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Abstract

The first stage of a significant enhancement of the ASDEX Upgrade experiment with in-
vessel coils for non-axisymmetric magnetic perturbations is now operational.First experi-
ments have shown that ELM mitigation can be achieved using various perturbation field
configurations with toroidal mode numbersn = 1,2,4. The main access criteria is the
plasma edge pedestal density to exceed a threshold, which takes the lowestvalue of about
60% of the Greenwald density for resonant|n|= 1 perturbations. In H-mode plasmas, mode
locking or error field-induced magnetic islands are generally not observed. Due to the low
local shear of the plasma magnetic field in the vicinity of the perturbation coils around
the outboard midplane, the magnetic perturbation is resonant simultaneously onseveral
rational surfaces. It is hypothesised that the existence of image currents on these surfaces
ensures good shielding of the error field in the confined plasma.

Key words: Tokamaks, ASDEX Upgrade, MHD control, Edge Localised Modes
PACS:52.55 Fa, 52.55.Rk, 52.55.Tn

1 Introduction

The ASDEX Upgrade (AUG) experiment is currently being enhanced with a set
of in-vessel saddle coils and supporting tools for MHD control [1]. The first stage
of this project, a set of 16 off-midplane coils capable of producing a small non-
axisymmetric perturbation field (radial fieldBr ∼ 10−3Bt), has been implemented
as described in Refs. [2] and [3]. For the 2011 experimental campaign, a first sub-
set of eight coils (four above and four below the midplane) have been available.
The full set of eight coils above and eight coils below the midplane has become
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operational for the 2012 campaign. So far, experiments havebeen conducted with
DC currents provided by pre-existing grid-commutated thyristor bridge converters
(two independent four quadrant circuits). A complementarymodular and econom-
ical AC-capable power supply is in preparation [4].

In view of ITER needs, physics experiments so far have mainlytargeted ELM mit-
igation [5,6], effects on High-confinement mode (H-mode) transport barrier [7,8],
3D effects on equilibrium and divertor magnetic configuration [9,10], H-mode ac-
cess threshold [11], scrape-off layer properties [12], andfast particle transport [13].
In this paper, we concentrate on the effects of perturbationfield configuration on
ELM mitigation.

2 ELM mitigation phenomenology

A regime for ELM mitigation byn = 2 magnetic perturbations has been found
soon after commissioning the first eight saddle coils [5]. With application of DC
currents, it is possible to change type-I ELMs into a benign form of ELMs with
high repetition rate and energy loss typically reduced by a factor of 10 or more.
The inner divertor remains completely detached at all timesand the inner target heat
flux essentially vanishes. The outer divertor peak heat flux is reduced by typically
a factor of 4 or larger, and splitting of strike lines due to the non-axisymmetry of
the perturbation can be seen by infrared thermography of thetargets [10].

The transition to small ELMs is induced by raising the edge density above a thresh-
old, which from data obtained so far can be described as a pedestal density of 65%
of the Greenwald densitynGW [14]. At the threshold, small ELMs occur in between,
and gradually replace, large ELMs. In this regime, there is no gradual evolution of
ELM losses, as e.g. observed in JET [15]. ELM mitigation is compatible with cryo-
genic pellet injection [16] to fuel the plasma core up to 1.5×nGW, while –unlike in
plasmas without magnetic perturbation– no large ELMs are triggered by the pellets.

Subsequently, we discuss the effects of magnetic perturbation field configuration
on ELM mitigation, in extension of a previous conference paper [17].

3 Magnetic perturbation field structure

The non-axisymmetric, doubly periodic magnetic perturbation field can be de-
scribed in terms of toroidal (n) and poloidal (m) mode numbers, i.e. the magnetic
spectrum. The saddle coils produce a radial field of orderBr ∼ 10−3Bt at the plasma
surface close to the coils positions, which drops off ratherquickly with increasing
distance to the coils. The eight coils of each toroidal row are positioned at regular
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Fig. 1. Normal field on the unfolded nominalq=−2 surface (colour contours), overplotted
with field lines at different rational surfaces.

toroidal angle intervals, so the toroidal mode number spectrum is dominated by the
fundamental mode of the coil current pattern,n = ±1,±2 or ±4 with harmonics
l ×n (l odd ordinal number) and aliasing components (4±n etc).

Magnetic surfaces are resonant with the perturbation field,if the safety factor of
that surfaceq = m/n, or in other words, if field lines close into themselves after
m toroidal andn poloidal passes around the torus. By convention, for the standard
AUG field and plasma current directions used here (Bt < 0, Ip > 0), q< 0, so a res-
onance occurs form/n< 0. The mode number (m,n) spectrum is point-symmetric,
and here we choose to describe it in them> 0 half-space, so that a resonance can
occur forn< 0.

The poloidal truncation of the coils results in a broadm-spectrum, however the
existence of two toroidal rows allows to vary the resonant field component. This
is important, since the nature of expected physics effects on the plasma differs for
resonant and non-resonant perturbation fields.

The magnetic plasma configuration has a profound effect on the occurrence of res-
onances. As an example, we consider the diverted plasma discharge AUG #27339
(lower single null) with toroidal fieldBt = −2.5 T, plasma currentIp = 1.2 MA,
and edge safety factorq95 = −3.4. Eight saddle coils are operated with a coil cur-
rent I = 960 A (with five windings of each coil, corresponding to 4.8 kA×turns)
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Fig. 2. Poloidal mode number spectrumBn(m) [T] for n= −2 magnetic perturbation, cal-
culated for theq=−2 (top) andq=−4 (bottom) surfaces.

to produce ann = ±2 error field with “even” up/down parity, i.e. same direction
of the radial field in upper and lower coil rings. Fig. 1 shows,as colour contours,
the normal component of the vacuum perturbation field, calculated on theq= −2
flux surface, as reconstructed from the unperturbed (i.e. axisymmetric) magnetohy-
drodynamic force equilibrium, plotted vs. toroidal (φ) and poloidal (θ) geometrical
angles of the axisymmetric torus. Outboard midplane is atθ = 0, plasma top at
θ = 90◦ and bottom atθ =−90◦. Blue and red colours denote opposite sign (direc-
tion) of the normal field. Overplotted are field lines (at arbitrary toroidal position) at
different half-integer safety factor,q= −2. . .−4.5. Due to vanishing axisymmet-
ric poloidal field at the magnetic limiter (active X-line atθ ≈−100◦) the magnetic
field is mainly in toroidal direction in the vicinity of the lower and upper X-lines.
A surface with rationalq is spanned by mutually unconnected field lines. As can be
seen in Fig. 1, there are field lines that intersect regions ofeither only positive (say,
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blue) or only negative (red) normal perturbation field. Resonant effects can occur,
for example induction of a field-aligned helical current in the presence of plasma
flows. Conversely, if the current direction in one of the two coil rows is reversed
(“odd” parity), resonant effects are minimised.

At the outboard midplane, in between the two rows of saddle coils, the local mag-
netic shear is small, and the resonance condition is either met or not met simulta-
neously for suitable rational surfaces. In other words, theglobal shear originates
to a large extent from the regions at the plasma bottom and top, i.e. diversion and
elongation produced by the plasma shaping currents. It is interesting to note that
the H-mode edge bootstrap current density, however important locally for edge
stability, does not significantly influence the resonance condition on internal flux
surfaces because the total edge bootstrap current is small (order of 10%) compared
to the total plasma and shaping currents.

In a modal representation, the effects of a non-circular plasma (and broad spectrum
of the external perturbation) can be described as coupling between poloidal spec-
tral components [18]. However, the main effects can more easily be visualised by
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considering a “local” mode spectrum, separately for each rational flux surface in
the plasma (half-integerq for n=−2 in our example). In a straight field line angle
system(φ∗,θ∗), conveniently the one withφ∗ = φ, the poloidal spectrum can be ob-
tained by a Fourier transform inθ∗ direction for anyn component of choice. Since
the transformationθ∗(θ) depends on the metrics of the flux surface, this “local”
spectrum is different for each resonant surface. Fig. 2 shows the poloidal spectrum
for our example at theq=−2 andq=−4 surfaces. Resonant components (m= q n)
are highlighted in red colour; they are at or near a maximum onboth surfaces (and
all resonant surfaces in between), and their amplitude is ofthe order of 10−4Bt ,
one order below the peak field in front of the coils. Reversal ofthe up/down par-
ity from “even” to “odd” shifts the spectral minima into the resonance and hence
allows to produce virtually entirely non-resonant perturbations everywhere. The
non-resonant field components are similarly strong in both cases.

Many resonant surfaces exist, in particular in the high shear region near the sepa-
ratrix due to the poloidal field null at the X-line. This can beexpected to become
important for the screening of the perturbation field by induced helical image cur-
rents in the plasma [19]. The calculation of these screeningcurrents is not straight-
forward and involves considering forced reconnection and magnetic islands that
interact non-linearly with the surrounding rotating plasma [20]. However, it can
be expected that calculations for circular limiter plasmas(with only one resonant
surface) systematically underestimate the field shieldingeffects.

An experimental hint is given by the example pulse, #27339. Strong auxiliary heat-
ing, Neutral Beam InjectionPNBI = 12.5 MW, Ion Cyclotron Radio Frequency heat-
ing PICRF = 3 MW, and Electron Cyclotron Resonance HeatingPECRH= 1.6 MW,
does not only allow access to high-confinement mode but also gives rise to a
plasma beta-driven neo-classical tearing mode (NTM). Fig.3 shows time traces
of saddle coil current, plasma density and toroidal plasma rotation frequency, mea-
sured by charge exchange recombination spectroscopy (CER) ona heating beam
at a normalised flux radius ofρp = 0.8 as well as a spectrogram of a magnetic
probe showing the NTM island rotation. Them= 3, n= 2 tearing mode appears at
t = 3.7 s, accompanied by slowing down of the plasma rotation, while the saddle
coils are operated at constant current. The saddle coil current is ramped down from
t = 4.4−4.5 s, but the removal of the magnetic perturbation apparentlydoes not
influence the MHD mode activity nor the plasma fluid rotation speed. Assuming
vacuum perturbation field and a helical current ofI = 10 kA associated with the
NTM at theq= 3/2 surface, the resonantI ×Bn torque exceeds the neutral beam
torque input by two orders of magnitude. Yet no discernible change of island or
plasma rotation due to the change of saddle coil current is seen. This is typical of
AUG H-mode pulses where effects of the error field on plasma rotation are mostly
very weak [6].
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Fig. 4. Normal field onq=−4 surface for a coil current perturbation aimed to approximate
ann= 1 perturbation.

4 ELM mitigation with |n|= 1 magnetic perturbations

Magnetic perturbations with|n|= 1 can be approximated even with only one power
supply circuit. Fig. 4 shows the normal field on the unfoldedq = −4 surface in
straight field line coordinates, again with a field line for comparison. The toroidal
phase angle∆φ of upper vs. lower coil ring is adjusted (in 45◦ increments) to max-
imise the resonant component for pulse #27941 (∆φ =−45◦) and to minimise it for
pulse #27943 (∆φ = 135◦). The resultingm spectra are shown in Fig. 5. Thus, the
resonant field component (m= 4,n=−1) on theq=−4 surface, is varied by more
than a factor of 2.5.
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Fig. 5. Poloidal mode number (m) spectra of then=−1 toroidal mode of the perturbation
shown in Fig. 4.

Fig. 6 shows time traces of these discharges and a control experiment (#27942)
with saddle coils off. Apart from the saddle coil configuration, the plasma param-
eters are identical: Fuelling by feed forward gas puff,Bt =−2.45 T, Ip = 0.8 MA,
low triangularity shape, and edge safety factorq95 = −5.1. These plasmas can be
directly compared with a similar configuration reported in Ref. [6] for n = 2 per-
turbations. During a phase with DC saddle coils current (I = 900 A) applied, the
gas rate is ramped up linearly to probe the ELM mitigation threshold. The appear-
ance of type-I ELMs is unambiguously detected as large spikes in the outer diver-
tor currents, measured with a shunt resistor of one outer divertor plate sections.
For both optimum resonant and non-resonant perturbations type-I ELMs disappear
completely at a certain time during the gas scan. The plasma density (shown in Fig.
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6 is the line-averaged density from a peripheral DCN interferometer chord) differs:
With non-resonant field, it is about 10% above that with resonant field and that of
the reference discharge. The onset of ELM mitigation occursat an edge density of
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6.2×1019 m−3 ∼ 60%nGW for the resonant case and 7.1×1019 m−3 ∼ 69%nGW

for the non-resonant case. In the control case with saddle coils off, type-I ELMs
persist even at higher pedestal density, 7.3×1019 m−3 ∼ 71%nGW, ultimately at
reduced repetition frequency.

5 ELM mitigation with |n|= 4 magnetic perturbations

Eight coils in toroidal direction allow to produce perturbations with |n|= 4 funda-
mental and essentially no toroidal subharmonics. Since resonant components have
high poloidal mode number and therefore decay on short radial scales, it is inter-
esting to see if ELMs can be mitigated.

Figure 7 shows the most promising discharge with|n| = 4 made in AUG so far.
The gas rate is adjusted to obtain a pedestal density close tothe density threshold
found previously for|n|= 2 perturbations (65%nGW). Other plasma parameters are
similar to the|n|= 1 experiment discussed in the previous section. Upper and lower
saddle coil rows are powered separately by a four quadrant converter each. This
allows, in a single pulse, to operate one coil row alone (upper or lower row), and to
flip the upper/lower phase between even and odd parity, whichare non-resonant and
resonant, respectively, for this discharge. Type-I ELMs are completely suppressed
only for non-resonant perturbation and, to some extent, with current only in the
lower coil row. Properties of the ELM mitigation phases are very similar to the
observations with|n| = 2 fields: The inner divertor power (measured by infrared
thermography on the target) essentially vanishes due to (temporally and spatially)
complete detachment, and the outer divertor power (area integrated heat flux) drops
to close to the previous inter-ELM level.

The pedestal density responds very little to the changes of the perturbation field
structure and remains close to the empirical|n| = 2 threshold value. It should be
noted that in discharges (not shown here) with lower gas puff(Γ = 1×1022 D/s),
ELM mitigation was not observed and with higher gas puff (Γ = 3× 1022 D/s),
only small ELMs occurred regardless of whether saddle coilswere operated or not.
In all cases there was little variation of the plasma density, which shows that the
|n|= 4 ELM mitigation window is rather restricted.

6 Summary and Conclusion

In summary, ELM mitigation is observed in ASDEX Upgrade by application of
magnetic perturbations with the newly installed set of 2×8 in-vessel saddle coils,
using a variety of configurations with|n| = 1,2,4 and a varying phase angle of
upper and lower toroidal ring to probe the importance of resonant components.
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Fig. 7. Time traces of AUG pulse #27800 (|n|= 4) with time intervals of resonant, non-res-
onant and single coil row perturbations (upper or lower row).

The ELM mitigation effect does not seem to rely on the resonant perturbation field,
however the plasma density reacts somewhat to the field configuration. In particular
at |n| = 1, the edge density higher by about 10% for entirely non-resonant pertur-
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bation compared to the cases with resonant and no perturbation field. This finding
contrasts somewhat with observations of density “pump-out” during resonant per-
turbations in other experiments [15,21,22]. A clear density reduction is observed
in ASDEX Upgrade H-modes with resonant perturbations at lower plasma density,
albeit not in combination with type-I ELM suppression.

Application of|n|= 1 resonant magnetic perturbations seem to reduce the threshold
density for ELM mitigation by about 10% compared to|n|= 2 and no operational
penalty such as vulnerability to locked modes seems to be encountered for H-mode
plasmas. ELM mitigation has been found in plasmas with different heating meth-
ods, different momentum input and hence, different plasma rotation velocities. If
penetration of the magnetic perturbation into the core plasma, beyond the edge
pedestal, was essential for ELM mitigation, one would expect a dependence on
plasma rotation. Geometrical considerations suggest thatimage currents on many
resonant surfaces can be an essential ingredient for field screening, however a quan-
titative study of error field attenuation (and field penetration) for these AUG pulses
is still missing. Experimentally, there is no indication for significant magnetic is-
lands produced by the external field. Even pre-existing tearing modes typically do
not lock to the error field in H-mode plasmas.

As a main restriction, ELM mitigation is found only at relatively high pedestal
density,n/nGW ≥ 60%. In AUG, this corresponds to relatively large pedestal col-
lisionalities,ν∗i ≥ 1.0, although this does not seem to be a collisionality boundary
[6]. Attempts to reproduce the low collisionality DIII-D ELM suppression scenario
[21] in AUG are being made, so far without success.
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