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The description of high-frequency beams in inhomogeneous dispersive media is usually dealt with by asymp-
totic methods that greatly simplify the computational problem. This is the case of electron cyclotron heating
and current drive applications in large magnetic confinement devices, where the wave-length to plasma-size
ratio is extremely small, thus, hampering the direct numerical solution of the relevant wave equation. One
such method is complex geometrical optics in its eikonal-based formulation. The theoretical basis of this
method, however, appears to have received relatively less consideration, so that many important aspects,
such as wave energy transport, have yet to be rigorously clarified. In this work, we attempt to fill up this
gap. A precise asymptotic expansion exploiting the paraxial character of complex eikonal waves is proposed,
which eventually leads to an equation for the description of the wave energy transport, including the effects
of diffraction. The eikonal-based formulation of complex geometrical optics provides the theoretical basis of
the GRAY code [Farina, Fusion Sci. Technol. 52, 154 (2007)], which is extensively used in fusion applications.
A few numerical experiments are presented, showing, in particular, that extended rays determined by GRAY
accurately represent the wave energy flow, and that the same information can also be retrieved from the beam
tracing code TORBEAM [Poli at al., Comp. Phys. Comm. 136, 90 (2001)].

I. INTRODUCTION

Among the methods employed for the description of
wave beams in magnetic confinement devices, the version
of the complex geometrical optics method implemented
in the GRAY code1 has gained interest in the last few years,
and, together with the beam tracing code TORBEAM2, con-
stitutes a major tool for the design of electron cyclotron
heating and current drive systems3.
Complex geometrical optics, rather than to a unified

theory, refers to a family of closely related methods for
the construction of a uniform asymptotic solution of wave
equations in the high-frequency limit, capturing wave ef-
fects, such as diffraction. It is a development of high-
frequency diffraction theory4, and, as such, it builds on
and extends the standard geometrical optics method.
(Among the vast literature available on standard geomet-
rical optics, one can refer to the monograph by Kravtsov
and Orlov5 for a physics overview, to the review paper
by McDonald6 for more insights on operators and sym-
bol calculus, and to Rauch’s lectures7 for mathematically
rigorous results, with emphasis on symmetric hyperbolic
systems.)
In addition to the variety of complex geometrical op-

tics flavors, other methods, such as the paraxial WKB
method developed by Pereverzev8,9, the complex WKB
method10, and the theory of Gaussian beams11–13, are
deeply related to the techniques and ideas of complex
geometrical optics14,15.
An attempt to a systematic classification of such vari-

ous aspects of complex geometrical optics has been made
in the recent monograph by Kravtsov16, which includes
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a comprehensive list of references and a brief historical
account; cf. also Červený17 and references therein. Con-
cerning plasma physics applications, one might distin-
guish two main branches.

The first branch is complex ray theory, also known as
ray-based complex geometrical optics, which relies on the
complexification of standard geometrical optics rays (cf.
the review papers by Kravtsov et al.18, Thomson19, and
Chapman et al.20, as well as the numerical implemen-
tations of Egorchenkov and Kravtsov21 and Amodei et
al.22 and references therein). This has been applied to
plasma physics for the description strong damping23–25,
although complex rays can be used to describe diffractive
beams as well.

The second branch is the complex eikonal theory26,
also known as eikonal-based complex geometrical op-
tics, which has been applied to fusion-relevant prob-
lems by Mazzucato27, Nowak and Orefice28–30, Peeters31,
Timofeev32, and which eventually led to the GRAY code1.
Instead of relying on the complexification of geometrical
optics rays, a new set of trajectories in the real space,
called extended rays31, are defined as a perturbation of
standard geometrical optics rays due to diffraction.

The rigorous derivation and study of complex rays,
however, appears to have received more attention than
the eikonal-based counterpart.

In this paper, we review the precise derivation of com-
plex geometrical optics equations in the eikonal-based
form, and address, in particular, the issue of the wave
energy density flux.

More specifically, a precise asymptotic expansion in
high-frequency limit κ = ωL/c→ +∞ is performed, with
ω being the frequency of the beam, L the scale length of
the medium inhomogeneity, and c the speed of light in
free space.

Here, the parameter κ is naturally obtained by a proper
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normalization of the wave equation9, as opposed to a for-
mal ordering of quantities based on physics arguments.
This allows us to perform a precise asymptotic expan-
sion and to take advantage of the paraxial character of
the corresponding complex eikonal wave field9,10, with a
significant simplification in the derivation and analysis.
The transport equation for the wave energy density is
then readily obtained.

This theoretical result is illustrated numerically: the
field lines of the wave energy flux vector computed in the
GRAY code are found to agree with the trajectories of ex-
tended rays obtained by GRAY, thus, confirming that ex-
tended rays represent accurately the energy flow. A com-
parison is also presented with the field lines of the wave
energy flux computed by the beam tracing code TORBEAM.
Theoretically, the complex eikonal and the beam tracing
method should give the same asymptotic solution for a
Gaussian beam31,32, and, thus, the same wave energy
flux. This is recovered in the numerical results.

At last, a generalization of the theory to generic dis-
persive, but weakly dissipative, media is sketched, show-
ing, in particular, the robustness of high-frequency wave
asymptotics. Possible applications encompass electrody-
namics, elastodynamics, linear waves in fluids and plas-
mas, as well as quantum mechanics in the semiclassical
limit. Our main concern, however, is heating and current
drive mechanisms in tokamak plasmas. Therefore, all nu-
merical results refer to electron cyclotron wave beams in
tokamak geometry, for which a standard ITER plasma
equilibrium is used.

In the presentation of the results, we have tried to ac-
count for the vast relevant literature available on high-
frequency wave asymptotics, ranging from pure mathe-
matics, to physics applications, particularly, in the field
of geophysics, radio-physics, and quantum mechanics.
Plasma physics applications are collocated into a broader
context of wave theory, and, with this aim, mathematical
tools frequently used in the analysis of caustic singulari-
ties are reviewed in a simplified way, so that the origin, as
well as the limitations, of the complex eikonal approach
can be appreciated.

Such background material is reviewed in section II.
Specifically, preliminary results on standard geometrical
optics are reviewed in section IIA, which, in addition,
allows us to define the problem and fix the notation.
Then, the introduction of a complex phase (eikonal) is
justified through the study of a particular caustic ge-
ometry (section II B); incidentally, this study shows how
geometrical optics rays do encode information on diffrac-
tion effects. (This section is self-contained, and it can
be safely skipped by a reader who is more interested in
the derivation of the equations.) In section III, the main
results are reported for the specific case of a spatially
non-dispersive medium (such as the cold plasma model),
while section IV is devoted to the corresponding numer-
ical results. At last, an approach to the general case of
spatially dispersive media is put forward in section V.

II. PRELIMINARY RESULTS

In this section, we fix the notation and review basic
results and ideas, upon which the complex geometrical
optics method rely.

A. The wave equation and standard geometrical optics

Let us start from the equation for the electric field of a
monochromatic electromagnetic wave beam in a station-
ary spatially non-dispersive medium, namely,

∇×
(
∇× E(κ, x)

)
− κ2ε(κ, x)E(κ, x) = 0, (1)

which is written in the dimensionless form adopted by
Pereverzev9, where the coordinates x = (xi), i = 1, 2, 3,
are normalized to the scale L of typical spatial variations
of the medium, and the large parameter

κ = ωL/c,

is naturally singled out. (In addition, ∇ = (∂/∂xi) and
c is the speed of light in free space.) The dependence of
the solution E(κ, x) on the parameter κ is explicitly in-
dicated, whereas the additional dependence on the beam
frequency ω in implied in both the electric field E and
the dielectric tensor ε of the medium.

We are interested in asymptotic solutions of (1) in the
limit κ → +∞, which, usually, can be constructed by
modest computational means, and yet provide excellent
approximations of the exact wave field for many applica-
tions where the parameter κ is very large; this constitutes
an effective alternative to the major computational prob-
lem of direct numerical integration of (1) for very high
frequencies in large three-dimensional domains.

As usual6,9, the dielectric tensor is assumed to (be
smooth and) have the asymptotic expansion,

ε(κ, x) = ε0(x) + κ−1ε1(x) +O(κ−2), (2)

in the limit κ→ +∞, with ε0 being Hermitian, i.e., ε0 =
ε∗0; this implies that the medium is weakly dissipative,
since the wave energy absorption coefficient33 is related
to the anti-Hermitian part εa = κ−1εa1 + O(κ−2), which
is vanishingly small as κ→ +∞. (Here, and throughout
the paper Ah = (A+A∗)/2 and Aa = −i(A−A∗)/2 de-
note the Hermitian and anti-Hermitian part of a matrix
A, respectively, and A∗ denotes the Hermitian conjuga-
tion, i.e., the transpose of the complex-conjugate of A.)

Upon testing the wave operator, i.e., the left-hand side
of equation (1), with a plane wave eiκN ·x, where N =
(Ni), i = 1, . . . , 3, is the refractive index vector, and
separating the leading order in κ, one obtains the matrix-
valued smooth function

D0,ij(x,N) = N2δij −NiNj − ε0,ij(x), (3)

which is known as the dispersion tensor of the considered
medium6,34, or, mathematically, the semiclassical princi-
pal symbol6,35 of the operator (1). This is defined on a
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domain in the x-N space, which is referred to as the wave
phase space.
The (real) eigenvalues of D0 give the local dispersion

functions of wave modes supported by the medium6,36;
it is customary to assume that such eigenvalues, λj , are
well separated, namely, there exists a strictly positive
constant C > 0 such that |λi(x,N) − λj(x,N)| ≥ C for
i 6= j and for (x,N) in the relevant domain in the wave
phase-space7; this implies that the dispersion surface of
one mode does not get close to that of the other modes,
i.e., linear mode conversion is excluded6,7: no energy ex-
change can take place among different modes, which can
be singly studied. Let us denote by H(x,N) the eigen-
value of D0(x,N) relevant to the considered mode, and
let e(x,N) be the corresponding unit eigenvector (for
simplicity, we consider the case of simple eigenvalues,
i.e., the corresponding eigenspace is assumed to be one-
dimensional; the general case can be dealt with by using
spectral projectors7,37).
The geometrical optics solution of equation (1) is con-

structed on the basis of a bundle of rays, which are de-
fined as the spatial projections x(τ) of zero-energy phase-
space orbits

(
x(τ), N(τ)

)
of the Hamiltonian system,

dxi

dτ
=
∂H

∂Ni
,

dNi
dτ

= −∂H
∂xi

, (4)

subject to the local dispersion relation (zero energy con-
dition), H

(
x(τ), N(τ)

)
= 0.

Geometrical optics rays are the characteristics of the
Hamilton-Jacobi equation38 (also known as eikonal equa-
tion in this context),

H
(
x,∇S(x)

)
= 0, (5a)

for the (real) eikonal function S(x), which gives the phase
of the wave field, while the amplitude transport equation

V (x)·∇A(x) =
[
−γ1(x)+iδ1(x)− 1

2∇·V (x)
]
A(x), (5b)

determines the complex amplitude A(x) of the wave field.
Here, V (x) = ∂H

(
x,∇S(x)

)
/∂N plays the role of the

group velocity,

γ1 = e∗ · εa1e, (6)

accounts for wave damping, and

δ1 = e∗ · εh1e+ ie∗ · {H, e} − i

2

∑
i,j

D0,ij{e∗i , ej}, (7)

accounts for a lower order shift in the phase, due to the
residual Hermitian part εh1 (usually zero) plus the effects
of polarization transport extensively discussed by Little-
john and Flynn36 and by Emmrich andWeinstein37; here,
ei are the components of e, and it is more convenient to
define Poisson brackets by39,40

{f, g} =
∂f

∂Ni

∂g

∂xi
− ∂f

∂xi
∂g

∂Ni
,

with the reversed order with respect to, e.g., Littlejohn
and Flynn36. (The usual convention for the sum over re-
peated up- and down-placed indices is adopted through-
out the paper.) In both equations (6) and (7), the right-
hand side should be evaluated at N = ∇S(x); further-
more, the operator V ·∇ amounts to the derivative in the
direction of geometrical optics rays, along which the am-
plitude is transported, and ∇ · V accounts for the effect
of focusing/defocusing of rays.

The main result of geometrical optics can now be
stated: given a (sufficiently regular) classical solution
S(x) and A(x) of equations (5) in a bounded domain,
and setting a0(x) = A(x)e

(
x,∇S(x)

)
, there exists a cor-

rector a1(x), such that the geometrical optics solution,

EGO(κ, x) = eiκS(x)
(
a0(x) + κ−1a1(x)

)
, (8)

solves (1) with a remainder

|κ−2L(κ, x,∇)EGO(κ, x)| ≤ Cκ−2, (9)

uniformly for x in the considered domain; here, L(κ, x,∇)
is the operator on the left-hand side of equation (1), and
C > 0 is a constant. (The leading order term in (1) is
O(κ2), hence, the whole equation has been multiplied by
κ−2.) The error estimate (9) just controls the reminder
in the wave equation, but it does not say anything about
the convergence of the geometrical optics solution to the
exact solution; that would require a finer analysis7.

In practice, the correction a1(x) is never evaluated,
and yet it is important to take it into account, as the
transport equation (5b) for the amplitude of the leading
order term is obtained from the solvability condition for
the linear algebraic problem that determines a1(x).

It is worth noting that both the phase S(x) and the
complex amplitude A(x) can be obtained by a straight-
forward integration along each ray (ray tracing), with
great advantages on the computational side. The phase
S(x), in particular, is obtained by integrating dS = N ·dx
along rays, cf. equation (5a).

In addition to its computational advantages, the fore-
going asymptotic result allows us to extract a relevant
physical information: the wave energy density is trans-
ported along geometrical optics rays. More specifically,
equation (5b) can be recast in the form5 (after some al-
gebra and restoring dimensional quantities)

∇r ·
[
vgW

]
= −γW, (10)

where ∇r denotes the gradient in physical (dimensional)
coordinates,

vg = − ∂H/∂k

∂H/∂ω
= c

∣∣∣∣∂(ωH)

∂ω

∣∣∣∣−1
∂H

∂N
, (11)

is the group velocity33,

W =

∣∣∣∣∂(ωH)

∂ω

∣∣∣∣ |A|216π
=

1

ω

[
e∗ · ∂(ω

2ε0)

∂ω
e

]
|A2|
16π

, (12)
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is the total wave energy density, comprising the electric,
magnetic, and sloshing energy33,34, and

γ =

∣∣∣∣∂(ωH)

∂ω

∣∣∣∣−1

2γ1, (13)

is the energy absorption coefficient. Here, all derivatives
with respect to the frequency are taken at constant wave
vector k = ωN/c, and phase-space functions are evalu-
ated at N = ∇S.
The aim of this paper is the precise derivation of an en-

ergy conservation law analogous to (10) in the framework
of complex geometrical optics.

B. Caustics and the emergence of complex phases

Before presenting the main results of this work, let
us briefly recall the basic arguments for the introduc-
tion of a complex eikonal function: we shall see that
a complex eikonal emerges naturally from geometric
asymptotics40–43 of the wave field near points where a
classical solution of the eikonal equation (5a) is not avail-
able, i.e., near caustics. We follow here the argument of
De Micheli and Viano44, which is based on the Ludwig
system of partial differential equations45.
Let us start noting that the error estimate (9) relies

on the existence of a classical solution of the Hamilton-
Jacobi equation (5a) (when that exists, the transport
equation (5b) is automatically well posed).
A problem arises when a classical solution of (5a) is

not available in the considered domain. Roughly speak-
ing, this happens when geometrical optics rays cross each
other: each ray carries a different value of the phase
S(x), which, then, becomes multi-valued at points where
rays cross each other. Near a generic point x of the
domain, such multiple values can, typically, be singled
out into a finite number of phase functions Si(x), that
can be thought of as different branches of the consid-
ered wave mode. To each branch, one can associate a
velocity field Vi(x) = ∂H

(
(x,∇Si(x)

)
/∂N , as well as co-

efficients γ1,i(x) and δ1,i(x), defined by equations (6) and
(7) evaluated at N = ∇Si(x), and construct a local ap-
proximation of the wave field as a sum of the geometrical
optics solutions of the form (8), one for each branch. Un-
fortunately, however, such a construction has no hope to
give a uniform approximation of the wave field, as there
are, in general, particular points where ∇·Vi has a singu-
larity, which makes the amplitude Ai(x) blow-up. Such
points are known as caustics, for, there, the exact solu-
tion exhibits a large (but finite) peak of intensity46–48.
From a physical point of view, the validity of geo-

metrical optics has been investigated by Kravtsov and
Orlov5,49, with the result that, roughly speaking, near
caustics the geometrical optics solution (8) fails to ac-
count for wave effects, such as diffraction4.
Caustics are extremely common and their occurrence is

not related to the complexity of the medium: even in very

simple media, e.g., uniform and isotropic, caustics can
easily be generated depending on boundary conditions.

Let us assume, as boundary conditions, that the wave
field is prescribed in the form E0(κ, y) ∝ eiκS0(y) on a
(d− 1)-dimensional smooth surface

Σ0 = {x; x = x0(y)},

parametrized by the variables y = (yi), i = 1, . . . , d − 1,
where d ≥ 2 is the effective dimensionality of the prob-
lem (typically, d = 2 or d = 3); one can think of Σ0 as
the surface of either a mirror or an antenna, where the
launched wave field is known.

The gradient of the initial phase S0(y), together with
the local dispersion relation H

(
x0(y), N0(y)

)
= 0, yields

the initial conditions
(
x0(y), N0(y)

)
for Hamilton’s equa-

tions (4); physically meaningful data must be such that
the lifted surface

Λ0 = {(x,N); x = x0(y), N = N0(y)}, (14)

is non-characteristic38, i.e., the Hamiltonian orbits of the
system (4) originating from points of Λ0 are transversal
to Λ0 itself (orbits must move away from the surface).
Then, the solution of Hamilton’s equations (4) can be
readily found in the form

(
x(τ, y), N(τ, y)

)
depending on

the initial point y on the launching surface Σ0. This
defines a d-dimensional surface

Λ = {(x,N); x = x(τ, y), N = N(τ, y)}, (15)

immersed into the 2d-dimensional wave phase space, and
parametrized by coordinates (τ, y); indeed, Λ is the flow
out of Λ0 by the Hamiltonian flow. (One could check that
Λ0 is an isotropic manifold, and, thus, Λ is a Lagrangian
manifold40–43, but these properties will not be explicitly
needed in the following simplified presentation.)

The calculation of the integral of dS = N · dx along
rays gives the phase S(τ, y). In order to complete the
construction of the eikonal function S(x) satisfying (5a),
the standard method of characteristics38 requires that
the mapping (τ, y) 7→ x = x(τ, y) is inverted, i.e., (τ, y)
needs to be written as a function of x. Physically, given
the observation point x, we are asking for which initial
point y a ray reaches the position x. Geometrically, that
is equivalent to saying that the projection (x,N) 7→ x,
from the wave phase space onto the configuration space,
defines a one-to-one relationship between Λ and the con-
figuration space. When that is the case, Λ is the graph
of ∇S(x), and S(x) is the desired solution of (5a).

Figure 1 shows the surface Λ for three models in two
dimensions (d = 2). In those cases, the phase space is
four-dimensional, and yet one can obtain an effective vi-
sualization of Λ by exploiting the local dispersion rela-
tion to eliminate one dimension; this visualization con-
cept has been recently suggested by Tracy et al.50. Here,
the simple case of transverse electromagnetic waves in
an isotropic medium has been considered, for which the
local dispersion relation reads5

H(x,N) = N2 − n2(x) = 0, (16)



5

FIG. 1. Visualization of Lagrangian surfaces in two dimensions for three models of wave propagation corresponding to the
local dispersion relation (16): parabolic focal point in free space (upper-left panel), quartic focal point in free-space (upper-right
panel), and a fold caustic (lower panel). The curves in the x-y plane represent selected rays, while the curves on the Lagrangian
surface represent the corresponding Hamiltonian orbits in the phase space.

n(x) being the refractive index. In two dimensions, let us
write x = (x1, x2) = (x, y) and N = (N1, N2) = (Nx, Ny).
Then, the dispersion manifold can be parametrized by
(x, y, α), with Nx = n(x, y) cosα, Ny = n(x, y) sinα, and
the angle α is used as a third axis in figure 1; the ini-
tial surface is Σ0 = {(x, y); x = −1}, and the beam is
launched toward the positive x-axis. The case of free
space, n(x, y) = 1, is shown in the upper panels, for two
different boundary conditions: parabolic launching mir-
ror, α|Σ0

∝ y, (upper-left panel) and a quartic launching

mirror, α|Σ0
∝ y3, (upper-right panel); in the latter case

the Lagrangian surface Λ exhibits a rather complicated
structure despite the simplicity of the medium. The lower
panel shows the classical case of reflection from a linear
medium, for which, n2(x, y) = (1− x)/2, with a cut-off at
x = 1, where the refractive index vanishes; in this case, a
plane wave is launched with angle α|Σ0

= 8◦.

It is clear that, in all cases of figure 1, the surface

Λ cannot be projected one-to-one on the configuration
space. Particularly, one can note that there are points
x = (x, y), above which Λ can be separated into a fi-
nite number branches, each one being horizontal, and,
thus, representable as the graph N = ∇Si; these are the
regular points. Such branches, however, merge in points
where Λ turns vertical; those are the singular points of Λ,
and their projection onto the configuration space defines
the set of caustics.

Caustics pose an obstruction to the existence of clas-
sical solutions of the Hamilton-Jacobi equation for the
phase, and, in the same way, they are at the basis of the
amplitude blow-up, and of the consequent loss of uni-
form approximation. In order to see this, let us consider
the Jacobian matrix U(τ, y) of the map (τ, y) 7→ x(τ, y).
Since x(τ, y) solves an ordinary differential equation, one
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can check that, in components,

∂U ij/∂τ = (∇V )ikU
k
j ,

and, for the determinant |U | = detU ,

∂|U |/∂τ =
(
∇ · V

)
|U |;

these are well known properties of ordinary differential
equations, cf. the first chapter of Hörmander’s lectures51.
Since V · ∇ = ∂/∂τ , equation (5b) can be written as5{

A = |U |− 1
2 Ã,

∂Ã/∂τ =
[
− γ1 + iδ1

]
Ã,

(17)

and the coefficients of the equation for Ã are smooth on
the whole wave phase space. Therefore, equation (17)

for Ã(τ, y) can always be solved by a simple integration
along the rays, and the results accounts for the ampli-
tude damping and phase shift. The total amplitude A,
on the other hand, depends on the Jacobian determi-
nant |U |, which accounts for the convergence/divergence
of the bundle of rays, or, in other words, for the defor-
mation of the volume element along a ray tube. The
determinant |U | vanishes near singular points of Λ, thus,
causing the blow-up of the amplitude near caustics. (For
a rigorous coordinate-free argument, the reader can re-
fer to Duistermaat40,41, Hörmander42 and Guillemin and
Sternberg43.)
It is erroneously believed that this obstruction could

be overcome by adding higher order corrections to the
geometrical optics solution (8). Let us observe, however,
that the singularity is found already in the leading order
term, i.e., the eikonal equation. In order to overcome this
limitations, generalized solutions of the eikonal equation
must be considered. A overview of methods, oriented to-
ward computational aspects, can be found in the review
paper by Runborg52. Methods for the direct numerical
solution of the eikonal equation, including generalized so-
lutions, on a fixed grid (Eulerian geometrical optics) are
reviewed by Benamou53. Here, instead, we shall focus on
the geometry of the bundle of rays (Lagrangian geomet-
rical optics), or, more precisely, on the geometry of the
manifold Λ.
One of the most powerful ideas is to consider the La-

grangian surface Λ itself as a generalized solution of
the eikonal equation, and find the way to associate it
to a wave field, which is then called Lagrangian dis-
tribution, and which gives the desired uniform approx-
imation of the exact wave field. This idea goes back
to Maslov54, Hörmander and Duistermaat40,42, cf. also
Guillemin and Sternberg43; Lagrangian distributions for
multi-component fields are discussed by Hansen and
Röhrig55. Here, we give a simplified presentation, which
eventually leads to the introduction of a complex eikonal
function.
The key point is that the Lagrangian surface Λ can be

represented in terms of a phase function ϕ(x, θ) depend-
ing on a number of auxiliary variables θ = (θ1, . . . , θm).

The phase is chosen so that the set of its stationary
points,

Cϕ = {(x, θ); ∇θϕ(x, θ) = 0}, (18)

immersed into the wave phase space by the mapping
(x, θ) 7→ (x,N), with

N = ∇xϕ(x, θ), (19)

yields the Lagrangian surface Λ. It is a general result
of symplectic geometry that such a phase can always be
found, at least locally, and it is called a local parametriza-
tion of the Lagrangian surface39,40,43.

Given such a parametrization, one can write the wave
field as a superposition of a continuous family of eikonal
waves with phase ϕ(x, θ) and amplitude a(κ, x, θ) ∼
a0(x, θ) + κ−1a1(x, θ) + · · · , cf. equation (8); that gives
a uniform approximation of the wave field in the form

E(κ, x) =
( κ

2π

)m
2

∫
eiκϕ(x,θ)a(κ, x, θ)dθ. (20)

Since the integral in θ and the operator L(κ, x,∇) on
the left-hand side of equation (1) commute, one finds
a0(x, θ) = A(x, θ)e

(
x,∇xϕ(x, θ)

)
, as in the standard ge-

ometrical optics, A(x, θ) being a solution of (5b) with the
coefficients in the definitions of V , γ, and δ evaluated at
N = ∇xϕ(x, θ).

Let us note that, since (20) is a superposition of eikonal
waves, the result accounts for diffraction, in the same way
as a superposition of plane waves does in a homogeneous
medium. In addition, where the stationary phase set
Cϕ is horizontal over the configuration space, i.e., where
the condition ∇θϕ(x, θ) = 0 defines a finite number of
branches θ = θi(x), the stationary phase lemma40,56 can
be applied to reduce the integral (20) to a finite sum
of eikonal waves with phases Si(x) = ϕ

(
x, θi(x)

)
, one

for each branch of Λ, as expected. The normalization
(κ/2π)m/2 in front of the integral in (20) is chosen to re-
move the analogous factor in the stationary phase lemma.

Simplified examples of such diffractive approximations
of wave fields relevant to plasma waves can be found in
the work of Richardson et al.57 and Cairns and Fuchs58,
for the specific case of lower-hybrid beams, for which the
description of caustics is particularly relevant.

Numerical methods for the general implementation of
such an abstract construction in realistic applications are
not yet available. Nevertheless, it is worth considering
it in details, for one can draw deep insights on diffrac-
tion near caustics. Let us specialize it to an analytically
tractable case.

We consider the simple, and yet physically relevant,
model Hamiltonian (16), in presence of a fold caustic, like
the one shown in figure 1, lower panel; this is typically
used as a model of a beam reflected from a cut-off59. We
try a parametrization with a single (m = 1) auxiliary
variable θ, and a phase of the form (the specific form of
ϕ depends on the considered caustic geometry40)

ϕ(x, θ) = u(x) + v(x)θ − 1
3θ

3, (21)
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where the cubic term is chosen so that the stationary
phase condition (18) is quadratic and accounts, at least
locally, for the fold of Λ; specifically, the stationary phase
set Cϕ is determined by

v(x)− θ2 = 0. (22)

For v > 0 (the illuminated region), Cϕ has two branches,
and the integral (20) can be evaluated by the station-
ary phase formula, yielding the sum for two eikonal wave
fields, one for the incoming wave, which impinges on the
cut-off, and one for the outgoing wave, which is reflected
from the cut-off. At the zero-level set v(x) = 0 (the
caustic set), the two branches merge and the stationary
phase formula breaks down, so that the whole integral
(20) should be considered. For v(x) < 0 (the shadow
region), no stationary phase point exists, and the sta-
tionary phase lemma implies that the wave field (20) is
exponentially small in the limit κ→ +∞.
For (x, θ) satisfying (22), we need N = ∇xϕ(x, θ) to

fulfill the local dispersion relation (16), in order to repro-
duce the surface Λ. That yields a differential equation
for u(x) and v(x), namely,

(∇u)2 + (∇v)2θ2 + 2(∇u · ∇v)θ − n2 = 0, v = θ2.

In the shadow region, v < 0 and θ is purely imaginary,
hence, the equation splits into{

(∇u)2 + v(∇v)2 − n2 = 0,

∇u · ∇v = 0.
(23)

This is the Ludwig eikonal system of first-order partial
differential equations45, which can be viewed as a defor-
mation of the eikonal equation (∇u)2 − n2(x) = 0 for an
isotropic medium5, controlled by the additional function
v, with the gradient ∇v being tangent to phase fronts
u = constant. Equipped with appropriate boundary con-
ditions, equations (23) yield a parametrization of Λ near
a fold caustic. Upon introducing the complex phase,

ψ(x) = u(x) + i23 (−v)
3
2 , (24)

the Ludwig system (23) is equivalent to the complex
eikonal equation for an isotropic medium16–20

(∇ψ)2 − n2(x) = 0, (25)

and this is obtained here only on the basis of the ge-
ometry of the Lagrangian surface Λ, which, in turn, is
obtained by standard ray tracing.
One can also observe that, in the illuminated region

v > 0, the phase has two real-valued branches, namely,

ψ±(x) = u(x)± 2
3v

3/2(x), (v(x) > 0), (26)

while, in the shadow region v < 0, one has

ψ(x) = u(x) + i 23 |v(x)|
3/2, (v(x) < 0), (27)

where the second branch of the square root is ignored by
imposing the physical condition that the field should be
bounded for κ→ +∞.

At last, let us consider the lowest order term in the
wave field (20). With the change of variable θ =
−κ−1/3ξ, and for any non-negative integer n, one has∫

θneiκ(vθ−θ
3/2)dθ = 2πinκ−(n+1)/3Ai(n)(−κ2/3v),

where Ai(n)(z) = dnAi(z)/dzn is the n-th order deriva-
tive of the Airy function,

Ai(z) =
1

2π

∫
ei(ξ

3/3+zξ)dξ.

With reference to the Taylor expansion of the amplitude,

a0(x, θ) = g0(x) + θg1(x) + · · · ,

the term ∼ θn gives a contribution of order κ−(n+1)/3.
Consistently with neglecting terms of order κ−1, we need
to keep the first two terms only, and, thus,

E(κ,x) =
√
2πκeiκu(x)

[
g0(x)Ai

(
− κ2/3v(x)

)
/κ1/3

+ ig1(x)Ai′
(
− κ2/3v(x)

)
/κ2/3 +O(κ−1)

]
.

(28)

Let us recall once more that the occurrence of the Airy
function is a consequence of the specific geometry of a
fold, which guided the selection of the phase (21). Other
types of caustics will have a different parametrization
leading to a different field profile; a classification of caus-
tics and their generating phases is a major result of catas-
trophe theory40,46.

As an example, let us go back to the two-dimensional
model of figure 1, lower panel, which corresponds to a
plane wave launched into a linear medium, with the re-
fractive index n2(x) = (1− x)/2, independent of y; then,
one of the two spatial variables, namely, y, is ignor-
able. We can try to obtain a solution of (23) by setting
u(x, y) = Nyy, Ny being the constant y-component of the
refractive index vector, and taking v(x, y) = v(x), inde-
pendent of y. The Ludwig system reduces to an ordinary
differential equation for v(x), namely,

v(v′)2 = n2(x)−N2
y ,

with v′ = dv/dx; this is readily solved, yielding

v(x) = 2−1/3(1− x− 2N2
y ). (29)

It remains to compute the amplitudes gj(x), j = 0, 1.
For the specific case of a transverse wave with con-
stant polarization in an isotropic medium with ε1 = 0,
the relevant equation for the lowest order amplitude is
∇xϕ(x, θ) · ∇xA(x, θ) = 0, which admits constant solu-
tions. Particularly, no singularity is found, in contrast to
the standard formulation based on classical solutions for
the eikonal S.
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The function g0 can then be regarded as constant and
g1 = 0, so that, accounting for (29), the wave field
amounts to

E(κ, x,y) =
√
2πκ1/6g0e

iκNyy

×Ai
(
2−

1
3κ

2
3 (x+ 2N2

y − 1)
)
+O(κ−1/2).

(30)

One can check that the electric field (30) solves exactly
equation (1), which, for the example under consideration,
reduces to the Helmholtz equation59,

∆E + κ2n2E = 0, n2(x) = 1
2 (1− x),

with boundary conditions given at x = −1 and represent-
ing a plane wave with refractive index Ny. (Here, ∆ is
the Laplace operator in the (x, y)-plane.)
It is remarkable that an exact diffractive solution can

be obtained using only geometrical optics rays, provided
that the geometry of the corresponding Lagrangian sur-
face is properly accounted for. This proves that geomet-
rical optics rays do carry information on diffraction.
Nonetheless, the procedure described in this section

is extremely complex and a direct numerical implemen-
tation in complicated three-dimensional geometries does
not appear viable yet.
On the other hand, the method itself shows that a

complex-valued phase, cf. equation (24), encodes all the
information on the caustic geometry. In particular, the
complex eikonal equation (25) is equivalent to the Ludwig
system (23). It is worth noting also that, near a caustic,
fractional powers of the the small parameter κ−1 appear
in the asymptotics of the wave field4, as opposed to the
conventional asymptotic expansion (8) in integer powers
of κ−1.
In the next section, the general theory of complex geo-

metrical optics is developed, with particular care for the
energy transport. Fractional powers of κ−1 will play an
important role in the derivation of the energy transport
equation.

III. GENERAL THEORY OF COMPLEX EIKONAL

For practical applications, the construction of La-
grangian distributions outlined in section II B is not yet
viable, as appropriate numerical methods do not appear
to be mature. Nevertheless, Lagrangian distributions
suggest that the introduction of a complex phase might
help avoiding some type of caustic singularities.
For instance, in the solution (28) of the cut-off reflec-

tion problem, the asymptotic expansion of the Airy func-
tion for κ→ +∞ and v(x) 6= 0 yields

E(κ, x) =
g0√

2|v|1/4

×

{
e−i

π
4

[
eiκψ+ + eiκψ−+iπ2

]
, v(x) > 0,

eiκψ, v(x) < 0,

where the complex phases ψ± and ψ are defined in (26)
and (27), respectively.

This has a clear physical interpretation: in the illu-
minated region (v > 0), the solution is composed of two
waves, one propagating toward the cut-off with phase ψ+

and the other one being reflected from the cut-off with
phase ψ− and a shift of π/2, due to the reflection. In the
evanescent region (v < 0), one has an exponentially small
shadow field with phase ψ. All three branches of the wave
field can be represented by a complex phase, which, in
particular, attains purely real values in the illuminated
region.

The foregoing asymptotic expansion still blows up on
the caustic v = 0, where E(κ, x) ∼ |v|−1/4. However,
this suggests that an asymptotic solution of the form (8),
where the phase S is replaced by a complex valued func-
tion ψ, might capture both propagating and evanescent
fields, and, thus, diffraction effects. Such an approach
will not be as general as geometric asymptotics of sec-
tion II B, and it can still be prone to caustic singularities
(as shown in the foregoing asymptotic expansion). On
the other hand, it can successfully deal with a class on
important diffractive solutions, namely, focused and col-
limated beams.

A. Paraxial character of complex eikonal waves

Guided by the foregoing argument, let us search for
asymptotic solutions of equation (1) in the form of a com-
plex eikonal wave, namely,

ECGO(κ, x) = eiκψ(x)a(κ, x), (31a)

where ψ(x) = S(x) + iφ(x), φ(x) ≥ 0, is the complex
eikonal,

a(κ, x) ∼ a0(x) + κ−1a1(x) + · · · , (31b)

and the amplitudes ak(x) are independent of κ and
bounded in x; then, the asymptotic sum a(κ, x) is also
bounded35, and we write,

|a(κ, x)| ≤ C0, for κ ≥ κ0,

where C0 > 0 and κ0 > 1 are constants. The condition
φ(x) ≥ 0 on the imaginary part of the eikonal is required
by the boundedness of the wave field for κ→ +∞.

Ansatz (31) should now be substituted into the wave
equation (1). Before proceeding, however, let us make
two important observations, first noted by Pereverzev9

and Maslov10 independently. Both are consequences of
the condition φ(x) ≥ 0 and imply that the wave field
(31a) is paraxial.

The first observation is that the wave field (31a) is
exponentially small, in the limit κ → +∞ near points x
where φ(x) > 0; indeed, one has |E(κ, x)| ∝ e−κφ(x) → 0
for κ→ +∞, or, more precisely, for every integer n > 0,

κn|ECGO(κ, x)| ≤ C0

( n

eφ(x)

)n
, φ(x) > 0, (32)
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which is tantamount to exponential decay.
The second observation requires some preparation. Es-

timate (32) means that the wave field (31a), in the limit
κ → +∞, collapses on the zero-level set of the function
Imψ = φ, namely,

R = {x; φ(x) = 0}. (33)

For instance, in the case of a fold caustic studied in sec-
tion II B, the set R encloses the whole illuminated region
v(x) > 0 up to and including the caustic v(x) = 0, while
the field is indeed exponentially small in the remaining
shadow region v(x) < 0.
Let us restrict our attention to a much simpler case.

Let the set R be a curve given parametrically by x =
x̄(τ). In the paraxial WKB theory, this is called reference
ray9.
By definition φ

(
x̄(τ)

)
= 0, identically in τ and,

0 =
d

dτ
φ
(
x̄(τ

)
=
dx̄(τ)

dτ
· ∇φ

(
x̄(τ)

)
,

which means that the component of ∇φ
(
x̄(τ)

)
tangent to

the curve R vanishes identically; the other two compo-
nents must vanish as well, otherwise φ would change sign
across R, thus, violating the condition φ ≥ 0. It follows
that

∇φ
(
x̄(τ)

)
= 0,

identically in τ . Then, the Taylor polynomial of φ around
x̄ has terms of second order or higher only. Continuing,
one has

0 =
d

dτ
∇φ

(
x̄(τ)

)
= D2φ

(
x̄(τ)

)dx̄(τ)
dτ

,

where D2φ(x) =
(
∂2φ(x)/∂xi∂xj

)
is the Hessian matrix

of second-order derivatives of φ. Thence, the tangent
vector et(τ) ∝ dx̄(τ)/dτ is an eigenvector of D2φ

(
x̄(τ)

)
corresponding to the null eigenvalue.
In general, the whole matrix D2φ(x̄) can be zero, and,

in that case, Taylor polynomial of φ would have only
terms of fourth order or higher (the third order is again
excluded by the condition φ ≥ 0). For definiteness, we
shall consider the case in which, except for the tangent
direction ∝ et, the matrix D2φ(x̄) is strictly positive def-
inite. Precisely,

w ·D2φ
(
x̄(τ)

)
w > 0, (34)

for every vector w linearly independent of et(τ), i.e., D
2φ

is positive definite for vectors transversal to the reference
curve R.
The exact Taylor formula for φ now reads,

φ(x) =
1

2
(x− x̄) ·Q(x, x̄)(x− x̄),

where, for |x− x̄| small enough, the matrix-valued func-
tion,

Q(x, x̄) = 2

∫ 1

0

D2φ
(
(1− s)x̄+ sx

)
(1− s)ds,

is positive definite for vectors transversal to the refer-
ence curve R. Through diagonalization of the symmetric
matrix Q, one can find B(x, x̄) such that

Q(x, x̄) = tB(x, x̄)B(x, x̄),

where tB denotes the transpose of B. With the new
function ξ(x) = B(x, x̄)(x− x̄), the imaginary part of the
complex phase becomes

φ(x) =
1

2
ξ2(x).

This form of the imaginary part φ is valid in a neigh-
borhood of R only and it is of dubious practical utility,
except for obtaining the following inequality9

|ξ(x)αe−κφ(x)| = |zαe−z
2/2|κ−|α|/2 ≤ Cακ

−|α|/2,

where the multi-index notation has been used: the vec-
tor of integers α = (α1, . . . , αd) is the multi-index, with
length |α| = α1 + · · · + αd, and ξα = (ξ1)α1 · · · (ξd)αd .
Here, z =

√
κξ and Cα > 0 is a constant depending

only on α. Roughly speaking, every time one multi-
plies the exponential e−κφ by any component ξi, the
order is reduced by a factor 1/

√
κ. On noting that

∇φ(x) = δij(∇ξi(x))ξj(x), one has

|(∇φ)αeiκψ| ≤ Cακ
−|α|/2, (35)

where Cα is a different constant. This is the second con-
sequence of the ansatz (31a).

Differently from estimate (32), however, (35) is not
fully general as it relies on the assumptions that (i) the
set (33) is a curve, and (ii) the matrix D2φ satisfies
(34). The latter condition, in particular, is the reason
for which half-integer powers of 1/κ are found. We shall
see that this is the appropriate setting for studying fo-
cused beams, for which the caustic geometry is similar
to the one represented in figure 1, upper-left panel. This
is the situation of practical interest for electromagnetic
wave beams in fusion plasmas.

B. Complex eikonal theory

The substitution of the ansatz (31a) into Maxwell’s
wave equation (1) for the electric field yields

eiκψ
{
κ2D0(x,∇ψ)a0(x)

+ κ

[
D0(x,∇ψ)a1 − i

[∂D0

∂Ni
(x,∇ψ)∂a0

∂xi

+
1

2

∂

∂xi

[∂D0

∂Ni
(x,∇ψ)

]
a0 − iε1a0

]]}
+O(1) = 0,

(36)
where equation (2) has been accounted for. In writing
equation (36), one should note that the dispersion tensor
D0, defined in equation (3) is a polynomial in N , and,
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thus, it extends to an entire function of the complex re-
fractive index Ñ = N+ iN ′, which has been evaluated at
Ñ = ∇ψ. The same argument applies to the derivatives
of D0; explicitly,

D0,ij(x,∇ψ) = (∇ψ)2δij −
∂ψ

∂xi
∂ψ

∂xj
− ε0,ij(x), (37a)

∂D0,ij

∂Nk
(x,∇ψ) = 2

∂ψ

∂xl
δlkδij − δki

∂ψ

∂xj
− ∂ψ

∂xi
δkj , (37b)

∂2D0,ij

∂Nk∂Nl
(x,∇ψ) = 2δklδij − δki δ

l
j − δliδ

k
j , (37c)

while

∂

∂xi

[∂D0

∂Ni
(x,∇ψ)

]
=

∂2D0

∂xi∂Ni
(x,∇ψ) + ∂2ψ

∂xi∂xj
∂2D0

∂Ni∂Nj
(x,∇ψ).

(38)

The first term on the right-hand side of (38) is actu-
ally zero for the dispersion tensor (3), and the second-
order derivative with respect to N is constant, cf. equa-
tion (37c). In the following, we keep both terms formally
general. This generalization will be needed for spatially
dispersive media in section V.
When one neglects the paraxial character of the wave

field discussed in section IIIA, terms of different order in
κ are separated in (36), yielding a hierarchy of equations
for ψ, a0, and a1. Such equations, although formally
similar to the corresponding equations of standard ge-
ometrical optics36, are complicated by the presence of
the imaginary part of the phase. The hierarchy thus ob-
tained, however, is unnecessarily too strong, and it can be
considerably simplified by taking into account the parax-
ial character of complex eikonal waves, as quantified by
inequalities (32) and (35).
Inequality (35), in particular, implies that a few terms

in equation (36), precisely those proportional to Im∇ψ =
∇φ, can be better estimated by half-integer powers of κ.
When that is accounted for, equation (36) becomes

eiκψ
{
κ2D0(x,∇ψ)a0(x)

+ κ

[
D0(x,∇S)a1 − i

[∂D0

∂Ni
(x,∇S)∂a0

∂xi

+
1

2

[ ∂2D0

∂xi∂Ni
(x,∇S) + ∂2ψ

∂xi∂xj
∂2D0

∂Ni∂Nj
(x,∇S)

]
a0

− iε1a0

]]}
+O(

√
κ) = 0.

(39)
Now the imaginary part of the complex phase enters

the O(κ)-term through the Hessian matrix ∂2ψ/∂xi∂xj

only, a simplification which will be crucial in deriving the
wave energy flux.
In order to solve the wave equation within an O(

√
κ)-

remainder (corresponding to an error of O(κ−3/2) as the
leading terms in the wave equation are of O(κ2)), we can

now exploit the linear independence of monomials κn for
κ ≥ κ0, cf. comments after equation (31b), and separate
the coefficients of κ2 and κ. Here, estimate (35) can be
exploited once more: a remainder of appropriate order in
∇φ can be allowed. Specifically,

D0(x,∇ψ)a0 = ρ0(x,∇φ), (40a)

D0(x,∇S)a1 − i

[
∂D0

∂Ni
(x,∇S)∂a0

∂xi

+
1

2

[ ∂2D0

∂xi∂Ni
(x,∇S) + ∂2ψ

∂xi∂xj
∂2D0

∂Ni∂Nj
(x,∇S)

]
a0

− iε1a0

]
= ρ1(x,∇φ), (40b)

where the remainders ρ0 and ρ1 must be, at least, cubic
and linear in ∇φ, respectively. Let us remark that this
is not a perturbative argument in ∇φ: in general, the
remainders are by no means small, except in a narrow
strip around the zero-level set (33), where the beam is
localized.

In solving equations (40), one notes that all terms on
the left-hand side are polynomials in ∇φ, and, thus, the
arbitrary remainders ρ0 and ρ1 can be chosen in order to
cancel out exactly all terms of order equal to or higher
than the third and the first order, respectively; then, the
remaining terms must sum up to zero, thus providing
the equations for ψ, a0, and a1. If we can find the so-
lution of such equations for ψ, a0, and a1, then, the co-
efficient of κ2 in the asymptotic form (39) of the wave
equation can be substituted by the cubic remainder ρ0,
and, analogously, the coefficient of κ can be replaced by
ρ1. Equation (35), in conclusion, shows that the result is
of O(

√
κ), which is the desired error.

Solution of equation (40a). The matrix D0(x,∇ψ)
is no longer Hermitian, even though D0(x,N) is Hermi-
tian for a real valued refractive index N . Nonetheless,
D0(x,∇ψ) is much simpler than a generic complex ma-
trix, as it is the analytical continuation of a Hermitian
matrix.

For the specific case of the dispersion tensor (3), one
can check, e.g., by means of (37), that the identity

D0(x, Ñ) = D̃0(x, Ñ),

holds true, with Ñ = N + iN ′ and

D̃0(x, Ñ) = D0(x,N)

+ i
∂D0(x,N)

∂Nk
N ′
k −

1

2

∂2D0(x,N)

∂Nk∂Nl
N ′
kN

′
l .

This defines a convenient complex extension of D0(x,N)
up to second-order terms in the imaginary part N ′. Such
an apparently cumbersome way of rewriting D0(x, Ñ) al-
lows us to exploit the properties of the Hermitian ma-
trix D0(x,N). Besides, the form D̃0(x, Ñ) is naturally
encountered for the case of spatially dispersive media
treated in section V.
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Consistently, given an eigenvector ej(x,N) of the Her-
mitian matrix D0(x,N) corresponding to the eigenvalue
λj(x,N), we define the complex extension of ej by an
analogous expression,

ẽj(x, Ñ) = ej(x,N)

+ i
∂ej(x,N)

∂Nk
N ′
k −

1

2

∂2ej(x,N)

∂Nk∂Nl
N ′
kN

′
l ,

(41)

as well as the complex extension of its dual,

f̃j(x, Ñ) = e∗j (x,N)

+ i
∂e∗j (x,N)

∂Nk
N ′
k −

1

2

∂2e∗j (x,N)

∂Nk∂Nl
N ′
kN

′
l ,

(42)

and the complex extension of the corresponding eigen-
value,

λ̃j(x, Ñ) = λj(x,N)

+ i
∂λj(x,N)

∂Nk
N ′
k −

1

2

∂2λj(x,N)

∂Nk∂Nl
N ′
kN

′
l ,

(43)

where, again, Ñ = N + iN ′. (A mathematically com-
plete presentation of this argument can be found in an
unpublished note60.)
Upon taking into account the eigenvalue equation

D0ej = λjej , together with its derivatives with respect
to N , one gets the identity

D0(x, Ñ)ẽj(x, Ñ)− λ̃j(x, Ñ)ẽj(x, Ñ) = O(|N ′|3), (44)

which shows that ẽj(x, Ñ) is close to an eigenvector of

D̃0(x, Ñ) corresponding to the eigenvalue λ̃j , with a re-
mainder which is cubic in N ′.
Identity (44) shows that equation (40a) (with the ar-

bitrary cubic remainder) is solved by a complex eikonal
ψ(x) and an amplitude a0(x) such that

H̃(x,∇ψ) = 0, (45a)

a0(x) = A(x)ẽ(x,∇ψ), (45b)

where H̃(x, Ñ) is the complex extension of the spe-
cific eigenvalue H(x,N) relevant to the considered wave

mode, ẽ(x, Ñ) is the complex extension of the corre-
sponding eigenvector, and A(x) is an arbitrary complex
scalar amplitude.
Given the wave mode, solution (45a) is, indeed, the

only possible solution of (40a). In order to see that, let
us recall that the eigenvectors of a Hermitian matrix are
complete, i.e., they span the whole space. This is ex-
pressed by the identity

I =
∑
j

ej(x,N)e∗j (x,N), (46)

which holds true for every (x,N) in the wave phase
space; here, I is the identity matrix. By taking into
account (46) and its derivatives with respect to N , one

can check that the completeness relation holds for com-
plex extended quantities as well, but with a usual cubic
remainder, namely,

I −
∑
j

ẽj(x, Ñ)f̃j(x, Ñ) = O(|N ′|3). (47)

In the same way, one can extend the orthogonality of
eigenvectors, namely, e∗i (x,N) · ej(x,N) = δij , which
reads

f̃i · ẽj − δij = O(|N ′|3). (48)

Then, a generic amplitude vector can be written in the
form

a0(x) =
∑
j

ẽj(x,∇ψ)
(
f̃j(x,∇ψ) · a0(x)

)
+O(|∇φ|3),

=
∑
j

Aj(x)ẽj(x,∇ψ) +O(|∇φ|3),

and equation (40a) amounts to∑
j

λ̃j(x,∇ψ)Aj(x)ẽj(x,∇ψ) +O(|∇φ|3) = ρ0(x,∇φ).

One can now apply f̃i on the left and use the orthogo-
nality (48), thus, splitting the vector equation (40a) into
three scalar equations,

λ̃i(x,∇ψ)Ai(x)+O(|∇φ|3) = f̃i(x,∇ψ)·ρ0(x,∇φ), (49)

for i = 1, 2, 3. The amplitude Ai can be different from
zero only if λ̃i(x,∇ψ) = 0. On the other hand, only
one out of the three eigenvalues can fulfill this condition
for a given complex phase ψ, otherwise the hypothesis of
separability of eigenvalues λj stated in section IIA would
be violated in points

(
x,∇S(x)

)
, S = Reψ, for x = x̄(τ),

i.e., on the reference curve (33). It follows that, given a
specific wave mode corresponding to a specific eigenvalue
H, equation (45a) gives the only solution for that mode.

From a computational point of view, equation (45a) re-
duces to a system of two coupled Hamilton-Jacobi equa-
tions, namely,

H(x,∇S)− 1

2

∂2H(x,∇S)
∂Ni∂Nj

∂φ

∂xi
∂φ

∂xj
= 0,

∂H(x,∇S)
∂Ni

∂φ

∂xi
= 0,

(50)

for the real part S and the imaginary part φ of the com-
plex phase. This system have been previously derived on
the basis of a heuristic perturbative argument controlled
by |∇φ|/|∇S|, which is assumed to be small. Despite ∇φ
is indeed small in the region of interest, i.e., in a neigh-
borhood of the curve R where the beam is localized, cf.
equation (33), from a mathematical point of view, such
a procedure is totally unsound as, in equation (50), the
second order term is balanced against the leading order
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term, and this is not compatible with a precise perturba-
tion argument. Our analysis resolves this inconsistency,
recovering system (50) in a mathematically firmer setting
and removing the constraint on the magnitude of ∇φ.
As for the solution of system (50), its mathemat-

ical analysis has been attempted by Magnanini and
Talenti61–63, for the case of Hamiltonian (16).
In the framework of extended ray theory26–31, the first

equation of the system is viewed as a Hamilton-Jacobi
equation for S, describing orbits of extended rays in the
real wave phase space (x,N). Extended rays are real-
valued (in contrast to complex rays18–20 that can be
“scattered into the complex space”) and reduce to the
standard geometrical optics rays when ∇φ = 0. On the
other hand, when the imaginary part φ of the phase has
a non-trivial gradient, Hamilton’s equations for extended
rays should then be solved together with the partial dif-
ferential constraint V (x) ·∇φ(x) = 0, which forces ∇φ to
be orthogonal to the vector field

V (x) =
∂H

∂N

(
x,∇S(x)

)
. (51)

This is formally the same as the vector field defined in
the geometrical optics transport equation (5b), but the
analogy is purely formal: the function S here is coupled
to φ and therefore differs from the corresponding quan-
tity in the standard geometrical optics. This coupling
between S and φ introduces wave effects.
The vector field (51) should be compared to the veloc-

ity field of the bundle of extended rays, which reads

V (x)− 1

2

∂φ

∂xk
∂φ

∂xl
∂3H

∂N∂Nk∂Nl
(x,∇S).

Near the zero-level set R, where ∇φ is small, the two
vector fields are close one to the other, but differences
can be present away from R. In the next section, we
shall find that the vector field V (x) represents the wave
energy density flux.
Solution of equation (40b). Equation (40a) yields

the complex eikonal equation (45a) and the complex po-
larization condition (45b) exactly in the same form previ-
ously derived by heuristics means. There, the advantage
of our approach consists just in making the derivation
precise and consistent.
For equation (40b), on the contrary, we find significant

simplifications with respect to the heuristic approach: re-
moving the unnecessary high-order terms resulted in a
simpler dependence of (40b) on the gradient ∇φ of the
imaginary part of the phase. Such simplifications are
pivotal in obtaining the wave energy flux.
On the line of the standard geometrical optics theory,

let us first note a necessary condition for the existence of
a solution of (40b).
Upon multiplication on the left by the complex exten-

sion f̃ of the dual eigenvector e∗, and noting that

f̃(x,∇ψ)·D0(x,∇ψ)a1(x)
= H̃(x,∇ψ)f̃(x,∇ψ) · a1(x) +O(|∇φ|3),

equation (40b) implies,

e∗·
[
∂D0

∂Ni

∂
[
Aẽ(x,∇ψ)

]
∂xi

+
1

2

[ ∂2D0

∂xi∂Ni
+

∂2ψ

∂xi∂xj
∂2D0

∂Ni∂Nj

]
eA− iε1eA

]
+O(|∇φ|) = f̃(x,∇ψ) · ρ1(x,∇ψ),

(52)

where all phase space functions, when not explicitly in-
dicated, are assumed to be evaluated at (x,∇S), and the
notation ∂[· · · ]/∂xk denotes the derivative with respect
to both the explicit and implicit dependence on x. Here,
the term involving the derivative of ẽ must be dealt with
carefully. From definition (41), one gets,

∂[Aẽ]

∂xk
=
∂[Ae]

∂xk
+ iA

∂e

∂Nl

∂2φ

∂xk∂xl
+O(|∇φ|),

hence,

e∗ · ∂D0

∂Nk

∂[Aẽ]

∂xk
= e∗ · ∂D0

∂Nk

∂[Ae]

∂xk

+
iA

2
e∗ ·

(∂D0

∂Nl

∂e

∂Nk
+
∂D0

∂Nk

∂e

∂Nl

) ∂2φ

∂xk∂xl
+O(|∇φ|).

(53)
The term in round brackets can be computed by making
use of the identity obtained by deriving twice the eigen-
value equation D0e = He with respect to N , evaluating
the result for N = ∇S, and recalling that H(x,∇S) =
O(|∇φ|2), in virtue of (50); that reads,

e∗ ·
(∂D0

∂Nl

∂e

∂Nk
+
∂D0

∂Nk

∂e

∂Nl

)
=

∂2H

∂Nl∂Nk
− e∗ · ∂2D0

∂Nl∂Nk
e

+ e∗ ·
( ∂H
∂Nl

∂e

∂Nk
+

∂H

∂Nk

∂e

∂Nl

)
+O(|∇φ|2).

After substituting the latter identity into (53), we esti-
mate

∂H

∂Nk

∂2φ

∂xk∂xl
=
∂V k

∂xl
∂φ

∂xk
= O(|∇φ|),

which follows by applying ∂/∂xl to the second equation
in (50). Then, (53) becomes

e∗·∂D0

∂Nk

∂[Aẽ]

∂xk
= e∗ · ∂D0

∂Nk

∂[Ae]

∂xk

+
iA

2

[ ∂2H

∂Nl∂Nk
− e∗ · ∂2D0

∂Nl∂Nk
e
] ∂2φ

∂xk∂xl
+O(|∇φ|).

and equation (52) reads

e∗·∂D0

∂Nk

∂[Ae]

∂xk
+ e∗ ·

[
1

2

∂

∂xk

[∂D0

∂Nk

]
− iε1

]
eA

+
i

2

∂2H

∂Nl∂Nk

∂2φ

∂xl∂xk
A+O(|∇φ|) = f̃ · ρ1.

(54)
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One can note that the first two terms in equation (54)
are formally the same as those in the corresponding equa-
tion of standard geometrical optics, which implies the
transport equation (5b). The only difference consists
in evaluating all phase space functions at N = ∇S,
with the pair (S, φ) solving system (50); thus, one has
H(x,∇S) = O(|∇φ|2) as opposite to the exact local dis-
persion relation (5a) of the standard geometrical optics.
With that in mind, we can follow the lines of the stan-
dard theory (cf., for instance Littlejohn and Flynn36 and
references therein), so that,

e∗ · ∂D0

∂Nk

∂[Ae]

∂xk
+ e∗ ·

[
1

2

∂

∂xk

[∂D0

∂Nk

]
− iε1

]
eA

=
∂H

∂Nk

∂A

∂xk
+

[
1

2

∂

∂xk

[ ∂H
∂Nk

]
+ γ1 − iδ1

]
A+O(|∇φ|),

where, in particular, the identity (obtained by differenti-
ating the first equation in (50))

∂H

∂xk
+

∂2S

∂xk∂xl
∂H

∂Nl
= O(|∇φ|),

has been accounted for. Thereby, one can see that equa-
tion (54) is equivalent to

V (x)·∇A(x) =
[
− γ1(x)

+ i
(
δ1(x)− δGouy(x)

)
− 1

2∇ · V (x)
]
A(x),

(55)

where the vector field V (x) is now given by (51), γ1 and
δ1 are formally the same as in geometrical optics, and,
thus, are given by (6) and (7), respectively. In complex
eikonal theory, an additional phase shift is found, namely,

δGouy(x) =
1

2

∂2H(x,∇S)
∂Nk∂Nl

∂2φ

∂xk∂xl
, (56)

which is the generalization of the classical Gouy shift64

and it is entirely due to diffraction effects.
Equation (55) provides the transport equation for the

amplitude A, that was left unspecified in equation (45).
Once equation (55) has been solved for the amplitude

A(x), one can show that the algebraic equation for a1
has a solution, by means of an argument analogous to
the uniqueness proof for (45), exploiting the completeness
and orthogonality relations (47) and (48). As usual, such
solution is never computed in practice, hence, we shall
not digress in the details.
Statement of the main result. We can now for-

mulate the main result of the foregoing asymptotic con-
struction, and summarize the results of this section.
Let ψ = S+iφ be a regular solution of the system (50),

and let a0 be amplitude given in (45b), with A(x) a reg-
ular solution of the complex geometrical optics transport
equation (55). Then, it is possible to find a corrector a1
such that the complex eikonal wave (31) solves the wave
equation (1) for the electric field within an error,

|κ−2L(κ, x,∇)ECGO(κ, x)| ≤ Cκ−3/2. (57)

As for the case of error estimate (9), this does not provide
information on the convergence of ECGO to the exact
solution; moreover, it relies on the existence of regular
solutions for the complex eikonal ψ and amplitude A:
when such solutions break down, estimate (57) fails to
be uniform.

On the other hand, the coupling of the real phase S to
the imaginary part φ successfully removes caustic singu-
larities, at least, for the case of focalized beams, as shown
by numerical results1,26–28,65.

C. Wave energy density flux

One of the advantages of our approach is that the
transport equation (55) for the wave amplitude A(x)
is obtained in a form which parallels the corresponding
transport equation in the standard geometrical optics, cf.
equation (5b).

The only additional term in the complex geometrical
optics transport equation is the Gouy phase shift, and a
phase shift does not affect the transport of |A|2, which
reads

∇ ·
[
V (x)|A(x)|2

]
= −2γ1(x,∇S)|A(x)|2. (58)

In complex geometrical optics, however, the squared am-
plitude |A|2 does not account for the whole electric field
amplitude as, from (31) and (45),

|ECGO(κ, x)|2 = e−2κφ|A(x)|2 +O(1/
√
κ). (59)

On the other hand, the orthogonality V ·∇φ = 0, satisfied
by a solution of (50), gives

∇·
[
V (x)e−2κφ|A|2

]
= e−2κφ∇ ·

[
V (x)|A|2

]
− 2κe−2κφ|A|2V · ∇φ

= e−2κφ∇ ·
[
V (x)|A|2

]
.

Upon using this into equation (58), one finds that, for-
mally, the standard geometrical optics energy transport
equations (10)-(13) hold true for complex geometrical op-
tics as well, with only one modification in the definition
of the wave energy density, namely,

W =
1

16π

∣∣∣∣∂(ωH)

∂ω

∣∣∣∣e−2κφ|A|2, (60)

where, we recall, the derivative ∂/∂ω should be computed
at constant wave vector k = ωN/c. In complex geometri-
cal optics, however, the coefficients of the transport equa-
tion (10) should be evaluated at N = ∇S, where now S
is the solution of the system (50).

The group velocity, in particular, is

vg = c

∣∣∣∣∂(ωH)

∂ω

∣∣∣∣−1

V (x), (61)

with V (x) being the vector field defined in (51). One
can conclude that, in complex geometrical optics, the
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wave energy density flow is directed along the lines of the
vector field V (x) = ∂H(x,∇S)/∂N , and this can deviate
from the corresponding geometrical optics quantity, due
to diffraction effects.
In general, however, the vector field V does not need to

be tangent to extended rays; therefore, extended rays, in
contrast to standard rays, can fail to represent the energy
flow, and one of the most useful features of standard
geometrical optics could be missed in complex eikonal
theory. Nevertheless, the disagreement between extended
rays and the wave energy flow is expected to be small in
the region of space where the wave field is localized, cf.
comments after equation (51). The differences between
extended ray trajectories and the direction of the vector
field V are estimated numerically in section IV: typically,
they are so small that extended rays can be considered a
good approximation of the wave energy flow.
As a cross-check of our results, let us consider the con-

served flux naturally implied by equation (1), namely,

F (κ, x) =
2

κ
Im

[
E∗(κ, x)×

(
∇× E(κ, x)

)]
. (62)

Using (1) and (2), one finds

∇ · F = −2E∗ · εa1E,

which shows that F is a conserved flux in a non-
dissipative medium (εa1 = 0). Indeed, F is the normalized
Poynting flux, time-averaged over the period 2π/ω of the
beam (using E(t, x) = Re

{
e−iωtE(κ, x)

}
).

For the specific case of a complex eikonal wave (31)
with amplitude given by (45), the flux (62) becomes,

FCGO(κ, x) =
[
2∇S − (e∗ · ∇S)e− (e · ∇S)e∗]e−2κφ|A|2

+O(1/
√
κ),

(63)
where the lowest order has been separated by taking into
account estimate (35).
We now need the identity

∂H

∂Ni
(x,∇S) = e∗(x,∇S) · ∂D0(x,∇S)

∂Ni
e(x,∇S)

+O(|∇φ|2),

which follows from the derivative of the eigenvalue equa-
tion D0e = He evaluated at N = ∇S and multiplied on
the left by e∗; the O(|∇φ|2) remainder stems from the
fact that ∇S, with S solution to (50), does not solve
exactly the dispersion equation; one has H(x,∇S) =
O(|∇φ|2) and e∗D0 = He∗ = O(|∇φ|2).
When D0 is given by (3), cf. also equation (37b), the

complex geometrical optics flux (63) takes the form

FCGO(κ, x) =
∂H(x,∇S)

∂N
e−2κφ(x)|A(x)|2

+O(1/
√
κ),

(64)

showing that the energy flux is proportional to the vector
field (51). The leading order term is the transported

quantity in equation (58) times the exponential e−2κφ,
as discussed above.

The combination of equations (60),(61), and (64) yields
the leading order term of the physical Poynting vector,
namely,

c

16π
FCGO(κ, x) = vg(x)W (x) +O(1/

√
κ). (65)

Let us conclude with a remark: although relationship
(65) could have been expected on physics basis31, its
derivation does not follow easily by a naive application
of the complex eikonal method. Indeed, the paraxial
character of complex eikonal waves, introduced in sec-
tion IIIA, plays a crucial role in removing unnecessary
higher-order terms from the amplitude transport equa-
tion. Such a paraxial approach to complex geometrical
optics, on the other hand, requires two extra assumptions
on both the geometry of the set R in (33) and the imagi-
nary part φ of the complex phase. For instance, should φ
have been assumed to vanish of second-order on R (i.e.,
one additional order with respect to the case considered
here), one would have found powers of κ−1/3, that are the
characteristic mark of a fold caustic, cf. section II B. In
other words, this approach appears flexible, but requires
tuning to the specific caustics geometry.

Our choice, here, has been directed to the description
of focused beams, as shown in the numerical examples of
the next section.

IV. NUMERICAL RESULTS

In this section, we address numerically a few issues that
have not been completely clarified theoretically. First,
we shall provide an estimate of differences between the
direction of extended rays and that of the field lines of the
energy flux vector obtained in section III C for the case
of the GRAY code1. Then, we shall provide a qualitative
comparison between extended rays obtained by GRAY and
the field lines of the energy flux vector, as computed using
the the function S from the beam tracing code TORBEAM2.
It is known from previous studies9,15,31,32 that complex
geometrical optics and the paraxial WKB method, upon
which TORBEAM is based, should give the same results.
This also provides a benchmark case of a newly added
module in TORBEAM, which computes the field lines of
V (x) with the aim of both representing the wave energy
flow of a beam and allowing a direct coupling of TORBEAM
to other ray-based codes, like quasi-linear Fokker-Planck
solvers. All considered cases refer to a standard ITER
plasma equilibrium66.

A. Extended rays versus energy flux in GRAY

The complex geometrical optics code GRAY solve equa-
tions (50) for the case of the Hamiltonian

H(x,N) = N2 − n2(x,N‖),
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the complex extension of which gives the effective Hamil-
tonian (cf. the first equation of system (50))

Heff(x,N) = N2 − n2(x,N‖)−
∣∣∇φ(x)∣∣2

+
1

2

∂2n2(x,N‖)

∂N2
‖

(
b(x) · ∇φ(x)

)2
,

(66)

where n2(x,N‖) is obtained from the Altar-Appleton-
Hartree dispersion relation for high-frequency waves in
cold magnetized plasmas34, whereas N‖ = b(x) ·N is the
real parallel refractive index, with b(x) the unit vector of
the local equilibrium magnetic field.
The function (66) is used as a Hamiltonian in the

(x,N) phase space, while φ is computed from the par-
tial differential equation V ·∇φ = 0, which, in particular,
gives the imaginary part N ′ = ∇φ of the refractive in-
dex. The resulting Hamiltonian orbits projected into the
configuration space give extended rays.
At each grid point x = (x, y, z) along extended rays,

both the vector T (x), tangent to the ray, and the vector
V (x), cf. equation (51), proportional to the energy flux,
are evaluated, and the angle ϑ spanned by the two is
computed according to

T (x) · V (x) = |T (x)||V (x)| cosϑ. (67)

Figures 2 and 3 show the results for four cases of elec-
tron cyclotron beams, launched from the equatorial plane
in ITER (the exact launching position is the same in all
cases: x = 930cm, y = 0cm, and z = 70cm). In fig-
ure 2, the beam has a mild focalization similar to ITER
operational parameters, i.e., the equivalent focal length
in free space is zf = 200cm with an equivalent waist
w0 = 2cm, and the beams are launched at poloidal angle
α = 0◦ and different toroidal angles, namely, β = 0◦ (up-
per panels), β = 20◦ (middle panels), and β = 40◦ (lower
panels). In figure 3, the results for a beam with high fo-
calization are displayed; in this case, the equivalent focal
length in free space is zf = 150cm, with the equivalent
waist w0 = 0.5cm, poloidal injection angle α = 0◦, and
toroidal injection angle β = 0◦. Such a highly focused
beam largely exceeds ITER parameters, but it has been
considered as an example in which the effects of diffrac-
tion are emphasized.
On the left-hand side of figures 2 and 3, the initial po-

sitions of extended rays projected in the y-z plane are
shown. One can see that rays are launched from a po-
lar grid of points; the electric field amplitude is a Gaus-
sian with the maximum at the center of the ray bundle,
and points at the same radial position lie on the same
amplitude level contour. For this test a large number
of rays is considered, so that the beam is covered up
to the 1/e4-level of its amplitude: this is a much larger
beam section than usually needed. Each point is rep-
resented in a gray scale, which encodes the maximum
value of the angular deviation 1 − cosϑ, with ϑ given
in (67), observed along the ray issued from that point.
The approximate direction of the local magnetic field in

the low-field side projected onto the y-z plane is indi-
cated by an arrow (this is approximated by the value of
the numerical equilibrium magnetic field at the nearest
grid node to the launching point, specifically, at major
radius coordinate R = 850.0cm and vertical coordinate
z = 70.3125cm of the numerical grid). The distribution
of angular deviations allows us to appreciate geometric
effects: in all considered cases, rays for which the angular
deviation attains its maximum are those aligned to the
magnetic field. This can be understood by inspection of
the effective Hamiltonian (66). The difference between
the ray and the energy flow directions is proportional to
the product N‖(N

′
‖)

2 of the real parallel refractive index

and the square of the imaginary parallel refractive index
N ′

‖ = b(x) · ∇φ(x); the factor N‖ is obtained on noting

that, for the Altar-Appleton-Hartree dispersion relation,
the third-order derivative of n2, cf. comments after equa-
tion (51), is proportional to N‖, while the factor (N ′

‖)
2

comes from the complex extension. It follows that rays
with a large N‖ show larger deviations.

For each case of figures 2 and 3, we have selected the
“worst ray”, i.e., the ray for which the maximum angu-
lar deviation is observed, and the corresponding profile
of 1 − cosϑ is plotted as a function of the arc-length s
along the central ray (which is used as a common pa-
rameter for all rays). The profiles of both the real and
imaginary parts of the parallel refractive index, as well
as the profiles of the two beam widths are also reported
for a comparison. One can see that the maximum de-
viation occurs, as expected, near the waist of the beam,
where diffraction effects are more important, and, thus,
the imaginary part of the refractive index increases. For
the cases of exactly perpendicular injection (toroidal an-
gle β = 0◦), a double-peak structure of the deviation
profile is observed: the local minimum is found where
N‖ is zero, which implies that the difference between the
ray flow and the energy flow must vanish. In passing, let
us mention that the slight discontinuity in the profiles of
both the real and imaginary parallel refractive indices is
due to the way the equilibrium magnetic field has been
extended outside the grid of the numerical equilibrium:
there, the propagation happens in free space, and the pre-
cise value of the magnetic field is unimportant; for the
calculation of parallel refractive indices, a rough approx-
imation is used, and that does not match continuously to
the numerical equilibrium at the boundary of the grid.

The overall conclusion from figure 2 is that, under
ITER-relevant conditions, deviations of extended rays
from the energy flow are small, even for large toroidal
injection angles, which should increase N‖. The same is
found for the highly focused beam of figure 3, for which
diffraction effects should be stronger. It is, therefore,
possible to approximate the energy flow of the beam by
the extended ray flow.

The reason for such a good agreement is that the phys-
ically interesting domain, where rays are traced in prac-
tical applications, coincides with a neighborhood of the
zero level curve R of the imaginary phase φ, cf. equation
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FIG. 2. Angular deviation 1− cosϑ of extended rays, cf. equation (67), as computed by the GRAY code. Left-hand side plots
show the initial positions of extended rays, projected on the y-z plane; the gray level of each point encodes the maximum
deviation observed along the corresponding ray, and the approximate direction of the equilibrium magnetic field is indicated by
an arrow. Right-hand side plots show the profile of the deviation for the “worst ray”, compared to both the real and imaginary
parts of the parallel refractive index, as well as to the two beam widths. In all cases, the equivalent focal length and waist are
zf = 200cm and w0 = 2cm, respectively; the poloidal injection angle is α = 0◦, and the toroidal injection angles are β = 0◦

(upper panels), β = 20◦ (middle panels), and β = 40◦ (lower panels).

(33); there, the gradient ∇φ is close to zero (it vanishes
identically on R, cf. section IIIA), and the second term
in the Hamilton-Jacobi equation (50) act as a small per-
turbation.

B. Extended rays versus paraxial WKB energy flux

The transport equation (58) is exactly the same as the
energy transport equation obtained in the framework of
the paraxial WKB approach8,9. Furthermore, equation
(50), Taylor-expanded around the curve R, yields the
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FIG. 3. The same as in figure 2, but for zf = 150cm, w0 = 0.5cm, α = 0◦, and β = 0◦.

matrix Riccati equation for the Hessian of the phase of
the paraxial WKB method15,31,32. It is therefore nat-
ural to compare the results of the complex geometrical
optics code GRAY1 with those of the paraxial WKB code
TORBEAM2. This is made possible by a newly implemented
module in TORBEAM, which solves the set of ordinary dif-
ferential equations

dx

dτ
= V (x), (68)

where V (x) is defined by (51), with the real phase S
being here computed in the paraxial WKB framework.
The result is a bundle of curves which represents the
energy flow of the beam.
Figure 4 shows a qualitative comparison between the

extended rays computed by GRAY and the TORBEAM so-
lution of equation (68) with initial conditions given by
the initial position of GRAY rays; we refer to the latter
as TORBEAM rays, for simplicity. The case considered is
the same as in figure 2, upper panels: the focusing is
typical for ITER parameters. On looking at the three-
dimensional position of the beam (shown on the right-
hand side plot, with respect to the ITER last magnetic
surface), one can note the rather long propagation path
of the beam; it is also apparent that the y-z plane is
roughly orthogonal to the beam axis. It is, therefore, con-
venient to project both GRAY and TORBEAM rays on the y-z
plane; the result is shown on the left-hand side plot for
the rays corresponding to the 1/e2-level of the amplitude
only. The common initial positions of rays are marked by
dots; starting from those marked points both GRAY and
TORBEAM rays propagate inward, reach the waist and then
turn outward. One can see that TORBEAM and GRAY rays
are in good agreement. Indeed, for the inward part of the
propagation, up to the waist, GRAY and TORBEAM rays are
superposed within the resolution of the plot. They start
deviating one from the other near the waist. However,
such deviations are quantitatively small: considering the
differences in the numerical schemes of the two codes and
the different treatment of the plasma-vacuum interface,

as well as the long propagation path, such an agreement
appears satisfactory.

This comparison has been repeated for the highly fo-
cused case of figure 3 and the results are displayed in
Figure 5. Now the differences are one order of magni-
tude larger than in the case of figure 4, but the beam
cross-section has also increased by one order of magni-
tude.

The foregoing numerical experiment, in addition, illus-
trates how the information on extended rays is actually
encoded in the paraxial WKB solution as well, despite
the paraxial approach describes the wave beam through
a set of parameters on a single ray, i.e., the central ray.

V. ACCOUNTING FOR SPATIAL DISPERSION

The theory reported in section III is by no means lim-
ited to the case of a spatially non-dispersive media as
far as the condition (2) of the dielectric tensor (which in
general depends on both (x,N)) is satisfied.

From the point of view of the description of electron
cyclotron wave beams in tokamak physics, spatial dis-
persion is found as a consequence of temperature effects
in the response of the plasma33 and might be a concern
for high temperature devices. However, it is believed
that the cold plasma approximation is valid up to the re-
gion where the beam is absorbed by resonating electrons.
There, temperature effects and, thus, spatial dispersion,
cannot be neglected, but in such situation condition (2)
is violated, thus, turning such a dispersive generalization
of complex geometrical optics into a mere theoretical ex-
ercise.

Nonetheless, from the point of view of the theory of
the complex geometrical optics, the issue of the general-
ization appears interesting. We give here a sketch of the
derivation only.

The basic idea is to take advantage of the pseudodiffer-
ential form the the wave equation for a generic dispersive
stationary medium6. Specifically, the wave electric field
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FIG. 5. The same as in figure 4, but for the highly focused case: zf = 150cm, w0 = 0.5cm, α = β = 0◦.

satisfy an integral equation, which can be written in the
form

Dw(κ, x,− i
κ∇)E(κ, x) =

( κ

2π

)d
×

∫
eiκ(x−x

′)·ND(κ, x+x
′

2 , N)E(κ, x′)dx′dN = 0,

(69)
where

Dij(κ, x,N) = N2δij −NiNj − εij(κ, x,N),

is the Weyl symbol6,35 of the semiclassical pseudodiffer-
ential operator Dw(κ, x,−(i/κ)∇), 1/κ being the semi-
classical parameter.

Assuming the equivalent of condition (2), one has

D(κ, x,N) = D0(x,N) +
1

κ
D1 + · · · ,

where the leading order term (i.e., the semiclassical prin-
cipal symbol35) is Hermitian. Exactly as in the non-
dispersive case, we assume that the (real) eigenvalues of
D0 are well separated, as discussed in section IIA, so
that we do not have to be worried about linear mode
conversion.

Let us start deriving a useful asymptotic form of the
wave equation. We consider the electric field in the form

E(κ, x) = eiκS(x)w(κ, x), (70a)
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where the amplitude w(κ, x) is allowed to have fast vari-
ations, namely, ∣∣∂αxw(κ, x)∣∣∣ ≤ Cκr|α|, (70b)

in the limit κ → +∞, where C is a constant depending
only on the multi-index α = (α1, . . . , αd), and r is a
fixed real parameter with 0 ≤ r < 1; each derivative
increase the order by a factor κr. The fast variations of
the amplitude distinguish the wave field (70) from the
standard (real) eikonal wave (8).
The complex eikonal wave (31) have the form (70),

with

w(κ, x) = e−κφ(x)a(κ, x), (71)

and r = 1/2, provided that the two conditions on the
paraxial field, cf. section IIIA, are fulfilled. This fol-
lows from estimate (35), which allows us to control the
derivative,

|∇
(
e−κφ(x)a(κ, x)

)
| ≤ κC|∇φe−κφ(x)a(κ, x)| = O(

√
κ).

The substitution of the field (70) into the wave equa-
tion (69), along with lengthy but standard calculations6,
yields,

i

κ

∂D0

∂Nk

∂w

∂xk
+

1

2κ2
∂2D0

∂Nk∂Nl

∂2w

∂xk∂xl

−
[
D0 −

i

2κ

( ∂

∂xk

[∂D0

∂Nk

]
+ 2iD1

)]
w +O(κ−3/2) = 0,

(72)
where the case r = 1/2 has been considered. One can
now substitute the form (71) specific to complex eikonal
waves, with the amplitude given by (31b) and, collecting
terms, one has

eiκψ
{
D̃0(x,∇ψ)a0(x)

+
1

κ

[
D0(x,∇S)a1 − i

[∂D0

∂Ni
(x,∇S)∂a0

∂xi

+
1

2

[ ∂2D0

∂xi∂Ni
(x,∇S) + ∂2ψ

∂xi∂xj
∂2D0

∂Ni∂Nj
(x,∇S)

]
a0

+ iD1a0

]]}
+O(κ−3/2) = 0,

(73)
where ψ = S + iφ, and

D̃0(x,Ñ) = D0(x,N)

+ i
∂D0(x,N)

∂Nk
N ′
k −

1

2

∂2D0

∂Nk∂Nl
N ′
kN

′
l .

Equation (73) (except for an overall factor κ2) is formally
the same as equation (39), with the only difference that

the complex extension D̃0 needs to be considered, with
the dispersion tensor D0 given by the principal part of
the Weyl symbol in (69); moreover, −ε1 is replaced by

D1. Particularly, the complex extension D̃0 is found here
naturally in the very same form as that used in the solu-
tion of equation (40a) of section III.

With such replacements being implied, we can con-
clude that the results on the complex geometrical optics
solution are also valid for dispersive media. Let us also
remark that this approach does not exploit the specific
form of the symbolD(κ, x,N). The results are, therefore,
valid for a broader class of wave equations, i.e., semi-
classical pseudodifferential wave equations having a suf-
ficiently regular symbol with a Hermitian principal part.
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51L. Hörmander, Lectures on Nonlinear Hyperbolic Differential
Equations, Springer (Berlin, 1997).

52O. Runborg, Comm. Comput. Phys. 2, 827 (2007).
53J.-D. Benamou, Journal of Scientific Computing 19, 63 (2003).
54V. P. Maslov and M. V. Fedoriuk, Semi-classical approximation
in quantum mechanics, Translated from Russian, D. Reidel Pub.
(Dordrecht, Holland, 1981).
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