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Abstract 

 Retention of D in neutron-irradiated W and desorption were examined after plasma 

exposure at 773 K. Deuterium was accumulated at a relatively high concentration up to a large 

depth of 50–100 m due to the trapping effects of defects uniformly induced in the bulk. A 

significant D release in a vacuum continued to temperatures ≥ 1173 K because of the small 

effective diffusion coefficient and the long diffusion distance. Exposure of ion-irradiated W to D2 

gas showed a clear correlation between concentrations of trapped and solute D as determined by 

the trapping–detrapping equilibrium. These observations indicated that the accumulation of 

tritium in high concentrations is possible even at high temperatures if the concentration of solute 

tritium is high, and baking at moderate temperatures is ineffective for removal of tritium deeply 

penetrating into the bulk. Nevertheless, clear enhancement of D release was observed under the 

presence of solute H.  
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1. Introduction 

        Tungsten (W) and its alloys are primary candidates for plasma-facing materials (PFMs) in 

fusion reactors. As PFMs, W materials will be exposed to the high fluxes of deuterium (D) and 

tritium (T) particles under irradiation of 14 MeV neutrons (n). Defects created by n-irradiation act 

as traps for hydrogen (H) isotopes, and hence the T inventory in n-irradiated W materials is an 

important issue when assessing the safety of fusion reactors.  

        The effects of displacement damage on the retention of H isotopes in W have been 

simulated using ion-irradiation techniques [1-10].  In such studies, specimens of W were 

irradiated with various types of high-energy ions (~ MeV) to moderate damage levels (~ a few 

dpa) and exposed to relatively low energy, high-flux (eV–keV, 10
20
–10

24
 m

−2
s
−1

) D plasma or 

ions. A significant increase in D retention due to irradiation was observed, and the fraction of 

trapped D atoms to W atoms, FD-trap, in the damaged zones was ca. 1 at.% at exposure 

temperature Tex ≤ 500 K. There is, however, disagreements regarding FD-trap at higher 

temperatures. Wampler and Doerner [3] reported that FD-trap at 0.6 dpa and Tex = 773 K was ca. 

0.01 at.%, whereas that at 473 K was 0.2–0.6 at.%. Ogorodnikova et al. [5] and Tyburska et al. 

[6] irradiated relatively thin W foils and exposed the opposite side to D plasma to separate the 

effects of radiation damage and plasma-induced defects. They also observed a sharp reduction in 

FD-trap with an increase in Tex; FD-trap was 0.003 at.% at 775 K [6]. On the other hand, Wright et al. 

[4] observed an accumulation of D up to FD-trap = 0.3–0.5 at.% even at 950 K. The mechanisms 

underlying such discrepancy are still unclear. Tsukatani et al. [7] reported that D trapped by 

defects created with 300 keV H
−
 ions was released at 523–623 K. However, the thickness of the 

damaged zone was 1.4 m. The release of H isotopes from thick damaged W materials has not 

been examined to date. 

        In previous papers, the authors have investigated D retention in W irradiated with  

neutrons in a fission reactor [11-15]. First, W specimens irradiated to 0.025 dpa was  exposed to 

high-flux D plasma at 473  K, and then the retention and detrapping of D were examined by 

thermal desorption spectroscopy (TDS) [11-14]. The D retention in n-irradiated specimen was 

clearly higher than that in non-irradiated specimen. In addition, the release of D from the former 

continued to 1173 K, while that from the latter was completed at 673 K. These observations 

indicated the formation of strong traps by n-irradiation. The temperature dependence of FD-trap 
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near the surfaces was also examined after exposure to D plasma at 373, 473 and 773 K by nuclear 

reaction analysis (NRA) [15]. The values of FD-trap showed no significant dependence on Tex, and 

they were 0.1–0.3 at.% at all Tex examined. Such dependence of FD-trap on Tex was similar to the 

observation of Wright et al. [4] but clearly inconsistent with those reported in [3,5,6]. In addition, 

the penetration depth of D at Tex = 773 K was larger than the detection depth of NRA (~5 m in 

the previous paper), and hence D retention at 773 K has not been clarified.   

 In this study, thermal desorption of D from n-irradiated W specimen (0.025 dpa) exposed 

to D plasma at 773 K was examined to understand the retention and release of D after plasma 

exposure at high temperature. The efficiency of T removal by heat treatments was discussed on 

the basis of the observed D release behavior. The correlation between the concentrations of 

trapped D and solute D was also examined in this study using ion-irradiated specimens and gas-

absorption technique in order to gain an understanding of the mechanisms underlying the above-

mentioned discrepancy in FD-trap at high temperatures. Because a far higher damage level is 

expected in a demonstration power plant (DEMO), D retention in W specimens irradiated to 50 

dpa with W ions was also examined.  

 

 2. Model 

        In this paper, the enthalpy difference between H in a solid solution state and in a trapped 

state is described as Ebin and is called as the “binding energy”. The activation energy for 

detrapping is denoted as Edet. The value of Edet − Ebin should be comparable with that of Ed where 

Ed is the activation energy for H diffusion in a normal bcc lattice of W without traps (see, for 

example, Fig. 2 in [16]).  

        The fraction of occupied traps,t, at temperature T is expressed as  

 

  t/(1 −t) = L exp(Ebin/kT),  (1) 

 

where L is the fraction of occupied interstitial sites and k is the Boltzmann constant [16]. As the 

heat of solution ES of H in W is a large positive value, L << 1 in W even under exposure to high-

flux H plasma. Nevertheless, t could be close to unity if Ebin/kT is large enough. In other words, 

traps are fully occupied by H at low temperatures. At temperatures sufficiently high to activate 
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the detrapping process, trapping–detrapping equilibrium can be attained, and t varies with the H 

concentration in a solid solution state CSS being proportional to L (CSS = CLL where CL is the 

concentration of interstitial sites). Under exposure to H plasma, CSS is determined by the balance 

between penetrating flux in and recycling flux r of H. Here,  is the sticking coefficient and 

in is the incident flux. In the first approximation, in = r = krCSS-S
2
 in a steady state where CSS-S 

is the concentration of solute H beneath the surface and kr is the recombination rate constant. 

Hence, CSS-S = (in/kr)
1/2

. When specimens are exposed to H2 gas, CSS is determined by Sieverts 

law: CSS = k0 exp (−ES/kT)P
1/2

 where k0 is the solubility constant and P is the H2 pressure. 

Because kr sensitively depends on surface conditions such as impurity coverage, exposure to gas 

is generally better at controlling CSS. 

        Penetration of H into irradiated W has been discussed by Wampler and Doerner [3] and 

Whyte [17]. If an irradiated specimen is exposed to H plasma (or H2 gas) at Ebin/kT > 1, H that 

has entered into the specimen immediately becomes trapped when it encounters an unoccupied 

trap. Under such conditions, a clear interface between filled zone (t ≈ 1) and empty zone (t ≈ 0) 

can be observed as shown in Fig. 1 of [18]. The velocity of the interface is  

 

     dx/dt = DLCSS-S/(xCt),  (2) 

 

where x is the depth from the surface, t is time, DL is the diffusion coefficient of H in a normal 

lattice of W and Ct is the trap concentration [3]. In the filled zone, the diffusion of solute H is not 

significantly affected by traps because almost all the traps are already occupied.  

        If plasma-exposed specimens are heated in a vacuum for thermal-desorption 

measurements or T removal, CSS in the near-surface region drops quickly. Consequently, t in the 

near-surface region also decreases as expected from Eq. (1). At t < 1, the diffusion process of H 

is strongly affected by traps. According to Oriani [19], the effective diffusion coefficient Deff 

under trapping effects is Deff = DL /(1 + exp (Ebin/kT) Ct/CL). Here, it is worthwhile to evaluate 

the possible effects of traps under typical conditions. According to Frauenfelder [20], DL at 673 

K is evaluated to be 5 × 10
−10

 m
2 

s
−1

. If Ct = 1.3 × 10
26

 m
-3

 (0.2 at.% in the fraction to W atoms) 

and Ebin = 1.4 eV, Deff in the near-surface region is calculated to be  Deff = 5 × 10
−17

 m
2 
s

-1
. Such a 
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small Deff in the near-surface region can retard the release of H from the bulk of irradiated 

specimens. 

 In this study, the release of H from irradiated W was evaluated numerically using the 

TMAP4 program [21]. In the evaluation, the value of DL reported by Frauenfelder [20] was 

employed. The surface concentration of H was maintained at zero; the rates of surface reactions 

were assumed to be sufficiently high in comparison with the diffusion process under trapping 

effects. Annihilation of defects during heating was not taken into account. 

 

 3. Experimental procedures 

 3.1 Neutron irradiation and measurement of thermal desorption spectrum 

        The detailed experimental procedures for n-irradiated specimens are described elsewhere 

[11,14], and so only a brief description is given here. Disk-type specimens of W ( 6 mm × 0.2 

mm, 99.99% purity) were irradiated by neutrons to 0.025 dpa in the High Flux Isotope Reactor 

(HFIR) at Oak Ridge National Laboratory at a coolant temperature of ca. 323 K. The n-irradiated 

specimens were then exposed to high-flux deuterium plasma at 773 K up to (5 – 7) × 10
25

 D m
−2

 

in a linear plasma machine called the Tritium Plasma Experiment (TPE) at Idaho National 

Laboratory. The flux and incident energy was (5 – 7) × 10
21

 D m
−2

s
−1

 and 100 eV, respectively. 

Deuterium retention and Edet were examined by using thermal desorption spectroscopy (TDS). 

The rate of the temperature ramp was 0.167 K s
-1

 (10 K min
-1

). 

 

3.2 Irradiation of W self-ions and D measurements 

        Because the damage rate by neutron irradiation is relatively small, the effects of a higher 

dose of irradiation were studied by damaging specimens with W ions. Irradiation for a moderate 

damage level (0.5 dpa) was carried out with 20 MeV W ions at room temperature at the Max-

Planck-Institut für Plasmaphysik  to a fluence of 8 × 10
17

 W m
−2

. Plates of recrystallized W and 

ITER-grade W (10 × 10 × 2 mm) were used. Details of these specimens are described elsewhere 

[18]. Irradiation up to higher damage levels (0.3 to 50 dpa) was carried out with 4.8 MeV W ions 

at room temperature and 573 K using a tandem accelerator at the Quantum Science and 

Engineering Center, Kyoto University. Disk-type W specimens similar to those used in n-

irradiation were utilized. The flux of W ions was 10
14
–10

15
 m

−2
s
−1

 depending on the target 
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damage level. Damage profiles were evaluated using the SRIM2008 program [22]. The 

displacement threshold energy of W was adjusted to 90 eV. 

 To examine the trapping–detrapping equilibrium [Eq. (1)] under controlled CSS, 

specimens irradiated with 20 MeV W ions were exposed to D2 gas at 673–973 K for 1–10 h. The 

specimens were placed in a quartz tube attached to a conventional high-vacuum device described 

elsewhere [18] and heated from outside using a furnace. The pressure of D2 gas was adjusted to 

1.2 and 100 kPa. At the end of exposure, the device was quickly evacuated and the specimens 

were cooled by removing the furnace within 10–30 s [18]. The release of D and effects of 

coexisting H were examined by heating D-loaded specimens in a vacuum or under H2 atmosphere 

(0.1 MPa) at 673 K. 

       The specimens irradiated with 4.8 MeV W ions were exposed to D neutrals in a DC glow 

discharge device described elsewhere [18] at a relatively low temperature (403 K) for 10 h to 

examine trap concentrations at high damage levels. Each specimen was placed on a holder 

serving as an anode. The cathode was a tungsten disk located at a distance of about 100 mm. The 

pressure of deuterium, discharge voltage and current were 1 Pa, 400 V and 0.18 A, respectively. 

The specimen was exposed to D neutrals (atoms and molecules), and the total flux was                       

2 × 10
18

 D m
-2 

s
-1

 [18].  

        Depth profiles of D up to 6 m were measured by using NRA. The retention and Edet were 

measured by TDS. The rate of the temperature ramp was 0.5 K s
−1

. 

 

4. Results 

4.1 Thermal desorption of deuterium from neutron-irradiated W 

        Fig. 1 shows the TDS spectrum of D from n-irradiated and non-irradiated specimens after 

exposure to D plasma at 773 K. A significantly large desorption peak of D was observed for a n-

irradiated specimen in comparison with a non-irradiated one. The D desorption from the n-

irradiated specimen started at 730 K, peaked at 1050 K and continued to T ≥ 1173 K, while that 

from non-irradiated specimen was completed at 930 K. The amount of D retained in the n-

irradiated specimen was 6.4 × 10
21

 D m
−2

, and that in the non-irradiated one was 1.1 × 10
20

 D m
−2

. 

For comparison, TDS spectrum of D from the specimen irradiated with 4.8 MeV W ions to 50 

dpa at 573 K and exposed to D neutrals at 403 K is also shown in this figure. Desorption started 
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at 600 K, peaked at 730 K and finished at 1050 K. The retention of D was 3.5 × 10
20

 D m
-2

.  Both 

desorption temperature and retention were lower than those for the n-irradiated specimen (0.025 

dpa) in spite of the far higher damage level. Interestingly, the D retention in the n-irradiated 

specimen after D plasma exposure at Tex = 773 K (6.4 × 10
21

 D m
−2

) was significantly larger also 

than that after plasma exposure at Tex = 473 K (2.4 × 10
21

 D m
−2

) [11], although Eq. (1) indicates 

a decrease in t with an increase in Tex. The larger D retention in n-irradiated specimen at Tex = 

773 K was caused by the combination of volumetrically distributed defects created by neutrons 

and deeper penetration of D due to high exposure temperature. According to the calculation with 

the SRIM2008 program, the thickness of damaged zones created by 4.8 MeV W ions was 0.6 m. 

The penetration depth of D in the n-irradiated specimen at Tex = 473 K was ca. 3 m [15]. On the 

other hand, in the profile after plasma exposure at 773 K, FD-trap of 0.1–0.2 at.% (i.e., 6.3–12.6 × 

10
25

 D m
−3

) extended over the detection range of NRA (5 m) [15]. The penetration depth of D at 

Tex = 773 K was calculated to be 50–100 m as the quotient of the amount of retained D (6.4 × 

10
21

 D m
−2

) and D concentration (6.3–12.6 × 10
25

 D m
−3

) by assuming that D concentration was 

uniform throughout the penetration depth. As shown by numerical evaluation by Whyte [17], 

deeper penetration of hydrogen isotopes in n-irradiated W at higher temperatures can have strong 

impact on tritium retention in a pulse operation machine like ITER. 

Eq. (2) can be modified as 

 

         CSS-S = x
2
Ct / (2DLt) .  (3) 

 

Here, the exposure time t was 10 ks. By assuming x = 50–100 m and Ct is equal to the above-

mentioned D concentration (6.3–12.6 × 10
25

 D m
−3

), CSS-S at Tex = 773 K was evaluated with the 

value of DL reported in [20] to be 7–54 × 10
21

 D m
−3

 (0.1–1 at. ppm). Because CSS-S = (in/kr)
1/2

, 

kr under the present conditions was calculated to be ca. 10
−24
–10

−22
 m

4
s
−1

 by assuming  = 1. 

These values are in reasonable agreement with those reported by Anderl et al. [23] (see also Fig. 

2 in [8]), indicating that the surface conditions of the present specimens were not peculiar.  

 The result of a simulation run using the TMAP4 program is also shown in Fig. 1. In this 

simulation, the thickness of the specimen was adjusted to 100 m because D penetrated up to this 

depth, as described above. The real specimen thickness was 200 m, but the presence of 
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remaining 100 m zone without trapped D was neglected. This is because the effects of this zone 

were observed in a simulation run only above 1000 K, and exact simulation at such high 

temperatures was difficult without consideration on annihilation of defects. The simulated-

spectrum agreed with the experimental result with the values Ct = 1.26 × 10
26

 m
−3

 (0.2 at.%) and 

Edet = 1.83 eV. Here, the distribution of traps was assumed to be uniform. The binding energy 

Ebin was evaluated to be Ebin = 1.44 eV by assuming Ebin = Edet − Ed and Ed = 0.39 eV [20]. As 

shown in previous papers [11,15], various types of defects with different Edet were present in the 

n-irradiated specimens. Hence, 1.83 eV should be considered as the average value for several 

different types of traps. In addition, this value was obtained with several assumptions, as 

mentioned above. A more detailed analysis is required to determine exact values of Edet for each 

type of traps.  

    

4.2 Correlation between concentrations of solute and trapped D in ion-irradiated W 

        As described in [18], the thickness of the damaged zone created by irradiation of 20 MeV 

W self-ions was ca. 2 m, and the accumulation of D by exposure to D2 gas was observed only in 

the damaged zone. Desorption spectra are also given in [18].  

        The correlation of FD-trap at the damage peaks measured using NRA with Tex and P is 

shown Fig. 2. Because no significant difference was observed between recrystallized and ITER-

grade W, the data for these two types of specimens are indicated by the same symbols. At P = 

100 kPa, FD-trap was 0.5 at.% at 673 K, and it decreased gradually with an increase in Tex. The D 

concentration at 1.2 kPa was clearly lower than that at 100 kPa, as shown in this figure. This 

observation indicates that a local equilibrium between trapping and detrapping was established, 

and consequently t was dependent on CSS at Tex ≥ 673 K. Eq. (1) can be modified as  

  

             
 
   
  

      
    
    

 

    
   
  

      
    
    

 
              (4) 

 

 

where CSS = k0 exp (−ES/kTex)P
1/2

. Here, FD-trap (at.%) = Ctt/CW × 100 where CW is the 

concentration of W atoms.  The dependence of FD-trap on Tex and P at different Ebin was evaluated 
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by assuming Ct = 3.2 × 10
26

 m
−3

 (0.5 at.%) and ES = 1.04 eV [20]. As indicated by solid and 

dashed lines in this figure, the difference in FD-trap between 100 and 1.2 kPa was reproduced at 

Ebin = 1.4 eV. This value is consistent with that of Ebin determined for the n-irradiated specimen 

from Edet in spite of the several assumptions in the TMAP4 calculation.  

 

4.3 Trap concentration at high damage level 

        The correlation between FD-trap at the damage peaks and damage level in the ion-irradiated 

specimens after exposure to D neutrals at 403 K is shown in Fig. 3. No significant increase in   

FD-trap with damage level was observed under the present conditions. According to Roth and 

Schmid [8] who summarized the correlation between trap concentration and damage level at < 1 

dpa, trap concentration ceases to increase at a damage level of ca. 0.4 dpa and a trap 

concentration of ca. 7.6–8.8 ×10
26

 m
-3

 (1.2–1.4 at.%). The observations in this study agree with 

this tendency.  

 

4.4 Release of trapped D at constant temperature 

Fig. 4 shows depth profile of D in the specimen irradiated with 20 MeV W ions to 0.5 dpa 

and exposed to D2 gas together with that after heating in a vacuum and under H2 gas atmosphere. 

Slight reduction in FD-trap was observed after heating in a vacuum, and this observation is 

consistent with that of Tsukatani et al. [7]. It should be noted that FD-trap after heating under H2 

gas atmosphere was smaller than that after heating in a vacuum by a factor of 40; the release of D 

was strongly enhanced under the presence of H.   

 

  

 5. Discussion 

        The clear correlation between D2 gas pressure and FD-trap shown in Fig. 2 indicates that t 

is dependent on CSS at Tex ≥ 673 K. Hence, the different temperature dependences of FD-trap in 

damaged W reported in the literature [3–6,15] can be ascribed, at least in part, to variation of CSS 

under different experimental conditions. Because CSS under plasma exposure is determined by 

incident and recycling flux, t increases with an increase in in and a decrease in kr. The 

temperature dependence of t was evaluated with Eq. (1) and the correlation CSS-S = (in/kr)
1/2
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under two different surface conditions, as shown in Fig. 5. Here, Ebin was determined to be 1.4 eV. 

The values of kr reported by Anderl et al. [22], kr-Anderl, was used in one case. In the other case, kr 

was assumed to be larger than kr-Anderl by 10
6
. Note that kr-Anderl × 10

6
 is still far smaller than the 

value for a clean surface [8]. It is clearly shown in this figure that t at high temperatures, e.g. 

773 K, sensitively varies in accordance with in and kr, whereas it is close to unity at Tex ≤ 550 

K under all conditions examined.  Whyte et al. [17] evaluated the amount of trapped tritium 

under ITER-relevant conditions with a smaller value of Edet (1.5 eV) and reported similar 

dependence on incident flux and temperature.   

 The development of techniques for removing T is an important issue. The removal of D in 

ion-irradiated W by heating in a vacuum was possible as reported by Tsukatani et al. [7] and 

shown in Fig. 4.  However, the removal of T from thick n-irradiated W would be much more 

difficult. Fig. 6 shows the change in the average fraction of T with time at different W thickness 

evaluated using the TMAP4 program. The trap concentration, Ct, was assumed to be 1.26 × 10
26

 

m
−3

 (0.2 at.%) and uniform throughout the thickness of materials, and Edet were adjusted to 1.8 

eV. The thickness of the material was assumed to be 600 or 2 m. The former was selected as a 

typical value for armor layers of first walls, and the latter was selected as a typical thickness of 

the damaged zone created by ion-irradiation. The initial value of t was adjusted to unity 

throughout the thickness; i.e., T was distributed at traps uniformly up to full occupancy. If the 

material was thin (2 m), the average T fraction throughout the thickness significantly decreased 

with time at 673 K, as previously mentioned. However, in the case of a thick material (600 m), 

no significant reduction in the average T fraction was observed at 673 K even after heating for 10 

h. At 973 K, the T fraction clearly decreased, but 40% of T still remained after heating for 10 h. 

These observations indicate that the removal of T by baking in a vacuum at moderate 

temperatures (≤ 673 K) is not very effective if T deeply penetrates into n-irradiated W (e.g., 

several hundred micrometers).  As described in Section 2, Deff of H isotopes in damaged W is 

controlled by trapping–detrapping processes. Hence, Deff of T could drastically increase if the 

majority of traps are occupied by H or D. Indeed, Fig. 4 clearly indicates the significant 

enhancement of D release under the presence of excess H; one of H atoms in a solution state can 

immediately occupies an empty trap produced by D detrapping and consequently prevents re-
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trapping of D. A similar enhancement of T release under the presence of H or D is also expected, 

and experiments for confirmation are currently under preparation.  

 The correlation between FD-trap and damage level shown in Fig. 3 suggests that a severe 

damage level without transmutation does not increase the T inventory significantly. The next step 

is to understand the effects of transmutation and the synergistic effects of transmutation and 

severe damage levels.  

 

6.  Conclusions 

(1) Deep penetration of D up to a depth of 50–100 m was observed by exposing a n-irradiated 

W specimen to D plasma at 773 K.  Desorption of D continued to temperature higher than 

1173 K because of the long diffusion distance under the trapping effects. The average 

detrapping energy was evaluated to be ca. 1.8 eV.  

(2) At high temperatures (≥ 673 K), the fraction of occupied traps was clearly dependent on the 

concentration of D in a solid solution state. This observation indicated that accumulation of 

H isotopes to a high concentration is possible even at a high temperature if the incident flux 

from plasma is relatively high and the surface recombination rate constant is relatively small. 

(3) A numerical simulation for thick n-irradiated W showed a strong retardation of H isotope 

release due to trapping effects. Baking in a vacuum at moderate temperatures (≤ 673 K) 

could not be very effective in removal of T deeply penetrating into the bulk of n-irradiated W. 

(4) The release of D from damaged W was significantly pronounced under the presence of H at 

673 K. This enhanced release was ascribed, at least in part, to increase in the effective 

diffusion coefficient of D by filling traps with H. The release of T could also be enhanced 

under the presence of H and/or D.  

(5) Irradiation of W by self-ions to 50 dpa at room temperature or 573 K resulted in the 

accumulation of D in the damaged zone up to 0.5–1 at.%. These values are comparable with 

the trap concentration observed at damage levels below 1 dpa [8].  
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Figure captions 

 

Fig. 1 TDS spectra of deuterium from n-irradiated and non-irradiated W (solid lines) after 

exposure to plasma at 773 K. Dashed and dotted lines are results of simulation using the TMAP4 

program with different Edet. Trap concentration and thickness of damaged W were assumed to be 

1.3 × 10 
26

 m
-3

 (0.2 at.%) and 100 m, respectively. For comparison, TDS spectrum from W 

specimen irradiated to 50 dpa with 4.8 MeV W ions at 573 K and exposed to D neutrals at 403 K 

is also shown. The rate of temperature ramp was 0.167 K s
-1

 (10 K min
-1

) for the n- and non-

irradiated specimens and 0.5 K s
-1

 for the ion-irradiated specimens. 

 

Fig. 2 Correlation between FD-trap at damage peak and Tex in W specimens irradiated with 20 

MeV W ions to 0.5 dpa after exposure to D2 gas at P = 1.2 kPa (filled circles) or 100 kPa (open 

squares). Solid and dashed lines are evaluated with Eq. (4) with H solubility reported by 

Frauenfelder [20] and Ebin = 1.4 eV. 

 

Fig. 3 Correlation between damage level and FD-trap  at damage peak in W specimens irradiated at 

room temperature and 573 K with W ions of 20 MeV (0.5 dpa) and 4.8 MeV (other damage 

levels) and exposed to D neutrals at 403 K. 

 

Fig. 4 Damage and D depth profiles in recrystallized W irradiated with 20 MeV W ions to 0.5 

dpa. The D profiles were measured after exposure to D2 gas at 673 K and 0.1 MPa, and 

subsequent heating in a vacuum or under H2 atmosphere at 673 K for 10 h.  

 

Fig. 5 Dependence of t on Tex, in and kr at Ebin = 1.4 eV evaluated from Eq. (1) and correlation 

CSS-S = (in/kr)
1/2

; kr-Anderl and kr-Anderl × 10
6
 indicate the value of kr reported in [23] and that 

larger than kr-Anderl by a factor of 10
6
, respectively.   

 

Fig. 6 Change in average T fraction throughout the thickness of n-irradiated W evaluated by 

using the TMAP4 program. The thickness of W was adjusted to 2 or 600 m. Trap concentration 

was assumed to be uniform at 1.26 × 10
26

 m
−3

 (0.2 at.%) throughout the thickness. The initial t 

and Edet were adjusted to unity and 1.8 eV, respectively. 
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Fig. 1 TDS spectra of deuterium from n-irradiated and non-irradiated W (solid lines) after 

exposure to plasma at 773 K. Dashed and dotted lines are results of simulation using the TMAP4 

program with different Edet. Trap concentration and thickness of damaged W were assumed to be 

1.3 × 10 
26

 m
-3

 (0.2 at.%) and 100 m, respectively. For comparison, TDS spectrum from W 

specimen irradiated to 50 dpa with 4.8 MeV W ions at 573 K and exposed to D neutrals at 403 K 

is also shown. The rate of temperature ramp was 0.167 K s
-1

 (10 K min
-1

) for the n- and non-

irradiated specimens and 0.5 K s
-1

 for the ion-irradiated specimens. 
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20 MeV W ions to 0.5 dpa after exposure to D2 gas at P = 1.2 kPa (filled circles) or 100 

kPa (open squares). Solid and dashed lines are evaluated with Eq. (4) with H solubility 

reported by Frauenfelder [20] and Ebin = 1.4 eV. 
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evaluated by using the TMAP4 program. The thickness of W was adjusted to 2 
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(0.2 at.%) throughout the thickness. The initial t and Edet were adjusted to unity 

and 1.8 eV, respectively. 

 


