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Abstract 

The paper presents a numerical technique for modeling “trace” impurity transport in the 

scrape-off-layer (SOL) and core regions by implicit coupling of a three-dimensional (3D) 

edge Monte Carlo code like EMC3-Eirene [1, 2] to a one-dimensional (1D) core model 

handled by a finite difference method. For given core plasma and transport coefficient 

profiles, certain types of particular solutions to the 1D model are pre-calculated under specific 

boundary conditions at the SOL-core interface. Linear combination of these solutions yields a 

general solution, which is then translated into “Monte Carlo language” by formulating a so-

called “charge state transformation probability” matrix. This matrix provides definitive 

boundary conditions at the SOL-core interface so that a self-consistent solution for both SOL 

and core is achievable without the need for SOL-core iteration.  

1. Introduction 

SOL impurity transport simulations need boundary conditions to be specified at the SOL-core 

interface for each charge state of the impurity ions. The choice of these boundary conditions 

need a careful pre-analysis of the SOL plasma conditions and the specific topics addressed. 

Divertor SOL plasmas are usually non-transparent for the impurity neutrals released from 

plasma-facing components, implying a zero total impurity ion flux through the last closed flux 

surface (LCFS). Line radiation of light impurities mainly originates from low charge state 

ions. In the most interesting divertor plasma parameter range, these ions usually have shorter 

lifetime than the transport time scale needed for them to reach the LCFS. Since 

recombination, in comparison to ionization, is a very unlikely event in the core plasma, zero 

flux at the SOL-core interface is an appropriate boundary condition for these low charge state 

ions. In a fluid approximation, the parallel transport dynamics of “trace” impurities is 

dominated by ion-impurity collisions. The Z-dependence of the collision time in the 

dominating terms cancels out so that the parallel transport is not sensitive to the charge 

number Z, especially for charge states with Z>1.  If one would be interested only in how the 

impurity ions behave as a whole in the SOL, precise knowledge of the individual charge states 

would not be required at the innermost boundary.  

For limiter SOLs, however, the boundary conditions at the SOL-core interface generally 

become critical because there even the target-released impurity neutrals can penetrate the 

LCFS. In fact, the work presented is this paper was initially triggered by an ITER application 

of the EMC3-Eirene code for studying beryllium radiation during the plasma start-up phase 

with two local limiters [3], and further motivated by a tungsten transport study for ASDEX 

Upgrade [4]. Independently of the SOL thickness, the SOL temperatures are usually too low 

to fully ionize the impurities. Generally, the definition of boundary conditions fails for the 

charge state ions which populate the SOL-core interface. Even if certain information could be 

sometimes available from diagnostics measuring specific emission lines from these charge 

states, they are preferably used for modeling-experiment comparison purposes, rather than as 

inputs for the modeling. In these cases, it is necessary to couple a core impurity transport 

model to remove the more or less artificial intermediate boundary. Moreover, this coupling 

enables a SOL-core integrated modeling of impurity transport.  



We assume that the impurity transport in the core is governed by convective and diffusive 

processes with the transport coefficients and impurity densities being functions of flux 

surfaces only. Such a 1D model can be coupled with EMC3 in two different ways. First, the 

Monte Carlo method adopted in EMC3 for solving the 3D fluid equations of impurity 

transport in the SOL can be simplified to the 1D model in the core. A global impurity 

transport is feasible by extending the computational domain up to the plasma centre and by 

switching between the two transport models. Second, a finite difference method can be 

employed for the 1D model and coupled with the EMC3 code at the SOL-core interface. From 

the computational performance point of view, the latter strategy is preferable, nevertheless, 

only when SOL-core iterations can be avoided. To find and formulate an implicit coupling 

method is the main topic addressed in this paper.                              

2. Core and SOL impurity transport models  

We assume that the impurity transport in the confinement region is governed by convective 

and diffusive processes, with the velocity 
zV   and the diffusivity

zD being arbitrary functions 

of flux surfaces labeled by r.  Then, in a cylindrical approximation the continuity for each 

charge state Z reads as   

where 
zn is the impurity density of charge state Z. The terms on the right side of eq (1) 

represent the ionization and recombination processes which couple the transport equations 

amount different charge states. Depending on the impurity species of interest, the total 

number of equations to be solved can be large. For example, this number for tungsten is 74.  

Finite difference methods are natural candidates for solving eq (1). Eq (1) is linear as long as 

zV  and 
zD do not depend on the impurity species themselves. Once boundary conditions at the 

SOL-core interface are specified, solutions can be found by implicitly solving the linearly 

coupled equations. For high-Z impurities, however, it has turned out that an iterative method 

by sequentially solving eq (1) from low to high charge state is computationally much more 

efficient because ionization is a dominant process in the hot plasma core. In this case, the 

density distribution of the charge state Z is mostly determined by the lower state Z-1 and is 

less sensitive to the higher one Z+1.    

The impurity transport model adopted in the EMC3 code is a fluid approximation consisting 

of the continuity     

and the force balance  

equations, where IIzV and
zD represent convection and diffusion process in the parallel and 

perpendicular directions, respectively. sis the ion-impurity collision time, IIiV is parallel flow 

velocity of the bulk ions, 
IIE is the parallel E-field and ne and Te are the electron density and 

temperature. 
zT is the temperature of impurity ions, which is assumed to be equal to that of the 

bulk ion ( iz TT  ).  Furthermore, e=0.71Z
2
 and  
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 where mI and mi are the masses of the impurity and the bulk ion.   

An explicit expression of 
IIzV  can be deduced from eqs (3) and (4). Inserting 

IIzV  into eq (2), 

one obtains 

where  

are fully determined by the background plasma.  

3. 1D illustrating model       

We present a 1D cylindrical configuration for illustrating the essentials of the coupling 

concept. The extension to practical cases is straightforward. The cylinder has a radius of 58 

cm with a SOL being assumed to start at r=50 cm (W7-X has a minor radius of ~50 cm and an 

island SOL thickness of ~8 cm). The target shown in figure 1 does not have the actual sink 

action of a solid surface. Instead, zero density as boundary condition is assumed for all charge 

states at r = 58 cm. We use carbon as an example and the atomic data from [5] and employ eq 

(1) for both core and SOL. The background plasma is fixed throughout the SOL and core and 

the profiles of the transport coefficients and the carbon atoms are given, as shown in figure 1. 

An inward convective flow is assumed to exist in the near LCFS region. Constant diffusion 

coefficients are assumed for core and SOL, respectively, with D jumping from 0.1 to 1 m
2
/s at 

the SOL-core interface. Carbon neutrals exist only in the SOL.        

First, eq (1) is solved globally (for both SOL and core) by a finite difference and a Monte 

Carlo method, respectively, as a mutual benchmark between the two methods. The former is a 

standard finite difference method based on upwind scheme. The Monte Carlo method is a 

simplified model adapted from the EMC3 code [1]. For this specific case, the random process 

reduces to 
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where tr and tr are the locations of a Monte Carlo particle at time t and t+, respectively.  is 

the time step.   is a uniform random angle between 0 and 2. Note that, here, the random 

jump is performed in 2D space with cos  and sin  representing the radial and tangential 

components, respectively. If the time step is sufficiently small, i.e. the resulting 

displacement of a particle, rt+-rt, is much smaller than rt, development of the square root 

term in eq (8) up to terms linear in  yields  
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A new convective term D/rt emerges in eq (9) because of the 1D cylindrical geometry. This 

term does not appear in eq (8) explicitly because the jumps there are made in 2D space. From 

the point of view of computation efficiency, eq (8) is obviously more costly than eq (9). The 

latter has, however, a singularity at r=0, requiring therefore unrealistically small time steps 

when r0. Hence, in practical computations, eq (8) is applied for small r and replaced by eq 

(9) for the off-axis particles with r>>(D)1/2
. The rD  /  term in eqs (8) and (9) has only a 

representative meaning. In the specific case presented in figure 1, D is not differentiable at the 

LCFS. In practice, this term is treated implicitly by means of a so-called two-step method (see 

Appendix A). It is a standard method in the EMC3 code for treating non-uniform transport 

coefficient fields.  

C
+1

 ions are started at their birth positions randomly determined according to the source 

profile calculated using the carbon neutral profile shown in figure 1 and traced until they are 

lost onto the target. During the particle tracing, ionization and recombination events are 

checked following the exponential decay in lifetime. The number of the traced Monte Carlo 

particles is sufficiently large that the resulting statistical noise does not enter the discussion of 

the comparison results. As shown in figure 2, the two completely different methods produce 

almost the same density profiles for all carbon ions which range by more than 3 orders of 

magnitude. The finite difference method developed has been integrated into the EMC3 code 

for core impurity transport based on eq (1).  

Now, we separate the SOL from the core and apply the Monte Carlo model to the SOL and 

the finite difference method to the core, respectively. Then, they are coupled at the SOL-core 

interface – the LCFS at r =50 cm in figures 1 and 2. To this end we need first to clarify what 

information should be provided by the core model at the interface for the SOL so that the 

Monte Carlo model can produce the same carbon density profiles in the SOL, as shown in 

figure 2, without the need to trace the carbon ions further into the core region. For this we 

need the general solution to eq (1). We begin with the particular solutions under the following 

specific boundary conditions:   
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where ra indicates the location of the LCFS. The solution to eq (1) under the boundary 

condition given by (10) for each charge state j (=z) is denoted by )(rni

j which can be rewritten 

as )(~)( rnnrn ij

a

i

i

j  because of the linearity of eq (1). )(~ rnij is a normalized particular solution of 

eq (1) under the specific condition where the density of the i-th ion is unity while those of the others 

are zero at the LCFS. Physically, forcing nz at ra for Z=i to be finite causes an influx of the i-th 

ions into the core and, as shown following, the particular solution determines the new charge 

states in which the impurity ions return to the SOL. Before going into further details of the 

particular solution, we first derive a general solution by linearly combining all the particular 

solutions obtained via varying i in eq (10) throughout the whole charge state space:  
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The particle flux across the LCFS for charge state j is then calculated as 
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has a unit of velocity.  For a net source free core, mass conservation requires  
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The physical meaning of the diagonal elements iiV
~

 becomes clearer when we focus only on 

one particular solution case with given
a

in . Then, ii

a

i Vn
~

 is the influx of i-th charge-state ions 

across the LCFS into the core, which are eliminated through ionization/recombination 

processes. Thus, in the following the diagonal elements iiV
~

 are termed as “charge state 

elimination coefficients”. They have negative values representing the sink action of the core 

plasma. For the given i, pij with ij  is then the probability that the impurity ion returns to the 

SOL in a new charge state j, and has positive values. Hence,  ijpp   is called “charge state 

transformation matrix”. The diagonal elements of the matrix p are not defined in eq (17), used 

later for another purpose. The charge state elimination coefficients and the charge state 

transformation matrix provide the boundary conditions required by the Monte Carlo SOL 

model and can be pre-calculated, independent of the SOL. For the core plasma and transport 

coefficient profiles given in figure 1, these elements are shown in figure 3 and table 1. The 

amplitude of iiV
~

reduces towards higher charge states because of the reduced ionization 

activities. Except for C
+6

, recombination in the core is a rare process.  For example, once a 

C
+3

 ion is lost in the core, the probabilities of ionization to C
+4

, C
+5 

and C
+6

 are 91.7%, 4.5% 

and 3.8%, while recombination down to lower charge states is an unlikely event.     

The charge state elimination coefficients iiV
~

must be linked to a Monte Carlo quantity. 

Assume again that the density of the charge state i carbon ions at the LCFS is
a

in . The number 

of the C
+i

 ions eliminated in  is then given by  ii

a

ii

loss

i VnN
~

 .  The number of the 

Monte Carlo particles hitting the LCFS from the SOL side in can be deduced from eq (9) as 
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Note that eq (9) is now applied to the SOL only where D is a constant. 

A “loss” probability is then defined by  
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The condition of il <1 must be guaranteed by selecting small . The last two terms in the 

denominator of eq (19) disappear in the limit of  il  is co-determined by the core ( iiV
~

) 

and SOL (D and V for the SOL in eq (19)) and couples the core and SOL models at the 

interface. 

So far, the diagonal elements of the charge state transformation matrix p remain undefined. 

From now on, they are used for representing li, i.e. pii=li. Then, the rearranged matrix p 

completely defines the boundary conditions for the SOL.   

In the Monte Carlo scheme, the event for a carbon ion C
+i

, once hitting the LCFS, to change 

its charge state is checked randomly. The event is true when  < pii, where   is a random 

number uniformly distributed from 0 to 1.  In this case, a new, independent random number  

is generated to determine its new charge state according to the off-diagonal elements of p. The 

particle will be reflected at the LCFS either with a new charge state, when  < pii, or keeping 

its original state otherwise and the particle tracing continues until the particle is lost at the 

outer boundary. The results are shown in figure 4 and compared with those obtained by the 

global models shown in figure 2. No noticeable discrepancies can be identified and the 

computation is speeded up by more than one order of magnitude for this specific case.  

Once the SOL solution is found, 
a

in  for all i at the interface will be fixed. The core solution, 

as shown in figure 2, is then given by eq (11).   

4. Coupling to EMC3-EIRENE  

The 1D transport model described by eq (1) and the coupling technique presented in section 3 

have been integrated in the EMC3 code as an advanced boundary condition for studying the 

impurity-related topics that necessitate a SOL-core coupling.  The implementation of the 1D 

model into the 3D code is technically straightforward. A practical application example is 

given for the beryllium transport and radiation study for the ITER start-up plasmas bounded 

by two local limiters which introduce a typically 3D SOL needing therefore a 3D code. The 

background plasmas are pre-calculated using the EMC3-EIRENE code without the beryllium 

impurities [6]. Then, beryllium is treated as a trace impurity for estimating whether the 

beryllium line radiation significantly contributes to the power balance and potentially leads to 

an early termination of the plasma already in the start-up phase. The innermost domain 

boundary for the background plasma calculation lies ~ 2 cm inside the LCFS. First beryllium 

transport simulations in the same domain show insufficient inward decays of the main 

radiators, i.e. the Be
+2

 and Be
+3

 ions, at the inner boundary, requiring therefore an extension 

of the computational domain into the core to exclude possible boundary condition effects.  



Here, two solutions to this problem are presented and compared for purely numerical 

purposes. 1) Beryllium transport simulations are repeated by shifting the inner boundary 

inwards (see figure 5) with the extended region filled by given background plasmas. Despite 

the 1D distribution of the background plasma in the extended core region, beryllium transport 

is simulated by EMC3-EIRENE in 3D space.  2) At the original inner boundary surface 

EMC3-EIRENE is coupled with an 1D model using the same perpendicular transport 

coefficients and plasma profiles as in case 1). The results are compared in figure 5. In 

comparison to the strictly-1D case given in section 3 (see e.g. figure 4), slight differences 

between the two solutions appear now in the practical 3D case. The reasons are as follows. 

The local limiters induce 3D helical structures of the beryllium density distribution, which 

propagate far beyond the original boundary surface (2 cm inside the LCFS) into the core 

before smoothed out by parallel transport. This penetration feature is well captured in case 1), 

where the beryllium transport in the core is simulated in 3D space up to the extended 

boundary surface, where the beryllium is fully ionized (Fig. 5) and a constant Be
4+

 density can 

be assumed over the surface. In case 2), however, the 3D structures are followed only up to 

the original boundary surface which is not a “natural” interface between the 3D and 1D 

models. In this case, there is a free parameter emerging in the expansion from the 1D core to 

the 3D SOL, i.e. the flux distribution of the returning ions over the innermost surface. In the 

computations presented in this section, the Monte Carlo particles are ‘reflected’ on their entry 

position. Obviously, different locations of the innermost boundary must give rise to different 

flux distributions of the individual charge state ions across the LCFS, thereby influencing the 

density distribution in the SOL. Alternatively, one can assume constant densities of the 

individual charge state ions over the flux surface by controlling the start position of the 

reflected particles, taking the flux surface geometry into account. In any case, there is an 

uncertainty remaining at this point, whose consequence in practical applications must be 

estimated individually. This uncertainty could be removed by moving the interface inwards 

until 3D effects vanish. Further improvement of the 1D modeling would result from releasing 

the assumption of a perfectly cylindrical geometry for the ITER limiter plasma.                

5. Discussion 

A SOL-core coupling is particularly necessary for the charge state ions that populate the 

regions around or inside the separatrix. The choice of the inner boundary conditions can 

influence the density distributions of medium and high ionization stage ions. In the absence of 

a core model the simplest boundary condition would be zero flux for each charge state to 

completely isolate the SOL from the core. This is certainly an extreme case, but still 

reasonable if there is no information available from the core side. The next candidate would 

be to assume a local Coronal equilibrium at the SOL-core interface, which at least takes the 

atomic reactions into account although based on the local plasma parameters at the interface 

only. Unfortunately, it turns out that the latter does not improve the results. Figure 6 compares 

the density profiles of C
+4

, C
+5

 and C
+6

 in the SOL obtained with different boundary 

conditions by assuming zero flux for all individual charge states and local Coronal 

equilibrium and by coupling the core model given by eq (1). C
+1

, C
+2

 and C
+3

 are not shown 

because the three types of boundary condition are all equivalent to these lower charge states 

populating in the outer SOL region.  

The essential message from the comparison is the strong impact of the boundary conditions 

on the resulting density distributions of the higher charge state carbon ions, especially near the 

LCFS. The zero flux condition prevents the C
+4

 and C
+5

 ions from entering the core for 

further ionization, thus strongly underestimating the C
+6

 density in the SOL (not shown in 

figure 6 in view of its low level). In contrast, the local Coronal equilibrium assumption 



strongly overestimates the core sink action on C
+4

, resulting in much higher C
+5

 and C
+6

 

densities than those from the more realistic case where the core is coupled self-consistently.  

6. Summary  

For a 1D “trace” impurity transport model with fixed core plasma profiles, the general 

solution can be found by standard finite difference methods, independent of the outside 

located SOLs and divertors. The general solution can be further processed into surface 

quantities providing definitive boundary conditions on the SOL-core interface for the 3D edge 

Monte Carlo code EMC3-Eirene. The coupling between the 1D core and the 3D SOL model 

is implicit and SOL-core iteration is not needed.  The coupling technique was first developed 

and tested in 1D geometry and late implemented in the 3D code and tested in a realistic 3D 

case where the beryllium transport and radiation during the plasma start-up phase in ITER 

have been studied. The SOL-core coupling does not only remove the boundary conditions at 

the “more or less artificial” SOL-core interface, but also provides a model and the numerical 

techniques for an integrated modeling of impurity transport throughout the whole plasma 

from the center all the way to the targets.  
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Appendix  A 

 

Two-step method 

 

If the diffusion coefficient D is not a constant, a drift term rD  / appears in the dynamics of 

the random process given by eqs (8) and (9) where D takes the value at rt. This term can be 

treated implicitly by a two-step method. We begin with eq (9) without the rD  / term and 

let )( trV  = ttt rrDrV /)()(  . At the first step, a estimate is made using D(rt), .i.e. 
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being exactly the term missing in eq (A1). 

 

The expansion made in eq (A3) serves merely for the derivation of eq (A5) to show that the 

two-step method results automatically in the rD  / term when D is everywhere 

differentiable. In fact, the two-step method, which is already closed by eqs (A1) and (A2), 

does not require a continuously-differentiable D, as demonstrated by the example in section 3. 

Nevertheless, the chosen jump step D4 must be smaller than the local characteristic 

variation length of the physical quantity being simulated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure caption 

 

Figure 1: Profiles of ne and Te (top), transport coefficients V and D and carbon neutral density 

normalized to that at target. 

Figure 2: Result comparison between a finite difference and a Monte Carlo method.  

Figure 3: charge state elimination coefficients of carbon   

Figgure 4: results of the SOL Monte Carlo model (open symbols) implicitly coupled with the 

core model in comparison with those (solid lines) obtained with the global models given in 

figure 2.  

Figure 5: Comparison of Be profiles (flux surface averaged) calculated by EMC3 for an 

inwards-extended domain (solid lines) and a “standard” SOL domain coupled with a core 

model (symbols).     

Figure 6: Density distributions of C
+4

, C
+5

 and C
+6

 resulting from different boundary 

condition assumptions at the inner boundary: a) local Coronal equilibrium (dashed), b) zero 

flux (dot-dashed) and c) SOL-core coupling (solid).  The plasma and transport setup is the 

same as that in section 3.   

 

 

 

 

 

 

 

 

 



 

 

 

 

                       

Figure 1 

 

 

 

 

                                  



 

 

 

 

 

 

                    

Figure 2 

 

 

 

                   

 



 

 

 

 

                 

Figure 3 

 

 

                     

 

 

 

 

 



 

 

 

 

 

             

Figure 4 

 

          

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

           

 

Figure 5 

 

 

 

 

 



 

 

 

 

                 

Figure 6 

 

 

 

 

 



 

Table 1: charge state transformation matrix of carbon for the core plasma setup shown in figure 1 

     j=1       2        3        4        5      6 

i=1  0.3880 0.3095 0.2669 0.01923 0.01636 

   2 1.347e-05  0.54352 0.40632 0.027141 0.023004 

   3 3.776e-09 1.9158e-4  0.91667 0.045324 0.037818 

   4 6.126e-12 2.7115e-07 0.0017592  0.56195 0.43629 

   5 3.615e-14 1.4919e-09 7.3155e-06 0.050573  0.94942 

   6 1.247e-14 5.119e-10 2.4499e-06 0.015079 0.98492  

 


