Semi-active damping optimization of vibrational systems using the
parametric dominant pole algorithm
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We consider the problem of determining an optimal semi-active damping of vibrating systems. For this damping opti-
mization we use a minimization criterion based on the impulse response energy of the system. The optimization approach
yields a large number of Lyapunov equations which have to be solved. In this work, we propose an oplimization approach
that works with reduced systems which are generated using the parametric dominant pole algorithm. This optimization
process is accelerated with a modal approach while the initial parameters for the parametric dominant pole algorithm are
chosen in advance using residual bounds. Our approach calculates a satisfactory approximation of the impulse response
energy while providing a significant acceleration of the optimization process. Numerical results illustrate the effectiveness
of the proposed algorithm.
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1 Introduction

Consider a vibrational system described by

M(-j(r)+CMQ(r)+KCI(t):BZL‘(t)+EZw(t)a (1
v(1) = Cag(t), (2)
z(t) = Hiq(t), 3)

where the matrices M and K (called mass and stiffness, respectively) are real, symmetric positive definite matrices of
order n. The matrices B, € R"~*? and C, € R”*" are control and measurement matrices, while E> € R"*4 represents the
primary excitation matrix. The internal damping C,, is usually taken to be a small multiple of the critical damping denoted
by C..is, that is (see, e.g., [6,7,25]),

Cu =a.Ceriyy, where Cepy =2M'PVM-12PKM-12M"2, )

The state variables contained in the coordinate vector g(¢) € R" represent displacements and z(z) € R is the performance
output which is described by the constant matrix H; € R**". If one is also interested in the velocities, the output z(t) can
include an additional part which corresponds to the velocities, but in this paper only the states are of interest. The vectors
u(r) € RP and w(t) € RY are the control and primary excitation (i.e. noise) inputs, respectively.

We consider the case of a negative linear feedback corresponding to a linear damper of the form

u(t) = —Gy(t), (5)

where G € R?77 is a diagonal matrix G = diag (g1. &>, ..., §,), called damping matrix. The non-negative entries gi
represent the friction coefficients of the corresponding dampers. These coefficients are in the following referred to as gain
parameters g; for i = 1,..., p and can be constant or variable with time within feasible margins, e.g., g;(7) € g7 g
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fori =1...., p. The internal damping given by (4) with @, > 0 ensures that (1)-(3) is asymptotically stable which helps
during the damping optimization.
By using the control « given in (5) together with the usual assumption C, = Blr [10], we obtain

M(t) +Cq(r) + Kq(t) = Esw(t), (6)

z(t) = Higq(r). (7

where C .= C,, + B-CG BZT is symmetric, positive definite such that above system is asymptotically stable. The matrices B,
and G constitute the semi-active damping part of the above second order system. More details regarding stability and the
gtven model can be found in [9, 10].

The transfer function matrix of (6)-(7), obtained by the Laplace transform, is given by

F(s)= H(sM +sC+K)"E,, sel. (8)

With the substitutions x; = ¢ and x> = ¢ we obtain a representation of our vibrating system as the first order difterential
equation

(1) = Ax(r) + Ew(r), 9
z{r) = Hx(r),

where
R _ 0 ! _ 0
o [‘} A= [—M'K -M~C, + Bch{)]' E= [M"Ez]' (10
and H='H 0. (rn

The main problem is to determine “the best” damping matrix G which will minimize the output 7 under the influence of
the input w.

Our aim will be the construction of an etficient algorithm that optimizes the damping matrix G. Then one can improve
the performance by a switching strategy which will ensure at least the same performance. The switching strategy can be in
an on-off mode, which arises in problems of a semi-active damping, see [9, 10] for more details.

In damping optimization one can consider different criteria (see, e.g., [10]). For our purposes we will consider the
impulse response energy which corresponds to the system’s H,-norm. In the frequency domain we define a cost function
Jy in terms of the transfer function matrix (8) via

+x
Jy :/ n(F(jw) Fjo))dw. (12)

(8]

Using the standard theory (see, e.g.. {10, 11,28]), it can be shown that J> can be expressed in the form

b =t (ETPE), (13)

which is much more convenient for numerical computations. Here, E is as in (10) and P is the solution of the following
Lyapunov equation

ATP+PA=—-HTH, (14)

with the matrices A, H given in (10)-(11).
This leads to an optimization problem of determining the optimal matrix G such that

uw(ETPE) — min. (15)

Damping optimization using the given criterion requires solving the Lyapunov equation (14) numerous times, which in
general could be inefficient, as well as memory and time consuming. This is even the case when state of the art numerical
methods for large-scale Lyapunov equations (see, e.g., the surveys [5,24]) are employed. Thus, our aim is to introduce an
approach which calculates approximations of the second-order system such that the optimization process is significantly
accelerated.

There exist a number of different methods for calculating the approximated system. A review of different methods
for this dimension reduction can be found in [1.2,4]. In [6.7] the approximation is based on dimension reduction of
second-order systems for optimizing a passive damping. It turns out that these approaches are not feasible for semi-active
damping optimization due (o the different structure in the right-hand side of the corresponding Lyapunov equations and
different problem setting. Thus. we were not able to derive an algorithm based on [6.7) which is efficient and accurate



enough. In this paper we use another strategy based on an interpolatory eigenvalue based approach from [23] in order
to optimize the semi-active damping efficiently. This approach uses a small number of selected eigenvalues and -vectors
corresponding to the second order system (6)-(7). Since these can be computed efficiently by the dominant pole algorithm
[18,21], this can be a computational advantage compared to other model reduction techniques for dynamical systems.
Moreover, for parameter dependent systems, it enables to reuse certain data for different gain parameters.

In the next section, we will at first briefly describe the main ideas of the class of dominant pole algorithms, including
also the parametric dominant pole algorithm which we plan to use in damping optimization. Afterwards, a strategy for
determining good initial parameters for the parametric dominant pole algorithm, and a complete gain optimization routine
using the proposed reduction techniques, are presented. Section 3 illustrates the effectiveness of the method by virtue of
numerical examples and Sect. 4 concludes.

2 Parametric dominant pole algorithm for damping optimization

Since our optimization criterion can be written in terms of the transfer function (12), our aim is to have a good approximation
of it. For this purpose we will use an approximation obtained with the dominant pole algorithm. The transfer function
(8) can be expressed as a function of eigenvalues of the corresponding quadratic eigenvalue problem. If the algebraic
multiplicity equals the geometric multiplicity for all eigenvalues, the transfer function (8) can be represented as

n

F(s5) =3 -2 (16)

with the residues

R, = (H[,V;)(:_\’?Ez)l,‘ e 1,
Here. b € T, x;, v, € T7\{0} are, respectively, eigenvalues, right and left eigenvectors of the quadratic eigenvalue problem
(MM +0C+K)x, =0, v(A’M+ALC+K)=0, i=1 ..., 2n. (17)

Hence, eigenvalues of (17) are poles ot (8). For a proper approximation of the transfer function F (s) from (16) we introduce
the concept of dominant poles. There are different definitions of dominant poles, and we will use one which is well suited
from our point of view regarding semi-active damping optimization.
Definition 2.1 (Dominant Poles [15.16, 18,211]). For the transfer function F(s) in (16), a pole A; will be called dominant
if
IRl L]
Re(xi)  Re(r;)

Vj#i

Regarding the underlying eigenvalue problem (17), x;, y; are then also referred to as dominant right and left eigenvectors.
The k-most dominant poles are the k poles (eigenvalues) A; with the largest values of 'R"f';.h .

First we would like to emphasize that the importance of the input-output behavior is, on the one hand, included in the
residue ||R;|l. On the other hand, if some pole is close to the imaginary axis (real part of the pole is small) it can have
a greater influence to the energy, but if | R; || is very small (due to the input and output matrices) this influence might
not be that important as one sees from the fraction % Furthermore, in the Bode magnitude plot (w, || F(iw)|) it can
be observed that peaks occur at frequencies close to the imaginary parts of the dominant poles of F(s) [20] which also
explains the importance of the dominant poles.

In order to have a good approximation of the transfer function (8) we will approximate it by its dominant terms. That

is, using the first k dominant poles, the transfer function is approximated as

(18)

F(s)~ Fk(s):Z

=1

R;
s—X

The approximation F(s) is also referred to as transfer function modal equivalent [16, Sect. IV] of F(s) corresponding to
the eigentriples (A;. x;. v;),i = 1, ..., k. The reduced transfer function F;(s) belongs to the reduced order model

YV"MXG (1) + Y CXq(t) + Y K Xqi (1) = Y Eaw(t),
2(1) = H X qi(1).

(19)



where ¢ () ~ Xqi(t) and X, ¥ € C"** span the eigenspaces associated with the k selected dominant eigenvalues of the
quadratic eigenvalue problem. Since the reduced system (19) is defined by matrices of the dimension k, we will call the
parameter k reduced dimension. It is important to recall that in our setting M, C and K are real, symmetric. positive definite
matrices. Hence, if v; is a right eigenvector for an eigenvalue A;, then y; = X7 is a left eigenvector for A; and vice-versa.
Moreover, because the eigenvalues and eigenvectors occur in complex conjugate pairs, the space spanned by the right
eigenvectors is equal to the space spanned by the left eigenvectors, and, thus ¥ = X can be chosen. For the reduced system
consequently we require only the right eigenvectors and the original system (6)-(7) can be approximated by

XXMX([k(T) +X‘CX(];\(T) +X¥KX([/\-([) = X*Ele(f).
z(t) = Hy Xq(t).

(20)

The calculation of dominant poles can be performed by using an efficient structure-exploiting, specially tailored eigenvalue
algorithm which will be described in the next subsection.

2.1 Subspace accelerated dominant pole algorithm for second order systems

In this section we will summarize an algorithm based on approaches from [18,21] which calculates the dominant poles and
the corresponding eigenvectors utilizing the second-order structure of the multi-input multi-output system. The algorithm
we are interested in is the subspace accelerated quadratic MIMO dominant pole algorithm (SAQMDP) {18,21] whichis a
generalization of the MIMO dominant pole algorithm (SAMDP) [15, 16] to second order systems. The main ingredient in
the derivation of dominant pole algorithms is the observation that, for any transfer function matrix £ (s), the function

f(“) = '(O_ma‘((F(g)))7[ — 0 (21

as s approaches an eigenvalue of the quadratic eigenvalue problem. The basic idea beyond dominant pole algorithms is then
to formally apply a Newton scheme to the above function. This gives a sequence of approximate eigenvectors that converge
to the right and left eigenvectors corresponding to a dominant pole of £{s). This iteration can be understood as a modified
Rayleigh quotient iteration and further details regarding the convergence behavior can be found in [22]. Storing these
approximate eigenveclors obtained in each iteration step in subspaces, i.e., adding the concept of subspace acceleration,
yields the subspace accelerated dominant pole algorithm [19,20]. Exploiting the second order structure leads to SAQMDP
[18,21]. Some modifications to these original algorithms based on the observations above provided by the symmetry and
realness of M, C, K can be included which yields Algorithm 1. We briefly describe the main steps of Algorithm | in the
following.

Step 2: The Newton process applied to (21) requires the computation of the right and left singular vectors u, z
corresponding to the largest singular value of F(s'"), see [18,19].

Step 4: The linear systems of equations are intrinsically also a part of the Newton step. It is assumed that we are
able to solve these large and sparse linear systems by direct solvers.

Step 5-7: These steps belong to the subspace acceleration phase. The solutions v/, w'/) of (22) are used as orthogonal
expansions for the spaces spanned by V and W. Here we apply similar strategies as proposed in [26] to
ensure real matrices V, W, i.e.. the expansion is carried out using [Rev'), Tmv/!] and [Rew'J!, Tmw'/’].
A Petrov-Galerkin projection is performed onto the second order system. The dominant pole 6'/) and its
corresponding eigenvectors YU/, ¥/} of the resulting small system in Step 6 can be computed by direct
methods for eigenvalue problems. In our implementation, the quadeig routine [13] worked satisfactory
for this task. In Step 7 approximate eigenvectors of the large-scale, n-dimensional problem are computed
as well as the corresponding residuals which enable an accuracy assessment of the current approximate
elgenpair.

Step 8-18: If the norms of the right and left eigenvalue residuals ”r;’" II ||r(LjE [| are small enough, we accepted the
eigenpair approximation (87", x'/-). In Step 10 we detect the best eigenvector approximation because we
learned before that x; = V7. The eigenvector and eigenvalue matrices X, S are augmented appropriately, also
employing techniques from [26] in case of complex data. In order to prevent detecting this found eigenpair
again by the algorithm. it is deflated trom the process. There exist different deflation approaches and we
point towards the relevant literature [19.21] for details. After that. new direction vectors u. z corresponding
to F(#'7:) are computed as in Step 2.



Algorithm 1 SAQMDP .
Require: System matrices M = M7, C = CT. K = KT, E,. H, defining (6)-(7), initial value s'!, tolerance
0 < 7 < 1, number of wanted poles kyuueq-
Ensure: Eigenvector matrix X and dominant eigenvalues S = diag (A..... A;).
SetV=W=X=[k=0,)j=L1
2: Compute right and left singular vectors u, 2 corresponding to oy« (F(s 1)).
3: while & < kyanieq do
4 Find v'/!. w!) by solving

(57M 1800+ K)ol = Bz, (89°M +59'C + K)w') = Hyu. (22)

: Orthogonally expand V and W by [Rev'/), Imui/!] and [Rew'/). Imwi/}, respectively.
6:  Compute most dominant eigentriple (8}, /), §') of the projected system:

WInMY, Wiev, WKV, WTE,, H,V.

7. Compute approximate eigenvectors z*/) = VF/), y'/) = W) and the residuals

Sa2 ;- o —h? -
ri?” _ (0'.1))3[_'-_al,l)c_'_K').,E\J)‘ ri,' _ (9-1) Z\[—g—@‘”C’-ﬂ-K)y‘”~

g if max(|r']l, Iry’"l) <  then

9 if |r | < |r’|l then

10: =yl

I: end if

12: if Imf-/! = 0 then

13: Setk=k+1land X = X, 2/, § =diag (5.9-7).

14 else .
is: Setk =k +2and X = [X.Rex "), Imy '], § = diag (S, 9.0 907).
16: end if

17: Deflate the newly found eigenpair(s).

18: Compute right and left singular vectors u, z corresponding to oy, (F(6'/7)).
19: end if

20:  Restart if necessary and set st/ 71 = U/} j = j 4 1.
21: end while

Step 20: A restart is performed if necessary to prevent that the column dimensions of V and W become (oo large,
performed.

Although for the systems considered here only right eigenvector approximations are required, SAQMDP still works

with right and left basis matrices V and W because in general v!/) £ w(/) unless E; = H/. Only in the limit it holds that
) — x and w!) — 7.

2.2 Parametric dominant pole algorithm

Our aim is to obtain an accurate reduced system for various gains since we would like to optimize these gains for the
corresponding configuration of the system matrices. In the given parametric system (6), the matrix C = C(g) depends on
the semi-active damping parameters g = (g1, g2, ..., §p)- The main idea in the parametric dominant pole algorithm is
to compute approximations acquired with the dominant pole algorithm for a small number of selected parameters and to
obtain an ‘interpolatory’ reduced model regarding other values for g.

In [23] it is shown that with such an interpolation based approach, the original and reduced model have the same
behavior near the dominant poles and the parametric reduced model obtained with this parametric dominant pole algorithm
satisfies a Hermite interpolation property.



Proposition 2.2 (23, Theovem 2J. Ler x € span{X}, v € span{¥} for an eigentriple (X, x,y) of (17) for a given g.
Moreover, let F(s), F(s) denote the original und reduced transfer function matrices of (6)-(7), where F[ s} s obtained
using (19). Assume that ) is simple and that v*x # 0, v=x — [APM ™' v B, B2 X #£ 0. Then it holds

. L OF LOF
lim s — Al~ _llm|v—)\l‘
s e S A g
Proot. The proot can be carried out exactly as for (23, Theorem 2] by rewriting the second order system (6)-(7) into
a first order system (9) and exploiting the structure of the matrices A, E, H.

The interpolation property is a desirable and important property for gain optimization since a reduced model which is a
good approximation of the original model! for various values of gains g is required. Hence, using the parametric dominant
pole algorithm can be advantageous over other model reduction approaches that do not have the Hermite interpolation
property.

There are different implementations for the interpolatory dominant pole algorithm (for more details see [23]) and we will
summarize an approach based on SAQMDP for the calculation of the reduced system. An algorithm called continuation
SAQMDP is illustrated in Algorithm 2 and computes reduced models that will enable an efficient semi-active damping

optimization,
The selected values of parameters for which we will calculate dominant poles will be called initial parameters and are
denoted by ¢ ', g2, ... g™ with g/ = (gi'). 5"3'), S g,‘,') ). For these values the reduced transfer function approxi-

mates the original transfer function in the sense of (18) and the reduced model satisfies interpolation properties as shown
in [23].

Algorithm 2 continuation SAQMDP
2)

Require: System matrices defining (6),(7), initia) parameter vectors ¢ ' g2' ..., ¢ "', number of wanted poles ki e
for each setting of parameters.
Ensure: Rirrh[ eigenvectors X corresponding to found dominant poles
(: Set X =1
2: f0r1—1 ..m.do
3 Use SAQMDP for computing Ay ey dominant poles and corresponding right eigenvectors X! of (6).(7) with the
damping part ('(g-/)) determined by the gain vector g*/'.
Merge the eigenvectors X /' to X.
5: end for
6: X = orth(X).

=

In Step 6 of Algorithm 2 we introduce an additional orthogonalization. There, a clever orthogonalization routine should
be employed to ensure that numerically linearly dependent columns in X are discarded and the matrix X has full column
rank such that the reduced system will have regular coefficient matrices. It is noteworthy that in principle, also several
other model reduction techniques [8] can be used in Step 3 to provide the matrices X'/ for a given g'/}. However, as we
are interested in the dominant poles of the system’s transfer function, the application of SAQMDP is chosen here. Note
that in order to improve the convergence to dominant poles in Step 3, we can use the most dominant pole from the previous
run of SAQMDP as new initial frequency value s''’. Using the obtained eigenvectors collected in the matrix X from
Algorithm 2, the reduced system can be formed as in (20).

It is important to point out that the mass, damping and stiffness matrices of the reduced system are again symmetric,
positive definite and thus, the reduced system is also asymptotically stable.

Next, we draw special attention to one particular setting of initial parameters, namely the case with initial gain g!'" = 0.

2.3 Modal approximation

[ the case of a zero gain (g = 0), the system is only damped by the internal damping term. In order to simplity the analysis
of this particular case, we transform the system using the so-called modal coordinates. For that purpose let ® = [¢,, . ... ¢,
denote the nonsingular matrix which simultaneously diagonalizes M and K, i.e.,

P'KP = Q' =diag(w]. ..., ) and MO =1 (23)

where 0 < w, < w> < ... < w,. The columns of the matrix @ (usually called modal matrix) are the eigenvectors of the
undamped system Mg + K¢ = 0 and the positive numbers ;. w». . . . . w, are the associated eigenvalues which are referred



to as undamped eigenfrequencies. Furthermore, the matrix ® also diagonalizes the internal damping as ®7C, & = oQ
with o = 2.
By using (23) and substituting ¢ () = ®g (), we obtain from (6)-(7) the vibrational system:

g(t) + (@@ + ®7B.GB] ®)3(t) + 2G4 (1) = &7 Exw(r), (24)
z(t) = H;0q(t). (25)

As in the introduction, with X, = Q7 and X> = 7, the associated first order system is
(1) = AZ(r) + Ew(r), (26)
2(r) = HZ (1),
where
~._ |% ~ |0 Q = | 0
e [55,} A= [—Q —aQ - @TBZGBzrtb:l‘ b= [®TE2:|'

and H := [H; ®Q'0]. The minimization criterion (15) leads to the Lyapunov equation
ATP+PA=-H"H. Q7
A Lyapunov equation of similar structure was investigated in the papers [6,7], where the authors employ dimension
reduction techniques in order to efficiently approximate its solution.
By formulating the criterion (15) in terms of the solution of the Lyapunov equation (27), a direct calculation shows that
P! 0]

P =U"PU, where U:[ 0 ®

where P and P solve (14) and (27). respectively. Furthermore, if we uniformly partition P.Eas

= Py P B 0
P_[Pu Pzz:|' E_[M_'Ez:|'

the impulse response energy (15) is
J=tu(ETPE) =« (ETU*PUE) =t (E]® Py, ®T Es).

Now, we will construct an approximation for the given impulse response energy using eigenvectors ¢; of the undamped
system. The eigenvectors of the system corresponding to the zero gain are given in the matrix @, i.e. the matrix X from (20)
corresponding to g = 0 contains the columns of ®. Approaches that use undamped eigenvectors for forming the reduced
system are usually called modal approximations [7, 12, 27].

In order to decide which undamped eigenvectors should be chosen, we consider the structure of criterion (15) of the
system in modal coordinates (24)-(25). Here, the right-hand side of the Lyapunov equation (27) has a special structure
which strongly influences the solution. The main question is: in terms of the criterion (15), which undamped eigenvectors
should be chosen in this particular case?

For the answer we consider the structure of the right-hand side in (27):

GTh - [Q"(DTH,TH1<DQ" 0]
0 0f"
Furthermore, we obtain
o0 ' =[Lto Lo - Lo
and a direct multiplication reveals that the upper diagonal block has the following elements
(Q'oTH HjoQ ™), = %@TH,TH.@.
W)

These elements are quadratic in wl and since the w; are ordered increasingly, for maintaining the elements largest (by
magnitude) in the matrix HT H, we select the columns of @ such that. in the right hand side of Lyapunov equation (27).
the r largest numbers are maintained. Altogether this means that in (20)

X=d(:.1:r) (28)



is chosen, i.e.. the upper diagonal r x r block of the right hand-side of (27). In the system equation with zero gain,
the eigenvalues of the corresponding eigenvalue problem (A*M + A, C, i + K)x = 0 have the same eigenvectors as
the corresponding undamped eigenvalue problem (A°M + K )x = 0. Furthermore, it can be shown that eigenvectors
which correspond to the smallest undamped eigenvalues (i.e. smallest o;) are the same eigenvectors that correspond to
the eigenvalues closest to the imaginary axis of the eigenvalue problem ().2M + Ao, C,piy + K)x = 0. This means that
truncating with the eigenvectors that correspond to the smallest undamped eigenvalues is similar to a truncation with
eigenvectors which correspond to eigenvalues closest to the imaginary axis of the zero gain eigenvalue problem. This also
reflects the importance of the poles close to the imaginary axis, especially for the case of small gains.
For the selection X = ®(:, 1 : r), the reduced system (20) becomes

GO+ 1) CO 1) (1) + Quge(t) = (2, 1) Exw(r),
(1) = Hi®(:, 1:r)q (1),

where @, = diagw,, ws, ..., w,. The corresponding Lyapunov equation is

ATQ+Q0A=-H"H (29)
with

T 0 Qr 7o -1

A= [—Q —a), — XTBIGB{X] H=[#XQ " 0].

Hence, the impulse response energy J> can be approximated by
L~ (ETX0nXTES) (30)

with 5> being the lower diagonal block of the solution Q of (29).

Modal approximation plays an important role in engineering applications. In our case it allows us to conclude, directly
from criterion (15). which undamped cigenvectors are important for a gain equal to zero. Furthermore. modal approximation
can be easily incorporated into our approach which uses continuation SAQMDP by setting the initial parameter vector
¢ ' equal to zero. In the optimization procedure this requires insignificant computations since these eigenvectors have to
be computed only once in the process which can be achieved efficiently using iterative eigenvalue solvers for generalized
eigenvalue problems. The usage of such modal approximations in our approach will be discussed in the next subsection.

2.4 Gain optimization

[n the numerical examples we will illustrate that a few ditferent values of parameters g, g .. ¢"™ are often sufficient
to obtain satisfactory approximations of the optimal gains. Furthermore, by changing the gains by small or even moderate
values, the same eigenvectors can provide good approximations of the eigenspaces. Thus, the dimension ot the reduced
system is usually much smaller than the full dimension. In this section we will show how this can be determined in advance.
Furthermore, in many applications we observe that, even with eigenvectors that correspond to the zero initial gain, we can
obtain sufficiently accurate approximations of the original system in the sense of gain optimization. Thus, we include the
eigenspace corresponding to the zero gain in the first approximation.

We would like to efficiently determine initial parameters g''/, g'*', ..., ¢!/ and at this moment it is not clear how one
can choose the initial gains. Thus, we will derive corresponding residual bounds which will provide additional information.
In this setting, the main question is: if we have computed an (approximate) eigenspace for the gain g'". what should be
the next gain g'"+!! for which it is required to compute a new eigenspace?

First, recall that the gain ¢! = (g, g>..... g,) determines the damping part C(g""’) = C, + B,GB; where G =
diag 1. g>. ..., g,. Letusassume that for the gain ¢'"", using Algorithm 1, we have calculated k dominant right eigenvectors
X xS v/¥1 and corresponding eigenvalues '/, 82/, ... 8% for a residual tolerance 7:

||((-)‘“3M +6YN(C, + Brdiag (g1, g2. ..., 8p)B ) + K)xUi <1, Vj=1,... .k (31)
The residual corresponding to these approximate eigenpairs tor the system with gain gl 4 Agl' is, using (31),
(B M40 C (g% + Agl) + K)x |
=18V M +6Y-(C, + By diag (g1 +8g1. g2+ g2 ... 85 +8g,) BT ) + K)xV']
<7+ [|6' B, diag (8g,. 821, . . .. Sg,,)BlTx‘jW]

<t +1|0Y By ll|| diag (8g1. 8ga. ... S ) IIBI XYl V=1 k.



Our aim is to determine for which perturbation Ag'"! = (8gy, 8g3. ..., 8g,) the same subspace will be also good up to
fixed new tolerance v.
In general,

T NETM A C(g AT Y+ K <, V=1 k

because the approximate eigenpairs (67, v*/7) correspond to the system with gain g''). We would like to determine Ag'’!
such that the same eigenvectors are also good for g "' + Ag'"! for a prescribed tolerance v. Since T & v we neglect T in
the formula above and we have that

IE M+ 0 0C(g" + Ag") + K)o <t 41167 Bl Ag O IIB x|
Sl Bl Ag P IBY x| < v, Vi=1,. .k
Thus, for v < v if

it

I BB 1

lag | < Vi=1.... .k
holds for given tolerance v the eigenspace obtained for g*) will also give proper approximation for g''' 4+ Ag-}. A measure
that takes all computed approximate eigenpairs into account can be formulated by using the mean average over the upper
bounds for all eigenpairs. The upper bound for an acceptable change of g+ associated to all eigenpairs is thus determined
by

¢
I A
! ,
Tk ZI 1o BB vy (32)
-

» . N
. In practice this might be not

Another possibility would be a criterion which includes the term min T
i 191 B[ By x|
appropriate since very few indices j where Imm is small while in the other cases this is quite large.
TS
To incorporate the bound obtained into the algorithm for the gain optimization, we introduce

K(g/r)=1g: g — ¢l <ry),

where r; is defined in (32).
Note that, if we assume that all dampers have the same gains (G = g1,). then we can obtain a sharper bound for
Ag' e Ras

1

A € —————— Vj=1,...k
jo BB
and use
k
: = (33)
ry=— —— = )
"k 16U BBI X
i= 2
in this case. The efficiency of our gain optimization algorithm can be improved by using the above bounds.
We would like to emphasize that we determine the initial gains g%/, g'¥', ..., g!""/ adaptively using the above mentioned
bounds. In particular, we start the optimization procedure with modal approximation, i.e. the initial gain at beginning
g'"" = 0. Then, in the optimization procedure for the current initial gains g!'), g%, ..., gV} if next gain approximation

g € UL, K(g'". r;), we do not update the subspace. Otherwise, we add this gain g to the set of initial gains (i.e. g/ =" = g)
and update the reduced model for which we can now calculate the function value J». During the evaluation for the current
initial gains g''", g7, ..., g"', if g € |U/_, K(g"". #;), then the eigenvalue subspace obtained so far is good enough for
this gain also. and we calculate an approximation of the function value J» using the current reduced model. If this is not
the case. we add this gain g to the set of initial gains (i.e. g/ = g) and update the reduced model (X is enriched by new
eigenvectors) from which we can now calculate the function value J-.

Algorithm 3 illustrates this approach for the gain optimization. In order to clarify Algorithm 3 note that: in Step | we
set the initial gain and in step 2 we run the optimization procedure. In Steps 3 to {2 an approximation of J» is calculaled

and the initial gains are updated.



Algorithm 3 Computation of optimal gains

Require: System matrices; initial value for frequency s'!'; tolerance v for determination of initial parameters; number of
wanted poles A, 4 for each setting of parameters.
Ensure: Approximate optimal gains.
I: Set j = 1, initial parameter g'") = 0 and X as in (28) and calculate r; .
2: Find optimal gains by using an appropriate optimization procedure (e.g., the Nelder-Mead algorithm). Evaluate the
function value of J, at the found g as in steps 3 to 11:
cifge U, K(g'".r,) then
Calculate the reduced system using the current X as in (20).
Compute the function value at gain g for the reduced system.
else
Setj=j+1,¢g/ =g
Calculate eigenvectors X /' for the initial parameter g-/) using SAQMDP (Algorithm 1).
Merge the eigenvectors X/ to X (X = orth(X)) and calculate r, from (33) (for given tolerance v).
Calculate the reduced system using the augmented X as in (20).
Compute the tunction value at gain g for the reduced system .
end if

- = R I = Y ]

)

Note that, in our setting we optimize over nonnegative variables, and thus, we have to modify the usage of the Nelder-
Mead algorithm. In particular, at the evaluation of the objective J> we prescribe that this function at a point with at least one
negative variable is equal to a very large constant (e.g., we take a constant that is significantly larger than the function value
at the zero gain). This ensures that the Nelder-Mead algorithm will give an optimal value that is nonnegative. Moreover, in
order to have relevant function values during the optimization procedure, if we increase the order of the reduced system,
we also update all function values with respect to the changed reduced systems.

The calculation of the eigenvectors corresponding to the zero initial gain should be carried out only once for the
whole optimization procedure. Furthermore, including the eigenvectors of the undamped system additionally stabilizes the
optimization procedure. In particular, due to the occasional slow convergence of the SAQMDP for some configurations,
we might end up with a very small reduced dimension which yields a reduced system which is not accurate enough. With
the zero initial gain we, however, always end up with reduced dimensions that are greater or equal to the number of wanted
poles.

3 Numerical experiments

In this section we illustrate the efficiency of the introduced approximation techniques. For that purpose we will compare
the new approach with the optimization without reduction. In both approaches the Lyapunov equations are solved by
the Hammarling’s algorithm [14] implemented in the MATLAB" function 1yapchol based on the SLICOT routines
SB0O30D and SGO3BD [3].

In these examples, the computations have been carried out on a server with 4 Intel Xeon @2.67 GHz CPUs with 8 cores
per CPU and | TB RAM. Results were calculated in MATLAB Version 7.11.0.584 (R2010b) 64-bit.

Example 3.1. We will consider an n-mass oscillator or oscillator ladder which describes the mechanical system of n
masses and 77 + 1 springs (see e.g. [7]). The mathematical model is given by (1)-(3), where the mass and stiffness matrices
are

M =diag (my.my, ..., m,).

ky + k> —k»
—ky ktky —ks
K= . -
_knvl ku—l + ku _kn
_ku kn + kn—H
We will consider the following configuration for the mass and stiftness values:
1500 - 2i. i=1..... 600.
n=1800: k=2, Vi m; = {$600—i/2. {=0601.....999,

i — 800. i =1000.....n.



The internal damping is given by the damping matrix (4) with o, = 0.002. For simplicity G is a multiple of the identity,
Le., matrix G = diagg, g, ..., g € R”"” with p = 6. The control matrix is given by

By =lejejri1ei10€ic11€j120€401] (34)

where | < j 421 <n and e; 1s the jth canonical vector. Here, we have introduced an index j since we will consider
different configurations for B,. Furthermore, we are interested in the states in the first third of the n-mass oscillator that
correspond to the smallest masses, that is, we consider 40 states starting with the 580th state:

(1) = lgsso(t)gss1 (1) - qers(r)]” .
Hence, H, € R¥“" with
H[(l . 40,580 : 619) = 140,40

and all other entries are equal to zero. Since we consider gain optimization for different primary excitation matrices, we
define E5 € R"** depending on index k > 1. The primary excitation is applied to 30 consecutive masses where the first
mass is determined by the index &:

El(k ck + 29, l: 30) = [30,._30. (35)

We compare the approximation of the impulse response energy J» for different damper positions and different primary
excitations, i.e., the following configurations of (£, j) are taken into consideration:

for & =30:200: 1800, J = 100 : 200 : 1800,
exclude indices, where for  {j < 600& k < 600) | (j > 600 &k > 600)
itholds |j —500| < |k — 500,

with & and ; determining 8> and E> as given by (34) and (35), respectively. This yields in total 60 different starting
configurations for the gain optimization. The tollowing parameters required by Algorithms 1-3 are used:

k’_l'l”l!t‘(/ =72, v=23. 10_4‘ r = 10—12'

The initial value for the frequency s''" in SAQMDP is taken as the eigenvalue closest to the imaginary axis corresponding
to the zero initial gain. For this example this is —2.505 - 1077 + 1.252 - 1074},

Since we consider different configurations (we especially change the primary excitation input, the control matrix) we
need to sort these configurations. In order to present relative errors more clearly, the different configurations are sorted w.r.t.
the magnitude of the relative error in the optimal gain. Figure 1 presents the relative errors of the optimal gain calculated
with and without dimension reduction by Algorithm 3. The circles denote the relative error |g° — g|/g, where g and g°
denote the optimal gain calculated with and without dimension reduction, respectively. Similarly, triangles denote the
relative errors w.r.t. the approximation of the impulse response energy J,, where in the case without dimension reduction,
J» was calculated at the exact optimal gains.
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Fig. 1 Relative errors for the gain and the energy J.
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Recall that all gains are constant and equal, thus we can apply Nelder-Mead’s method (see e.g. [17]) implemented in
the MATLAB function fminsearch. The tolerance for this optimization was 10~ and the initial guess was set to 40.
The magnitude of the optimal gains and impulse response energies J, are plotted in Fig. 2. As it can be seen, the optimal
gain varies between 4 and 46.

In Fig. 3 the speed-up in computational time of the optimization process obtained by the new approximation technique
is illustrated. More precisely, it shows the ratio of the times required for the gain optimization with and without the novel
approximation technique using dimension reduction. Evidently. the new approach requires % up to T& of the computation
time required for the unreduced system, amounting to a considerably faster gain optimization process.

Note that in Algorithm 3 we calculated eigenvectors corresponding to g = 0 and additional gains which are determined
using the residual bound from Sect. 2.4. Altogether, in the optimization procedure based on the residual bound, we had
to recalculate eigenvectors for one to four additional gains g and, thus, the reduced dimension varies between 90 and
216 (the full dimension is 1800). Figure I reveals that all relative errors are of order 102 or smaller. For the tolerance
v = 3. 107", the maximal reduced dimension varies between 5% and 12% of the original dimension. Figure 4 shows the
maximal reduced dimensions for the corresponding configurations.
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In the following example we will compare the quality of the proposed approach on a different mechanical structure.
Compared to the previous example we will consider two different gains and compare the results w.r.t. a varying structure
of the corresponding control matrices.

Example 3.2. In this example we will consider a mass oscillator with 2d + | masses and 2d + 3 springs given in [7,
Example 2]. This example has two rows of d masses connected with springs where the first row of masses has stiffnesses
ki and the second row has stiffnesses k. The first masses on the left edge (m, and m,., () are connected to a fixed bound
while on the other side of the rows the masses (14 and m»,) are connected to a mass mog 4 with a stiffness k3 connected
to a fixed bound.

The mass matrix is a diagonal matrix as in the previous example and the stiffness matrix is defined by

Ky —K|
K= K> —K>
—I(lr —KZT ki +kr +k;3

where

Ki=k o=l i=1.2

We will consider the following configuration for the mass and stiffness values:

d=800. n=2d+1=1601; k =3, k=1, k3 =2:
m; =398+002-i for i=1,...,600;
m; =34-003-i for i=0601,...,800;

m; =23 —-001-i for i=2801,...,1600; ms,, = 10.

With this configuration, masses on the first row are smaller on the edges, while on the second row we have masses that
decrease in magnitude.

The internal damping is given by the damping matrix (4) with o, = 0.005.

Here, we are interested in 20 states. In particular, 10 masses on the first row starting from the 301st to 310th mass and
on the second row starting from the 1201st to 1210th mass. Thus, the matrix H, € R'%*" has the following form

H|(] . 10, 301 3]0) = IleIO, H](l . IO, 1201 : 12]0) = IlelO,

and all other entries are equal to zero.
The primary excitation input acts on the masses closer to the edges of the mechanical structure and the input is stronger
on the edges. Thus we define E> € R"*'! with

E5(1:5,1:5) =diag(5,4,3,2, 1), E(801 : 805, 6: 10) = diag(5,4,3,2, 1), E»(1601, 11) = 10,

and all other entries are equal to zero.

In this example we will consider two cases regarding the number of different gains. At first, we consider two different
gains g, and g» determining G, while in the second part of this example we will consider four different gains which renders
the optimization procedure even more complicated.

Case I: For the two different gains a diagonal matrix G = diag (g(, g1, g2, 82) € R?*? with p = 4 is used. The control
matrices B, € R"4, ¢, = BZT are determined with indices j and k such that

By={[(ej —ejs1) (ejri0—ejsn) (e —exy1) (exyio— exin )l (36)



Note that by varying the indices j and k we change the geometry of the control matrix. In particular, we consider the
following configuration of the indices j and :

j =50:100:800, & =900:200: 1600

which yields 32 ditferent configurations. This means (hat the first two columns of B, determine the control on the first row
while the third and fourth column determine the control applied to the second row of masses, respectively.

The following parameters required by Algorithms 1-3 are used:
Kuanied = 120, v =5-107 ©=10""

The initial value for the frequency s'') in SAQMDP is taken as the eigenvalue closest to the imaginary axis corresponding

to the zero initial gain.

Here. we consider two different gains and, like in the previous example, we apply Nelder-Mead's method, but the
tolerance for this optimization was set to 10™* and the initial guess was set to [500, 500). Figure 5 presents the relative errors
of the optimal gain calculated with and without dimension reduction by Algorithm 3. We consider different configurations
regarding the control and in Fig. 5 different configurations (j, k) are sorted w.r.t. the magnitude of the relative error in
the optimal gain. Similarly, triangles denote the relative errors w.r.t. the approximation of the impulse response energy Ja,
where in the case without dimension reduction, J> was calculated at the exact optimal gains. Figure 5 reveals that in this
example all relative errors are of order 10~" or smaller. Moreover, the reduced dimension varies between 152 and 757
(full dimension is 1601) and more additional gains in the optimization process compared fo the previous example were
required. This is partially expected since damping optimization with different gains is more demanding, but in general
this might also depend on the system configuration. We would like to note that also in this example at each configuration
our approach was faster. For the considered 32 configurations, the whole optimization process without the approximation
technique required 509.61 hours, while with the approximation technigque we needed 40.2 hours.
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Fig. 5 Relative errors for the gain and the energy Ja.

Case II: For the four different gains g, g2, g3. g4 we use G = diag (g1, 2. 83, 8+) € RP*7 with p = 4. Since in this
case we will not consider all pairs of indices (. k), the following table illustrates which particular configurations have
been investigated. This means that the system matrices M, K, E», Hy are the same, but the matrix 5> given in (36) will be
considered for particular settings of the indices (j. k).

As in Case 1, here we used the following parameters required by Algorithms [-3:

kyaniea = 120, v=1- 10—2. T = 107]2.

In Table | we summarize the indices j, k determining (36). the function values obtained with and without dimension
reduction. the relative errors, the time ratios. as well as the used reduced dimensions for this example.

This example requires many more function evaluations. Moreover. we have observed that one needs more initial gains
for the optimization procedure. Thus, one can expect a larger reduced dimensions. This is also shown in Table | where
we illustrate the connection of the time ratio with the reduced dimension while ensuring acceptable relative errors in the
optimization process.



Table 1 Numerical results for the case with four different gains.

relative error relative error reduced
] k optimal J> JAZ in J, in gains Lime ratio dimension
50 150 252.54 244.82 3.0575- 1072 6.3800- 107> 123.77 153
150 900 249.05 235.74 5.3456 - 1072 3.7114.107 64 854 159
150 1100 254.34 260.97 2.6066 - 1072 9.8933. 1072 11.385 538
150 1300 256.74 24747 3.6117-1072 3.8963- 1072 89.324 174
150 1500 253.14 238.67 5.7177 - 1072 6.1393. 107! 108.78 155
350 900 249 48 255.50 241341072 6.6207 - 102 19.789 411
350 1100 254.77 256.95 8.5730: 1073 4.7500 - 1073 1.6180 1254
350 1300 257.16 263.35 2.4062 - 1072 7.3417-1072 4.6447 746
350 1500 253.63 264.64 4.3408 - 1072 8.3629 - 1072 5.3262 596

4 Conclusions

In this paper we have considered optimizing a semi-active damping using a criterion based on the impulse response energy.
This optimization problem is very demanding due to the numerous Lyapunov equations which have to be solved. We have
presented an approach which approximates the impulse response energy by efficiently computing approximations of the
transfer function. This is achieved by using the dominant pole algorithm for parametric systems with the initial parameters
chosen using eigenvalue residual bounds. Numerical experiments confirm the efficiency of our approach in the sense that
the optimization process is considerably accelerated and satisfactory approximations of the optimal gain are obtained.
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