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Abstract. The radial neoclassical fluxes of electrons in the 1/ν−regime are

calculated with relativistic effects taken into account and compared with those in

the non-relativistic approach. The treatment is based on the relativistic drift-kinetic

equation with the thermodynamic equilibrium given by the relativistic Maxwell-

Jüttner distribution function. It is found that for the range of fusion temperatures,

Te < 100 keV, the relativistic effects produce a reduction of the radial fluxes which

does not exceed 10%. This rather small effect is a consequence of the non-monotonic

temperature dependence of the relativistic correction caused by two counteracting

factors: a reduction of the contribution from the bulk and a significant broadening with

the temperature growth of the energy range of electrons contributing to transport.

The relativistic formulation for the radial fluxes given in this paper is expressed

in terms of a set of relativistic thermodynamic forces which is not identical to the

canonical set since it contains an additional relativistic correction term dependent

on the temperature. At the same time, this formulation allows application of the

non-relativistic solvers currently used for calculation of mono-energetic transport

coefficients.
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1. Introduction

The role of relativistic effects in hot plasmas has been recognized as important not

only in astrophysics [1, 2] but also in fusion, in particular, for the population of highly

energetic runaway electrons in tokamaks [3]. However, the relativistic effects do not

necessarily require an extremely high temperatures since they can be non-negligible

even if Te is only on the order of tens of keV, i.e. Te � me0c
2. These effects appear due

to the macroscopic features of the relativistic thermodynamic equilibrium given by the

Maxwell-Jüttner distribution function [1,4]. An example of such effects provided by the

Maxwell-Jüttner distribution function is given in a recent paper [5], where the stability

criterion for collisional heat transfer from hot electrons to ions with respect to the

Coulomb decoupling is studied and it is found that relativistic effects lead to qualitative

changes in stability criteria. While in non-relativistic plasmas criterion is given by

Te/Ti < 3, relativistic effects makes it temperature-dependent and for Te,i > 75 keV the

collisional coupling between electrons and ions becomes absolutely stable.

Relativistic effects in fusion are surely not important for the ions, but the transport

physics for electrons needs to be examined carefully for fusion reactor projects such as

ITER [6–8] and DEMO [9,10], in which the expected electron temperature is sufficiently

high, Te ' 20 – 50 keV, and for future aneutronic fusion reactors with D–3He and may

be p –11B reactions, which require temperatures of up to 70 – 100 keV [11–13]. However,

all transport codes (see, for example [14]) developed to date and applied for simulations

of reactor scenarios are based on the non-relativistic approach. Furthermore, there is no

quantitative definition of an applicability range for the non-relativistic transport models

so far.

Relativistic kinetics and MHD in plasmas are usually treated in the covariant

formulation [1, 2]. For neoclassical transport, however, the covariant formulation is

not necessary since Lorentz invariance is of minor importance with respect to the

characteristic drift velocity, Vdr/c � 1. For this purpose, one can directly apply the

relativistic drift-kinetic equation [15] with the relativistic Coulomb operator [4].

In this paper, the relativistic effects in the radial fluxes in the 1/ν-regime, which

might be the most dangerous regime for future burning plasmas in stellarators and

where the radial electric field plays no significant role, are estimated. This case was

chosen for investigation because the role of the highly energetic tail of the distribution

function in transport processes in this regime is expected to be the largest in comparison

with other regimes. Indeed, the diffusion coefficient in the 1/ν-regime scales roughly as

V 2
dr/νe ∝ v7, while in the tokamak banana-regime it scales as ρ2ceνe ∝ v−1 (here, Vdr is

the radial drift-velocity, ρce is the Larmor radius and νe is the collision frequency).

In Sec. 2, the relativistic drift-kinetic equation (rDKE) in the mono-energetic

approach with a set of thermodynamic forces which differs from the canonical one is

formulated. Only radial gradients are taken into account while the parallel electric field

is excluded from consideration. In Sec. 3, rigorous expressions for the radial electron

fluxes and transport coefficients in the 1/ν−regime are derived. In particular, the
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expression for the relativistic radial heat flux is obtained. As a guideline, the paper [16]

was used, where the same was calculated in the non-relativistic approach. In Sec. 4, the

numerical comparison of the relativistic and non-relativistic transport coefficients and

radial fluxes is performed, and in Sec. 5 a brief discussion of the results is given.

2. Mono-energetic drift-kinetic equation for relativistic electrons

The electron radial fluxes in toroidal plasmas (except the Ware pinch) can be calculated

from the relativistic drift-kinetic equation (rDKE) for the first-order distribution

function fe1 in the mono-energetic approach [17–19]. Using on a magnetic surface,

with flux-sufrace label ρ, the set of variables (s, u, λ), where s is the coordinate along

the field-line, u = p/me0 = γv is the momentum per unit mass, γ =
√
1 + u2/c2 is the

Lorentz-factor, λ = (1 − ξ2)/b is the normalized magnetic moment, where ξ = u‖/u is

the pitch and b = B/B0 is the normalized magnetic field with the reference field B0, the

mono-energetic rDKE can be written as

V(fe1)− νD(u)L(fe1) = − (Vdr · ∇ρ)
∂FeMJ

∂ρ
. (1)

The first term in Eq. (1) is the mono-energetic Vlasov operator, V = (v‖h +Vdr) · ∇s,

where h = B/B and ∇s is the gradient within the magnetic surface (here, λ̇ = 0).

The second term is the pitch-angle scattering operator with the deflection frequency

νD(u) = νee
D (u) + νei

D(u) (the complete expressions for relativistic νee
D and νei

D are given

in Appendix A) and the Lorentz operator is

L =
2ξ

b

∂

∂λ

(
λξ

∂

∂λ

)
. (2)

The relativistic drift velocity can be written as

Vdr =
c

B2
E×B− me0cu

2(1 + ξ2)

2eγB3
B×∇B (3)

with E = −∇Φ = −Φ′∇ρ and Φ′ ≡ dΦ/dρ, where Φ is the plasma potential (here

and below, e = |e|). One can see that only the last term in Eq. (3) contributes to

ρ̇ ≡ Vdr · ∇ρ on the right-hand side (RHS) of Eq. (1). Since our treatment is limited

to the 1/ν-regime, only such values of E for which electrons with large E/vB make no

significant contribution to transport are considered. In this case, the E×B drift term

can be omitted in the Vlasov operator, i.e V ' v‖h · ∇s. (In the more general case, this

term must be included to obtain the
√
ν-regime which is more complex for analytical

treatment and is not considered here.)

Thermodynamic equilibrium for relativistic electrons is given by the Jüttner

distribution function [1] also known as the relativistic Maxwellian [4], which may be

conveniently represented as

feMJ(u, ρ) =
ne

π3/2u3
te

CMJ(µr)e
−µr(γ−1), (4)
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where ute = pte/me0 is the thermal momentum per unit mass with pte =
√
2me0Te and

µr = me0c
2/Te. The Maxwell-Jüttner distribution function is normalized by density,

ne =
∫
d3u feMJ , and the normalization factor is

CMJ(µr) =

√
π

2µr

e−µr

K2(µr)
' 1− 15

8µr

+O(1/µ2
r), µr � 1, (5)

whereKn(x) is the modified Bessel function of n-th order. For convenience, the Maxwell-

Jüttner distribution function is used in Eq. (1) with the Boltzmann-factor included:

FeMJ = e−eΦ/TefeMJ . (6)

Since plasma parameters such as density and temperature only depend on the flux-

surface label, ρ, the derivative in the right-hand-side of Eq. (1) can be expressed in

terms of the thermodynamic forces,

∂FeMJ

∂ρ
= [A1(ρ) + κA2(ρ)]FeMJ , (7)

where κ = µr(γ − 1) is the relativistic kinetic energy normalized by Te, and the

thermodynamic forces A1 and A2 are defined as

A1(ρ) =
n′
e

ne

−
(
3

2
+R

)
T ′
e

Te

− eΦ′

Te

, (8a)

A2(ρ) =
T ′
e

Te

, (8b)

with n′
e ≡ dne/dρ, T

′
e ≡ dTe/dρ, and the relativistic correction-term

R(µr) = µr

(
K3

K2

− 1

)
− 5

2
' 15

8µr

+O(1/µ2
r), µr � 1. (9)

Note that in contrast to the “canonical” set of the thermodynamic forces [17–19],

which depend only on the normalized gradients of density and temperature (n′
e/ne and

T ′
e/Te, respectively), and not on the absolute values of these plasma parameters, the

first thermodynamic force A1(ρ) in the relativistic set Eq. (8) contains an additional

temperature-dependent term.

Finally, the reduced mono-energetic rDKE can be represented as follows:

(h · ∇s)fe1 −
γνD(u)

uξ
L(fe1) = − γ

uξ
ρ̇ [A1(ρ) + κA2(ρ)]FeMJ . (10)

Note that similar to the non-relativistic formulation, the energy enters in Eq. (10)

only as a parameter in γνD(u)/u and the solution of Eq. (10) describes only the

pitch- and spatial behavior of the distribution function fe1, which is the same for both

relativistic and non-relativistic approaches. With the proper choice of parameters and

right-hand-side of Eq. (10), the solution from such solvers as DKES [19] and NEO-2 [20],

which solve the non-relativistic DKE directly, can be interpreted as a solution of the

mono-energetic relativistic DKE.



Relativistic neoclassical radial fluxes 5

3. Relativistic radial fluxes

In this chapter, the radial fluxes of particles and energy in the 1/ν−regime are calculated

following Ref. [16] with the mono-energetic DKE treated in the relativistic approach.

Equation (10) can be solved by integration along the field-line. Here, only the

trapped electrons, B0/Bmax < λ < B0/Bmin, are considered (Bmax and Bmin are the

absolute maximum and minimum of B on the given magnetic surface, respectively).

Enumerating the local minima of B along the magnetic field-line by k and integrating

Eq. (10) over the bounce trajectory (assumed to be closed), one can obtain

2γνD(u)

u

∂

∂λ

(
λI(k)

∂f
(k)
e1

∂λ

)
= δρ(k)

∂FeMJ

∂ρ
(11)

with

I(k) =

∮
(k)

ds

b
ξ and δρ(k) =

γ

u

∮
(k)

ds

ξ
ρ̇, (12)

where δρ(k) is the radial displacement of an electron due to the magnetic drift after

one bounce period. To solve Eq. (11), the following trick was used [16]. Applying the

explicit expression for Vdr given by Eq. (3) to ρ̇ = Vdr · ∇ρ and using the fact that

powers of ξ = σ
√
1− λb with σ = ±1 can be expressed as

ξm = − 2

(m+ 2)b

∂

∂λ
ξm+2, (13)

one can represent the integrand for δρ(k) in Eq. (12) as follows:

ρ̇

ξ
= −u2

γ

|∇ρ|kG
b2ωc0

∂

∂λ

(
ξ +

ξ3

3

)
, (14)

where ωc0 = eB0/(me0c) is the cyclotron frequency, kG = nρ · [h× (h · ∇)h] is the

geodesic curvature of the magnetic field line and nρ = ∇ρ/|∇ρ| is the unit vector

normal to the magnetic surface. Then

δρ(k) = −u

3

∂H(k)

∂λ
with H(k) =

∮
(k)

ds ξ(3 + ξ2)
|∇ρ|kG
b2ωc0

. (15)

Using this relation and the fact that I(k) = H(k) = 0 at the bottom of the magnetic

wells (when λ = B0/Bmin), the order of Eq. (11) can be reduced,

∂f
(k)
e1

∂λ
= − H(k)

6λI(k)
u2

γνD(u)

∂FeMJ

∂ρ
. (16)

The radial components of the particle and energy fluxes are given by

Γρ
e = 〈Γe · ∇ρ〉 =

〈∫
d3u ρ̇ fe1

〉
, (17a)

Qρ
e = 〈Qe · ∇ρ〉 =

〈∫
d3ume0c

2(γ − 1) ρ̇ fe1

〉
, (17b)

where fe1 is the solution of the relativistic drift-kinetic equation Eq. (10) and 〈...〉 means

averaging on the magnetic surface.
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The conductive heat flux for relativistic electrons requires special attention.

According to its physical definition [17,18], the radial conductive heat flux can be found

by extracting the advective and mechanical contributions from the radial component of

the energy flux,

qρe = Qρ
e − TeΓ

ρ
e −WeV

ρ, (18)

where

We =

∫
d3ume0c

2(γ − 1) feMJ =

(
3

2
+R

)
neTe (19)

is the energy density related to the Maxwell-Jüttner distribution function, and V ρ =

Γρ
e/ne is the flow velocity. Finally, the radial heat flux can be written as

qρe = Qρ
e −

(
5

2
+R

)
TeΓ

ρ
e. (20)

Please note that this definition differs from the non-relativistic expression accepted in

the neoclassical theory [17,18] by the additional correction term R.

It is convenient to use common notations for both the particle and energy fluxes

of the form Ji =
〈∫

hiρ̇fe1d
3u
〉
, where J1 ≡ Γρ

e and J2 ≡ Qρ
e/Te with h1 = 1 and

h2 = κ ≡ µr(γ − 1), respectively. Using in
∫
d3u the variable κ instead of u and

performing the integration over λ instead of pitch,
∫
dξ = b/2

∑
σ

∫
dλ/|ξ|, one can

obtain from Eq. (17) the following:

Ji =
π

2
u3
te

∫ ∞

0

dκ
√
κhiγ

(
γ + 1

2

)1/2
〈
b
∑
σ=±1

∫ 1/b
(k)
min

1/b
(k)
max

dλ f
(k)
e1

ρ̇

|ξ|

〉
. (21)

Then, substituting Eq. (14) into Eq. (21), an integration by parts over λ can be

performed. Finally, considering the averaging over the flux-surface as the limit of

integration along the field-line and applying Eq. (16), the desired expression for the

radial fluxes can be obtained,

Ji = −neG0CMJ

∫ ∞

0

dκ
e−κκ5/2

γν̂D(u)

(
γ + 1

2

)5/2

hi
∂ lnFeMJ

∂ρ
, (22)

with ν̂D(u) ≡ νD(u)/νe0. One can check that the non-relativistic limit considered in

Ref. [16] is recovered.

The coefficient G0 in Eq. (22), identical for both relativistic and non-relativistic

formulations, contains all parameters for plasmas and magnetic configuration which are

specific for the considered 1/ν−regime,

G0 =
4
√
2

9π3/2

u4
te

R2ω2
e0νe0

〈|∇ρ|〉2 ε3/2eff , (23)

where R is the major radius and εeff is the effective ripple amplitude (not shown here;

for details see [16]). The expression for the radial fluxes in the 1/ν collisional regime

calculated in the relativistic approach Eq. (22) is, actually, the main result of this paper.
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Figure 1. [Color online] a) Relativistic transport coefficients Lij divided by

corresponding non-relativistic values Lnr
ij are shown as the function of electron

temperature. b) Integrand of L22 (see Eq. (25)) is plotted for the different

temperatures. The value Te = 1 eV is taken as the non-relativistic limit.

Substituting in Eq. (22) the derivative of the Maxwell-Jüttner distribution function

Eq. (7), the radial fluxes can be expressed as

Ji = −ne

∑
j=1,2

LijAj, (24)

where the thermodynamic forces A1 and A2 are defined in Eq. (8) and the transport

coefficients are equal to

Lij = G0CMJ

∫ ∞

0

dκ
e−κκ5/2

γν̂D(u)

(
γ + 1

2

)5/2

hihj, (25)

with i, j = 1, 2. This definition satisfies Onsager symmetry.

4. Comparison of relativistic and non-relativistic radial fluxes

In this chapter, the role of relativistic effects in the radial neoclassical transport is

examined. Using relativistic expression for νD(u) (see Appendix A), direct numerical

integration in Eq. (25) can be done. For comparison, the expression for non-relativistic

transport is appropriate. The latter can be obtained from Eq. (25) by letting CMJ = γ =

1, κ = v2/v2te, and with the non-relativistic expression for νD(v). Since the geometrical

part of the transport coefficients is the same for both non-relativistic and relativistic

approaches, the ratio of these quantities is a pure indicator of the relativistic effects.

In Fig. 1(a), the ratios Lij/L
nr
ij are shown as a functions of Te for i, j = 1, 2 (here

and below, the label “nr” indicates the non-relativistic quantities). One can see that

the correction provided by the relativistic effects is not very strong (less than 7% for

this range of temperature). However, a non-monotonic temperature dependence is not

intuitively expected and requires an interpretation.
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In Fig. 1(b), the integrand for L22 is plotted as a function of u/ute for different

temperatures. One can see that a non-monotonic temperature dependence of Lij/L
nr
ij

can be explained by superposition of two counteracting relativistic effects. The first

one appears due to a reduction of the contribution from the bulk of the distribution

function and prevails in the low-temperature range, Te < 10 keV, leading to a decrease

of transport coefficients (note that the slope in Fig. 1(a) is almost the same for all

transport coefficients in this temperature range). A decrease of the bulk contribution

is caused by the specific feature of the Maxwell-Jüttner distribution function and can

be estimated from CMJ Eq. (5). The second effect is caused by a broadening of the

energy-range of contributing electrons and the shift of the maximum of the integrand

into higher energies, and this leads to an increase of the transport coefficients with

temperature. The latter effect appears to be important at higher temperatures. As one

can see from Fig. 1(b), in the non-relativistic limit (Te = 1 eV) the major contribution

is coming from the electrons with u/ute ∼ 1−4, while at higher temperatures this range

becomes broader and for Te = 100 keV the corresponding range is u/ute ∼ 1.5 − 6.5.

This effect is weaker for L11 than for L12 and L22 due to the lower power of κ in the

integrand in Eq. (25).

Unlike the non-relativistic case, the transport coefficients do not fully characterize

the transport properties of a confined plasma (because of the relativistic factor R in

A1) and, consequently, the comparison of particle and energy fluxes is necessary as well.

In order to make a comparison with the non-relativistic limit possible, let us consider

two special cases: (a) n′
e = Φ′ = 0, and (b) T ′

e = 0, and the corresponding fluxes can be

written, respectively, as

J
(a)
i = −ne

[
−
(
3

2
+R

)
Li,1 + Li,2

]
T ′
e

Te

, (26a)

J
(b)
i = −neLi,1

(
n′
e

ne

− eΦ′

Te

)
. (26b)

In both cases, the ratio Ji/J
nr
i no longer contains the gradients and can be easily

calculated. Note that in the case (b), Γρ
e/Γ

ρ,nr
e = L11/L

nr
11, i.e. the relativistic correction

for Γρ
e is identical to L11 which is shown in Fig. 1(a).

Following Eqs. (20) and (26), the heat flux can also be represented in a similar

manner:

qρ,(a)e /Te = −ne

[
− (4 + 2R)L12 + L22 +

(
15

4
+ 4R+R2

)
L11

]
T ′
e

Te

, (27a)

qρ,(b)e /Te = −ne

[
L12 −

(
5

2
+R

)
L11

](
n′
e

ne

− eΦ′

Te

)
. (27b)

In Eq. (27), the Onsager symmetry, L12 = L21, was used.

In Fig. 2, the ratios of Γρ
e/Γ

ρ,nr
e , Qρ

e/Q
ρ,nr
e and qρe/q

ρ,nr
e for both cases are shown. The

same non-monotonic dependence as in the case of the transport coefficients is clearly

indicated, and relativistic correction for the 1/ν radial fluxes is found to be less then

10% for the temperature range checked.
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Figure 2. [Color online] The temperature dependence of the ratios Ji/J
nr
i for two

cases, (a) and (b), respectively, is shown.

5. Summary

In this paper, the neoclassical radial fluxes for hot electrons in the 1/ν regime, which is

specific to stellarators, has been calculated in the relativistic approach. The choice of

1/ν regime was motivated by a rather intuitive expectation that the role of relativistic

effects in this regime should be most pronounced since the contribution to the radial

transport from the tail of the distribution function is the largest (the integrand in the

transport coefficients for the non-relativistic electrons in this regime scales in lowest

order as ∝ v7).

For calculations, the reduced mono-energetic relativistic DKE was derived. Apart

from the radial particle and energy fluxes, also the expression for the relativistic

conductive heat flux was obtained. The definition for the radial fluxes in the relativistic

approach has an important feature: the relativistic effects enter in the fluxes not

only through the distribution function, but also through an additional temperature-

dependent term in the first thermodynamic force. This relativistic term depends only

on the temperature, in contrast to the canonical set of radial thermodynamic forces in

which the logarithmic gradients of plasma parameters appear. Nevertheless, use of the

proposed formulation has a big advantage: the transport coefficients with the relativistic

effects taken into account can be calculated by the same numerical solvers which solve

the non-relativistic DKE directly.

Following Ref. [16], the radial fluxes were calculated from the relativistic mono-

energetic DKE and the results obtained were compared with the corresponding non-

relativistic quantities. It was found that the relativistic effects for hot electrons

produce a modest, but systematic reduction of the radial transport (up to 10% within

the temperature range relevant for fusion). However, a non-monotonic temperature

dependence of the transport coefficients is somewhat surprising. This behavior is the

result of two counteracting factors present for relativistic kinetics. The first factor is
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related to a reduction in the relativistic Maxwellians of the weight of bulk electrons

with an increase of the temperature. The second factor is caused by a broadening of

the energy-range and a shift of the maximum contribution to higher energies.

This initial investigation confirms the intuitive expectation of an absence of strong

relativistic effects in the radial transport in stellarator fusion plasmas. At the same time,

this conclusion is not general and a similar check must also be made for the banana-

regime in tokamaks. Apart from this, maybe the most important task is the calculation

of the parallel electron fluxes with the relativistic effects taken into account. Based

on the results provided in this paper, one may expect that within the non-relativistic

neoclassical treatment both the electron radial fluxes in the banana regime and the

electron bootstrap current in hot plasmas are somewhat overestimated.
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Appendix A. Relativistic expressions for deflection frequencies

Expressing the deflection frequency for the test-particle a immersed in the background

b through the diffusion coefficient for pitch-angle scattering, νab
D (u) = (2/u2)Dab

θθ(u), and

taking the general relativistic definition for Dab
θθ(u) from Ref. [4], the general expression

for νee
D (u) with the relativistic Maxwellian can be written as follows:

νee
D (u) = νe0CMJ(µr)

4√
π
× γ

u3

u∫
0

[
γ′ − 2

(
c2

u2
+

1

γ2

)
j′0[2]02 +

8

γ2

c2

u2
j′0[3]022

]
u′2

γ′ e
−µr(γ′−1)du′+

γ

u2

∞∫
u

[
γ′2

γ
− 2

(
c2

u2
+

u′2

u2γ2

)
j0[2]02 +

8

γ2

c2

u2
j0[3]022

]
u′

γ′ e
−µr(γ′−1)du′

 .

(A.1)

The specific functions jl[k]∗(z) [4] are given by:

j0[2]02(z) = (zγ − σ)/4z,

j0[3]022(z) = [−3zγ + (3 + 2z2)σ]/32z,
(A.2)

where σ(z) = ln(z + γ) with γ =
√
1 + z2 and z = u/c. Since the leading order for

z � 1 is j0[2]02 ' z2/6 and j0[3]022 ' z4/120, the non-relativistic limit, c → ∞, can be

easily obtained [17,18],

νee
D (v) = νe0

1

x3

[(
1− 1

2x2

)
erf(x) +

erf ′(x)

2x

]
, (A.3)

where x = v/vte.



Relativistic neoclassical radial fluxes 11

For νei
D , the ion background can be taken as a non-relativistic Maxwellian. For

calculations, it is sufficient to apply the high-speed-limit:

νei
D(u) = νe0Zeff

γu3
te

u3
. (A.4)

One can see that the non-relativistic limit for this expression also exactly coincides with

the classical approach.
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