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Abstract

Using the new Fokker-Planck code KIPP (KInetic code for Plasma Periphery) we

examined the accuracy of the common expressions for temperature equilibration rates.

Our simulations give new insights into the role of slow electrons in the equilibration pro-

cess and show that deviations from the common theory are significant especially for the

temperature equilibration between two ion species. The second part of the present work

deals with the equalization rate of parallel and perpendicular temperatures of a charged

species in a magnetic field. Again the simulations show that significant deviations from

analytical results arise. Finally we suggest a correction to the analytical formula which

better describes our results.
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1. Introduction

The important but challenging topic of tokamak edge plasma modelling is usually,

e.g. in the SOLPS package, tackled by using Braginskii fluid equations [1]. However their

applicability depends on a high collisionality of the plasma and recent results from SOLPS

modelling and comparison to experiment suggest that kinetic effects may be important

[2, 3]. To further investigate the influence of supra-thermal electrons a new kinetic module

for SOLPS, KIPP (KInetic code for Plasma Periphery), is under development.

KIPP is based on the nonlinear Fokker-Planck equation in two velocity dimensions (v‖

and v⊥) and in dimensionless variables (also used in the figures below) as described in [4].

The equation, for currently up to two colliding species (electrons and ions), is solved by

a finite volume discretization in velocity space and an implicit time discretization. The

implicit scheme permits large time steps. The presented results were calculated on grids

with a typical cell widths of 0.015 vth,e. For small values of ε = meTi
miTe

(see description of

formula 1) an inhomogeneous grid with smaller cells towards v = 0 was used.

Initial tests succeeded and directed our attention towards the problem of temperature

relaxation rates [4]. These rates are determined in KIPP from the change in temperature.

As initial condition Maxwellian distribution functions with different temperatures are

used.

2. Two particle species equipartition

A solution to the problem of temperature relaxation was given by Spitzer a long time

ago [5]. This solution is obtained by calculating the second moment of the collision
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operator for Maxwellian electron and ion distribution functions:
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where ne/i is the electron/ion density, Te/i are the temperatures, me/i the masses, Ze/i the

charge numbers, Λc is the Coulomb logarithm and Cei the (Fokker-Planck) electron-ion

collision term. The choice of Maxwellian distribution functions is a simplification justified

by the argument that like particle collisions create such distributions on a time scale which

is much shorter than the time for the temperature equilibration.

However, the slow electrons at v ≤ vth,i =
√

meTi
miTe

vth,e (with vth, e/i =
√

Te/i
me/i

being

the thermal velocities) strongly interact with the ions. The high collision frequency of

these electrons with the ions is due to the strong negative dependence of the Coulomb

scattering cross section on the relative velocity. The fast energy exchange of the slow

electrons with the ions takes place within ∆τ ∼ mi
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·
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(in units of e-e collisions time). This interaction gives rise to a distortion of the electron

distribution function which is moderated by e-e collisions and established within one e-e

collision time.

15 years ago Bobylev et al. calculated this distortion of the distribution function [6].

They derived an expression for the distribution function and a new formula for the energy

exchange including the deviations from a Maxwellian:
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The deviation from Spitzer’s formula
ṪBobylev

ṪSpitzer
− 1 = (1+ε)3/2

1+2.9 ε2/3
− 1 depends only on ε :=

v2th,i
v2th,e

= meTi
miTe

. Figure 1 shows that the deviation from a Maxwellian distribution reduces

the rate of energy equipartition. The figure exhibits the dependence on the temperature
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ratio, however it should be remembered that ε depends on the (inverse) mass ratio in the

same way.

With our code we could retrieve Bobylev’s results. This means that after exact replica-

tion of Spitzer’s value, for the initial condition of a Maxwellian distribution function, the

distribution function gets distorted in less than one collision time and the relaxation rate

approaches Bobylev’s result (see also figure 3). Figure 2 shows a comparison of Bobylev’s

analytic result with results from KIPP for the steady state equipartition rate. We find

that
√
ε gives a very good approximation (practically as good as Bobylev’s formula) for

the deviation from Spitzer’s expression.

The physical mechanism behind the distortion of the electron distribution function,

causing the reduction of the relaxation rate, is explained as follows: The slow electrons

strongly interact with the ions and are quickly pushed to higher (being heated by hot

ions) or pulled to lower velocities (loosing energy to cold ions). Our simulations show (in

agreement with the estimate given at the beginning of this section) that this process is

faster than the e-e collision time by a factor
√

mi

me
and distorts the electron distribution

function.

For the impact of the distortion on the equipartition rate another peculiarity of the e-i

energy exchange is important: only very slow electrons (with ve < 4.3 vth,i for deuterium

ions1, corresponding to 0.01% of the electrons for Te ≈ Ti) receive energy from the ions

while all the rest of the electrons loose energy to the ions. Firstly, this shows again the

strong interaction of the slow electrons with the ions. Secondly, the distortion of the

electron distribution function decreases the number of slow electrons for Te < Ti and

increases this number for Te > Ti explaining the reduction of the equipartition rate in

both cases.

1From Trubnikov [7]: εe = Ti

390 with εe =
mev

2
e

2 and Ti = v2i,thmi.
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For the e-i equipartition rate a significant deviation2 emerges only in cases of extreme

Ti/Te ratios. The particle species are denoted as electrons and ions up to now but it is

important to note that the theory applies as well to the interaction of two ion species. In

that case the mass ratio is much closer to one and the correction may become significant

even for moderate temperature ratios.

Ion charge also influences the equipartition rate. Figure 3 shows the relative deviation

from Spitzer’s expression versus time for a proton (m) - Calcium (M) system (ZM = 20

and M/m = 40), starting with Maxwellian distribution functions at t = 0. The deviation

is about 20% for Z = 1 with nM = nm (as in all previous results), roughly 60% for Z = 20

with nM = nm and finally 40% for Z = 20 with nM = nm/Z. To enable a comparison

despite the different speed of the equipartition the time for Z = 1 is rescaled by the factor

Z2 = 400. In reality the Z = 1 process is a factor Z2 slower than the Z = 20, nm = nM

case and a factor Z slower than the nM = nm/Z case. Reducing the density of the heavier

species (nM = nm/Z) reduces the deviation in comparison to the case with equal densities

but cannot compensate for the effect of a larger Z.

3. Equilibration of the temperatures parallel and perpendicular to the mag-

netic field

The above results also question the validity of the relaxation rate for parallel and per-

pendicular temperatures of a charged species in a moderate magnetic field (with rc � b

where rc ≡ v̄/Ωc is the cyclotron radius and b ≡ e2/T is the distance of closest approach).

The concept of different parallel and perpendicular temperatures is used e.g. in the de-

scription of SOL flows [8, p. 387] or in the presence of certain heating methods. An initial

2i.e. larger than the error of 1/Λc inherent in the Fokker-Planck equation due to the neglect of close

collisions
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distribution function of a charged species with different parallel and perpendicular tem-

peratures relaxes to a usual Maxwellian with temperature Ttot =
T‖+2T⊥

3
. The (equivalent)

results given by Kogan [9] and Ichimaru [10] for the relaxation rate are calculated for (bi-

)Maxwellian distribution functions f
(
v‖, v⊥

)
=
(

m
2πT⊥

)√
m

2πT‖
exp

(
−v2⊥m

2T⊥
−

v2‖m

2T‖

)
. As

there is no small factor in this interaction, like the mass ratio, a deviation from this

expression is to be expected. To our knowledge this has not yet been investigated.

As KIPP is based on parallel and perpendicular velocity coordinates it can also be

used to calculate this equalization rate
dT‖/⊥
dt

. For this calculation only one species with

a bi-Maxwellian initial distribution function is used, in one case with T‖ > T⊥ and in the

second case with T‖ < T⊥. The lower of both temperatures was set to Tsmall = 0.01 and

the larger was adjusted so that Ttotal =
T‖+2T⊥

3
= 1. Figure 4 shows the time evolution of

the warmer degree of freedom for both cases. The figure shows the expected approach of

T = 1 and serves mainly as reference for comparison to figure 5.

Figure 5 shows, again for the two cases, the time evolution of the deviation from

Kogan’s temperature relaxation rate. Furthermore it contains a fit which is discussed

later in this text. For t = 0 the simulation uses a bi-Maxwellian and has to reproduce

Kogan’s result. Collisions change the distribution function and cause a deviation from

Kogan’s formula. The final deviation from the analytical (bi-Maxwellian) result is rather

large. The period covered by this figure is restricted by the simulation. When the two

temperatures become equal (cf. figure 5) the change in temperature becomes very small

and inevitably round-off errors deteriorate the numerical result.

The reason for the different behavior for T‖ > T⊥ and T‖ < T⊥ can be explained as

follows: The parallel component contains less energy and thus should be easier to distort.

At least for T‖ > T⊥ the deviation in f‖ is larger than in f⊥ and it is not smaller for

T‖ < T⊥. From the result on the two species temperature equipartition we know that
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the broader (electron) distribution function has more influence on the relaxation rate.

Combining these arguments the deviation from the analytical relaxation rate is expected

to be larger for T‖ > T⊥, where f‖ is broader, than for T‖ < T⊥, where f⊥ is broader.

The choice of initial temperatures is rather general because Ttotal = 1 can always be

obtained by changing the units and the temperature ratio
T‖
T⊥

adopts all intermediate

values during the relaxation process. Nevertheless, an analysis of the dependence on
T‖
T⊥

is not possible. This is due to the slow development of the deviation from the analytical

result. The time scale for the temperature equalization is somewhat shorter than that on

which the deviation develops (see figures 4 and 5). This is in sharp contrast to the case

of two particle equipartition.

The slow approach to the disturbed state requires a time dependent relaxation rate

for an accurate description. As one can see from the fit in figure 5 it is possible to find a

rather simple expression for the time dependent relaxation rate:

dT

dt
=
(
1− a

(
1− e−b t

))
· dT
dt

∣∣∣∣
Kogan

(3)

with a ≈ 0.7, b ≈ 0.08 for T⊥,0 = 1
300
T‖,0 and a ≈ 0.4, b ≈ 0.1 for T⊥,0 = 150T‖,0 (the

second fit is not shown in the plot). The value of a corresponds to the saturated size of

the deviation, the time constant b is similar for both cases. A comparison of different

initial temperatures (e.g. a ≈ 0.6 for T⊥,0 = 1
2
T‖,0 ) showed only a small dependence on

this quantity. Hence equation 3 is a rather solid upgrade of Kogan’s result.

Up to now the situation for an initial temperature difference and subsequent equi-

libration was treated. Alternatively
T‖
T⊥

might be kept constant by cooling one degree

of freedom while heating the other one. Such a case would be suited to study the
T‖
T⊥

dependence of the relaxation rate. Nevertheless a detailed analysis is not straightforward

because it would require the implementation of an artificial cooling and heating in the

code. This is possible and indeed is used to correct numerical energy loss for heat conduc-
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tion calculations ([4]; in the present paper only data is shown where the numerical error is

assumed to be irrelevant). However, experience shows that details of this implementation

may change results, especially as the slow approach (lasting several collision times) to the

disturbed state indicates that the responsible force is rather weak. This sensitivity to a

detailed mechanism probably carries over to reality. Therefore reducing the relaxation

rate to about 50% can be a rough approximation but an accurate simulation of situations

with a steady source or sink of energy in one degree of freedom always requires special

analysis.

An important example for such a situation is the scrape-off-layer of tokamaks, where

ions can have different parallel and perpendicular temperatures [8, p. 387], [11]. The

consequence of using the analytic formula is clearly an underestimation of the difference

between parallel and perpendicular temperature for a given energy influx, or the overesti-

mation of an energy influx for a given temperature difference. The relaxation rate enters

the Braginskii equations [1] via viscosity. Furthermore, the deviations from a Maxwellian

observed in the simulations may even require corrections to other coefficients in the Bra-

ginskii equations. This once more demonstrates the need for Fokker-Planck models, which

inherently avoids such problems.

In an experiment of Hyatt et al. [12], a deviation of less than 10% from the equation

given by Ichimaru [10] was found. However Hyatt compared to a simplified version of the

equation which yields somewhat too low values for the equipartition rate. Furthermore

his result is dominated by the phase in which the deviation is still growing. Therefore

Hyatt’s experimental finding is not in a contradiction to our new results predicting a

larger deviation.
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4. Summary

The new Fokker-Planck code KIPP could confirm Bobylev’s result on temperature

equilibration rates. The reduction by a factor
√
ε for singly charged particles in comparison

to Spitzer’s expression is caused by the strong interaction of slow electrons with the ions.

This effect increases with the charge number of the heavier species. A second study,

concerning the equilibration of the temperatures parallel and perpendicular to a magnetic

field, found an even larger deviation of about 50% from Kogan’s theory. The deviation

develops on a somewhat slower time scale then the equilibration. Therefore an accurate

description requires a time dependent relaxation rate, like the fit to our numerical results

given in section 3.
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Figure 1: Temperature equipartition rate for me/mi = 1/2000; temperature is in units of

the initial electron temperature, time in units of the e-e collision time

Figure 2: Deviation of Bobylev’s and numerical results from Spitzer’s formula; the results

from KIPP were obtained using various combinations of ion temperature and mass ratio

Figure 3: The deviation from Spitzer’s theory versus time (in units of m-m collision time)

for initial condition of Maxwellian distribution functions. All results are for mass ratio

1/40.

Figure 4: Temperature of the hotter degree of freedom versus time (t is in units of the

m-m collision time) for two different initial conditions. The temperature of the second

degree of freedom is given by
T‖+2T⊥

3
= 1.

Figure 5: Deviation of numerical results from Kogan’s analytical expression versus time

(in units of the m-e collision time).
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Fig. 1
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Fig. 2

13



Fig. 3
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Fig. 4
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Fig. 5
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