 268. Appleman, L.J., *MET signaling pathway: a rational target for cancer therapy.* J Clin Oncol, 2011. 29(36): p. 4837-8.
- 269. Shimamura, T., et al., *Hsp90 inhibition suppresses mutant EGFR-T790M signaling and overcomes kinase inhibitor resistance*. Cancer Res, 2008. 68(14): p. 5827-38.
- 270. Wang, S., et al., Cancer cells harboring MET gene amplification activate alternative signaling pathways to escape MET inhibition but remain sensitive to Hsp90 inhibitors. Cell Cycle, 2009. 8(13): p. 2050-6.
- 271. Koizumi, H., et al., *Hsp90 inhibition overcomes HGF-triggering resistance to EGFR-TKIs in EGFR-mutant lung cancer by decreasing client protein expression and angiogenesis.* J Thorac Oncol, 2012. 7(7): p. 1078-85.
- 272. Konishi, J., et al., *Gamma-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers.* Cancer Res, 2007. 67(17): p. 8051-7.
- 273. Wilkinson, S., H.F. Paterson, and C.J. Marshall, *Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion.* Nat Cell Biol, 2005. 7(3): p. 255-61.
- 274. Zeller, C., et al., Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene, 2012. 31(42): p. 4567-76.
- 275. Jia, P., et al., Next-generation sequencing of paired tyrosine kinase inhibitor-sensitive and -resistant EGFR mutant lung cancer cell lines identifies spectrum of DNA changes associated with drug resistance. Genome Res, 2013. 23(9): p. 1434-45.

Publikationen

- Isau M*, Kerick M*, Timmermann B, Herwig R, Krobitsch S, Schaefer G, Verdorfer I, Bartsch G, Sültmann H, Klocker H, Lehrach H, Schweiger MR.
 Genomic and Transciptomic Alterations of the Androgen Receptor Pathway in Prostate Cancer. (Manuscript in preparation; * shared co-authering)
- Isau M, Neubert K, Lienhardt M, Fischer A, Yildirimann R, Becker M, Albrecht MW, Boerno ST, Sultan M, Rolff J, Merk J, Fichtner I, Sültmann H, Lehrach H, Herwig R, Schweiger MR. High throughput sequence analysis of predisposing and somatically mutated genes in lung cancer for PREDICTion of chemotherapy resistance. (Manuscript in preparation)
- 3. Börno ST, Fischer A, Kerick M, Fälth M, Laible M, Brase JC, Kuner R, Dahl A, Grimm C, Sayanjali B, <u>Isau M</u>, Röhr C, Wunderlich A, Timmermann B, Claus R, Plass C, Graefen M, Simon R, Demichelis F, Rubin MA, Sauter G, Schlomm T, Sültmann H, Lehrach H, Schweiger MR. Genome-wide DNA methylation events in TMPRSS2-ERG fusion-negative prostate cancers implicate an EZH2-dependent mechanism with miR-26a hypermethylation. Cancer Discov. 2012 Nov;2(11):1024-35.
- 4. Welzel F, Kaehler C, <u>Isau M</u>, Hallen L, Lehrach H, Krobitsch S. **FOX-2** dependent splicing of ataxin-2 transcript is affected by ataxin-1 overexpression. PLoS One. 2012;7(5):e37985.
- 5. Kerick M*, <u>Isau M</u>*, Timmermann B, Sültmann H, Herwig R, Krobitsch S, Schaefer G, Verdorfer I, Bartsch G, Klocker H, Lehrach H, Schweiger MR. Targeted high throughput sequencing in clinical cancer settings: formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, input amount and tumor heterogeneity. BMC Med Genomics. 2011 Sep 29;4:68. (* shared co-authering)
- Schweiger MR, Kerick M, Timmermann B, <u>Isau M</u>. The power of NGS technologies to delineate the genome organization in cancer: from mutations to structural variations and epigenetic alterations. Cancer Metastasis Rev. 2011 Jun;30(2):199-210.
- 7. Timmermann B, Kerick M, Roehr C, Fischer A, <u>Isau M</u>, Boerno ST, Wunderlich A, Barmeyer C, Seemann P, Koenig J, Lappe M, Kuss AW,

Garshasbi M, Bertram L, Trappe K, Werber M, Herrmann BG, Zatloukal K, Lehrach H, Schweiger MR. Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PLoS One. 2010 Dec 22;5(12):e15661.

8. Krawitz PM, Schweiger MR, Rödelsperger C, Marcelis C, Kölsch U, Meisel C, Stephani F, Kinoshita T, Murakami Y, Bauer S, <u>Isau M</u>, Fischer A, Dahl A, Kerick M, Hecht J, Köhler S, Jäger M, Grünhagen J, de Condor BJ, Doelken S, Brunner HG, Meinecke P, Passarge E, Thompson MD, Cole DE, Horn D, Roscioli T, Mundlos S, Robinson PN. Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet. 2010 Oct;42(10):827-9.

Abkürzungsverzeichnis

ABL1	c-abl oncogene 1, non-receptor tyrosine kinase	METTL21D	valosin containing protein lysine (K) methyltransferase
AGMAT	agmatine ureohydrolase (agmatinase)	MID2	midline 2
AIMP1	aminoacyl tRNA synthetase complex- interacting multifunctional protein 1 aryl hydrocarbon receptor interacting	MKI67	antigen identified by monoclonal antibody Ki- 67
AIPL1	protein-like 1	мок	MOK protein kinase
AKAP1	A kinase (PRKA) anchor protein 1	MPL	myeloproliferative leukemia virus oncogene membrane-spanning 4-domains, subfamily A,
AKAP2	A kinase (PRKA) anchor protein 2	MS4A6E	member 6E
AKAP9	A kinase (PRKA) anchor protein 9 aldo-keto reductase family 1, member	MSR1	macrophage scavenger receptor 1
AKR1C1	C1 aldehyde dehydrogenase 18 family,	MT1F	metallothionein 1F
ALDH18A1	member A1	MTCP1	mature T-cell proliferation 1
ALOX12	arachidonate 12-lipoxygenase	MUC17	mucin 17, cell surface associated
ALOX15B	arachidonate 15-lipoxygenase, type B	MYOF	myoferlin nascent polypeptide-associated complex
AMACR	alpha-methylacyl-CoA racemase adenosine monophosphate	NACA	alpha subunit
AMPD3	deaminase 3 naphase promoting complex subunit	NBR1	neighbor of BRCA1 gene 1
ANAPC5	5	NF1	neurofibromin 1
APPL1	adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 1 ADP-ribosylation factor GTPase	NOS1	nitric oxide synthase 1 (neuronal)
ARFGAP2	activating protein 2 Rho guanine nucleotide exchange	NOS2	nitric oxide synthase 2, inducible
ARHGEF12	factor (GEF) 12 Rho guanine nucleotide exchange	NOTCH2	notch 2
ARHGEF5	factor (GEF) 5	NOTCH3	notch 3
ATF1	activating transcription factor 1	NRG1	neuregulin 1
ATF2	activating transcription factor 2	NRG3	neuregulin 3
ATM	ataxia telangiectasia mutated UDP-GlcNAc:betaGal beta-1,3-N-	NT5E	5'-nucleotidase, ecto (CD73)
B3GNT3	acetylglucosaminyltransferase 3 B-cell scaffold protein with ankyrin	NUCB1	nucleobindin 1
BANK1	repeats 1	NUMA1	nuclear mitotic apparatus protein 1 olfactory receptor, family 2, subfamily G,
BCL6	B-cell CLL/lymphoma 6	OR2G3	member 3 olfactory receptor, family 9, subfamily G,
BMI1	BMI1 polycomb ring finger oncogene	OR9G1	member 1 olfactory receptor, family 9, subfamily G,
BRCA1	breast cancer 1, early onset BRCA1/BRCA2-containing complex,	OR9G9	member 9
BRCC3	subunit 3	ORMDL1	ORM1-like 1
BTC	betacellulin	OXER1	oxoeicosanoid (OXE) receptor 1
CAMK2A	calcium/calmodulin-dependent protein kinase II alpha calcium/calmodulin-dependent	PABPC3	poly(A) binding protein, cytoplasmic 3
CAMKK2	protein kinase kinase 2, beta calmodulin binding transcription	PADI4	peptidyl arginine deiminase, type IV
CAMTA2	activator 2	PAK6	p21 protein (Cdc42/Rac)-activated kinase 6
CASC5	cancer susceptibility candidate 5 caspase 3, apoptosis-related cysteine	PAK7	p21 protein (Cdc42/Rac)-activated kinase 7
CASP3	peptidase Cbl proto-oncogene B, E3 ubiquitin	PAX8	paired box 8
CBLB	protein ligase CD74 molecule, major	PDE9A	phosphodiesterase 9A
CD74	histocompatibility complex, class II invariant chain CDC42 binding protein kinase alpha	PDGFRB	platelet-derived growth factor receptor, beta polypeptide
CDC42BPA	(DMPK-like)	PHF8	PHD finger protein 8
CDH10	cadherin 10	PHYH	phytanoyl-CoA 2-hydroxylase
CDH11	cadherin 11	PIK3C2A	phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 alpha

			nhaanhatidulinaaital 45 hianhaanhata 2
CDH9	cadherin 9	PIK3CG	phosphatidylinositol-4,5-bisphosphate 3- kinase, catalytic subunit gamma phosphoinositide-3-kinase, regulatory subunit
CDKN2A	cyclin-dependent kinase inhibitor 2A cyclin-dependent kinase inhibitor 2C	PIK3R1	1 (alpha) phospholipase D1, phosphatidylcholine-
CDKN2C	(p18, inhibits CDK4)	PLD1	specific
CHD8	cadherin 8	PML	promyelocytic leukemia
CHEK2	checkpoint kinase 2	PMS1	PMS1 postmeiotic segregation increased 1
CHGB	chromogranin B cleavage and polyadenylation factor I	POLR2B	polymerase (RNA) II (DNA directed) polypeptide B
CLP1	subunit 1	POU5F1B	POU class 5 homeobox 1B
CMC4	C-x(9)-C motif containing 4 homolog	POU6F2	POU class 6 homeobox 2
COL4A1	collagen, type IV, alpha 1	PPID	peptidylprolyl isomerase D protein phosphatase 2, regulatory subunit B,
CPNE4	copine IV complement component (3b/4b)	PPP2R2B	beta protein kinase, cAMP-dependent, regulatory,
CR1	receptor 1	PRKAR1A	type I, alpha
CR1L	complement component (3b/4b) receptor 1-like	PRKCE	protein kinase C, epsilon
CSDC2	cold shock domain containing C2, RNA binding	PRKDC	protein kinase, DNA-activated, catalytic polypeptide
CUX1	cut-like homeobox 1	PRMT6	protein arginine methyltransferase 6
CYB5RL	cytochrome b5 reductase-like	PSCA	prostate stem cell antigen
CYLD	cylindromatosis (turban tumor syndrome)	PTEN	phosphatase and tensin homolog
			protein tyrosine phosphatase, non-receptor
DES	desmin digestive organ expansion factor	PTPN11	type 11 protein tyrosine phosphatase, receptor type,
DIEXF	homolog	PTPRB	В
DLG2	discs, large homolog 2	PYDC2	pyrin domain containing 2
DNASE1L1	deoxyribonuclease I-like 1	RAB23	RAB23, member RAS oncogene family Ral GEF with PH domain and SH3 binding
DPY19L2	dpy-19-like 2	RALGPS2	motif 2 Ras association (RaIGDS/AF-6) domain
DSG3	desmoglein 3	RASSF1	family member 1
DUSP6	dual specificity phosphatase 6	RB1	retinoblastoma 1
DZIP3	DAZ interacting zinc finger protein 3	RET	ret proto-oncogene
ECE1	endothelin converting enzyme 1 epithelial cell transforming sequence	RHOB	ras homolog family member B
ECT2L	2 oncogene-like	RHOH	ras homolog family member H ribosomal protein S6 kinase, 90kDa,
EGR1	early growth response 1 euchromatic histone-lysine N-	RPS6KA1	polypeptide 1 runt-related transcription factor 1;
EHMT2	methyltransferase 2	RUNX1T1	translocated to, 1 (cyclin D-related)
EPHA2	EPH receptor A2	RXRG	retinoid X receptor, gamma
ERC1	ELKS/RAB6-interacting/CAST family member 1	S100A7A	S100 calcium binding protein A7A
2,107	excision repair cross-complementing rodent repair deficiency,	0.10071771	Cree casian sinaing protein that
ERCC4	complementation group 4	SBF1	SET binding factor 1
ESR1	estrogen receptor 1	SEC24D	SEC24 family, member D
ESR2	estrogen receptor 2 (ER beta)	SEC61G	Sec61 gamma subunit serpin peptidase inhibitor, clade A (alpha-1
ETV1	ets variant 1	SERPINA3	antiproteinase, antitrypsin), member 3 serpin peptidase inhibitor, clade B
ETV3L	ets variant 3-like	SERPINB5	(ovalbumin), member 5
EXTL3	exostosin-like glycosyltransferase 3	SFMBT2	Scm-like with four mbt domains 2
FAM3B	family with sequence similarity 3, member B	SHC4	SHC (Src homology 2 domain containing) family, member 4
FANCE	Fanconi anemia, complementation group E	SIGLEC12	sialic acid binding Ig-like lectin 12 (gene/pseudogene)
FES	feline sarcoma oncogene	SIPA1L1	signal-induced proliferation-associated 1 like 1
FGF10	fibroblast growth factor 10	SKIL	SKI-like oncogene
FGFBP2	fibroblast growth factor binding protein 2	SLC29A3	solute carrier family 29 (equilibrative nucleoside transporter), member 3
	,		solute carrier family 2 (facilitated glucose
FLNC	filamin C, gamma fms-related tyrosine kinase 1	SLC2A2 SLC33A1	transporter), member 2 solute carrier family 33 (acetyl-CoA
FLT1			

			transporter), member 1
EN14	Channella	014450	
FN1	fibronectin 1	SMAD3	SMAD family member 3
FNIP2	folliculin interacting protein 2	SNRPB2	small nuclear ribonucleoprotein polypeptide B
FOLH1B	folate hydrolase 1B	SPIB	Spi-B transcription factor (Spi-1/PU.1 related)
FZD4	frizzled family receptor 4	SPINK1	serine peptidase inhibitor, Kazal type 1
G6PD	glucose-6-phosphate dehydrogenase ganglioside induced differentiation	SPRY2	sprouty homolog 2
GDAP2	associated protein 2	SSX3	synovial sarcoma, X breakpoint 3
GGT1	gamma-glutamyltransferase 1	STEAP1B	STEAP family member 1B
GJB7	gap junction protein, beta 7, 25kDa	STK39	serine threonine kinase 39
GLB1L2	galactosidase, beta 1-like 2 guanine nucleotide binding protein-	TBC1D3	TBC1 domain family, member 3
GNL3	like 3 (nucleolar) gonadotropin-releasing hormone 1	TBCK	TBC1 domain containing kinase transcription factor 7 (T-cell specific, HMG-
GNRH1	(luteinizing-releasing hormone)	TCF7	box)
GSTA2	glutathione S-transferase alpha 2	TCL1A	T-cell leukemia/lymphoma 1A
GTPBP10	GTP-binding protein 10 (putative)	TCL1B	T-cell leukemia/lymphoma 1B
HDAC10	histone deacetylase 10 homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-	TECPR2	tectonin beta-propeller repeat containing 2
HERPUD1	like domain member 1	TET3	tet methylcytosine dioxygenase 3
HGF	hepatocyte growth factor HKR1, GLI-Kruppel zinc finger family	TGFBR3	transforming growth factor, beta receptor III
HKR1	member	TMEM45B	transmembrane protein 45B
HOXA1	homeobox A1 HscB mitochondrial iron-sulfur cluster	TPM3	tropomyosin 3
HSCB	co-chaperone heat shock protein 90kDa alpha	TRIM59	tripartite motif containing 59
HSP90AB1	(cytosolic), class B member 1	TRO	trophinin
HSPD1	heat shock 60kDa protein 1 (chaperonin)	TRPC6	transient receptor potential cation channel, subfamily C, member 6
HTR1E	5-hydroxytryptamine (serotonin) receptor 1E, G protein-coupled	TTLL12	tubulin tyrosine ligase-like family, member 12
HYDIN	HYDIN, axonemal central pair apparatus protein	UGT2B11	UDP glucuronosyltransferase 2 family, polypeptide B11
HYLS1	hydrolethalus syndrome 1 intermediate filament tail domain	VAV1	vav 1 guanine nucleotide exchange factor
IFLTD1	containing 1	VIT	vitrin
IFNL1	interferon, lambda 1	VPS13B	acuolar protein sorting 13 homolog B
IGFBP5	nsulin-like growth factor binding protein 5	WNT16	wingless-type MMTV integration site family, member 16
IL21R	interleukin 21 receptor	WNT8A	wingless-type MMTV integration site family, member 8A
ING1	inhibitor of growth family, member 1	WNT8B	wingless-type MMTV integration site family, member 8B
ITGA1	integrin, alpha 1	WRN	Werner syndrome, RecQ helicase-like
ITGA7	integrin, alpha 7	WSCD1	WSC domain containing 1
ITGA9	integrin, alpha 9	XPC	xeroderma pigmentosum, complementation group C
ITGAD	integrin, alpha D	ZCCHC9	zinc finger, CCHC domain containing 9
ITGAM	integrin, alpha M	ZDHHC21	zinc finger, DHHC-type containing 21
ITPA	inosine triphosphatase (nucleoside triphosphate pyrophosphatase)	ZFP91- CNTF	ZFP91-CNTF readthrough (NMD candidate)
JAG1	jagged 1	ZMYM2	zinc finger, MYM-type 2
KAT6A	K(lysine) acetyltransferase 6A	ZNF107	zinc finger protein 107
KAT6B	K(lysine) acetyltransferase 6B	ZNF131	zinc finger protein 131
KDM2A	lysine (K)-specific demethylase 2A	ZNF267	zinc finger protein 267
KDM5C	ysine (K)-specific demethylase 5C	ZNF28	zinc finger protein 28
KDM6A	lysine (K)-specific demethylase 6A	ZNF283	zinc finger protein 283
KIAA 1549		ZNF3	zinc finger protein 3
KIT	v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog	ZNF366	zinc finger protein 366
KLK1	kallikrein 1	ZNF429	zinc finger protein 429
KLK3	kallikrein 3	ZNF468	zinc finger protein 468
KMT2A	lysine (K)-specific methyltransferase	ZNF492	zinc finger protein 492
	• • •		

Abkürzungsverzeichnis

	2A		
	lysine (K)-specific methyltransferase		
KMT2D	2D	<i>ZNF</i> 616	zinc finger protein 616
KMT2E	lysine (K)-specific methyltransferase 2E	ZNF655	zinc finger protein 655
KRT24	keratin 24	ZNF714	zinc finger protein 107
LAMA5	laminin, alpha 5	ZNF730	zinc finger protein 730
LAMB4	laminin, beta 4	ZNF772	zinc finger protein 772
LAMC1	laminin, gamma 1 (formerly LAMB2)	ZNF79	zinc finger protein 79
LAMC3	laminin, gamma 3 leukemia inhibitory factor receptor	ZNF813	zinc finger protein 813
LIFR	alpha	ZNF816	zinc finger protein 816
LMOD1	leiomodin 1 (smooth muscle)	ZNF83	zinc finger protein 83
LRRC59	leucine rich repeat containing 59	ZNF845	zinc finger protein 845
MAML2	mastermind-like 2	ZNF85	zinc finger protein 85
MAP3K6	mitogen-activated protein kinase kinase kinase 6 mannan-binding lectin serine peptidase 1 (C4/C2 activating	ZNF860	zinc finger protein 860
MASP1	component of Ra-reactive factor) MCF.2 cell line derived transforming	ZNF90	zinc finger protein 90
MCF2	sequence	ZSCAN12	zinc finger and SCAN domain containing 12
%	Prozent	L	Liter
°C	Grad	М	Molar
μg	Mikrogramm	mA	Milliampere
μl	Mikroliter	Mb	Megabase
μM	Mikromolar	mg	Milligramm
AR	Androgen Rezeptor	min	Minute
ARE	Androgen response element	ml	Milliliter
bp	Basenpaare	mM	Millimolar
cDNA	komplementäre DNA	ng	Nanogramm
CNV	copy number variants	OR	Odds-Verhätnis
CO2	Sauerstoff	PBS	Phosphatgepufferte Salzsäure
CPDB	ConsensusPathDB	RNA	Ribonukleinsäure
DKFZ	Deutsches Krebsforschungs Institut	InDel	Insertionen und Deletionen
DNA	Desoxyribonukleinsäure	RT	Raumtemperatur
ds	Doppelstrang	S	Sekunde
EB	Elutions-Puffer (Qiagen)	SNV	single nukleotide variants Sequencing by Oligonucleotide Ligation and
ECM	Extrazelluläre Matrix	SOLiD	Detection
EMT	Epithelial zu Mesenchymal Transition	TAE	Tris/Acetat EDTA-Puffer
ePCR	Emulsions-PCR v-ets erythroblastosis virus E26	TE	Tris/EDTA-Puffer
ERG	oncogene homolog	TMPRSS2	transmembrane protease serine 2
FCS	fötales Kälberserum	TNM	Tumor Lymphknoten Metastasen
Gb	Gigabase	UV	Ultra violettes Licht
Kb	Kilobase	V	Volt

Anhang

Tabelle Anhang 1: klinische und pathologische Daten der 32 Patienten mit einem Prostatakarzinom (IMGuS).

Patient-ID	Alter	Gleason Score	TMPRSS2-ERG Fusion	рТ	pN
94	65	4+3	keine	pT3b	No
212	55	3+4	Deletion	pT3a	N0
236	61	3+4	Deletion	pT2a	N0
245	55	4+3	Insertion	pT2c	N0
291	52	3+4	Deletion	рТ3а	Nx
385	61	4+3	Insertion	pT2c	Nx
502	64	4+5	Deletion	рТ3а	N0
516	57	3+4	Insertion	pT2a	Nx
650	69	4+5	keine	pT3b	N0
651	63	4+3	keine	pT4	Nx
657	65	3+3	keine	pT2c	Nx
759	55	4+3	keine	pT2c	N0
836	70	3+4	Insertion	pT2c	Nx
852	68	4+5	keine	pT2c	N0
901	67	4+3	Insertion	pT2c	Nx
1133	57	3+2	keine	pT2c	Nx
1161	55	4+3	keine	pT2c	N0
1294	62	3+4	Insertion	pT2c	Nx
1341	71	4+3	keine	pT3b	Nx
1408	69	4+3	Deletion	pT3a	Nx
1428	70	3+2	Insertion	pT2a	Nx
1433	52	5+4	Deletion	pT3b	N1
1435	68	3+2	Deletion	pT2c	Nx
1461	60	3+4	keine	pT2c	Nx
1467	68	3+4	Insertion	рТ3а	Nx
1482	65	3+4	Deletion	pT2c	Nx
1485	69	4+3	keine	pT3a	Nx
1486	75	3+4	Deletion	рТ3а	N0
1566	65	3+4	keine	рТ3а	N0
13147_A1	k.l	3+4	keine	k.l	k.l
13147_A2	k.l	4+5	Insertion Deletion	k.l	k.l
1737_A1	61	4+5	Deletion	pT2c	Nx
1737_A2	61	3+4	keine	pT2c	Nx
21905_A1	k.l	3+4	keine	k.l	k.l
_21905_A2	k.l	3+4(5)	keine	k.l	k.l

Abkürzungen: k.l: keine Information; A: Areal

Tabelle Anhang 2: Sequenzier- und Anreicherungsstatistik der 32 Prostata-Proben basierend auf einer 3,9Mb angereicherten Zielregion und anschließender Hochdurchsatz-Sequenzierung mit der Illumina Technologie.

Patient-ID	Target Größe	Anzahl der einzeln prozessierte Fragmente	% der Fragmente innerhalb der Zielregion	Anzahl der detektierten SNVs (20x)
94_Tumor	3.9Mb	10,731,090	61%	2,609
94_Benign	3.9Mb	14,588,074	63%	2,595
901_Tumor	3.9Mb	15,959,650	76%	2,735
901_Benign	3.9Mb	17,384,304	77%	2,739
852_Tumor	3.9Mb	7,397,169	81%	2,504
852_Benign	3.9Mb	8,248,029	82%	2,556
836_Tumor	3.9Mb	11,640,729	72%	2,746
- 836_Benign	3.9Mb	17,545,263	62%	2,798
	3.9Mb	17,881,260	75%	2,780
759_Benign	3.9Mb	19,137,346	75%	2,733
657_Tumor	3.9Mb	9,230,416	81%	2,587
- 657_Benign	3.9Mb	9,378,922	81%	2,632
651_Tumor	3.9Mb	16,611,244	74%	2,694
651_Benign	3.9Mb	19,010,211	73%	2,562
650_Tumor	3.9Mb	16,141,520	65%	2,720
650_Benign	3.9Mb	13,240,880	67%	2,714
516_Tumor	3.9Mb	13,394,000	69%	2,804
516_Benign	3.9Mb	13,494,414	72%	2,842
502_Tumor	3.9Mb	11,184,648	67%	3,376
502_Benign	3.9Mb	12,357,997	65%	3,433
385_Tumor	3.9Mb	11,564,810	63%	2,808
385_Benign	3.9Mb	11,850,469	62%	3,071
291_Tumor	3.9Mb	9,960,881	68%	2,549
291_Benign	3.9Mb	16,733,543	69%	2,697
245_Tumor	3.9Mb	17,137,151	76%	2,718
245_Benign	3.9Mb	14,303,271	73%	3,115
236_Tumor	3.9Mb	6,519,095	81%	2,482
236_Benign	3.9Mb	7,908,092	81%	2,499
21905_Tumor	3.9Mb	9,178,790	79%	2,753
21905_Renign	3.9Mb	8,878,742	73%	2,747
212_Tumor	3.9Mb	8,340,587	80%	2,836
212_Renign	3.9Mb	10,159,262	82%	3,097
1737_Tumor	3.9Mb	28,798,280	70%	2,800
1737_Tulliol 1737_Benign	3.9Mb	19,628,130	70 <i>%</i> 71%	2,344
		13,304,039		·
1566_Tumor 1566_Benign	3.9Mb 3.9Mb		64%	2,822
		13,496,964	65%	2,869
1486_Tumor	3.9Mb	9,984,740	66%	2,550
1486_Benign	3.9Mb	12,693,453	63%	2,581
1485_Tumor	3.9Mb	9,311,629	67%	2,461
1485_Benign	3.9Mb	15,928,525	74%	2,680
1482_Tumor	3.9Mb	10,525,130	69%	2,574
1482_Benign	3.9Mb	8,208,993	72% 76%	2,486
1467_Tumor	3.9Mb	7,557,980	76%	2,477
1467_Benign	3.9Mb	6,475,151	76%	2,476
1461_Tumor	3.9Mb	9,068,676	72%	2,663
1461_Benign	3.9Mb	10,854,508	76%	2,771
1435_Tumor	3.9Mb	19,425,390	66%	2,532
1435_Benign	3.9Mb	20,105,177	71%	2,460
1433_Tumor	3.9Mb	15,600,014 196		2,817

196

Patient-ID	Target Größe	Anzahl der einzeln prozessierte Fragmente	% der Fragmente innerhalb der Zielregion	Anzahl der detektierten SNVs (20x)
1433_Benign	3.9Mb	14,505,245	77%	2,838
1428_Tumor	3.9Mb	18,556,556	76%	2,920
1428_Benign	3.9Mb	18,040,745	76%	2,918
1408_Tumor	3.9Mb	18,113,642	73%	2,648
1408_Benign	3.9Mb	13,641,718	73%	2,699
1341_Tumor	3.9Mb	17,840,611	70%	2,641
1341_Benign	3.9Mb	17,012,608	74%	2,663
13147_Tumor	3.9Mb	25,957,461	69%	2,676
13147_Benign	3.9Mb	32,242,243	70%	2,719
1294_Tumor	3.9Mb	12,854,224	69%	3,224
1294_Benign	3.9Mb	8,807,691	70%	3,250
1161_Tumor	3.9Mb	12,585,284	77%	2,655
1161_Benign	3.9Mb	14,054,741	75%	2,660
1133_Tumor	3.9Mb	19,447,687	70%	2,587
1133_Benign	3.9Mb	20,135,832	69%	2,578

Tabelle Anhang 3: Sequenzier- und Anreicherungsstatistik der 23 Bronchialkarzinom-Proben basierend auf einer 9Mb angereicherten Zielregion mit anschließender Hochdurchsatz-Sequenzierung der SOLiD-Technologie. Die Datenauswertung erfolgte mit dem Bioscope™ im *local* Modus.

Patient-	prozessierte DNA- Fragmente gegen hg19	prozessierte DNA- Fragmente gegen mm9	Subtraktion hg19-mm9	Anzahl der einzeln prozessierten Fragmente	% angereiche rte Exons	% angereicherte Exons (+/- 200bp)
7064N	32184857	638957	31545900	22532576	96	98
7064T	22516914	1506330	21010584	14544145	96	98
7126N	29836741	864729	28972012	22653496	96	98
7126T	27579266	20389014	7190252	1189657	79	89
7166N	25715485	485146	25230339	18053186	96	98
7166T	27731259	688182	27043077	19472035	96	98
7177N	21789336	425360	21363976	14959034	96	98
7177T	41132562	1471903	39660659	27992773	97	98
7187N	27736413	549102	27187311	19542436	96	98
7187T	29551192	2355948	27195244	18493091	96	98
7198N	28165921	582050	27583871	19775395	96	98
7198T	26872215	4448700	22423515	14360354	96	98
7298N	38619192	768879	37850313	27155545	97	98
7298T	28630723	930450	27700273	19855296	96	98
7336N	39878225	806920	39071305	27816902	97	98
7336T	24470110	833221	23636889	16670370	96	98
7343N	34107685	562575	33545110	23652593	97	98
7343T	27415190	1808442	25606748	17198124	96	98
7406N	33037524	691921	32345603	22454370	97	99
7406T	28309139	1295788	27013351	18861833	97	98
7414N	33343261	490903	32852358	22954820	97	98
7414T	38363493	4977524	33385969	21341305	97	99
7433N	27432659	407833	27024826	19123810	97	98
7433T	29229781	620949	28608832	20019645	97	99
7462N	32748964	971076	31777888	25433149	96	98
7462T	32356724	3346210	29010514	22719684	96	98

Patient-	prozessierte DNA- Fragmente gegen hg19	prozessierte DNA- Fragmente gegen mm9	Subtraktion hg19-mm9	Anzahl der einzeln prozessierten Fragmente	% angereiche rte Exons	% angereicherte Exons (+/- 200bp)
7466N	28336554	424955	27911599	19894844	96	98
7466T	26542545	1247966	25294579	17789987	96	98
7506N	54144190	884603	53259587	38091687	97	99
7506T	26891553	6708058	20183495	11194246	95	98
7530N	43062746	663772	42398974	30682020	97	98
7530T	25740215	941830	24798385	17722581	96	98
7558N	27426835	820954	26605881	20911986	96	98
7558T	24649976	2005639	22644337	17466638	96	98
7612N	33710158	530929	33179229	23687635	96	98
7612T	22549566	620580	21928986	15545630	96	98
7668N	34372619	998664	33373955	26074579	97	98
7668T	29141463	5625666	23515797	17693440	96	98
7700N	30182450	3003425	27179025	21230079	96	98
7700T	27266379	2017433	25248946	19293495	96	98
7747N	29902263	880912	29021351	22690792	96	98
7747T	31442332	949534	30492798	24289030	96	98

Tabelle Anhang 4: Sequenzier- und Anreicherungsstatistik der 23 Bronchialkarzinom-Proben basierend auf einer 9Mb angereicherten Zielregion mit anschließender Hochdurchsatz-Sequenzierung der SOLiD-Technologie. Die Datenauswertung erfolgte mit dem Bioscope™ im *classic* Modus.

Patient -ID	prozessierte DNA- Fragmente gegen hg19	prozessierte DNA- Fragmente gegen mm9	Subtraktion hg19-mm9	Anzahl der einzeln prozessierten Fragmente	% angereiche rte Exons	% angereicherte Exons (+/- 200bp)
7064N	32184857	638957	31545900	16240794	95	97
7064T	22516914	1506330	21010584	10412228	94	97
7126N	29836741	864729	28972012	19537653	96	97
7126T	27579266	20389014	7190252	127699	57	71
7166N	25715485	485146	25230339	12865775	95	97
7166T	27731259	688182	27043077	14123932	95	97
7177N	21789336	425360	21363976	10775175	95	97
7177T	41132562	1471903	39660659	20126506	95	97
7187N	27736413	549102	27187311	14228928	95	97
7187T	29551192	2355948	27195244	13298253	95	97
7198N	28165921	582050	27583871	14404322	94	97
7198T	26872215	4448700	22423515	10085948	94	97
7298N	38619192	768879	37850313	19380941	95	97
7298T	28630723	930450	27700273	14181461	95	97
7336N	39878225	806920	39071305	20046231	95	97
7336T	24470110	833221	23636889	12063708	95	97
7343N	34107685	562575	33545110	14653279	95	97
7343T	27415190	1808442	25606748	10573413	95	97
7406N	33037524	691921	32345603	15844858	96	98
7406T	28309139	1295788	27013351	13356040	95	97
7414N	33343261	490903	32852358	14101026	96	97
7414T	38363493	4977524	33385969	12884633	95	97
7433N	27432659	407833	27024826	11956322	95	97
7433T	29229781	620949	28608832	12464472	95	97
7462N	32748964	971076	31777888	22410582	96	98
7462T	32356724	3346210	29010514	19893735	96	97
7466N	28336554	424955	27911599	12732307	94	97
			400			

Patient -ID	prozessierte DNA- Fragmente gegen hg19	prozessierte DNA- Fragmente gegen mm9	Subtraktion hg19-mm9	Anzahl der einzeln prozessierten Fragmente	% angereiche rte Exons	% angereicherte Exons (+/- 200bp)
7466T	26542545	1247966	25294579	11352144	95	97
7506N	54144190	884603	53259587	24146981	95	97
7506T	26891553	6708058	20183495	6518663	92	96
7530N	43062746	663772	42398974	19683632	95	97
7530T	25740215	941830	24798385	11444398	94	97
7558N	27426835	820954	26605881	18127841	95	97
7558T	24649976	2005639	22644337	15149273	95	97
7612N	33710158	530929	33179229	15143635	94	97
7612T	22549566	620580	21928986	9864507	94	97
7668N	34372619	998664	33373955	22373402	96	98
7668T	29141463	5625666	23515797	15187990	95	97
7700N	27266379	2017433	25248946	16631525	95	97
7700T	29902263	880912	29021351	19667662	95	97
7747N	30182450	3003425	27179025	18429862	95	97
7747T	31442332	949534	30492798	21217058	95	97

Tabelle Anhang 5: Übersicht der anwederdefinierten genomischen Regionen des Sonden-Designs für die PREDICT-Studie.

Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname
ENSG00000000938	FGR	ENSG00000017797	RALBP1	ENSG00000051180	RAD51
ENSG00000002330	BAD	ENSG00000019102	VSIG2	ENSG00000051382	PIK3CB
ENSG00000002745	WNT16	ENSG00000019549	SNAI2	ENSG00000052795	FNIP2
ENSG00000002822	MAD1L1	ENSG00000019582	CD74	ENSG00000053747	LAMA3
ENSG00000002834	LASP1	ENSG00000019991	HGF	ENSG00000054118	THRAP3
ENSG00000004487	KDM1A	ENSG00000019995	ZRANB1	ENSG00000055609	MLL3
ENSG00000004897	CDC27	ENSG00000020129	NCDN	ENSG00000056097	ZFR
ENSG00000004975	DVL2	ENSG00000022556	NLRP2	ENSG00000056345	ITGB3
ENSG00000005073	HOXA11	ENSG00000023445	BIRC3	ENSG00000056558	TRAF1
ENSG00000005249	PRKAR2B	ENSG00000025423	HSD17B6	ENSG00000058085	LAMC2
ENSG00000005339	CREBBP	ENSG00000025434	NR1H3	ENSG00000058404	CAMK2B
ENSG00000005421	PON1	ENSG00000026103	FAS	ENSG00000058799	YIPF1
ENSG00000005483	MLL5	ENSG00000026508	CD44	ENSG00000059573	ALDH18A1
ENSG00000005844	ITGAL	ENSG00000027075	PRKCH	ENSG00000060558	GNA15
ENSG00000005884	ITGA3	ENSG00000027644	INSRR	ENSG00000061337	LZTS1
ENSG00000005889	ZFX	ENSG00000027869	SH2D2A	ENSG00000061492	WNT8A
ENSG00000005955	GGNBP2	ENSG00000029725	RABEP1	ENSG00000062650	WAPAL
ENSG00000005961	ITGA2B	ENSG00000030110	BAK1	ENSG00000063169	GLTSCR1
ENSG00000006071	ABCC8	ENSG00000030304	MUSK	ENSG00000064012	CASP8
ENSG00000006451	RALA	ENSG00000031544	NR2E3	ENSG00000064309	CDON
ENSG00000006459	JHDM1D	ENSG00000033800	PIAS1	ENSG00000064393	HIPK2
ENSG00000006468	ETV1	ENSG00000034152	MAP2K3	ENSG00000064933	PMS1
ENSG00000006652	IFRD1	ENSG00000035115	SH3YL1	ENSG00000065183	WDR3
ENSG00000006744	ELAC2	ENSG00000035403	VCL	ENSG00000065320	NTN1
ENSG00000007062	PROM1	ENSG00000035664	DAPK2	ENSG00000065361	ERBB3
ENSG00000007171	NOS2	ENSG00000037280	FLT4	ENSG00000065485	PDIA5
ENSG00000007237	GAS7	ENSG00000038945	MSR1	ENSG00000065559	MAP2K4
ENSG00000007312	CD79B	ENSG00000039068	CDH1	ENSG00000065615	CYB5R4
ENSG00000007341	ST7L	ENSG00000040731	CDH10	ENSG00000065675	PRKCQ
ENSG00000007908	SELE	ENSG00000040933	INPP4A	ENSG00000066032	CTNNA2
ENSG00000007968	E2F2	ENSG00000041353	RAB27B	ENSG00000066117	SMARCD1
ENSG00000008083	JARID2	ENSG00000043093	DCUN1D1	ENSG00000066135	KDM4A

Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname
ENSG00000008294	SPAG9	ENSG00000044115	CTNNA1	ENSG00000066136	NFYC
ENSG00000009694	ODZ1	ENSG00000044524	EPHA3	ENSG00000066336	SPI1
ENSG00000009709	PAX7	ENSG00000047315	POLR2B	ENSG00000066382	MPPED2
ENSG0000010030	ETV7	ENSG00000047410	TPR	ENSG00000066422	ZBTB11
ENSG00000010810	FYN	ENSG00000047932	GOPC	ENSG00000066455	GOLGA5
ENSG00000010818	HIVEP2	ENSG00000047936	ROS1	ENSG00000066468	FGFR2
ENSG00000011405	PIK3C2A	ENSG00000048462	TNFRSF17	ENSG00000066654	THUMPD1
ENSG00000011485	PPP5C	ENSG00000049089	COL9A2	ENSG00000067082	KLF6
ENSG00000012048	BRCA1	ENSG00000049130	KITLG	ENSG00000067445	TRO
ENSG00000012061	ERCC1	ENSG00000049319	SRD5A2	ENSG00000067560	RHOA
ENSG00000012232	EXTL3	ENSG00000049540	ELN	ENSG00000067606	PRKCZ
ENSG00000012504	NR1H4	ENSG00000049759	NEDD4L	ENSG00000067900	ROCK1
ENSG00000012817	KDM5D	ENSG00000049769	PPP1R3F	ENSG00000067955	CBFB
ENSG00000013374	NUB1	ENSG00000050130	JKAMP	ENSG00000068028	RASSF1
ENSG00000013561	RNF14	ENSG00000050165	DKK3	ENSG00000068078	FGFR3
ENSG00000014164	ZC3H3	ENSG00000050327	ARHGEF5	ENSG00000068323	TFE3
ENSG00000015171	ZMYND11	ENSG00000050426	LETMD1	ENSG00000068615	REEP1
ENSG00000015285	WAS	ENSG00000050555	LAMC3	ENSG00000069399	BCL3
ENSG00000015475	BID	ENSG00000050748	MAPK9	ENSG00000069667	RORA
ENSG00000017427	IGF1	ENSG00000051108	HERPUD1	ENSG00000069702	TGFBR3
ENSG00000069956	MAPK6	ENSG00000078043	PIAS2	ENSG00000086666	ZFAND6
ENSG00000069974	RAB27A	ENSG00000078061	ARAF	ENSG00000087088	BAX
ENSG00000070193	FGF10	ENSG00000078070	MCCC1	ENSG00000087245	MMP2
ENSG00000070269	C14orf101	ENSG00000078142	PIK3C3	ENSG00000087460	GNAS
ENSG00000070367	EXOC5	ENSG00000078399	HOXA9	ENSG00000087494	PTHLH
ENSG00000070371	CLTCL1	ENSG00000078401	EDN1	ENSG00000087510	TFAP2C
ENSG00000070388	FGF22	ENSG00000078403	MLLT10	ENSG00000087586	AURKA
ENSG00000070404	FSTL3	ENSG00000078579	FGF20	ENSG00000088038	CNOT3
ENSG00000070495	JMJD6	ENSG00000078674	PCM1	ENSG00000088256	GNA11
ENSG00000070808	CAMK2A	ENSG00000078804	TP53INP2	ENSG00000089053	ANAPC5
ENSG00000070831	CDC42	ENSG00000078900	TP73	ENSG00000089094	KDM2B
ENSG00000070886	EPHA8	ENSG00000079102	RUNX1T1	ENSG00000089199	CHGB
ENSG00000071051	NCK2	ENSG00000079246	XRCC5	ENSG00000089250	NOS1
ENSG00000071242	RPS6KA2	ENSG00000079432	CIC	ENSG00000089280	FUS
ENSG00000071564	TCF3	ENSG00000079974	RABL2B	ENSG00000089685	BIRC5
ENSG00000071991	CDH19	ENSG00000080371	RAB21	ENSG00000090534	THPO
ENSG00000072042	RDH11	ENSG00000080561	MID2	ENSG00000090539	CHRD
ENSG00000072062	PRKACA	ENSG00000080709	KCNN2	ENSG00000090554	FLT3LG
ENSG00000072110	ACTN1	ENSG00000080823	RAGE	ENSG00000090863	GLG1
ENSG00000072274	TFRC	ENSG00000080824	HSP90AA1	ENSG00000091128	LAMB4
ENSG00000072364	AFF4	ENSG00000081041	CXCL2	ENSG00000091136	LAMB1
ENSG00000072694	FCGR2B	ENSG00000081052	COL4A4	ENSG00000091409	ITGA6
ENSG00000073009	IKBKG	ENSG00000081059	TCF7	ENSG00000091483	FH
ENSG00000073282	TP63	ENSG00000081138	CDH7	ENSG00000091513	TF
ENSG00000073614	KDM5A	ENSG00000081853	PCDHGA12	ENSG00000091622	PITPNM3
ENSG00000073756	PTGS2	ENSG00000082153	BZW1	ENSG00000091831	ESR1
ENSG00000073849	ST6GAL1	ENSG00000082175	PGR	ENSG00000092445	TYRO3
ENSG00000073921	PICALM	ENSG00000082196	C1QTNF3	ENSG00000092969	TGFB2
ENSG00000074047	GLI2	ENSG00000082512	TRAF5	ENSG00000093183	SEC22C
ENSG00000074181	NOTCH3	ENSG00000082701	GSK3B	ENSG00000095002	MSH2
ENSG00000074211	PPP2R2C	ENSG00000082781	ITGB5	ENSG00000095015	MAP3K1
ENSG00000074266	EED	ENSG00000082805	ERC1	ENSG00000095203	EPB41L4B
ENSG00000074527	NTN4	ENSG00000083093	PALB2	ENSG00000096006	CRISP3
ENSG00000074800	ENO1	ENSG00000083168	MYST3	ENSG00000096060	FKBP5

Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname
ENSG00000075151	EIF4G3	ENSG00000083223	ZCCHC6	ENSG00000096384	HSP90AB1
ENSG00000075290	WNT8B	ENSG00000083457	ITGAE	ENSG00000096968	JAK2
ENSG00000075388	FGF4	ENSG00000083799	CYLD	ENSG00000097007	ABL1
ENSG00000075624	ACTB	ENSG00000083857	FAT1	ENSG00000099246	RAB18
ENSG00000075651	PLD1	ENSG00000084092	C4orf14	ENSG00000099284	H2AFY2
ENSG00000075785	RAB7A	ENSG00000084207	GSTP1	ENSG00000099381	SETD1A
ENSG00000076043	REXO2	ENSG00000084676	NCOA1	ENSG00000099817	POLR2E
ENSG00000076242	MLH1	ENSG00000084733	RAB10	ENSG00000099869	IGF2AS
ENSG00000076554	TPD52	ENSG00000085117	CD82	ENSG00000099875	MKNK2
ENSG00000076604	TRAF4	ENSG00000085276	MECOM	ENSG00000099942	CRKL
ENSG00000076984	MAP2K7	ENSG00000085719	CPNE3	ENSG00000099956	SMARCB1
ENSG00000077092	RARB	ENSG00000085733	CTTN	ENSG00000099991	CABIN1
ENSG00000077150	NFKB2	ENSG00000085741	WNT11	ENSG00000100028	SNRPD3
ENSG00000077157	PPP1R12B	ENSG00000085832	EPS15	ENSG00000100030	MAPK1
ENSG00000077264	PAK3	ENSG00000085978	ATG16L1	ENSG00000100031	GGT1
ENSG00000077782	FGFR1	ENSG00000086205	FOLH1	ENSG00000100105	PATZ1
ENSG00000077809	GTF2I	ENSG00000086570	FAT2	ENSG00000100228	RAB36
ENSG00000077943	ITGA8	ENSG00000086598	TMED2	ENSG00000100234	TIMP3
ENSG00000100241	SBF1	ENSG00000102678	FGF9	ENSG00000105672	ETV2
ENSG00000100304	TTLL12	ENSG00000102710	FAM48A	ENSG00000105722	ERF
ENSG00000100311	PDGFB	ENSG00000102755	FLT1	ENSG00000105723	GSK3A
ENSG00000100345	MYH9	ENSG00000102804	TSC22D1	ENSG00000105810	CDK6
ENSG00000100360	RABL4	ENSG00000102858	MGRN1	ENSG00000105851	PIK3CG
ENSG00000100380	ST13	ENSG00000102878	HSF4	ENSG00000105855	ITGB8
ENSG00000100387	RBX1	ENSG00000102882	MAPK3	ENSG00000105971	CAV2
ENSG00000100393	EP300	ENSG00000103126	AXIN1	ENSG00000105974	CAV1
ENSG00000100462	PRMT5	ENSG00000103197	TSC2	ENSG00000105976	MET
ENSG00000100485	SOS2	ENSG00000103264	FBXO31	ENSG00000105989	WNT2
ENSG00000100503	NIN	ENSG00000103353	UBFD1	ENSG00000105991	HOXA1
ENSG00000100526	CDKN3	ENSG00000103363	TCEB2	ENSG00000106031	HOXA13
ENSG00000100604	CHGA	ENSG00000103522	IL21R	ENSG00000106070	GRB10
ENSG00000100644	HIF1A	ENSG00000103769	RAB11A	ENSG00000106123	EPHB6
ENSG00000100647	KIAA0247	ENSG00000103852	TTC23	ENSG00000106211	HSPB1
ENSG00000100664	EIF5	ENSG00000104213	PDGFRL	ENSG00000106261	ZKSCAN1
ENSG00000100697	DICER1	ENSG00000104290	FZD3	ENSG00000106415	GLCCI1
ENSG00000100711	ZFYVE21	ENSG00000104320	NBN	ENSG00000106462	EZH2
ENSG00000100721	TCL1A	ENSG00000104365	IKBKB	ENSG00000106536	POU6F2
ENSG00000100731	PCNX	ENSG00000104388	RAB2A	ENSG00000106537	TSPAN13
ENSG00000100814	CCNB1IP1	ENSG00000104408	EIF3E	ENSG00000106538	RARRES2
ENSG00000100815	TRIP11	ENSG00000104419	NDRG1	ENSG00000106541	AGR2
ENSG00000100888	CHD8	ENSG00000104447	TRPS1	ENSG00000106546	AHR
ENSG00000100906	NFKBIA	ENSG00000104522	TSTA3	ENSG00000106571	GLI3
ENSG00000100985	MMP9	ENSG00000104689	TNFRSF10A	ENSG00000106689	LHX2
ENSG00000100997	ABHD12	ENSG00000104723	TUSC3	ENSG00000106799	TGFBR1
ENSG00000101040	ZMYND8	ENSG00000104805	NUCB1	ENSG00000107077	KDM4C
ENSG00000101057	MYBL2	ENSG00000104856	RELB	ENSG00000107262	BAG1
ENSG00000101109	STK4	ENSG00000104884	ERCC2	ENSG00000107263	RAPGEF1
ENSG00000101152	DNAJC5	ENSG00000104885	DOT1L	ENSG00000107338	SHB
ENSG00000101182	PSMA7	ENSG00000104899	AMH	ENSG00000107371	EXOSC3
ENSG00000101349	PAK7	ENSG00000104903	LYL1	ENSG00000107404	DVL1
ENSG00000101353	C20orf132	ENSG00000104936	DMPK	ENSG00000107485	GATA3
ENSG00000101384	JAG1	ENSG00000104946	TBC1D17	ENSG00000107521	HPS1
ENSG00000101412	E2F1	ENSG00000105173	CCNE1	ENSG00000107537	PHYH
ENSG00000101443	WFDC2	ENSG00000105221	AKT2	ENSG00000107551	RASSF4

Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname
ENSG00000101448	SPINLW1	ENSG00000105229	PIAS4	ENSG00000107643	MAPK8
ENSG00000101542	CDH20	ENSG00000105287	PRKD2	ENSG00000107779	BMPR1A
ENSG00000101544	ADNP2	ENSG00000105289	TJP3	ENSG00000107807	TLX1
ENSG00000101608	MYL12A	ENSG00000105329	TGFB1	ENSG00000107816	LZTS2
ENSG00000101654	RNMT	ENSG00000105369	CD79A	ENSG00000107831	FGF8
ENSG00000101680	LAMA1	ENSG00000105373	GLTSCR2	ENSG00000107859	PITX3
ENSG00000101752	MIB1	ENSG00000105397	TYK2	ENSG00000107882	SUFU
ENSG00000101871	MID1	ENSG00000105514	RAB3D	ENSG00000107929	LARP4B
ENSG00000101945	SUV39H1	ENSG00000105550	FGF21	ENSG00000107968	MAP3K8
ENSG00000101966	XIAP	ENSG00000105619	TFPT	ENSG00000108021	C10orf18
ENSG00000101977	MCF2	ENSG00000105639	JAK3	ENSG00000108091	CCDC6
ENSG00000102034	ELF4	ENSG00000105640	RPL18A	ENSG00000108094	CUL2
ENSG00000102096	PIM2	ENSG00000105647	PIK3R2	ENSG00000108292	MLLT6
ENSG00000102128	RAB40AL	ENSG00000105649	RAB3A	ENSG00000108379	WNT3
ENSG00000102145	GATA1	ENSG00000105656	ELL	ENSG00000108405	P2RX1
ENSG00000102466	FGF14	ENSG00000105663	AD000671.3	ENSG00000108443	RPS6KB1
ENSG00000108509	CAMTA2	ENSG00000111110	PPM1H	ENSG00000114279	FGF12
ENSG00000108515	ENO3	ENSG00000111145	ELK3	ENSG00000114302	PRKAR2A
ENSG00000108590	MED31	ENSG00000111186	WNT5B	ENSG00000114316	USP4
ENSG00000108639	SYNGR2	ENSG00000111241	FGF6	ENSG00000114346	ECT2
ENSG00000108654	DDX5	ENSG00000111266	DUSP16	ENSG00000114354	TFG
ENSG00000108691	CCL2	ENSG00000111276	CDKN1B	ENSG00000114374	USP9Y
ENSG00000108774	RAB5C	ENSG00000111348	ARHGDIB	ENSG00000114378	HYAL1
ENSG00000108799	EZH1	ENSG00000111424	VDR	ENSG00000114383	TUSC2
ENSG00000108821	COL1A1	ENSG00000111432	FZD10	ENSG00000114388	TUSC4
ENSG00000108829	LRRC59	ENSG00000111537	IFNG	ENSG00000114395	CYB561D2
ENSG00000108839	ALOX12	ENSG00000111540	RAB5B	ENSG00000114423	CBLB
ENSG00000108854	SMURF2	ENSG00000111605	CPSF6	ENSG00000114771	AADAC
ENSG00000108861	DUSP3	ENSG00000111653	ING4	ENSG00000114861	FOXP1
ENSG00000108924	HLF	ENSG00000111674	ENO2	ENSG00000114999	TTL
ENSG00000108946	PRKAR1A	ENSG00000111725	PRKAB1	ENSG00000115008	IL1A
ENSG00000108963	DPH1	ENSG00000111737	RAB35	ENSG00000115009	CCL20
ENSG00000108984	MAP2K6	ENSG00000111790	FGFR10P2	ENSG00000115107	STEAP3
ENSG00000109066	TMEM104	ENSG00000111816	FRK	ENSG00000115129	TP53I3
ENSG00000109113	RAB34	ENSG00000112033	PPARD	ENSG00000115221	ITGB6
ENSG00000109132	PHOX2B	ENSG00000112039	FANCE	ENSG00000115232	ITGA4
ENSG00000109193	SULT1E1	ENSG00000112062	MAPK14	ENSG00000115266	APC2
ENSG00000109220	CHIC2	ENSG00000112081	SFRS3	ENSG00000115297	TLX2
ENSG00000109320	NFKB1	ENSG00000112118	<i>МСМ</i> 3	ENSG00000115414	FN1
ENSG00000109321	AREG	ENSG00000112210	RAB23	ENSG00000115415	STAT1
ENSG00000109339	MAPK10	ENSG00000112242	E2F3	ENSG00000115457	IGFBP2
ENSG00000109381	ELF2	ENSG00000112333	NR2E1	ENSG00000115461	IGFBP5
ENSG00000109452	INPP4B	ENSG00000112561	TFEB	ENSG00000115548	KDM3A
ENSG00000109458	GAB1	ENSG00000112576	CCND3	ENSG00000115596	WNT6
ENSG00000109471	IL2	ENSG00000112592	TBP	ENSG00000115677	HDLBP
ENSG00000109534	GAR1	ENSG00000112655	PTK7	ENSG00000115758	ODC1
ENSG00000109586	GALNT7	ENSG00000112715	VEGFA	ENSG00000115825	PRKD3
ENSG00000109670	FBXW7	ENSG00000112769	LAMA4	ENSG00000115904	SOS1
ENSG00000109685	WHSC1	ENSG00000112964	GHR	ENSG00000115966	ATF2
ENSG00000109814	UGDH	ENSG00000113070	HBEGF	ENSG00000116016	EPAS1
ENSG00000109906	ZBTB16	ENSG00000113100	CDH9	ENSG00000116062	MSH6
ENSG00000110066	SUV420H1	ENSG00000113263	ITK	ENSG00000116106	EPHA4
ENSG00000110077	MS4A6A	ENSG00000113318	MSH3	ENSG00000116117	PARD3B
ENSG00000110092	CCND1	ENSG00000113328	CCNG1	ENSG00000116128	BCL9

Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname
ENSG00000110330	BIRC2	ENSG00000113360	RNASEN	ENSG00000116132	PRRX1
ENSG00000110367	DDX6	ENSG00000113387	SUB1	ENSG00000116133	DHCR24
ENSG00000110395	CBL	ENSG00000113389	NPR3	ENSG00000116138	DNAJC16
ENSG00000110400	PVRL1	ENSG00000113575	PPP2CA	ENSG00000116191	RALGPS2
ENSG00000110448	CD5	ENSG00000113578	FGF1	ENSG00000116251	RPL22
ENSG00000110619	CARS	ENSG00000113580	NR3C1	ENSG00000116285	ERRFI1
ENSG00000110628	SLC22A18	ENSG00000113594	LIFR	ENSG00000116288	PARK7
ENSG00000110713	NUP98	ENSG00000113721	PDGFRB	ENSG00000116455	WDR77
ENSG00000110777	POU2AF1	ENSG00000113758	DBN1	ENSG00000116459	ATP5F1
ENSG00000110786	PTPN5	ENSG00000113761	ZNF346	ENSG00000116473	RAP1A
ENSG00000110917	MLEC	ENSG00000113763	UNC5A	ENSG00000116478	HDAC1
ENSG00000110931	CAMKK2	ENSG00000113889	KNG1	ENSG00000116539	ASH1L
ENSG00000110987	BCL7A	ENSG00000113916	BCL6	ENSG00000116560	SFPQ
ENSG00000111087	GLI1	ENSG00000114251	WNT5A	ENSG00000116717	GADD45A
ENSG00000116731	PRDM2	ENSG00000120694	HSPH1	ENSG00000124201	ZNFX1
ENSG00000116771	AGMAT	ENSG00000120699	EXOSC8	ENSG00000124209	RAB22A
ENSG00000116774	OLFML3	ENSG00000120733	KDM3B	ENSG00000124212	PTGIS
ENSG00000116833	NR5A2	ENSG00000120738	EGR1	ENSG00000124216	SNAI1
ENSG00000116990	MYCL1	ENSG00000120798	NR2C1	ENSG00000124225	PMEPA1
ENSG00000117020	AKT3	ENSG00000120833	SOCS2	ENSG00000124486	USP9X
ENSG00000117036	ETV3	ENSG00000120868	APAF1	ENSG00000124529	HIST1H4B
ENSG00000117118	SDHB	ENSG00000120875	DUSP4	ENSG00000124664	SPDEF
ENSG00000117139	KDM5B	ENSG00000120885	CLU	ENSG00000124762	CDKN1A
ENSG00000117280	RAB7L1	ENSG00000120889	TNFRSF10B	ENSG00000124795	DEK
ENSG00000117298	ECE1	ENSG00000121031	PRKDC	ENSG00000124813	RUNX2
ENSG00000117394	SLC2A1	ENSG00000121057	AKAP1	ENSG00000124839	RAB17
ENSG00000117400	MPL	ENSG00000121060	TRIM25	ENSG00000124882	EREG
ENSG00000117425	PTCH2	ENSG00000121274	PAPD5	ENSG00000125037	TMEM111
ENSG00000117461	PIK3R3	ENSG00000121741	ZMYM2	ENSG00000125084	WNT1
ENSG00000117560	FASLG	ENSG00000121742	GJB6	ENSG00000125249	RAP2A
ENSG00000117676	RPS6KA1	ENSG00000121848	RNF115	ENSG00000125257	ABCC4
ENSG00000117713	ARID1A	ENSG00000121858	TNFSF10	ENSG00000125354	SEPT6
ENSG00000118046	STK11	ENSG00000121879	PIK3CA	ENSG00000125363	AMELX
ENSG00000118058	MLL	ENSG00000122025	FLT3	ENSG00000125378	BMP4
ENSG00000118231	CRYGD	ENSG00000122194	PLG	ENSG00000125538	IL1B
ENSG00000118260	CREB1	ENSG00000122203	KIAA1191	ENSG00000125618	PAX8
ENSG00000118503	TNFAIP3	ENSG00000122512	PMS2	ENSG00000125740	FOSB
ENSG00000118508	RAB32	ENSG00000122566	HNRNPA2B1	ENSG00000125845	BMP2
ENSG00000118513	MYB	ENSG00000122691	TWIST1	ENSG00000125846	ZNF133
ENSG00000118526	TCF21	ENSG00000122696	MCART1	ENSG00000125870	SNRPB2
ENSG00000118689	FOXO3	ENSG00000122778	KIAA1549	ENSG00000125877	ITPA
ENSG00000118705	RPN2	ENSG00000122779	TRIM24	ENSG00000125952	MAX
ENSG00000118971	CCND2	ENSG00000122783	C7orf49	ENSG00000126012	KDM5C
ENSG00000118972	FGF23	ENSG00000122786	CALD1	ENSG00000126214	C14orf153
ENSG00000119335	SET	ENSG00000122861	PLAU	ENSG00000126351	THRA
ENSG00000119396	RAB14	ENSG00000123066	MED13L	ENSG00000126368	NR1D1
ENSG00000119397	CEP110	ENSG00000123080	CDKN2C	ENSG00000126457	PRMT1
ENSG00000119508	NR4A3	ENSG00000123096	SSPN	ENSG00000126458	RRAS
ENSG00000119535	CSF3R	ENSG00000123124	WWP1	ENSG00000126524	SBDS
ENSG00000119537	KDSR	ENSG00000123268	ATF1	ENSG00000126561	STAT5A
ENSG00000119630	PGF	ENSG00000123358	NR4A1	ENSG00000126583	PRKCG
ENSG00000119650	C14orf179	ENSG00000123364	HOXC13	ENSG00000126746	ZNF384
ENSG00000119699	TGFB3	ENSG00000123374	CDK2	ENSG00000126752	SSX1
ENSG00000119760	SUPT7L	ENSG00000123388	HOXC11	ENSG00000126767	ELK1

Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname
ENSG00000119787	ATL2	ENSG00000123473	STIL	ENSG00000126777	KTN1
ENSG00000119866	BCL11A	ENSG00000123570	RAB9B	ENSG00000126787	DLGAP5
ENSG00000119888	EPCAM	ENSG00000123595	RAB9A	ENSG00000126856	PRDM7
ENSG00000119943	PYROXD2	ENSG00000123607	TTC21B	ENSG00000126883	NUP214
ENSG00000119950	MXI1	ENSG00000123612	ACVR1C	ENSG00000126934	MAP2K2
ENSG00000120063	GNA13	ENSG00000123728	RAP2C	ENSG00000127083	OMD
ENSG00000120129	DUSP1	ENSG00000123892	RAB38	ENSG00000127152	BCL11B
ENSG00000120156	TEK	ENSG00000123983	ACSL3	ENSG00000127191	TRAF2
ENSG00000120211	INSL4	ENSG00000123999	INHA	ENSG00000127241	MASP1
ENSG00000120656	TAF12	ENSG00000124151	NCOA3	ENSG00000127314	RAP1B
ENSG00000120659	TNFSF11	ENSG00000124171	PARD6B	ENSG00000127616	SMARCA4
ENSG00000120690	ELF1	ENSG00000124181	PLCG1	ENSG00000127663	KDM4B
ENSG00000127914	AKAP9	ENSG00000131408	NR1H2	ENSG00000134323	MYCN
ENSG00000127946	HIP1	ENSG00000131508	UBE2D2	ENSG00000134352	IL6ST
ENSG00000127954	STEAP4	ENSG00000131558	EXOC4	ENSG00000134443	GRP
ENSG00000128011	LRFN1	ENSG00000131732	ZCCHC9	ENSG00000134574	DDB2
ENSG00000128052	KDR	ENSG00000131759	RARA	ENSG00000134594	RAB33A
ENSG00000128340	RAC2	ENSG00000131773	KHDRBS3	ENSG00000134612	FOLH1B
ENSG00000128422	KRT17	ENSG00000131788	PIAS3	ENSG00000134709	HOOK1
ENSG00000128487	CYTSB	ENSG00000131844	MCCC2	ENSG00000134717	BTF3L4
ENSG00000128581	RABL5	ENSG00000131910	NR0B2	ENSG00000134755	DSC2
ENSG00000128591	FLNC	ENSG00000132005	RFX1	ENSG00000134757	DSG3
ENSG00000128602	SMO	ENSG00000132155	RAF1	ENSG00000134853	PDGFRA
ENSG00000128641	MYO1B	ENSG00000132170	PPARG	ENSG00000134871	COL4A2
ENSG00000128656	CHN1	ENSG00000132341	RAN	ENSG00000134899	ERCC5
ENSG00000128713	HOXD11	ENSG00000132356	PRKAA1	ENSG00000134900	TPP2
ENSG00000128714	HOXD13	ENSG00000132388	UBE2G1	ENSG00000134954	ETS1
ENSG00000128918	ALDH1A2	ENSG00000132432	SEC61G	ENSG00000134982	APC
ENSG00000128923	FAM63B	ENSG00000132470	ITGB4	ENSG00000135046	ANXA1
ENSG00000129173	E2F8	ENSG00000132475	H3F3B	ENSG00000135100	HNF1A
ENSG00000129204	USP6	ENSG00000132510	KDM6B	ENSG00000135226	UGT2B28
ENSG00000129214	SHBG	ENSG00000132530	XAF1	ENSG00000135249	RINT1
ENSG00000129221	AIPL1	ENSG00000132549	VPS13B	ENSG00000135316	SYNCRIP
ENSG00000129235	TXNDC17	ENSG00000132589	FLOT2	ENSG00000135317	SNX14
ENSG00000129422	MTUS1	ENSG00000132600	PRMT7	ENSG00000135318	NT5E
ENSG00000129437	KLK14	ENSG00000132646	PCNA	ENSG00000135333	EPHA7
ENSG00000129451	KLK10	ENSG00000132698	RAB25	ENSG00000135341	MAP3K7
ENSG00000129455	KLK8	ENSG00000132746	ALDH3B2	ENSG00000135346	CGA
ENSG00000129472	RAB2B	ENSG00000132781	MUTYH	ENSG00000135363	LMO2
ENSG00000129521	EGLN3	ENSG00000132825	PPP1R3D	ENSG00000135373	EHF
ENSG00000129682	FGF13	ENSG00000132906	CASP9	ENSG00000135374	ELF5
ENSG00000129757	CDKN1C	ENSG00000132964	CDK8	ENSG00000135424	ITGA7
ENSG00000129946	SHC2	ENSG00000133019	CHRM3	ENSG00000135446	CDK4
ENSG00000129965	INS	ENSG00000133056	PIK3C2B	ENSG00000135452	TSPAN31
ENSG00000129993	CBFA2T3	ENSG00000133101	CCNA1	ENSG00000135503	ACVR1B
ENSG00000130208	APOC1	ENSG00000133107	TRPC4	ENSG00000135525	MAP7
ENSG00000130222	GADD45G	ENSG00000133216	EPHB2	ENSG00000135535	CD164
ENSG00000130368	MAS1	ENSG00000133247	SUV420H2	ENSG00000135679	MDM2
ENSG00000130382	MLLT1	ENSG00000133392	MYH11	ENSG00000135722	FBXL8
ENSG00000130396	MLLT4	ENSG00000133597	ADCK2	ENSG00000135766	EGLN1
ENSG00000130477	UNC13A	ENSG00000133639	BTG1	ENSG00000135828	RNASEL
ENSG00000130513	GDF15	ENSG00000133703	KRAS	ENSG00000135862	LAMC1
ENSG00000130522	JUND	ENSG00000133704	IPO8	ENSG00000135903	PAX3
ENSG00000130669	PAK4	ENSG00000133805	AMPD3	ENSG00000135925	WNT10A

Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname
ENSG00000130675	MNX1	ENSG00000133818	RRAS2	ENSG00000136158	SPRY2
ENSG00000130702	LAMA5	ENSG00000133895	MEN1	ENSG00000136160	EDNRB
ENSG00000130818	ZNF426	ENSG00000133937	GSC	ENSG00000136167	LCP1
ENSG00000130844	ZNF331	ENSG00000134057	CCNB1	ENSG00000136238	RAC1
ENSG00000131002	CYorf15B	ENSG00000134058	CDK7	ENSG00000136244	IL6
ENSG00000131023	BX276089.1	ENSG00000134086	VHL	ENSG00000136381	IREB2
ENSG00000131095	GFAP	ENSG00000134215	VAV3	ENSG00000136492	BRIP1
ENSG00000131323	TRAF3	ENSG00000134245	WNT2B	ENSG00000136514	RTP4
ENSG00000131374	TBC1D5	ENSG00000134250	NOTCH2	ENSG00000136560	TANK
ENSG00000131378	RFTN1	ENSG00000134318	ROCK2	ENSG00000136603	SKIL
ENSG00000136653	RASSF5	ENSG00000139687	RB1	ENSG00000142627	EPHA2
ENSG00000136754	ABI1	ENSG00000139718	SETD1B	ENSG00000142657	PGD
ENSG00000136807	CDK9	ENSG00000139734	DIAPH3	ENSG00000142687	KIAA0319L
ENSG00000136848	DAB2IP	ENSG00000139832	RAB20	ENSG00000142733	MAP3K6
ENSG00000136888	ATP6V1G1	ENSG00000139998	RAB15	ENSG00000142867	BCL10
ENSG00000136931	NR5A1	ENSG00000140009	ESR2	ENSG00000142875	PRKACB
ENSG00000136936	XPA	ENSG00000140057	AK7	ENSG00000143127	ITGA10
ENSG00000136997	MYC	ENSG00000140262	TCF12	ENSG00000143158	BRP44
ENSG00000137193	PIM1	ENSG00000140263	SORD	ENSG00000143164	DCAF6
ENSG00000137265	IRF4	ENSG00000140285	FGF7	ENSG00000143171	RXRG
ENSG00000137273	FOXF2	ENSG00000140396	NCOA2	ENSG00000143207	RFWD2
ENSG00000137309	HMGA1	ENSG00000140416	TPM1	ENSG00000143222	UFC1
ENSG00000137497	NUMA1	ENSG00000140443	IGF1R	ENSG00000143252	SDHC
ENSG00000137502	RAB30	ENSG00000140459	CYP11A1	ENSG00000143257	NR1I3
ENSG00000137672	TRPC6	ENSG00000140464	PML	ENSG00000143258	USP21
ENSG00000137673	MMP7	ENSG00000140470	ADAMTS17	ENSG00000143294	PRCC
ENSG00000137752	CASP1	ENSG00000140538	NTRK3	ENSG00000143322	ABL2
ENSG00000137764	MAP2K5	ENSG00000140563	MCTP2	ENSG00000143375	CGN
ENSG00000137808	NOX5	ENSG00000140577	CRTC3	ENSG00000143379	SETDB1
ENSG00000137809	ITGA11	ENSG00000140678	ITGAX	ENSG00000143401	ANP32E
ENSG00000137812	CASC5	ENSG00000140682	TGFB1I1	ENSG00000143437	ARNT
ENSG00000137843	PAK6	ENSG00000140836	ATBF1	ENSG00000143442	POGZ
ENSG00000137962	ARHGAP29	ENSG00000140937	CDH11	ENSG00000143499	SMYD2
ENSG00000137976	DNASE2B	ENSG00000140945	CDH13	ENSG00000143507	DUSP10
ENSG00000138032	PPM1B	ENSG00000140992	PDPK1	ENSG00000143514	TP53BP2
ENSG00000138039	LHCGR	ENSG00000140995	DEF8	ENSG00000143545	RAB13
ENSG00000138061	CYP1B1	ENSG00000141026	MED9	ENSG00000143549	TPM3
ENSG00000138069	RAB1A	ENSG00000141367	CLTC	ENSG00000143556	S100A7
ENSG00000138081	FBXO11	ENSG00000141380	SS18	ENSG00000143578	CREB3L4
ENSG00000138119	MYOF	ENSG00000141469	SLC14A1	ENSG00000143632	ACTA1
ENSG00000138166	DUSP5	ENSG00000141485	SLC13A5	ENSG00000143653	SCCPDH
ENSG00000138279	ANXA7	ENSG00000141506	PIK3R5	ENSG00000143776	CDC42BPA
ENSG00000138293	NCOA4	ENSG00000141510	TP53	ENSG00000143797	MBOAT2
ENSG00000138294	MSMB	ENSG00000141542	RAB40B	ENSG00000143816	WNT9A
ENSG00000138336	TET1	ENSG00000141582	CBX4	ENSG00000143819	EPHX1
ENSG00000138363	ATIC	ENSG00000141639	MAPK4	ENSG00000143839	REN
ENSG00000138413	IDH1	ENSG00000141646	SMAD4	ENSG00000143851	PTPN7
ENSG00000138448	ITGAV	ENSG00000141682	PMAIP1	ENSG00000143878	RHOB
ENSG00000138668	HNRNPD	ENSG00000141736	ERBB2	ENSG00000143924	EML4
ENSG00000138675	FGF5	ENSG00000141753	IGFBP4	ENSG00000144118	RALB
ENSG00000138685	FGF2	ENSG00000141867	BRD4	ENSG00000144134	RABL2A
ENSG00000138696	BMPR1B	ENSG00000141905	NFIC	ENSG00000144218	AFF3
ENSG00000138698	RAP1GDS1	ENSG00000141968	VAV1	ENSG00000144381	HSPD1
ENSG00000138772	ANXA3	ENSG00000141985	SH3GL1	ENSG00000144476	CXCR7

Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname
ENSG00000138795	LEF1	ENSG00000142156	COL6A1	ENSG00000144554	FANCD2
ENSG00000138798	EGF	ENSG00000142208	AKT1	ENSG00000144566	RAB5A
ENSG00000139083	ETV6	ENSG00000142273	CBLC	ENSG00000144668	ITGA9
ENSG00000139318	DUSP6	ENSG00000142453	CARM1	ENSG00000144741	SLC25A26
ENSG00000139549	DHH	ENSG00000142515	KLK3	ENSG00000144749	LRIG1
ENSG00000139618	BRCA2	ENSG00000142539	SPIB	ENSG00000144840	RABL3
ENSG00000139626	ITGB7	ENSG00000142599	RERE	ENSG00000144852	NR112
ENSG00000139644	TMBIM6	ENSG00000142611	PRDM16	ENSG00000145012	LPP
ENSG00000145088	EAF2	ENSG00000149182	ARFGAP2	ENSG00000153814	JAZF1
ENSG00000145216	FIP1L1	ENSG00000149269	PAK1	ENSG00000153944	MSI2
ENSG00000145242	EPHA5	ENSG00000149311	ATM	ENSG00000154001	PPP2R5E
ENSG00000145349	CAMK2D	ENSG00000149328	GLB1L2	ENSG00000154122	ANKH
ENSG00000145391	SETD7	ENSG00000149418	ST14	ENSG00000154162	CDH12
ENSG00000145526	CDH18	ENSG00000149554	CHEK1	ENSG00000154229	PRKCA
ENSG00000145604	SKP2	ENSG00000149948	HMGA2	ENSG00000154277	UCHL1
ENSG00000145675	PIK3R1	ENSG00000150093	ITGB1	ENSG00000154342	WNT3A
ENSG00000145819	ARHGAP26	ENSG00000150394	CDH8	ENSG00000154447	SH3RF1
ENSG00000146070	PLA2G7	ENSG00000150457	LATS2	ENSG00000154493	C10orf90
ENSG00000146205	ANO7	ENSG00000150630	VEGFC	ENSG00000154582	TCEB1
ENSG00000146416	AIG1	ENSG00000150672	DLG2	ENSG00000154723	ATP5J
ENSG00000146521	C6orf123	ENSG00000150907	FOXO1	ENSG00000154727	GABPA
ENSG00000146535	GNA12	ENSG00000150961	SEC24D	ENSG00000154764	WNT7A
ENSG00000146648	EGFR	ENSG00000151090	THRB	ENSG00000154767	XPC
ENSG00000146674	IGFBP3	ENSG00000151150	ANK3	ENSG00000154803	FLCN
ENSG00000146678	IGFBP1	ENSG00000151338	MIPOL1	ENSG00000154917	RAB6B
ENSG00000146859	TMEM140	ENSG00000151348	EXT2	ENSG00000154920	EME1
ENSG00000146904	EPHA1	ENSG00000151364	KCTD14	ENSG00000154928	EPHB1
ENSG00000146955	RAB19	ENSG00000151413	NUBPL	ENSG00000155115	GTF3C6
ENSG00000146963	LUC7L2	ENSG00000151474	FRMD4A	ENSG00000155366	RHOC
ENSG00000147050	KDM6A	ENSG00000151617	EDNRA	ENSG00000155393	HEATR3
ENSG00000147065	MSN	ENSG00000151623	NR3C2	ENSG00000155760	FZD7
ENSG00000147082	CCNB3	ENSG00000151632	AKR1C2	ENSG00000155761	SPAG17
ENSG00000147127	RAB41	ENSG00000151693	ASAP2	ENSG00000155961	RAB39B
ENSG00000147140	NONO	ENSG00000151702	FLI1	ENSG00000156049	GNA14
ENSG00000147257	GPC3	ENSG00000151715	TMEM45B	ENSG00000156052	GNAQ
ENSG00000147403	RPL10	ENSG00000151746	BICD1	ENSG00000156284	CLDN8
ENSG00000147437	GNRH1	ENSG00000151846	PABPC3	ENSG00000156427	FGF18
ENSG00000147507	LYN	ENSG00000151914	DST	ENSG00000156475	PPP2R2B
ENSG00000147535	PPAPDC1B	ENSG00000152086	TUBA3E	ENSG00000156500	FAM122C
ENSG00000147548	WHSC1L1	ENSG00000152213	ARL11	ENSG00000156587	UBE2L6
ENSG00000147862	NFIB	ENSG00000152234	ATP5A1	ENSG00000156650	MYST4
ENSG00000147883	CDKN2B	ENSG00000152256	PDK1	ENSG00000156711	MAPK13
ENSG00000147889	CDKN2A	ENSG00000152284	TCF7L1	ENSG00000156886	ITGAD
ENSG00000147912	FBXO10	ENSG00000152377	SPOCK1	ENSG00000156970	BUB1B
ENSG00000148053	NTRK2	ENSG00000152455	SUV39H2	ENSG00000156976	EIF4A2
ENSG00000148082	SHC3	ENSG00000152464	RPP38	ENSG00000157005	SST
ENSG00000148143	ZNF462	ENSG00000152484	USP12	ENSG00000157168	NRG1
ENSG00000148200	NR6A1	ENSG00000152661	GJA1	ENSG00000157214	STEAP2
ENSG00000148219	ASTN2	ENSG00000152684	PELO	ENSG00000157224	CLDN12
ENSG00000148346	LCN2	ENSG00000152894	PTPRK	ENSG00000157240	FZD1
ENSG00000148400	NOTCH1	ENSG00000152932	RAB3C	ENSG00000157388	CACNA1D
ENSG00000148516	ZEB1	ENSG00000153064	BANK1	ENSG00000157404	KIT
ENSG00000148660	CAMK2G	ENSG00000153162	BMP6	ENSG00000157456	CCNB2
ENSG00000148737	TCF7L2	ENSG00000153208	MERTK	ENSG00000157500	APPL1

Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname
ENSG00000148773	MKI67	ENSG00000153233	PTPRR	ENSG00000157514	TSC22D3
ENSG00000148795	CYP17A1	ENSG00000153234	NR4A2	ENSG00000157554	ERG
ENSG00000148908	RGS10	ENSG00000153250	RBMS1	ENSG00000157557	ETS2
ENSG00000148926	ADM	ENSG00000153391	INO80C	ENSG00000157578	LCA5L
ENSG00000140020	SLC43A1	ENSG00000153487	ING1	ENSG00000157601	MX1
ENSG00000110100	C11orf49	ENSG00000153707	PTPRD	ENSG00000157764	BRAF
ENSG00000143173	RAB28	ENSG00000160767	ACOX1	ENSG00000167764	ZNF589
ENSG00000157911	PEX10	ENSG00000161638	ITGA5	ENSG00000164050	PLXNB1
ENSG00000157916	RER1	ENSG00000161940	BCL6B	ENSG00000164056	SPRY1
ENSG00000157933	SKI	ENSG00000161958	FGF11	ENSG00000164078	MST1R
ENSG00000157950	SSX2B	ENSG00000161330	CYBASC3	ENSG00000164086	DUSP7
ENSG00000158050	DUSP2	ENSG00000162344	FGF19	ENSG00000164111	ANXA5
ENSG00000158092	NCK1	ENSG00000162347	TAL1	ENSG00000164144	ARFIP1
ENSG00000158169	FANCC	ENSG00000162413	KLHL21	ENSG00000164161	HHIP
ENSG00000158186	MRAS	ENSG00000162413	JAK1	ENSG00000164171	ITGA2
ENSG00000158406	HIST1H4H	ENSG00000162552	WNT4	ENSG00000164771	SPINK1
ENSG00000158458	NRG2	ENSG00000162585	C1orf86	ENSG00000164305	CASP3
ENSG00000158486	DNAH3	ENSG00000162692	VCAM1	ENSG00000164398	ACSL6
ENSG00000158516	CPA2	ENSG00000162702	ZNF281	ENSG00000164411	GJB7
ENSG00000158528	PPP1R9A	ENSG00000162733	DDR2	ENSG00000164438	TLX3
ENSG00000158328	ELK4	ENSG00000162733	PEA15	ENSG00000164647	STEAP1
ENSG00000158711	SLAMF8	ENSG00000162734	RBM15	ENSG00000164690	SHH
ENSG00000158715	SLC45A3	ENSG00000162773	OXER1	ENSG00000164715	LMTK2
ENSG00000158715	FGF17	ENSG00000162881	IL24	ENSG00000164713	NOS3
ENSG00000158813	TOMM40L	ENSG00000162892	REL	ENSG00000164885	CDK5
ENSG00000158882	WNT9B	ENSG00000162924 ENSG00000162992	NEUROD1	ENSG00000164919	COX6C
ENSG00000159184	HOXB13	ENSG00000162992	EN1	ENSG00000164919	FZD6
ENSG00000159184 ENSG00000159216	RUNX1	ENSG00000163064 ENSG00000163161	ERCC3	ENSG00000164985	PSIP1
ENSG00000159210	PADI4	ENSG00000163161	TGFA	ENSG00000164985	SYK
ENSG00000159339 ENSG00000159387	IRX6	ENSG00000163251	FZD5	ENSG00000165059	PRKACG
ENSG00000159387	HK2	ENSG00000163251	CLDN1	ENSG00000165097	KDM1B
ENSG00000159399 ENSG00000159496	RGL4	ENSG00000163347	LMOD1	ENSG00000165097	RASEF
ENSG00000159490	SPON2	ENSG00000163431	ELF3	ENSG00000165103	FIGF
ENSG00000159674 ENSG00000159692	CTBP1	ENSG00000163449	TMEM169	ENSG00000165197	CLDN3
ENSG00000159840	ZYX	ENSG00000163449	IGFBP7	ENSG00000165280	VCP
ENSG00000159840 ENSG00000160113	NR2F6	ENSG00000163482	STK36	ENSG00000165323	FAT3
ENSG00000160113	TFF3	ENSG00000163482	FEV	ENSG00000165323	WRN
ENSG00000160180	TFF2	ENSG00000163501	IHH	ENSG00000165409	TSHR
ENSG00000160181	TFF1	ENSG00000163501	TGFBR2	ENSG00000165410	CFL2
ENSG00000160182	PDE9A	ENSG00000163518	FCRL4	ENSG00000165475	CRYL1
ENSG00000160191	WDR4	ENSG00000163518	PRKCI	ENSG00000165556	CDX2
ENSG00000160193	PKNOX1	ENSG00000163581	SLC2A2	ENSG000001655336	NSD1
ENSG00000160199	ITGB2	ENSG00000163581	CADPS	ENSG00000165699	TSC1
ENSG00000160233	RALGDS	ENSG00000163615	GMPS	ENSG00000165731	RET
ENSG00000160271	VAV2	ENSG00000163734	CXCL3	ENSG00000165731	FUNDC2
ENSG00000160293	PRMT2	ENSG00000163734	CXCL3	ENSG00000165773	ZNF219
ENSG00000160616	TLCD1	ENSG00000163743	RCHY1	ENSG00000165806	CASP7
ENSG00000160603	PCSK7	ENSG00000163745	RYK	ENSG00000165862	PNLIPRP2
	SAFB	ENSG00000163783	SLC4A1AP	ENSG00000165879	FRAT1
ENSG00000160633	SHC1	ENSG00000163798 ENSG00000163823	CCR1	ENSG00000165879 ENSG00000166002	C11orf75
ENSG00000160691 ENSG00000160789	LMNA	ENSG00000163823 ENSG00000163882	POLR2H	ENSG00000166002	RAB8B
ENSG00000160862	AZGP1	ENSG00000163902	RPN1	ENSG00000166170	BAG5
ENSG00000160867	FGFR4	ENSG00000163918	RFC4	ENSG00000166211	SPIC
ENSG00000160883	HK3	ENSG00000163923	RPL39L	ENSG00000166323	C11orf65

Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname
ENSG00000160957	RECQL4	ENSG00000163932	PRKCD	ENSG00000166333	ILK
ENSG00000160967	CUX1	ENSG00000163938	GNL3	ENSG00000166347	CYB5A
ENSG00000161202	DVL3	ENSG00000163956	LRPAP1	ENSG00000166407	LMO1
ENSG00000161326	DUSP14	ENSG00000164022	AIMP1	ENSG00000166484	MAPK7
ENSG00000166501	PRKCB	ENSG00000168461	RAB31	ENSG00000171302	CANT1
ENSG00000166508	MCM7	ENSG00000168542	COL3A1	ENSG00000171456	ASXL1
ENSG00000166526	ZNF3	ENSG00000168610	STAT3	ENSG00000171497	PPID
ENSG00000166529	ZSCAN21	ENSG00000168646	AXIN2	ENSG00000171552	BCL2L1
ENSG00000166598	HSP90B1	ENSG00000168653	NDUFS5	ENSG00000171570	EGLN2
ENSG00000166670	MMP10	ENSG00000168769	TET2	ENSG00000171587	DSCAM
ENSG00000166710	B2M	ENSG00000168811	IL12A	ENSG00000171608	PIK3CD
ENSG00000166743	ACSM1	ENSG00000168830	HTR1E	ENSG00000171723	GPHN
ENSG00000166840	GLYATL1	ENSG00000168883	USP39	ENSG00000171791	BCL2
ENSG00000166949	SMAD3	ENSG00000168939	SPRY3	ENSG00000171843	MLLT3
ENSG00000166959	MS4A8B	ENSG00000169032	MAP2K1	ENSG00000171862	PTEN
ENSG00000166979	C21orf63	ENSG00000169035	KLK7	ENSG00000171863	RPS7
ENSG00000167004	PDIA3	ENSG00000169047	IRS1	ENSG00000172007	RAB33B
ENSG00000167034	NKX3-1	ENSG00000169071	ROR2	ENSG00000172020	GAP43
ENSG00000167193	CRK	ENSG00000169083	AR	ENSG00000172037	LAMB2
ENSG00000167232	ZNF91	ENSG00000169184	MN1	ENSG00000172115	CYCS
ENSG00000167244	IGF2	ENSG00000169213	RAB3B	ENSG00000172175	MALT1
ENSG00000167325	RRM1	ENSG00000169228	RAB24	ENSG00000172179	PRL
ENSG00000167460	TPM4	ENSG00000169297	NR0B1	ENSG00000172262	ZNF131
ENSG00000167461	RAB8A	ENSG00000169359	SLC33A1	ENSG00000172346	CSDC2
ENSG00000167548	MLL2	ENSG00000169398	PTK2	ENSG00000172354	GNB2
ENSG00000167578	RAB4B	ENSG00000169413	RNASE6	ENSG00000172379	ARNT2
ENSG00000167580	AQP2	ENSG00000169429	IL8	ENSG00000172409	CLP1
ENSG00000167601	AXL	ENSG00000169554	ZEB2	ENSG00000172466	ZNF24
ENSG00000167608	TMC4	ENSG00000169696	ASPSCR1	ENSG00000172476	RAB40A
ENSG00000167635	ZNF146	ENSG00000169710	FASN	ENSG00000172493	AFF1
ENSG00000167653	PSCA	ENSG00000169714	CNBP	ENSG00000172660	TAF15
ENSG00000167657	DAPK3	ENSG00000169750	RAC3	ENSG00000172680	MOS
ENSG00000167658	EEF2	ENSG00000169752	NRG4	ENSG00000172765	TMCC1
ENSG00000167748	KLK1	ENSG00000169884	WNT10B	ENSG00000172780	RAB43
ENSG00000167749	KLK4	ENSG00000169896	ITGAM	ENSG00000172794	RAB37
ENSG00000167751	KLK2	ENSG00000169919	GUSB	ENSG00000172819	RARG
ENSG00000167754	KLK5	ENSG00000169925	BRD3	ENSG00000172943	PHF8
ENSG00000167755	KLK6	ENSG00000170145	SIK2	ENSG00000173039	RELA
ENSG00000167757	KLK11	ENSG00000170233	NLRP1	ENSG00000173110	HSPA6
ENSG00000167759	KLK13	ENSG00000170242	USP47	ENSG00000173120	KDM2A
ENSG00000167768	KRT1	ENSG00000170345	FOS	ENSG00000173207	CKS1B
ENSG00000167779	IGFBP6	ENSG00000170348	TMED10	ENSG00000173467	AGR3
ENSG00000167797	CDK2AP2	ENSG00000170425	ADORA2B	ENSG00000173473	SMARCC1
ENSG00000167858	TEKT1	ENSG00000170525	PFKFB3	ENSG00000173511	VEGFB
ENSG00000167863	ATP5H	ENSG00000170558	CDH2	ENSG00000173757	STAT5B
ENSG00000167964	RAB26	ENSG00000170577	SIX2	ENSG00000173801	JUP
ENSG00000167985	SDHAF2	ENSG00000170776	AKAP13	ENSG00000173848	NET1
ENSG00000168036	CTNNB1	ENSG00000170791	CHCHD7	ENSG00000173890	GPR160
ENSG00000168040	FADD	ENSG00000170836	PPM1D	ENSG00000174156	GSTA3
ENSG00000168092	PAFAH1B2	ENSG00000170873	MTSS1	ENSG00000174238	PITPNA
ENSG00000168118	RAB4A	ENSG00000171056	SOX7	ENSG00000174437	ATP2A2
ENSG00000168172	HOOK3	ENSG00000171094	ALK	ENSG00000174562	KLK15
ENSG00000168283	BMI1	ENSG00000171105	INSR	ENSG00000174697	LEP
ENSG00000168309	FAM107A	ENSG00000171132	PRKCE	ENSG00000174738	NR1D2

Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname
ENSG00000168385	SEPT2	ENSG00000171223	JUNB	ENSG00000174775	HRAS
ENSG00000168421	RHOH	ENSG00000171234	UGT2B7	ENSG00000174804	FZD4
ENSG00000174808	BTC	ENSG00000179583	CIITA	ENSG00000183161	FANCF
ENSG00000174903	RAB1B	ENSG00000179593	ALOX15B	ENSG00000183230	CTNNA3
ENSG00000175029	CTBP2	ENSG00000179820	MYADM	ENSG00000183486	MX2
ENSG00000175054	ATR	ENSG00000180089	TMEM86B	ENSG00000183527	PSMG1
ENSG00000175084	DES	ENSG00000180340	FZD2	ENSG00000183722	LHFP
ENSG00000175104	TRAF6	ENSG00000180370	PAK2	ENSG00000183726	TMEM50A
ENSG00000175197	DDIT3	ENSG00000180530	NRIP1	ENSG00000183765	CHEK2
ENSG00000175264	CHST1	ENSG00000180644	PRF1	ENSG00000183770	FOXL2
ENSG00000175305	CCNE2	ENSG00000180772	AGTR2	ENSG00000183778	B3GALT5
ENSG00000175387	SMAD2	ENSG00000181029	TRAPPC5	ENSG00000183844	FAM3B
ENSG00000175582	RAB6A	ENSG00000181085	MAPK15	ENSG00000183878	UTY
ENSG00000175595	ERCC4	ENSG00000181090	EHMT1	ENSG00000183941	HIST2H4A
ENSG00000175634	RPS6KB2	ENSG00000181092	ADIPOQ	ENSG00000183955	SETD8
ENSG00000175727	MLXIP	ENSG00000181163	NPM1	ENSG00000184012	TMPRSS2
ENSG00000175745	NR2F1	ENSG00000181222	POLR2A	ENSG00000184304	PRKD1
ENSG00000175793	SFN	ENSG00000181333	HEPHL1	ENSG00000184384	MAML2
ENSG00000175832	ETV4	ENSG00000181409	AATK	ENSG00000184402	SS18L1
ENSG00000175868	CALCB	ENSG00000181449	SOX2	ENSG00000184481	FOXO4
ENSG00000175893	ZDHHC21	ENSG00000181467	RAP2B	ENSG00000184507	C15orf55
ENSG00000175928	LRRN1	ENSG00000181555	SETD2	ENSG00000184545	DUSP8
ENSG00000176105	YES1	ENSG00000181638	ZFP41	ENSG00000184557	SOCS3
ENSG00000176165	FOXG1	ENSG00000181666	HKR1	ENSG00000184640	SEPT9
ENSG00000176222	ZNF404	ENSG00000181690	PLAG1	ENSG00000184675	FAM123B
ENSG00000176236	C10orf111	ENSG00000181773	GPR3	ENSG00000184702	SEPT5
ENSG00000176490	DIRAS1	ENSG00000181885	CLDN7	ENSG00000184811	TUSC5
ENSG00000176641	RNF152	ENSG00000181982	CCDC149	ENSG00000184887	BTBD6
ENSG00000177096	FAM109B	ENSG00000181991	MRPS11	ENSG00000184937	WT1
ENSG00000177189	RPS6KA3	ENSG00000182054	IDH2	ENSG00000184992	BRI3BP
ENSG00000177283	FZD8	ENSG00000182093	WRB	ENSG00000185008	ROBO2
ENSG00000177425	PAWR	ENSG00000182158	CREB3L2	ENSG00000185022	MAFF
ENSG00000177463	NR2C2	ENSG00000182162	P2RY8	ENSG00000185055	EFCAB10
ENSG00000177575	CD163	ENSG00000182185	RAD51L1	ENSG00000185236	RAB11B
ENSG00000177606	JUN	ENSG00000182197	EXT1	ENSG00000185274	WBSCR17
ENSG00000177885	GRB2	ENSG00000182217	HIST2H4B	ENSG00000185338	SOCS1
ENSG00000178053	MLF1	ENSG00000182240	BACE2	ENSG00000185386	MAPK11
ENSG00000178104	PDE4DIP	ENSG00000182318	ZSCAN22	ENSG00000185420	SMYD3
ENSG00000178105	DDX10	ENSG00000182393	IL29	ENSG00000185432	METTL7A
ENSG00000178175	<i>ZNF</i> 366	ENSG00000182511	FES	ENSG00000185437	SH3BGR
ENSG00000178199	ZC3H12D	ENSG00000182578	CSF1R	ENSG00000185483	ROR1
ENSG00000178568	ERBB4	ENSG00000182580	EPHB3	ENSG00000185499	MUC1
ENSG00000178573	MAF	ENSG00000182718	ANXA2	ENSG00000185551	NR2F2
ENSG00000178691	SUZ12	ENSG00000182759	MAFA	ENSG00000185585	OLFML2A
ENSG00000178952	TUFM	ENSG00000182795	C1orf116	ENSG00000185624	P4HB
ENSG00000179091	CYC1	ENSG00000182809	CRIP2	ENSG00000185627	PSMD13
ENSG00000179094	PER1	ENSG00000182866	LCK	ENSG00000185630	PBX1
ENSG00000179295	PTPN11	ENSG00000182901	RGS7	ENSG00000185634	SHC4
ENSG00000179314	WSCD1	ENSG00000182944	EWSR1	ENSG00000185658	BRWD1
ENSG00000179331	RAB39	ENSG00000182979	MTA1	ENSG00000185666	SYN3
ENSG00000179348	GATA2	ENSG00000182985	CADM1	ENSG00000185697	MYBL1
ENSG00000179362	C15orf21	ENSG00000183019	C19orf59	ENSG00000185737	NRG3
ENSG00000179388	EGR3	ENSG00000183023	SLC8A1	ENSG00000185811	IKZF1
ENSG00000179477	ALOX12B	ENSG00000183036	PCP4	ENSG00000185920	PTCH1

Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname
ENSG00000185947	<i>ZNF</i> 267	ENSG00000196353	CPNE4	ENSG00000197976	SFRS17A
ENSG00000185950	IRS2	ENSG00000196387	ZNF140	ENSG00000197977	ELOVL2
ENSG00000185974	GRK1	ENSG00000196411	EPHB4	ENSG00000198176	TFDP1
ENSG00000186051	TAL2	ENSG00000196455	PIK3R4	ENSG00000198211	TUBB3
ENSG00000186088	PION	ENSG00000196468	FGF16	ENSG00000198223	CSF2RA
ENSG00000186153	WWOX	ENSG00000196470	SIAH1	ENSG00000198246	SLC29A3
ENSG00000186280	KDM4D	ENSG00000196507	TCEAL3	ENSG00000198286	CARD11
ENSG00000186340	THBS2	ENSG00000196531	NACA	ENSG00000198315	ZNF192
ENSG00000186350	RXRA	ENSG00000196549	MME	ENSG00000198327	HIST1H4F
ENSG00000186474	KLK12	ENSG00000196569	LAMA2	ENSG00000198339	HIST1H4I
ENSG00000186566	GPATCH8	ENSG00000196586	MYO6	ENSG00000198355	PIM3
ENSG00000186575	NF2	ENSG00000196588	MKL1	ENSG00000198400	NTRK1
ENSG00000186660	ZFP91	ENSG00000196591	HDAC2	ENSG00000198417	MT1F
ENSG00000186716	BCR	ENSG00000196611	MMP1	ENSG00000198420	FAM115A
ENSG00000186792	HYAL3	ENSG00000196620	UGT2B15	ENSG00000198466	ZNF587
ENSG00000186895	FGF3	ENSG00000196624	RAB44	ENSG00000198467	TPM2
ENSG00000187097	ENTPD5	ENSG00000196663	TECPR2	ENSG00000198482	ZNF808
ENSG00000187098	MITF	ENSG00000196712	NF1	ENSG00000198517	MAFK
ENSG00000187239	FNBP1	ENSG00000196730	DAPK1	ENSG00000198518	HIST1H4E
ENSG00000187266	EPOR	ENSG00000196781	TLE1	ENSG00000198542	ITGBL1
ENSG00000187323	DCC	ENSG00000196878	LAMB3	ENSG00000198558	HIST1H4L
ENSG00000187325	TAF9B	ENSG00000196914	ARHGEF12	ENSG00000198625	MDM4
ENSG00000187498	COL4A1	ENSG00000196922	ZNF252	ENSG00000198648	STK39
ENSG00000187605	TET3	ENSG00000196924	FLNA	ENSG00000198680	TUSC1
ENSG00000187621	TCL6	ENSG00000196975	ANXA4	ENSG00000198732	SMOC1
ENSG00000187678	SPRY4	ENSG00000196976	LAGE3	ENSG00000198740	ZNF652
ENSG00000187682	ERAS	ENSG00000197061	HIST1H4C	ENSG00000198793	MTOR
ENSG00000187735	TCEA1	ENSG00000197063	MAFG	ENSG00000198795	ZNF521
ENSG00000187741	FANCA	ENSG00000197081	IGF2R	ENSG00000198855	FICD
ENSG00000187792	ZNF70	ENSG00000197122	SRC	ENSG00000198865	CCDC152
ENSG00000187840	EIF4EBP1	ENSG00000197238	HIST1H4J	ENSG00000198879	SFMBT2
ENSG00000188001	TPRG1	ENSG00000197279	ZNF165	ENSG00000198890	PRMT6
ENSG00000188004	C1orf204	ENSG00000197299	BLM	ENSG00000198900	TOP1
ENSG00000188060	RAB42	ENSG00000197302	ZNF720	ENSG00000198910	L1CAM
ENSG00000188064	WNT7B	ENSG00000197323	TRIM33	ENSG00000198915	RASGEF1A
ENSG00000188130	MAPK12	ENSG00000197343	ZNF655	ENSG00000198919	DZIP3
ENSG00000188191	PRKAR1B	ENSG00000197355	UAP1L1	ENSG00000198920	KIAA0753
ENSG00000188603	CLN3	ENSG00000197442	MAP3K5	ENSG00000198946	SSX4B
ENSG00000188987	HIST1H4D	ENSG00000197461	PDGFA	ENSG00000198961	PJA2
ENSG00000189030	VHLL	ENSG00000197555	SIPA1L1	ENSG00000203734	ECT2L
ENSG00000189212	DPY19L2	ENSG00000197562	RAB40C	ENSG00000204053	MYCL2
ENSG00000189221	MAOA	ENSG00000197563	PIGN	ENSG00000204071	TCEAL6
ENSG00000189280	GJB5	ENSG00000197565	COL4A6	ENSG00000204103	MAFB
ENSG00000189283	FHIT	ENSG00000197724	PHF2	ENSG00000204217	BMPR2
ENSG00000196072	BLOC1S2	ENSG00000197746	PSAP	ENSG00000204231	RXRB
ENSG00000196091	MYBPC1	ENSG00000197822	OCLN	ENSG00000204370	SDHD
ENSG00000196092	PAX5	ENSG00000197837	HIST4H4	ENSG00000204371	EHMT2
ENSG00000196136	SERPINA3	ENSG00000197888	UGT2B17	ENSG00000204389	HSPA1A
ENSG00000196152	ZNF79	ENSG00000197894	ADH5	ENSG00000204519	ZNF551
ENSG00000196159	FAT4	ENSG00000197914	HIST1H4K	ENSG00000204531	POU5F1
ENSG00000196176	HIST1H4A	ENSG00000197932	F8A1	ENSG00000204611	ZNF616
ENSG00000196220	SRGAP3	ENSG00000197943	PLCG2	ENSG00000204628	GNB2L1
ENSG00000204645	SSX4	ENSG00000241476	SSX2	ENSG00000206418	RAB12
ENSG00000204673	AKT1S1	ENSG00000241553	ARPC4	ENSG00000207165	SNORA70

Anhang

Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname	Ensembl Gen-ID	Genname
ENSG00000204687	MAS1L	ENSG00000241978	AKAP2	ENSG00000211456	SACM1L
ENSG00000204713	TRIM27	ENSG00000242108	LRP1	ENSG00000213022	KLK9
ENSG00000204764	RANBP17	ENSG00000242110	<i>AMACR</i>	ENSG00000213066	FGFR10P
ENSG00000205213	LGR4	ENSG00000242689	CNTF	ENSG00000213186	TRIM59
ENSG00000205581	HMGN1	ENSG00000243444	PALM2	ENSG00000213190	MLLT11
ENSG00000205744	DENND1C	ENSG00000243477	NAT6	ENSG00000213281	NRAS
ENSG00000205755	CRLF2	ENSG00000243543	WFDC6	ENSG00000213341	CHUK
ENSG00000205927	OLIG2	ENSG00000244405	ETV5	ENSG00000213406	ANXA2P1
ENSG00000206075	SERPINB5	ENSG00000245848	CEBPA	ENSG00000213601	KRT18P19
ENSG00000248099	INSL3	ENSG00000250967	AC046176.5	ENSG00000236686	BZW1P1
ENSG00000249108	AC004463.1	ENSG00000215883	CYB5RL	ENSG00000237441	RGL2
ENSG00000249193	HSPD1P5	ENSG00000216740	ANXA2P3	ENSG00000240251	LATS1
ENSG00000249195	AC087623.1	ENSG00000221420	SNORA81	ENSG00000240682	ISY1
ENSG00000249384	AC079915.1	ENSG00000221829	FANCG	ENSG00000240764	PCDHGC5
ENSG00000249529	AC046176.2	ENSG00000221914	PPP2R2A	ENSG00000225217	HSPA7
ENSG00000249859	PVT1	ENSG00000222014	RAB6C	ENSG00000225217	HSPA7
ENSG00000250506	CDK3	ENSG00000227476	AC126281.5	ENSG00000214827	MTCP1
ENSG00000250571	GLI4	ENSG00000227904	AC126281.1	ENSG00000236603	RANP1
ENSG00000250722	SEPP1	ENSG00000228114	AC126281.2	ENSG00000214021	TTLL3
ENSG00000250834	KRT18	ENSG00000228188	AC126281.6	ENSG00000234882	EIF3EP1
ENSG00000213639	PPP1CB	ENSG00000229164	TRAC	ENSG00000214014	OVCA2
ENSG00000213672	NCKIPSD	ENSG00000230997	RAB42P1	ENSG00000233718	MYCNOS
ENSG00000213759	UGT2B11	ENSG00000232159	RAB9BP1	ENSG00000213949	ITGA1
ENSG00000233111	RAB1C				