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Abstract. The coupled system consisting of 1d radial transport equations and the

quasi–static 2d magnetic equilibrium equation for axisymmetric systems (tokamaks) is

known to be prone to numerical instabilities, either due to propagation of numerical

errors in the iteration process, or due to the choice of the numerical scheme itself. In

this paper, possible origin of these instabilities, specifically associated with the latter

condition, is discussed and an approach is chosen which is shown to have good accuracy

and stability properties. This scheme is proposed to be used within those codes for

which the poloidal flux ψ is the quantity solved for in the current diffusion equation.

Mathematical arguments are used to study the convergence properties of the proposed

scheme.

‡ In memoriam
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1. Introduction

Full–discharge simulations for tokamak consist in evolving simultaneously the internal

and external plasma state, which means that internal radial transport described by

flux–surface averaged transport equations, and the global, free–boundary, magnetic

equilibrium evolution, are coupled and evolved together [1]. Several codes exist that

are capable of performing this very complex task [2, 3, 4, 5]. The actuators are usually

the external coil currents that are applied to shape the plasma and drive its current.

Resulting plasma shape is such as to satisfy static force balance ∇P = J × B =

J×(∇×A), which, projected in the cross–field lines direction, gives the Grad–Shafranov

equation. Simultaneously, plasma resistivity causes the poloidal magnetic field to diffuse,

a process that is described by the local (purely resistive) Ohm’s law E = −
∂A

∂t
= ηJ.

On the other hand J = ∇×B/µ0, so it is clear that it is desirable to employ a numerical

scheme that allows, at each time step, to obtain consistency between the vector potential

A as solved for in the Grad–Shafranov equation and in Ohm’s law with the appropriate

boundary conditions. Notice that the Grad–Shafranov equation is non–linear in the

term J × B, thus requiring iterative schemes for its solution. Moreover, since the

complete Ohm’s law contains also the ’convective’ term v×B, which is normally canceled

out in transport codes via flux–surface averaging, has then to be consistent, checked

’a posteriori’ with plasma motion generated in case of a free–boundary calculation.

To this respect it is noted, en passant, that the electrostatic potential, being in this

context equivalent to an arbitrary gauge function (as in the case of an inertial rigid

motion in vacuum, where it exists purely to account for the change in reference frame),

will physically adjust to bring consistency between the vectorial and the flux–surface–

averaged Ohm’s law. As such, the plasma motion consists of a sequence of quasi–static

equilibria and it is not overdetermined (see Appendix A).

To abstract a bit from the physics problem itself, it is first useful to address the

question of the general stability of coupled non–linear equations when iterated to obtain

consistency of the solution, with respect to quantities appearing simultaneously in the

dynamic (transport) and static (equilibrium) component of the coupled system. Concern

for the stability is particularly severe when fast transients take place. Iteration schemes

applied to reach consistency can become unstable in certain conditions.

The appearance of an instability can be generally understood by considering a

coupled set of non–linear equations:

ẏ = f(M, y)

FG(M, y) = G(M, y) (1)

where the first (e.g. Ohm’s law) describes time evolution of quantity y (e.g. the vector

potential), with quantity M entering as a parameter (e.g. M would be a specific metric

tensor component). In the second (e.g. Grad–Shafranov), non–linear equation, y acts

as a ’coordinate’, and M in computed in terms of y and by choosing an ’arbitrary’

function G(M, y). The specific choice of G determines also the form of F , which in
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the end must describe the same physical system. At a given time step, the fixed–point

iteration defined by: FG(M i+1, y) = G(M i, y) has to be solved to find the converged

metric M . As such, a formal error estimate can be obtained by Taylor–expanding FG

in perturbations of M and computing the relative change in the error ε from iteration

i to iteration i+ 1:

ε̃ =
εi+1

εi
=

∣

∣

δG
δM

∣

∣

∞
∣

∣

(

δFG

δM

)

G

∣

∣

∞

(2)

where the symbol δ indicates a derivative of functional type. A convergent scheme is

characterized by ε̃ < 1, viceversa it will be unstable. It is then favourable that either

the function G is chosen not to depend on M , or that the expression for G is such

that the right–hand–side of equation (2) is below unity independently of the equation

parameters. The method that will be presented here falls in the latter category. Notice

also that achieved stability of the fixed–point iteration defined by the second of equations

(1) implies stability of the full iteration scheme, including also the transport equation, if

the latter adpots an implicit scheme, while for an explicit scheme it is not evident that be

the case. Indeed, in the case of explicit scheme in the transport equation, the instability

maybe linked to the choice of time step and the amplitude of resistive dissipation of

numerically generated boundary layers.

The paper is structured as follows: in section 2 the full physical problem is discussed.

In section 3 the novel numerical scheme is presented and detailed with examples. Section

4 draws the conclusions.

2. Coupling transport and equilibrium for axisymmetric systems

A so called 1–1/2D transport code, as routinely used in the tokamak community,

solves for flux–surface–averaged conservative equations with sources and sinks [6].

As regards kinetic profiles, for example the density n, the equation is of the type
1

V ′

∂(V ′n)

∂t
+

1

V ′

∂(V ′Γ)

∂ρ
= Sn, with V ′ = ∂V/∂ρ (ρ is a generic flux coordinate), where

the profile of n(ρ, t) and its flux Γ(ρ, t) evolve subjected to the boundary conditions

Γ(0, t) = 0 at the magnetic axis, and either n(ρb, t) = nb(t) or Γ(ρb, t) = Γb(t) at the

outer transport boundary. Resistive transport of poloidal magnetic flux is regulated by

flux–surface–averaged parallel Ohm’s law, 〈E‖B〉FS = η〈J‖B〉FS, which turns out to be

a parabolic PDE for the poloidal magnetic flux ψ, known as current diffusion equation

(CDE). In the following the focus is put on this latter evolution equation.

The CDE is considered here in the convective–diffusive form:
(

∂ψ

∂t

)

x

=
ηF 2

32π2µ0Φ2
b

1

x

[g3g2

x
ψ′
]′

+
Φ̇b

2Φb
xψ′ (3)

where the ′ = ∂/∂x, ψ = ψ(x, t), g3 =

〈

1

R2

〉

FS

, g2 =

〈

|∇V |2

R2

〉

FS

, η is the plasma

resistivity, F = RBT is the covariant component of the toroidal magnetic field, Φb is

the toroidal magnetic flux Φ at the boundary, ψ is the poloidal magnetic flux, and
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x =
√

Φ/Φb. Notice that in the temperature and density transport equations one

also needs the metric coefficient g1 = 〈|∇V |2〉FS, and some additional others for the

toroidal momentum transport equation, however these metric coefficients do not enter

explicitly in the iteration process described, but only parametrically in the transport

equations. They can be simply updated once at the end of the equilibrium iteration

process. As mentioned before, this does not cause any numerical problems in advancing

the equations. As such, these additional coefficients will not be discussed any further.

The operator 〈f〉FS = ∂/∂V
∫ V

0
fdV is the usual flux–surface–averaging. At each

time step, the CDE provides a solution ψ = ψ(x) subjected to appropriate boundary

conditions: regularity at magnetic axis (∂ψ/∂x)x→0 = 0, and at the plasma separatrix

either fixed plasma current Ip, i.e. (∂ψ/∂x)x=1 =
(

4π2µ0Ip/
〈

|∇V |2

R2

〉

FS
∂V/∂x

)

x=1
, or

imposed loop voltage Vloop, i.e. ψ(ρb, t) =
∫

Vloopdt.

The CDE contains parametrically the metric quantities g2, g3, F,Φb, which are

determined from the equilibrium equation. The spatial distribution of poloidal magnetic

flux ψ(R,Z), where cylindrical coordinates (R,Z, ϕ) are employed is obtained via the

Grad–Shafranov equation (GSE):

∇ ·

(

∇ψ

R2

)

= −4π2µ0
∂P

∂ψ
−

4π2

R2
F
∂F

∂ψ
(4)

The poloidal function F is linked to ψ through the relationship:

F =
2π

g3

∂Φ

∂V
=

2πΦb

g3

∂ψ

∂V
q̂ =

2πΦb

g3

Hq̂ (5)

with q̂ = ∂(x2)/∂ψ = q/Φb and H = ∂ψ/∂V .

The flux–surface average of equation (4), in the plasma region, reads:

∂

∂V

(

g2
∂ψ

∂V

)

= −4π2µ0
∂P

∂ψ
− 4π2g3F

∂F

∂ψ
(6)

Consistency between equation (3) and equation (4) requires that the flux ψ on the 1d

grid x and on the 2d grid (R,Z) mapped onto the 1d grid has the same values. When

this is accomplished through iterations, one can see that the most critical terms involve

the quantity g2, as from its definition it is related to local geometrical gradients. Easily

that term can become unstable and lead to divergence of the iteration scheme. There

have been attempts concerning possible iterations scheme and stability analysis based on

equation (6) as for example in [7, 8, 9, 10, 11, 12]. In the following section an alternative

scheme is presented which is based on [8], and for which mathematical arguments are

given to study its stability.

3. A numerical scheme based on poloidal flux conservation

Let us assume that a solution ψ(x) of equation (3) has been computed, as well as a

solution of the density and energy transport equations, which allow to compute a new

pressure profile P (x). Therefore ψ is known in the whole plasma region, which allows

us to immediately compute ∂P/∂ψ and q̂. Note also that the total plasma current can
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be computed at this stage by using the new ψ solution and the old values of g2 and F

as Ip =

(

g2g3F

8π3µ0q

)

b

, which value can be used to constrain the equilibrium solution. On

the other hand, the quantity H is not known at this stage, since a relationship between

magnetic flux and volume is provided by the GSE. To this purpose, using identity (5),

equation (6) is rewritten in the form of a 1st order differential equation:

H (g2H)′ = −4π2µ0P
′ − 16π4Φ2

bq̂H (q̂3H)′ (7)

where q̂3 = q̂/g3. A boundary condition is obtained by considering that, at the plasma–

vacuum interface (x = 1): Fb = (RBT)v. Employing (5) to compute Hb, equation (7)

is thus solved analytically:

H =
g2,b + 16π4Φ2

bq̂bq̂3,b
g2 + 16π4Φ2

bq̂q̂3

√

H2
be

[A]x
1 +

∫ 1

x

BP ′e[A]xzdz (8)

with [A] =

∫

32π4Φ2
bq̂3q̂

′

g2 + 16π4Φ2
bq̂q̂3

dx, B = 8π2µ0
g2 + 16π4Φ2

bq̂q̂3

(g2,b + 16π4Φ2
bq̂bq̂3,b)

2 . Note that, for the

square root in equation (8) to be real, one requires a condition on the plasma pressure,

which can be estimated as the condition β . 1, where β is the ratio between plasma

kinetic and magnetic pressure. For most tokamak applications β is well below 0.1 (but

for a spherical tokamak it can easily reach ≈ 0.5, and β & 1 means practically no

confined plasma). Φb appears in equation (8) as a parameter, but it has to be solved

for. This is obtained by noticing that the (total) plasma volume Vb acts as a constraint:

V =

∫ ψ

ψ0

dψ

H(Φb, g2)
→ Vb =

∫ ψb

ψ0

dψ

H(Φb, g2)
(9)

This constraint, together with equation (7), forms a non–linear problem which fixes both

H and Φb. At this point, the second term on the right–hand–side of equation (3) can

be computed here by updating ψ with the new Φb and using the invariance of q = Φbq̂.

For a circular plasma with infinite aspect ratio, the quantity g2 ∝ V , which is exploited

to recompute the metric g2 at each stage of the 1d non–linear iteration process simply

by reinterpolating g2 as the volume changes as a function of ψ, thus keeping g2(V ) (and

g3) fixed. The poloidal current term FFψ is calculated as:

F
∂F

∂ψ
= 2π2Φb

∂

∂ψ
(q̂3H)2 = −

µ0

g3

∂P

∂ψ
−

1

4π2g3

∂

∂V
(g2H) (10)

An alternative of the analytical solution and of the iteration scheme shown above can

be derived when using the function K = q̂3H instead of H , leading to F = 2πK. One

advantage of using K is that the boundary condition Kb = (RBT)v/(2π) is independent

of the boundary safety factor qb. Both formulations have been tested and the result is

practically independent of which one is used, although the numerical implementation

of the formulation with K is actually easier and the precision to which the analytical

solution is numerically represented is better. To summarize, at the end of this first

iteration process identified by analytical solution (8) and the constraint (9), two things

are achieved: 1) the profile of the diamagnetic function F has been found, that is
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consistent with radial force balance, equation (7), together with the value of the toroidal

magnetic flux at the plasma boundary Φb, consistent with the poloidal magnetic flux

profile and the plasma volume.

The pair (∂P/∂ψ, F∂F∂ψ) as functions of ψ are then given as inputs to a 2d fix or

free–boundary Grad–Shafranov solver. The 2d GSE can be written in 1d–like form by

employing flux coordinates:

1

JV

∂

∂V

(

JV
|∇V |2

R2
H

)

= −4π2µ0
∂P

∂ψ

(

1 −
1

R2g3

)

+
1

R2g3

∂

∂V
(g2H) (11)

where H is the same quantity H but solved for in the 2d equation (in the circular, infinite

aspect ratio case one would have exactly H = H analytically), and JV = (|∇V ||∇θp|)
−1

is the Jacobian (note that the ”poloidal angle” θp is defined such that ∇V · ∇θp = 0).

The quantity |∇V |2/R2 is also solved for in the 2d problem, and its solution allows to

compute the new metric coefficients g2(V ), g3(V ). Eventually a new plasma boundary

and volume are also output of the 2d problem. In the latter case it also recommended

to constrain the 2d solution to have the same total plasma current as given by

Ip = (g2H)b/(4π
2µ0). To summarize, at the end of this part of the computation, that

is after the solution of the 2d GSE (11), the metric quantities
〈

|∇V |2

R2

〉

FS
,
〈

1
R2

〉

FS
, ... are

updated as the poloidal equilibrium is now satisfied.

At this stage, a convergence check can be done on the metric quantities that are

output of the 2d equation and the ones used to solve equation (7). If convergence is not

reached, a loop is done through equation (7) and equation (11). Finally, an additional

external loop will include equation (3) to achieve a full implicit solution of the coupled

CDE–GSE system. This external loop does not bring in additional problems, since

it features a parabolic equation of purely diffusive type, where the time step acts as

an effective tuning parameter (moreover an implicit solution of equation (3) has g2

appearing at the denominator). The pressure P can also be iterated as well at the same

time through its diffusion equation. The full scheme is summarized in the flow–chart of

table 1.

3.1. Stability and convergence analysis of iterative process defined by equation (9)

Let us define v = g2/g2,b = v(y), y = V/Vb, α = 16π4Φ2
bq̂q̂3/g2,b, and C =

(

√

e[A]x
1 +H−2

b

∫ 1

x
BP ′e[A]xzdz

)

/ψ′. Upon using solution from equation (8), equation (9)

becomes:

y = G(y) =

∫ x

0
(v + α) dx

C
∫ 1

0
(v + α) dx

C

(12)

The fixed–point iteration scheme yi+1 = G(yi), where i is the ith iteration, has the

following properties: G is a compact mapping from space [0, 1] → [0, 1], and at each

iteration i the solution y has bounded derivatives, i.e. |y′| < |y′|max. Therefore the

mapping G satisfies the Arzelà–Ascoli theorem, which states that a compact mapping

with absolutely bounded first derivative has at least a uniformly convergent subsequence
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Step Algorithm

1(eq+tr) Advance CDE (and other transport equations)

from time slice [t− dt] to time slice [t] via equation (3),

using gi−1
2 , ... as parameters → ψi(x, t), P (x, t).

2(eq) Uses ψi, P , and metric coefficients gj−1
2 , gj−1

3

to compute Hj from equation (8).

3(eq) Using Vb as a constraint, compute new Φb from equation (9);

in addition update gj−1
2 (ψ), gj−1

3 (ψ) from new V (ψ),

by keeping fix dependencies gj−1
2 (V ), gj−1

3 (V ).

If needed, update ψ through adiabatic compression,

i.e. solve for second term in equation (3).

4(eq) Iterate 2(eq) and 3(eq) until convergence in Φb and gj−1
2 (V ), gj−1

3 (V ).

5(eq) Solve for new (FFψ)
j as in equation (10).

[Optional: apply pre–conditioning (15) on gj−1
2 to stabilize edge instability.]

6(eq) Solve 2d GSE to compute new metric coefficients gj2(V ), gj3(V ).

7(eq)

j=j+1 [Optional: apply post–processing (16) on gj2 to speed–up convergence.]

Restart from 2(eq) until convergence in metric coefficients.

8(eq+tr)

i=i+1 Update gi2 = gj2, ....

Iterate with 1(eq+tr) until convergence on ψ(x, t) is reached.

Table 1. Flow–chart of the proposed algorithm. Index i refers to external iterations

with CDE (transport equations ’tr’), while index j refers to iterations in the equilibrium

part ’eq’. Note that gi=1
2 = g2(t− dt), and so on for other geometrical quantities. Also

gj=1

2
= gi−1

2
, .... The steps in square parenthesis and marked with ’Optional’ are not

necessary for the method to work, but are suggested to remedy to the appearance of

the instability discussed in section 3.2.

§. The compactness of mapping G is trivially proven following its definition. The proof

of the absolute boundedness of the first derivative can be obtained by considering that

y′ = (v + α)/(AC), where A =
∫ 1

0
(v + α) dx

C
. First, min(C) is obtained when v = 1.

For A, i.e. min(A) can be considered independent of v, since the maximal C is obtained

when v = 0. In conclusion, one finds that max(|y′|) = [1+max(α)]/ [Av=0Cv=1] and that

it is independent of y, and then the absolute maximum bound on the first derivative

of the mapping G is the same for all functions y in the iteration procedure. It is

possible, but very lengthy, to prove that the sequence Gi is a Cauchy sequence, i.e.

discrepancy between following iterations goes to zero for sufficiently large i. Therefore,

if the sequence Gi contains convergent subsequences, and converges to some value for

large i, this means that the value is unique and the sequence converges to that solution

§ http://en.wikipedia.org/wiki/Arzel%C3%A0%E2%80%93Ascoli theorem . Note that this theorem

does not guarantee that the series itself will numerically converge or that the converged value is unique.
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‖. The detailed proof of this statement is given in Appendix B.

It is necessary mentioning here that, in the case where relevant quantities, as

q̂, g2, ..., logarithmically diverge at the separatrix, e.g. in case of a X–point configuration,

then the procedure describes above makes sense when the location of the equilibrium

’boundary’ x = 1 is considered as neighboring the separatrix but not coinciding.

3.2. Stability analysis of iterative process including equation (11)

Equation (11) is formally solved for with prescribed right–hand–side on flux coordinates

to find both the Jacobian JV and the unknown functions H, |∇V |2/R2.

By taking the flux–surface average of equation (11), and calling G2 = 〈|∇V |2/R2〉

the same metric coefficient as g2 but computed in the 2d equation, the relation is found:

G2H ≈ g2H (13)

where the approximate symbol is due to g3 being not exactly equal to the flux surface

average of 1/R2 from the 2d equation (they become equal at convergence). Relation

(13) allows an easier formal estimate of the iteration error from equation (2):

ε̃ =
εi+1

εi
≈

∣

∣

∣
H + g2

(

δH
δg2

)
∣

∣

∣

∞
∣

∣

∣
H +G2

[

δH(δj)
δG2(δj)

]
∣

∣

∣

∞

(14)

where δH/δG2 has to be interpreted as the ratio of the two variations of the functionals

H, G2 as functions of the source j. The quantity j indicates the known source, or

right–hand–side of the GSE (i.e. the toroidal current density). Notice that
δH

δg2

< 0, as

such one sees that the denominator is the critical factor in determining the convergence

properties of the scheme. In general the dependence of the flux–surface geometry on the

source is expected to be weak, an example being the well known Solov’ev solution [13],

for which the impact of the source is only in determining the magnetic axis position

(Shafranov–shift). However it is difficult a priori to assess the actual impact of the

source when a numerical solution is computed. From equation (14) it is clear that an

instability can only appear provided an inverse dependence of G2 on j, which results in

δG2/δj < 0, while in general one finds that δH/δj > 0.

Let us first tackle a situation in which the plasma boundary has no singular points,

i.e. it is defined by a regular curve (no X–points present). In this case the geometry of

the flux surfaces is not so sensitive on the source, even in the numerical solution, i.e.

G2 does not depend on j, which leads to ε̃ → 0. Therefore convergence will be reached

rapidly as g2 → G2 after a few iterations.

Problems arise when dealing with a plasma with field singular points on the

boundary (the suspect is that actually boundary regions with very large local curvature

are the most fragile). In the case of an X–point, in its vicinity the quantity H

‖ This is a corollary to the Arzelá–Ascoli theorem if the sequence under consideration is also a Cauchy

sequence.
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goes to zero as H ∼ −1/ log(∆), where ∆ is the distance from the X–point in a

direction perpendicular to field lines in the plasma [14]. One can actually estimate

H ∼ −j/ log(∆), with j the local toroidal current density. This means that relation

(13) is satisfied if G2 ∼ − log(∆) g2H/j. In a numerical solution, ∆ will always have

be a finite number, as such the updated G2 will be strongly dependent on j, thus the

G2 ∼ 1/j dependence makes ε̃ → ∞, rapidly leading to a numerical divergence. Since

close to the boundary the product G2H ∝ Ip, the instability appears as an oscillation

of both G2 and H in counterphase, which points describe a hyperbole in the (G2,H)

plane, and which increases in excursion as iterations progress.

The most straightforward way to suppress the instability is to impose a

monotonicity constraint on G2, although it is not evident that this be the general

situation. It is also found that extrapolation to the separatrix of the metric coefficients

values can have an impact on the strenght of this oscillation. A linear extrapolation

is used, which strongly mitigates the G2 excursions at the boundary as compared for

example to quadratic extrapolation. Under–relaxation is then employed (a weighting

factor of 0.5 is found to be sufficient in all tested cases, but maybe not sufficient in

extreme cases).

An alternative method is proposed here which exploits equation (14) in this way:

the function g2 is multiplied by a test function f̂ that is strongly localized near the plasma

edge, and is such that g2 ∼ 1/H , i.e. making the numerator of equation (14) vanish.

The test function becomes weaker as εi decreases, relaxing g2 to the real solution. The

relaxation process is sped–up by employing under–relaxation factor of 0.5. In practice,

a g̃2 is computed as:

g̃2 = g2 + f̂
εeDε

1 + εeDε

(

g2,bHb

H
− g2

)

(15)

where 1 ≪ D < 1/εtol (εtol is the requested tolerance). g̃2 is then used to compute

the right–hand–side in equation (11). The choice of the test function f̂ is at this

stage arbitrary and could be chosen differently. An example that has been tested is

f̂ = x4e−3(1−x4) which seems to work fine. The exponential factor is such that for,

ε ≫ 1/D, then g2 ∼ 1/H at the plasma edge, while for ε ∼ D, the correction to

g2 scales as ε. This method forces the numerical solution to maintain a relative error

between iterations which is less or of the order of 1/D, thus effectively removing the

instability. Note also that g̃2,b = g2,b, thus leaving the total plasma current Ip ∝ (g2H)b

unchanged.

By taking the spatial derivative of relation (13), i.e. G′
2H + G2H

′ ≈ g′2H + g2H
′,

and replacing quantities in this form: G̃′
2Hi + G2,i

H′
i−1

Hi−1

Hi ≈ G′
2,iHi + G2,iH

′
i, one can

compute

G̃2 = G2,i + λ

∫ x

0

G2,i

[

H′
i

Hi

−
H′
i−1

Hi−1

]

dx (16)

where i indicates the present iteration number while i − 1 is the previous iteration. λ

is a numerical constant that regulates the weight of the correction, with λ ≤ 1, in the
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following examples the values λ = 0.1 (at present this value is deduced from various

testings and not from first principles arguments). G̃2 will be used as the new metric at

the next iteration, such that any G2 ∝ 1/H → G′
2 ∝ −G2H

′/H dependency is somewhat

removed, making the denominator of equation (14) of order 1.

Patching together the g2 ’pre–conditioning’ through equation (15) and the G2

’post–processing’ through equation (16), it is found that the instability associated with

boundary effects is strongly suppressed (by ’pre–conditioning’), and that convergence

speed is improved (by ’post–processing’). Note however that the tolerance cannot be

lower than the natural numerical discrepancy between H and H as compute by two

different codes (the 1d equation solved ’analytically’ while the 2d GSE is solved by

a specific GS code). In the following examples, the simple remedy of setting under–

relaxation and linear extrapolation to the boundary works for all cases. The proposed,

mathematically–based patches discussed previously might be invoked when treating

more extreme configurations where simple remedy fails, as it will be shown in a specific

case in the following examples section. Nonetheless, in the next section it is also shown

how the number of iterations is influenced by these patches in conditions encountered

typically.

3.3. Examples

The equilibrium code SPIDER [15] is used to perform the various testings. It has been

embedded in the iteration scheme previously described and via this method coupled to

the ASTRA transport code [16]. SPIDER solves the prescribed boundary problem on

an adaptive, flux–coordinate grid.

The test cases are of five types: (1) static with high edge safety factor (low

plasma current), (2) rapidly evolving plasma shape (elongation increase) in elliptic

configuration, (3) high–beta, high edge bootstrap current case, (4) full transport (all

channels evolving with prescribed parabolically–shaped diffusivities) in limiter–diverted

configuration change, (5) a free–boundary computation of a spontaneous Vertical

Displacement Event (VDE) in ASDEX Upgrade, with fixed kinetic profiles but evolving

poloidal magnetic flux. A tolerance of 10−5 on convergence check is set for the various

quantities. The iteration scheme includes iterations on the equilibrium side as well as the

external loop with the CDE. Cases 1–4 are based on a reference which is a typical current

ramp–up scenario in the ASDEX Upgrade tokamak [17]. The different parameters used

in the simulations are listed in table 2. As regards the numerical discretization, the 2d

grid in SPIDER has 51 radial and 43 poloidal points, while ASTRA has 201 radial grid

points for the solution of the CDE. In all cases the time step is dt = 1 ms.

For case 1, a glance at the number of iterations required to reach consistency is

shown in figure 1(a,b,c). The relative error on g2 is shown in solid lines as a function

of the iteration number (cumulated over time steps). Three methods are compared:

Method A (black line) is skipping the scheme presented in this paper and computes FF ′

in particular from the formula FF ′ = −
Fµ0

〈B2〉FS

(

〈J · B〉FS

2π
+ F

∂P

∂ψ

)

, at each iteration
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Case Relevant parameters

1 Ip = 0.44 MA, q95 ≈ 13, peaked Te, ne profiles, X–point present

2 kt=0 = 1, kt=∞ → 1.7, dk/dt = 3.5 [1/s], Ip = 0.44 MA, no X–point

3 fbs ≈ 0.5, βtor ≈ 3.3%, q95 ≈ 5.6, Ip = 1 MA, X–point present

4 evolving Te, Ti, ne, iL → LSN configuration change with Ip = 0.4 MA

5 evolving ψ, downward VDE at Ip = 0.8 MA in LSN configuration

Table 2. Characterization of the different cases in terms of parameters change and

peculiarities. ”iL” = inner limited, ”LSN” = lower single null configuration. X–point

is always in LSN. For all cases ψ and equilibrium are evolved at each time step (dt = 1

ms).

with the CDE. Method B (blue line) is the scheme presented here, where CDE is iterated

with equilibrium, however only one equilibrium call is performed at each iteration on

the CDE. Method C (red line) is also iterating the equilbrium calls with the pre and

post–processing of formulas (15) and (16). The time steps advance are also shown in

dashed lines with same colour coding. Three plots (a), (b), (c) are obtained by using as

time step dt = 1 ms (a), dt = 0.1 ms (b), and dt = 0.01 ms (c). From the comparison

of the different plots, it is clear that the method presented here (either Method B or

C) is robust and reliable with respect to Method A which, instead of solving the FSA–

GSE, uses the parallel current as input (this was actually the method previously used in

ASTRA). As it can be seen by reducing time step, Method A also can result in very slow

or non–convergence at all. Note also (not shown here) that pre–conditioning (15) and

post–processing (16) increase convergence speed for Method C. Using the full Method

C, time evolution requires very few external iterations per time step, in this case about

3–4, while each external iteration contains ≈ 6–8 equilibrium iterations on the metric

coefficient, for a total of ≈ 20–30 equilibrium calls per time step. In principle Method

B, which calls equilibrium only once per CDE call, is the fastest, although it has to be

mentioned here that its stability relies also on the fact that the CDE is advanced using

an implicit time scheme. If the CDE was advanced with an explicit time scheme, it is

very well possible that Method B would not converge in some situations.

For the case 2 with strong elongation increase, figure 2 shows time traces of the

elongation k, the computed q95, and the computed boundary poloidal flux ψb. About

20 iterations per time step are required to reach full implicit convergence of geometry

and magnetic fluxes, of which 2–3 external iterations with the CDE and 7–8 iterations

for geometry convergence, i.e. a total of ≈ 14–24 equilibrium calls per time step. Notice

that, after a time step in CDE is performed, the relative error at the beginning of

the iteration process is ≈ 10−3, that is two orders of magnitude larger than the target

tolerance. This behaviour is the same as observed in figure 1(a), since the time stepping

used is the same (dt = 1 ms) and the current diffusion process is changing the poloidal

flux ψ(ρ) in a similar fashion.

The high–β plasma, case 3, is characterized by a strong Shafranov–shift of ≈ +10
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cm, as shown in figure 3(a), resulting from a large edge boostrap current contribution

to the total plasma current density, as shown in figure 3(b). In the same figure 3(b) also

the quantity F = RBT is plotted, which shows a strong dip in the whole plasma region,

which thus behaves diamagnetically, as opposed to low–β scenarios which which behave

usually paramagnetically. Note that the edge current has still a rather substantial (and

negative) Ohmic contribution , as such the total parallel current is somewhat lower than

the bootstrap current.

The case 4 is characterized by evolution of all plasma profiles and transition from

limited to X–point configuration. The two flux surfaces shape corresponding to initial

and final state are compared in figure 4(a). The transition takes place around t ≈ 0.1

s. Time traces of boundary loop voltage Vloop, elongation k, and plasma current Ip
are shown in figure 4(b). The loop voltage displays many features that are caused by

the evolving Te, k, and Ip. As in case 2, about a total 20 iterations per time step are

needed to reach full convergence (6–7 iterations in the equilibrium part, and 2–3 external

iterations with the CDE).

Final case 5 features a spontaneous, downward VDE obtained by freezing the

active feedback control coils at t ≈ 3.02 s. The passive stabilizer coils time scale

is τPSL ∼ 0.5 s, while the vacuum vessel time scale is much shorter ≈ 20 ms. The

simulation is carried out until the plasma displacement δZ ≈ −15 cm, after which

the code starts to take longer to converge. Each time step takes a total of about 20

iterations to converge. Again a 5–7 iterations are taken in the equilibrium side, while

2–3 iterations are required to converge with the CDE too. Note also that, for the circuit

equations, which are solved iteratively in SPIDER, a tolerance of 10−5 is set as well

on the convergence between changes in coil currents and the plasma motion induced

by them. In figure 5(a) the time traces of vertical position of the magnetic axis Z are

compared between the CLISTE equilibrium reconstruction code [18] and the simulation

from ASTRA–SPIDER. As it can be seen, a good agreement is found. The istantaneous

time scales τ = |δZ dt/d(δZ)| are compared in figure 5(b), where it is shown that the

rise phase and the late acceleration phase are qualitatively well reproduced. Notice that

the total number of iterations ≈ 20 mentioned above is actually observed to steadily

increase when the plasma enters the non-liner acceleration phase (large vertical plasma

displacement) or alternatively the time step could be reduced to maintain the same

number of iteration per time step.

4. Conclusions

Upon employing a specific form of the flux–surface averaged GSE and choosing to

consider ψ(x) as a conserved quantity during the iteration process, a scheme has been

proposed which does a good job in several plasma configurations.

The convergence of the 1d–2d coupled system is such that self–consistency of metric

quantities and diffusing poloidal flux is assued, so that an additional external loop with

the CDE itself does not produce any instability.
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The coupled flux–surface averaged and 2d GSE equations are effectively the same

physical entity describing radial and poloidal force balance. Convergence of the metric

at this stage means that there is no residual discrepancy of geometrical quantities once

the CDE is called for the successive iteration or time step.

Mathematical arguments are put forward to prove intrinsic stability of the 1d

iteration scheme that computes the new toroidal magnetic flux and updates metric

coefficients as functions of the plasma volume, decoupling them from the magnetic flux

coordinate and thus obtaining a speed–up of the whole iteration process. Analysis of the

error estimate allows to construct a relaxation scheme such that successive iterations

with the 2d GSE solver are stabilized in presence of non–circular geometry with singular

points.

The shown examples demonstrate this efficiently for a variety of plasma

configurations and grid resolution. In particular, cases with very high edge safety factor,

X–point configuration, large edge bootstrap current, rapidly varying plasma conditions,

and in the free–boundary computation of a VDE, all have passed the test and give

confidence in the method.

Benchmarking the ASTRA–SPIDER code coupling against third–party codes is also

planned, but yet not performed, as it will require dedicated time to select a standard

case and carry out the set of simulations.

Future applications of the proposed scheme will focus on full–discharge free–

boundary computations with self–consistent evolution of the external currents under

feedback control, of the magnetic fluxes and of the plasma kinetic profiles.
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Appendix A

It is shown here that, if the plasma motion is described by a series of equilibria consistent

with external currents distribution, then consistency of Ohm’s law requires a scalar

potential of Pfirsch–Schlüter type, and thus velocity field is not overdetermined.

Let us define the simplified problem of a force–free plasma, where plasma motion is

determined by the equation Mnv̇ = J×B, where M,n are respectively the plasma mass

and particle density, and v̇ = dv/dt = ∂v/∂t + v · ∇v is the Lagrangian acceleration.

The current can thus be formally solved for to be J = j‖B/B −Mnv̇ × B/B2. From

quasi–neutrality ∇ · J = 0 one also sees that
j‖
B

+
MnBT

B2
(v̇)r is a flux funtion. At

each time slice, the plasma motion has to be consistent with the B field as a sum of

the one created by the external currents distribution and by the plasma current. It is

then obvious that, given two successive time slices, the displacement vector associated

with the motion of the field lines is at this stage independent of Ohm’s law. However

the latter has to be consistent with the field lines displacement, as it is demonstrated

below.

Ohm’s law is E + v × B = ηJ. The field v is related to the displacement of

the plasma particles (electrons and ions). The electric field is represented in terms of

the four–potential (A, φ) as E = −
∂A

∂t
− ∇φ. The potential vector A is orthogonally

decomposed via the magnetic fluxes: A = Φ
∇θ

2π
− ψ

∇ϕ

2π
+ ∇χ, where θ(x, t) is the so

called ’poloidal’ angle, that satisfies ∇θ · (∇ψ,∇ϕ) = 0, and χ is a yet–to–be–specified

gauge function. Note also that, while θ and φ are both multi–valued functions of x,

due to the arbitrariness in the offset in terms of multiple 2π turns, their differentials

(∇, ∂/∂t) are instead well behaved. Upon substitution of the vector potential expression

into Ohm’s law and by taking the toroidal and poloidal projections of the equation, one

arrives at the following relations (vθ · ∇θ ≡ −∂θ
∂t

):

∂ψ

∂t
+ v∗ · ∇ψ = 2πηF

j‖
B

B · ∇θ

2π

[

∂Φ

∂t
+ v∗ · ∇Φ

]

+ B · ∇

[

φ+
∂χ

∂t
−

Φ

2π
vθ · ∇θ

]

= −ηj‖
B2

p

B
(17)

where v∗ = v +
Mnη

B2
v̇. It has been shown in previous studies, see e.g. [19, 20], that, if

certain conditions related to the balance between magnetic forces which the plasma feels

are satisfied, then the Alfvén branch of the plasma motion is stable, i.e. it is rapidly

damped. On the other hand, the resistive branch, associated with currents induced in the

conducting structures, is unstable. This means that one can estimate v̇ ∼ v/τRL, where

τRL ∼ L/R is a typical resistive time scale associated with the conducting structures. As

such, one is allowed to neglect the term
Mnη

B2
v̇, as compared to v, if the Chandrasekhar

number Ch =
B2τRL

Mnη
≫ 1. As an example, taking typical plasma conditions n ∼ 1019

m−3, M ∼ 3 · 10−27 kg, B ∼ 2 T, η ∼ 10−6 Ωm, and τRL ∼ 20 ms, one gets Ch ∼ 1012.
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Moreover, one can also see that
j‖
B

becomes a flux function. In the following it is then

possible to set v∗ → v and
j‖
B

as a flux function.

Since the FSA of Ohm’s law is nothing else than the CDE, equation (3), and

manipulating via chain derivative rule, one obtains the solubility condition of equations

(17):

B · ∇θ

2π

(

∂Φ

∂t

)

ψ

+ B · ∇

[

φ+
∂χ

∂t
−

Φ

2π
vθ · ∇θ

]

= −ηj‖B (18)

This equation is independent of the velocity field v, and requires φ as its solution

(V ′ = ∂V/∂ψ):

φ(ψ, θ) = φ0(ψ) −
ηj‖
B

∫ θ

0

[

B2 −
B · ∇θ

2π
V ′〈B2〉FS

]

dθ

B · ∇θ
(19)

where now the gauge
∂χ

∂t
=

Φ

2π
vθ · ∇θ is fixed. Note that other gauges are

possible, e.g. χ = 0, which leads to φ = φ0 −
Φ

2π
(vθ · ∇θ − [vθ · ∇θ]θ=0) −

ηj‖
B

∫ θ

0

[

B2 −
B · ∇θ

2π
V ′〈B2〉FS

]

dθ

B · ∇θ
. Substituting back the solution obtained for

the scalar potential in the second of equation (17), one obtains:

∂Φ

∂t
+ v · ∇Φ =

(

∂Φ

∂t

)

ψ

+ 2πη
j‖
B
F

B · ∇ϕ

B · ∇θ
(20)

and finally (vφ · ∇Φ ≡ −∂Φ
∂t
,Ψ = ψ/2π):

〈(v − vφ) · ∇Ψ〉FS = η
j‖
B
F

(

1 −
〈B2〉FS

F 2

1

2π

∮

R2dθ

)

(21)

It is then straighrfoward to compare this with the usual expression of (one of the contri-

butions to) the Pfirsch–Schlüter particle flux, but note that in usual situations at finite

pressure gradient P ′ the dominant Pfirsch–Schlüter contribution is the one proportional

to P ′ (see e.g. [6, 21]).

Appendix B

In the following it is demonstrated that equation (12) defines a stable iteration scheme.

The demonstration uses a few steps.

A simpler fixed–point theorem

Here it is demonstrated that the model fixed–point iteration given by the following

relation:

yi+1(x) =

∫ x

0
(yi(x) + α) dx

∫ 1

0
(yi(x) + α) dx

(22)

when subjected to the conditions 0 ≤ y ≤ 1, α > 0 a constant, is a uniformly convergent

series with a unique solution. As such, whichever the initial guess y0(x), the series will

always converge to the unique solution y(x).
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First of all, notice that the analytical solution can be found simply upon

differentiation of equation (22): y′ = A(y + α), where A = 1/
∫ 1

0
(y + α) dx. The

solution is thus y = α(eAx − 1), where consistency requires A = log(1 + 1/α), which is

satisfied by the solution. Thus the analytical solution is y = α

[(

1 + α

α

)x

− 1

]

. It has

been just shown that fixed–point iteration (22) has a unique, analytical solution. To

demonstrate that it also converges to it uniformly, number theory is employed.

Lengthy algebra which involves successive substitutions of the formal solution into

new iteration, leads to the following recursive formula, which gives the solution y at

iteration N , yN = BN/AN , where:

BN = g̃N +
N
∑

q=1

αq
N−i1
∑

M=q−1

N−q+1
∑

i1=1

xi1

i1!

σ(M, q − 1)

M !
g̃N−M−i1−1

AN = g̃N−1 +

N
∑

q=1

αq
N−i1
∑

M=q−1

N−q+1
∑

i1=1

1

i1!

σ(M, q − 1)

M !
g̃N−M−i1−1 (23)

g is the initial guess. The notation is the following: g̃N indicates N − 1 integrations

in x = 0..1 and one last integral from 0 to x, g̃N means N integrations from 0 to 1.

The are the identities g̃0 = x and g̃0 = 1. The symbol σ(i, j) =
∑

i1+...+ij=i
i!

i1!i2!...ij!
,

with all integer numbser strictly positive, is known in combinatorics as the number of

surjections, and it is related to Stirling numbers¶. It has the property that σ(a, 0) = 1

and σ(a, b) = 0 if a < b. The Stirling number of the first kind S(a, b) is defined as

S(a, b) = σ(a, b)/b!.

One notes immediately that:

N−i1
∑

M=q−1

N−q+1
∑

i1=1

1

i1!

σ(M, q − 1)

M !
g̃N−M−i1−1 =

N
∑

P=i1+q−1

N−q+1
∑

i1=1

1

i1!

σ(P − i1, q − 1)

(P − i1)!
g̃N−P−1 =

N
∑

P=M

P
∑

M=q

1

(M − q + 1)!

σ(P −M + q − 1, q − 1)

(P −M + q − 1)!
g̃N−P−1 =

N
∑

P=q

P
∑

M=q

1

(M − q + 1)!

σ(P −M + q − 1, q − 1)

(P −M + q − 1)!
g̃N−P−1 =

N
∑

P=q

σ(P, q)

P !
g̃N−P−1. Moreover,

it is recalled a combinatorics identity:
N
∑

q=1

αq(q − 1)!S(N, q) = (−1)NL1−N
i (ξ), where

ξ = 1 + 1/α, and Lki (x) is the poly–logarithm function of order k and argument x
+. A useful poly–logarithm differential property is that: ξdLki (ξ) = Lk−1

i (ξ)dξ .These

identities allows to finally rewrite formulas (23) as:

BN = g̃N +
1

ξ

[

f(x,N, ξ) +

N−1
∑

M=1

g̃N−M−1f(x,M, ξ)

]

¶ http://en.wikipedia.org/wiki/Stirling number
+ http://en.wikipedia.org/wiki/Polylogarithm
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AN =
|L−N

i (ξ)|

(1 + α)N !
+ g̃N−1 +

N−1
∑

M=1

g̃N−M−1
|L−M

i (ξ)|

(1 + α)M !
(24)

with f(x, k, ξ) =
k
∑

i=1

xi

i!

|Li−ki (ξ)|

(k − i)!
. Formulas (24) are now in a form that makes easier

to establish uniform convergence of series yN to solution y. Infact, for N large, one

can neglect the terms g̃N and g̃N−1 as compared to the others. Second, the function

f(x, k, ξ) can be substituted with the analytical solution when k is large. As such,

BN → y

(

|L−N
i (ξ)|

(1 + α)N !
+

N−1
∑

M=1

g̃N−M−1
|L−M

i (ξ)|

(1 + α)M !

)

and BN/AN → y.

Proof of complete statement

Going back to equation (12), one sees that some assumption done previously are not

satisfied: first v = v(y) is a (assumed monotonic) function of y, second α = α(x) and

third C = C(v, x):

yi+1 =

∫ x

0
[v(yi) + α(x)] dx

C(yi,x)
∫ 1

0
[v(yi) + α(x)] dx

C(yi,x)

(25)

First of all, as done in the previous simple example, it is proven that the (limit) solution

of equation (25) is unique. Infact, taking the x derivative gives: y′ =
v(y) + α(x)

AC(y, x)
,

with A =

∫ 1

0

[v(y) + α(x)]
dx

C(y, x)
, and defining f(y, x) =

v(y) + α(x)

AC(y, x)
, one has the

ODE problem: y′ = f(y, x) , y(0) = 0. A theorem of differential equations states

that if f and ∂f/∂y are both continuous in x = [0, 1], then the solution to the

ODE problem (if it exists) is unique. In this case, assuming a priori continuity of

y, then v(y) is continuous. Also α(x) is continuous, and as well C(y, x). Moreover

∂f/∂y = 1/(AC)(∂v/∂y − Af∂C/∂y). As both ∂v/∂y and ∂C/∂y are continuous

functions of x, it follows that the solution to the ODE is unique.

By collecting the two results: 1) that equation (25) satisfies the Arzelá–Ascoli

as shown in section 3.1, as such contains at least a convergent sequence, and 2) that

the fixed–point of sequence equation (25) is unique, one concludes that the convergent

sequence must converge to the unique fixed–point solution y.



Coupling transport and equilibrium for tokamak modeling 19

0 100 200 300 400 500 600
10

−8

10
−6

10
−4

10
−2

10
0

iterations

case 1

(a) A
B
C

0 50 100 150 200 250 300 350
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

iterations

case 1

(b)

A
B
C

0 20 40 60 80 100
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

iterations

case 1

(c) A
B
C

Figure 1. Case 1: relative error (solid lines) on metric coefficient g2 during

iterations, for three different choices of the coupling method (described in the

text). Method A (black), Method B (blue), and Method C (red). Tolerance is

set at 10−5. For each method, the dashed line is the time during the simulation

in s. Plot (a) has a time step dt = 1 ms, plot (b) has dt = 0.1 ms, and plot (c)

has dt = 0.01 ms.



Coupling transport and equilibrium for tokamak modeling 20

0 0.05 0.1 0.15 0.2
0.4

0.6

0.8

1

1.2

1.4

1.6

time [s]

case 2

(a)

k
0.1 q

95
ψ

b

Figure 2. Case 2: time evolution of plasma elongation k (solid), q95 (rescaled

by 10, in dashed), edge poloidal magnetic flux ψb (dot–dashed).
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Figure 3. Case 3: a) flux surfaces shape at the last time slice. The magnetic

axis Shafranov–shift is +8 cm with respect to the geometrical major radius

of the last closed flux surface; b) on the left y–axis are plotted the stationary

profiles of parallel current density j‖ (solid) and of the bootstrap current jbs

(dashed) in [MA/m2]. On the right y–axis the profile of the function F = RBT

is also shown in [T m].
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Figure 4. Case 4: a) flux surfaces shape at t = 0 s (solid lines) and at t = 0.2

s (dashed lines); b) time evolution of plasma current Ip (dot–dashed) in [MA],

boundary loop voltage Vloop [V] (solid), and boundary elongation k (dashed).

The lower X–point configuration is reached at t ≈ 0.1 s.
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Figure 5. Case 5: a) time traces of the magnetic axis vertical position Zmag

[m] from CLISTE (solid) and from ASTRA–SPIDER (dashed); b) comparison

of istantaneous time scales τ = |δZ dt/d(δZ)|, with δZ = Zmag − Zt=3.02
mag .


