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Abstract

A new mechanism for toroidal momentum transport in a tokamak is investigated using the gyro-

kinetic model. First, an analytic model is developed through the use of the ballooning transform.

The terms that generate the momentum transport are then connected with the poloidal derivative

of the ballooning envelope, which are one order smaller in the normalised Larmor radius, compared

with the derivative of the eikonal. The mechanism, therefore, does not introduce an inhomogeneity

in the radial direction, in contrast with the effect of profile shearing. Numerical simulations of

the linear ion temperature gradient mode with adiabatic electrons, retaining the finite ρ∗ effects in

the ExB velocity, the drift, and the gyro-average, are presented. The momentum flux is found to

be linear in the normalised Larmor radius (ρ∗) but is, nevertheless, generating a sizeable counter-

current rotation. The total momentum flux scales linear with the aspect ratio of the considered

magnetic surface, and increases with increasing magnetic shear, safety factor, and density and

temperature gradients.

PACS numbers: 52.25.Fi, 52.25.Xz, 52.30.Gz, 52.35.Qz, 52.55.Fa
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I. INTRODUCTION

For a tokamak, plasma rotation can be beneficial for confinement and stability. In partic-

ular, if the rotation is associated with a sufficiently large ExB shear, it stabilises turbulence

[1–3], and leads to an enhanced energy and particle confinement. For this reason, there is

a strong interest in the experiments on, and the theoretical description of, plasma rotation.

An observation of particular relevance to a fusion reactor is the occurrence of spontaneous

rotation [4–14], i.e. a plasma rotation that develops without an externally applied torque.

The theoretical description of this spontaneous rotation has attracted much interest, and

significant progress has been made in recent years. For an overview we refer the reader to

Ref. [15].

All contributions to toroidal momentum transport are associated with a parity symmetry

breaking mechanism in the gyro-kinetic equation [15–17]. It was shown in [15] that to lowest

order in the normalised Larmor radius ρ∗ = ρi/R0 ≪ 1, where ρi is the ion Larmor radius

and R0 is the major radius of the magnetic axis, a finite momentum flux is generated only

in the presence of a rotation gradient [18] or for a rotating plasma through the Coriolis

pinch [19, 20] or for a non up-down symmetric magnetic equilibrium [21, 22]. In next order

many different mechanisms appear. The most studied mechanisms to day are: the effect of

neo-classical equilibrium flows [23], the ExB shear [24–28] and some form of radial profile

shearing [29–31]. The latter two mechanisms introduce an inhomogeneity in the radial

direction.

In this paper a new mechanism of toroidal momentum transport is studied. The mecha-

nism is connected with higher order, in the normalised Larmor radius ρ∗, parallel derivatives

of the perturbed distribution as well as the perturbed fields. For micro-instabilities, the per-

turbed quantities have scale lengths perpendicular to the magnetic field that are of the

order of the Larmor radius. The fast transport along the magnetic field, however, strongly

damps short scale perturbations, and the scale length along the magnetic field is of the

order of the system size (R0). This ordering allows some parallel derivatives that appear

in the model equations to be neglected since they are one order smaller in the normalised

Larmor radius (ρ∗) compared with the perpendicular gradients. The neglected terms, how-

ever, do break the parity symmetry and might, despite their smallness, be of relevance in

the description of momentum transport. In this paper, the effect of the parallel derivatives
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of the perturbed potential and distribution function on momentum transport is studied. A

Maxwell background will be assumed and, therefore, no effects due to the neo-classical flows

[23] or equilbrium potential perturbation [32, 33] are retained. The paper concentrates on

quasi-linear theory, leaving the non-linear state for further study.

Before turning to the complete model description and its numerical solution, the physics

mechanism is discussed below using an analytic model. We stress that this model does not

include all contributions to the momentum flux obtained in the model that is developed in

the next section. The goal of the analytic model is to clarify the physics and to provide a

first estimation of the expected momentum transport. The physics mechanism considered in

this paper can be most easily clarified using the ballooning transform with ŝ− α geometry

[34]. All perturbed quantities are then assumed to have the form

G(r, θ, ϕ) = Ĝ(θ) exp[in(ϕ− q(r)θ)− iωt] + c.c., (1)

where ϕ (θ) is the toroidal (poloidal) angle, r is the radius of the flux surface, n≫ 1 is the

toroidal mode number of the instability, q is the safety factor, ω = ωR + iγ is the complex

frequency, and c.c. denotes the complex conjugate. The rapid variation (n ≫ 1) of the

perturbation perpendicular to the magnetic field is represented by the eikonal, with the

argument (ϕ − qθ) chosen such that it is constant along the magnetic field. The envelope

Ĝ is then assumed a slowly varying function of the poloidal angle (θ). The ExB velocity

(vE = b×∇φ/B) using the expression above is

v̂E =
in

B
b×∇(ϕ− qθ)φ̂(θ) + b×∇θ 1

B

∂φ̂

∂θ
, (2)

where φ is the electro-static potential, b is the unit vector along the magnetic field B, B

is the magnetic field strength, and the FLR effects connected with the gyro-average of the

potential have been neglected for the sake of clarity. The first term in the expression above

is due to the gradient of the eikonal, whereas the second term is due to the derivative of the

envelope. For micro-instabilities, n ∝ 1/ρ∗ ≫ 1. The second term is one order smaller in the

normalised Larmor radius compared with the first and is, therefore, neglected in the lowest

order local limit. In this paper the term ’lowest order local limit’ will be used to indicate the

gyro-kinetic model that retains terms only to lowest relevant order in the normalised Larmor

radius. In this limit the radial variation of plasma and geometry parameters is neglected,
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i.e. the model is local to a specific magnetic surface. The new physics, finite ρ∗, terms

introduced in this paper do not introduce a radial inhomogeneity and, therefore, the model

remains ’local’, but not ’lowest order’. The discussed physics effects are therefore distinct

from any form of profile shearing, which relies on the introduction of a radial inhomogeneity.

In the lowest order local limit the solution of the gyro-kinetic equation yields a potential

perturbation that is symmetric in θ [15–17]. It can be directly verified that the first term

in Eq. (2) then yields a contribution that is symmetric in θ, whereas the second term is

anti-symmetric. Based on this model we are searching for higher order ρ∗ terms that breaks

the parity symmetry of gyro-kinetic equation The higher order ρ∗ contribution to the ExB

velocity breaks the parity symmetry of the gyro-kinetic equation and leads to a finite, non-

diffusive, flux of toroidal momentum.

A simple estimate of the consequences of the higher order ρ∗ contribution in the ExB

velocity on the momentum flux can be obtained by considering the gyro-kinetic equation for

singly charged ions retaining only the effect of the fluctuating ExB velocity in the background

Maxwell distribution, and the acceleration along the magnetic field due to the electro-static

potential
∂f

∂t
= −vE · ∇FM +

e

m
b · ∇φ∂FM

∂v‖
, (3)

where v‖ is the parallel velocity, e the elementary charge, m is the ion mass, f the perturbed

ion distribution function, and FM the Maxwellian of the ions

FM =
n0

π3/2v3th
exp

[

−(v‖ − RBtωϕ/B)2 + 2µB/m

v2th

]

. (4)

In the equation above n0 is the particle density, vth =
√

2T/m the thermal velocity, ωϕ(r)

is the radial profile of the angular toroidal rotation frequency, Bt the toroidal component

of the magnetic field, R the major radius, µ = mv2⊥/2B the magnetic moment, T the

temperature, and v⊥ the velocity perpendicular to the magnetic field. Building the parallel

velocity moment of the (reduced) gyro-kinetic equation, assuming a Maxwell closure (for

the moments see Ref. [35]), yields an equation for the perturbed parallel velocity (ŵ)

−iωŵ = − ikθ
B

[

φ̂+
i

nq

∂φ̂

∂θ

]

R0

∂ωϕ
∂r

− e

m

1

qR0

∂φ̂

∂θ
, (5)

where kθ = nq/r, and b ·∇φ̂ = (1/qR0)∂φ̂/∂θ have been used. Furthermore, the gradient of

the Maxwellian has been evaluated at the surface for which ωϕ = 0 (i.e. there is no Coriolis
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pinch contribution), and finite inverse aspect ratio effects have been neglected (RBt/B ≈ R0,

b ≈ eϕ).

The radial flux of toroidal momentum averaged over the flux surface is

Γrϕ =
1

4π2

∮

dϕ

∮

dθmn0v
r
Ew, (6)

where vrE is the radial component of the ExB velocity, and finite inverse aspect ratio effects

in the flux surface average have been neglected. Substituting the eikonal form of Eq. (1)

and integrating over the toroidal angle yields

Γrϕ =
1

2π

∮

dθRe
(
2mn0v̂

r
Eŵ

†
)
, (7)

where Re denotes the real part and the dagger the complex conjugate. From the equation

of the perturbed parallel velocity, using the complex frequency ω = ωR + iγ one can derive

ŵ† =
ωR + iγ

|ω|2
kθ
B

[

φ̂† − i

nq

∂φ̂†

∂θ

]

R0

∂ωϕ
∂r

+i
ωR + iγ

|ω|2
e

m

1

qR0

∂φ̂†

∂θ
. (8)

Then substituting the expression for the ExB velocity, and retaining the lowest order relevant

ρ∗ terms only, one obtains

Re[v̂rEŵ
†] =

γ

|ω|2



− k2θ
B2

|φ|2R0

∂ωϕ
∂r

+
kθe

qR0Bm

1

nq

∣
∣
∣
∣
∣

∂φ̂

∂θ

∣
∣
∣
∣
∣
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−Re

[

ekθ
qR0Bm

ωR + iγ

|ω|2 φ̂
∂φ̂†

∂θ

]

. (9)

To proceed the potential amplitude is split in a real and imaginary part

φ̂ = φ̂R + iφ̂I . (10)

Using the periodicity constraint in the poloidal angle, one obtains

∮

dθφ̂
∂φ̂†

∂θ
= 2i

∮

dθ φ̂I
∂φ̂R
∂θ

. (11)

At this point a particular choice for the potential φ̂ must be made. If no symmetry

breaking mechanisms are present the potential is symmetric in θ. However, the higher order
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ρ∗ contribution to the ExB velocity breaks the symmetry and, since the ExB velocity directly

contributes to the drive of the instability, we assume a potential that has a form similar to

the radial component of the ExB velocity

φ̂ = φ̂0 +
i

nq

∂φ̂0

∂θ
, (12)

where φ̂0 is symmetric in θ. The Ansatz made above requires n ≫ 1, which is therefore a

limit on the results of the analytic model presented here. The model equations developed

in the next section do not have the same limitation and are valid for all toroidal mode

numbers. We note that a finite momentum flux is found from the equations given above

even if we choose φ̂ = φ̂0. This is because finite ρ∗ terms have been kept in the equation

for the perturbed velocity ŵ (Eq. (5)). The second term on the right hand side of Eq. (12)

that represents the broken symmetry for the potential and is ρ∗ smaller than the first term,

further enhances the momentum flux. The asymmetry in the potential, proposed in the

equation above, is directly observed in the numerical simulations that will be discussed in

Section III.

Substituting the expression for the potential given by Eq. (12), and using the symmetry

of φ̂0, again considering the lowest order relevant ρ∗ ∝ 1/n terms, one obtains

∮

dθφ̂
∂φ̂†

∂θ
=

2i

nq

∮

dθ

∣
∣
∣
∣
∣

∂φ̂0

∂θ

∣
∣
∣
∣
∣

2

. (13)

Using this expression in the equation for the momentum flux we finally obtain

Γrϕ =
mn0k

2
θT

2

πe2B2

γ

|ω|2
∮

dθ

[

−
∣
∣
∣
∣
∣

eφ̂0

T

∣
∣
∣
∣
∣

2

R0

∂ωϕ
∂r

+

+
3vthρ∗

qR0(kθρ)2ǫ

∣
∣
∣
∣
∣

∂

∂θ

(

eφ̂0

T

)∣
∣
∣
∣
∣

2]

, (14)

where the Larmor radius is ρ = mvth/eB. If no external torque is applied on the plasma

the equation above predicts a stationary rotation gradient u′EQ = −(R2
0/vth)(∂ωϕ/∂r)

u′EQ = − 3

q(kθρ)2ǫ

∮
|∂(eφ̂0/T )/∂θ|2 dθ
∮
|eφ̂0/T |2 dθ

ρ∗. (15)

The sign of the gradient means that the plasma centre would rotate in the counter-current

direction, if the rotation frequency at the edge is zero. The ratio of the integrals can be
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estimated by introducing a scale length Lθ for the potential perturbation

u′EQ = − 3

q(kθρ)2ǫL
2
θ

ρ∗. (16)

The effect is obviously a finite ρ∗ effect, but for standard parameters q = 1.4, kθρ = 0.3,

ǫ = 0.16, and Lθ = 1 one obtains

u′EQ = −149ρ∗. (17)

The estimate above indicates that for the DIII-D cyclone base case [36] |u′EQ| = 0.38 even

without any external momentum input. This value is to be compared with the range |u′EQ| =
[0 − 1] obtained in H-mode [16] with neutral beam heating and, consequently, with an

applied external torque. An alternative method to estimate its relevance is to compare this

contribution with the more familiar ExB shear. Adopting the estimate of the ExB shear rate

γE = ρ∗(R/LT )
2 (for details see Ref. [15]) one obtains for the cyclone case |u′EQ| = 47ρ∗. The

mechanism discussed here can dominate over the ExB shearing but, of course, the relative

strength depends on the actual plasma parameters considered. One can also compare the

momentum flux with the effect of the pinch. Using V/χϕ ≈ −3 [15] one finds that the

Coriolis pinch leads to a similar momentum flux as the higher order ρ∗ terms when the

mach number of the toroidal rotation u = Rωϕ/vth ≈ 50ρ∗, for the parameters given above.

Even though the momentum flux introduced in this section is due to a finite ρ∗ correction,

it is not negligible. When developing the ρ∗ expansion, all quantities like ǫ and kθρ are

taken to be of order unity, but the products of such quantities can still result in a factor

comparable to 1/ρ∗.

The mechanism discussed above is only one of several obtained when considering deriva-

tives towards the parallel coordinate. Following the discussion above we can identify several

finite ρ∗ effects that might lead to substantial momentum flux contributions:

A Higher order ρ∗ corrections to the ExB velocity. (The effects of this mechanism have been

estimated above.)

B Higher order ρ∗ corrections in the treatment of the drift due to the magnetic field inho-

mogeneity (vD)

C Higher order ρ∗ corrections to the particle trapping.
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D Higher order ρ∗ corrections in the gyro-average as well as polarisation. (Note that these

two are interlinked.)

E Higher order ρ∗ correction to the calculation of the fluxes. (This is linked with the first

point)

It will be shown below that each of these effects breaks the parity symmetry of the gyro-

kinetic equation, and leads to momentum transport.

II. THE MODEL

Starting point of the model used in this paper is the gyro-kinetic equations of motion

dX

dt
= v‖b+ vD + vE

dv‖
dt

= − 1

mv‖

dX

dt
· (Ze∇〈φ〉+ µ∇B) , (18)

where vD is the drift velocity due to the inhomogeneous magnetic field, and vE is the ExB

drift,

vD =
1

Ze

(

mv2‖
B

+ µ

)

B×∇B
B2

+
mv2‖
2Ze

β ′B×∇ψ
B2

vE =
b×∇〈φ〉

B
. (19)

In this paper we do not consider the drift due to the Coriolis and Centrifugal forces [35, 38].

In Eq. (18) the angle brackets around the potential (φ) indicate the gyro-average

〈φ〉 = 1

2π

∮

dαφ(R+ ρ), (20)

where α is the gyro-angle, ρ is the Larmor radius, and

ρ = ρ(e1 cosα + e2 sinα) (21)

is the vector pointing from the gyro centre to the particle position. The vectors e1 and e2

are orthogonal unity vectors perpendicular to the magnetic field (B). The equations above

are not correct to all orders in the normalised Larmor radius [39, 40]. The model, therefore,

is unable to retrieve all finite ρ∗ corrections. It is, however, able to describe the finite ρ∗

effects mentioned in the introduction as it will be shown below.
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Field aligned Hamada coordinates (ψ, ζ, s) are used. For these coordinates the contra-

variant components of the magnetic field are flux functions and Bψ = Bζ = 0. The radial

coordinate ψ is a flux label, and the coordinates are chosen such that ζ remains an ignorable

coordinate, i.e. all scalars that satisfy toroidal symmetry are not a function of ζ (For instance

B = B(ψ, s)). The coordinate s acts as a parallel coordinateB·∇ = Bs∂/∂s. The perturbed

distribution function as well as the perturbed fields are assumed to have a scale length of

the order ρ in the ψ and ζ direction, but a scale length R0 along the magnetic field. This

leads to the ordering

O
(
∂f

∂s

)

= ρ∗O
(
∂f

∂ψ
, ρ∗

∂f

∂ζ

)

. (22)

It must be noted here that, although s acts as a parallel coordinate, ∇s does not point along
the magnetic field. In fact, in the simplified ŝ− α geometry s = θ/2π and ∇s points in the

poloidal direction. The higher order ρ∗ derivatives towards s that are neglected in the lowest

order local limit, therefore, are similar to the derivatives of the envelope in the ballooning

transform. Below we will go through the various effects mentioned in the introduction and

discuss what changes to the local model are necessary to retain them. The momentum

fluxes are calculated using the gyro-kinetic code GKW, and for details on the local model

the reader is referred to Ref. [37].

A. Higher order ρ∗ corrections to the ExB velocity

In the linear theory the convection due to the ExB velocity is kept only for the background

Maxwell distribution (FM)

vE · ∇FM =
b

B
· (∇xα ×∇ψ)∂〈φ〉

∂xα
∂FM
∂ψ

, (23)

where x1 = ψ, x2 = ζ , x3 = s, and the Einstein summation convention has been applied. Due

to the ordering, in the lowest order local limit, the derivative of 〈φ〉 towards s is neglected

as it results in a term that is smaller by one order in the normalised Larmor radius. The

additional term, not considered in the lowest order local limit, that we have to add to the

model in order to describe the finite ρ∗ effects therefore is

vE · ∇FM +
=

b

B
· (∇s×∇ψ)∂〈φ〉

∂s

∂FM
∂ψ

. (24)
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Here, and below, we have used the symbol
+
= to indicate the finite ρ∗ terms, that have to be

considered additionally to those of the lowest order local limit. Because the cross product

of the gradients of the coordinates often appears in the equations, it is useful to define the

tensor

Eαβ =
b

2B
(∇xα ×∇xβ), (25)

where the factor 2 has been introduced to make the definition equivalent with Ref. [37].

Then

vE · ∇FM +
=2Esψ ∂〈φ〉

∂s

∂FM
∂ψ

. (26)

B. Higher order ρ∗ correction in the drift due to the magnetic field inhomogeneity

A similar argument applies to the convection caused by the drift velocity

vD · ∇ = vαD
∂

∂xα
. (27)

Because the derivative of any perturbed quantity towards s is one order smaller in the

normalised Larmor radius, such derivatives are neglected in the lowest order local limit.

Therefore the additional finite ρ∗ term that has to be considered is

vD · ∇ +
= vsD

∂

∂s
=

2

[(

mv2‖
ZeB

+
µ

Ze

)

∂B

∂ψ
+
mv2‖
2Ze

β ′

]

Eψs ∂
∂s

. (28)

C. Higher order ρ∗ corrections to the particle trapping

In developing the lowest order local limit only the lowest order relevant ρ∗ terms are

retained. The particle trapping is then evaluated considering the parallel convection only.

For a finite beta plasma there is, however, a finite ρ∗ correction to the trapping connected

with the drift motion

∂f

∂t
+
=

µv‖
2ZeB2

β ′(B×∇ψ) · ∇B ∂f

∂v‖

=
µv‖
Ze

β ′Eψs∂B
∂s

∂f

∂v‖
. (29)

This correction is not only small in ρ∗, it is also proportional to β ′ and, therefore, negligible

for low β experiments.

10



D. Higher order ρ∗ corrections in the gyro-average as well as polarisation

The gyro-average is defined through Eq. (20), with the vector ρ given by Eq. (21). The

unit vectors in the latter equation can be taken to be

e1 =
∇ψ
√

|∇ψ|
e2 =

b×∇ψ
√

|∇ψ|
. (30)

The variation of the potential in the s−direction is small

ρ · ∇s∂φ
∂s

∼ O
(

ρ∗ρ · ∇ψ ∂φ
∂ψ

)

, (31)

and the gyro-average in the lowest order local limit is performed considering the dependence

of φ on ψ and ζ only. In principle the full gyro-average can be performed by integrating

over the ring retaining also the dependence of φ on s. However, since the variation with s

is small it is easier to use a Taylor expansion of φ in s, retaining only terms up to the first

order

〈φ〉(ψ, ζ, s) = 1

2π

∮

dα

[

φ(ψ + ρ · ∇ψ, ζ + ρ · ∇ζ, s)

+
∂φ(ψ + ρ · ∇ψ, ζ + ρ · ∇ζ, s)

∂s
ρ · ∇s

]

. (32)

Because of the ordering the second term in the square brackets of the equation above is one

order smaller in ρ∗.

All simulations that retain the finite ρ∗ terms in the gyro-average, are performed using

finite difference in the radial and s−direction while a spectral representation is used for

the ζ-direction. The integral of the gyro-average is performed using 32 points on the gyro-

ring. The values of the function in between the radial grid points is obtained by linear

interpolation. The derivative towards s in the equation above is calculated using central

differencing on the s-grid.

Modifications in the gyro-average directly affect the gyro-kinetic Poison equation:

−Z
2e2

T

∫

d3v (〈〈φ〉〉 − φ)FM

= Ze

∫

d3v 〈f〉 − n0

eφ

Te
(33)

where Z is the ion charge number, Te the electron temperature, and the last term on the

right hand side represents the adiabatic electron response. In this equation the gyro-average
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of both the perturbed ion distribution function f as well as the gyro-average of the gyro-

averaged potential appears. Consistency demands that when the gyro-average of the poten-

tial in the evolution equation is modified, the same modification is applied to the Poisson

equation.

E. Higher order ρ∗ terms in calculating the fluxes.

The quasi-linear toroidal momentum flux is evaluated as

Γψϕ =

{∫

d3v (vE · ∇ψ)mv‖RBt

B
f

}

, (34)

where the brackets {} denote the flux surface average. Consistent with the finite ρ∗ correction

of vE · ∇FM , a correction to toroidal momentum flux appears

Γψϕ
+
=

{

2

∫

d3v Esψ ∂〈φ〉
∂s

mv‖RBt

B
f

}

, (35)

with similar expression for the fluxes of particles and energy.

F. Model set of equations

For the sake of completeness, and to document exactly which equations are being solved,

in this section the full set of equations is given. The notation, and normalisation are given in

Ref. [37], and the reader is referred to this paper for further details. The evolution equation

for the perturbed distribution f consists of several contributions

∂f

∂t
= I + II + III + IV + V+ VI (36)
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The various terms in this equation are

I =− v‖b · ∇f → −vRv‖
Bs

B

∂f̂

∂s
(37)

II =− vD · ∇f → − ikp
Z
TREDDpf̂+

− ρ∗
1

Z
TREDDs∂f̂

∂s
︸ ︷︷ ︸

B1

(38)

III = +
1

mv‖
(v‖b+ vD) · µ∇B

∂f

∂v‖
→ (39)

vRB
Bs

B2
µ
∂f

∂v‖
+ ρ∗

T

Z
v‖Eψs

∂B

∂s

β ′

B2
µ
∂f

∂v‖
︸ ︷︷ ︸

C

(40)

IV =− vE · ∇FM →

ikp〈φ̂〉Epψ
[
1

Ln
+ ET

1

LT
+

2v‖
vR

RBt

B
u′
]

FM

+ ρ∗
∂〈φ̂〉
∂s

Esψ
[
1

Ln
+ ET

1

LT
+

2v‖
vR

RBt

B
u′
]

FM
︸ ︷︷ ︸

A

, (41)

V =− Ze

T
v‖b · ∇〈φ̂〉FM → − Z

TR
vRv‖

Bs

B

∂〈φ̂〉
∂s

FM , (42)

VI =− Ze

T
vD · ∇〈φ̂〉FM → −iEDDpkp 〈φ̂〉FM+

− ρ∗EDDs ∂〈φ̂〉
∂s

FM
︸ ︷︷ ︸

B2

, (43)

where the tensor D is related to E through

Dα = −2Eαβ 1
B

∂B

∂xβ
(44)

and ET is

ET = v2‖ + 2µB − 3

2
(45)

Because we do not consider the non-linearity, or the neo-classical transport, the numbering

of the terms is different from Ref. [37]. Note, that the ExB nonlinearity, not considered

here, must for a consistent treatment also be modified as discussed in Section IIA. Further-

more, compared with Ref. [37] we consider only the electro-static case. The Latin index p

indicates a summation over p = 1, 2 only, i.e. excluding the parallel direction. The higher
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order ρ∗ corrections introduced in this paper are marked with under-braces. Their labels

correspond to the enumeration of the symmetry breaking mechanism in the introduction, if

the drift velocity in the perturbed (B1) and background (B2) distribution is considered as

the mechanism B.

Since ρ∗ is a small parameter, one can expect that some linearisation of the solution

around ρ∗ = 0 is possible. This implies that the momentum flux generated by the newly

introduced terms in the Eqs. (37-43) is linear in ρ∗. It also suggests that the total momentum

flux generated by the finite ρ∗ corrections is the sum of the momentum fluxes generated by

each of the ρ∗ terms individually, since their interaction would scale as ρ2∗. Both these

hypotheses will be tested in the next section.

G. Symmetry breaking

The parity symmetry discussed in [15, 16, 23]. For the linear case considered here the

transformation

v‖ → −v‖ s→ −s ψ → −ψ (46)

leaves the gyro-kinetic equation invariant. Note that the transformation above implies for

the wave vectors: kψ → −kψ, kζ → +kζ . Assuming an up-down symmetric equilibrium, the

tensors E and D can be shown to have the following properties

Eψζ(s) = +Eψζ(−s) Eψs(s) = +Eψs(−s) (47)

E ζs(s) = −E ζs(−s) Dψ(s) = −Dψ(−s) (48)

Dζ(s) = +Dζ(−s) Ds(s) = +Ds(−s) (49)

It can then be directly verified that none of the terms retained in the lowest order local

limit changes sign under the transformation given above. With only these terms kept in the

model equations, the solution for the potential is symmetric in the low field side position,

while the parallel velocity perturbation is anti-symmetric. The resulting momentum flux is

then zero. It can however, also be verified that all finite ρ∗ terms do change sign. All these

terms will break the symmetry and can generate a finite momentum flux.
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III. RESULTS

All simulation results in this paper are obtained with the gyro-kinetic code GKW [37],

using a magnetic equilibrium of concentric circular surfaces where the full dependence on

inverse aspect ratio ǫ is kept [41], rather than the ŝ−α geometry where only the lowest order

in ǫ is kept. For this equilibrium, β ′ = 0, and the correction to the trapping (mechanism C

in the previous section) will not be considered. All of the simulations have been obtained

using finite difference in the radial and s−direction, and a spectral representation for the ζ-

direction. Periodic boundary conditions are used in the radial direction, consistent with the

homogeneous nature of the model. The chosen parameters are those of the Waltz standard

case [42]: ion temperature gradient length R/LT = 9, density gradient length R/LN = 3,

magnetic shear ŝ = 1, safety factor q = 2, inverse aspect ration ǫ = 0.16, ion to electron

temperature ratio Ti/Te = 1. The adiabatic electron approximation is employed, and we

consider the linear stability and quasi-linear fluxes only. For the chosen parameters, the most

unstable mode is the ion temperature gradient (ITG) mode. Unless otherwise specified, the

normalised Larmor radius ρ∗ is 2.5 · 10−3, and poloidal wave vector kθρ is 0.43. Note that

the definition of ρ∗ is different by a factor
√
2 compared with most literature due to a factor

2 the in thermal velocity vth =
√

2T/m, i.e. ρ =
√
2ρs with ρs =

√
miTe/eB. Furthermore,

in ρ∗ the Larmor radius is normalised with the major radius (R0) rather than the minor

radius of the last closed flux surface (a). For a/R = 1/3, a/ρs = 188 which is close to the

value of the cyclone base case [36]. Simulations use 30 points in the s−direction, 16 µ and

16 v‖, grid points. Finally, 41 radial points with a box size of 20 ρ are used in the radial

direction. The representation on a radial grid, in contrast to the ballooning representation

discussed in the introduction, corresponds to a range of radial wave vectors rather than one

mode with a radial wave vector that is zero at the low field side of the torus.

Without any of the ρ∗ terms in Eqs. (37-43) the potential (φ), density and temperature

perturbations are symmetric in the low field side position s = 0, whereas the parallel velocity

perturbation (w) is anti-symmetric. When the finite ρ∗ terms are introduced the symmetry

is broken for all quantities. The effect is clearly visible on, for instance, φ(s) but can

nevertheless be better displayed by constructing the symmetric (GS) and anti-symmetric
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(GA) component of every perturbed quantity

GS =
1

2
[G(s) +G(−s)] GA =

1

2
[G(s)−G(−s)] . (50)

Fig. 1 shows the real and imaginary part of the potential (φ) and parallel velocity perturba-

tion (w) decomposed in their symmetric and antisymmetric parts. Shown is the eigenfunc-

tion averaged over the radial domain as a function of s ≈ θ/2π, calculated considering all

finite ρ∗ terms discussed in the previous section. The functions in the lower figure, φA and

wS, are zero in the absence of finite ρ∗ terms. It can be seen that the finite ρ∗ terms lead to

a modest asymmetry in the potential and parallel velocity perturbations.

The eigenmode, together with the decomposition of Eqs. (50), can be used to verify

the assumption represented by Eq. (12) of the analytic model. This assumption gives the

following relation between the symmetric and anti-symmetric part of the potential

φA =
i

nq

∂φS

∂θ
. (51)

Fig. 2 shows the anti-symmetric part of the potential calculated directly from the eigen-

function, as well as through numerical differentiation of the symmetric part. Here, only the

finite ρ∗ correction in the ExB velocity is retained in the numerical simulation (i.e. only

contribution A of Eqs. (37-43) is kept), in agreement with the assumptions made in the an-

alytic model. Comparing the curves it can be seen that the agreement is reasonable, though

not perfect. This verifies that the analytic model gives a reasonable estimate of the effect.

Numerical simulation is nevertheless necessary if accuracy is required.

In this paper we consider two contributions to the momentum flux only: the diagonal

(diffusive) contribution and the flux due to the finite ρ∗ terms. As discussed in the previous

section, due to the smallness of ρ∗, one can expect the various mechanisms to generate a

momentum flux that is linear in ρ∗. The equation for the momentum flux may then be

written in the form

Γψϕ = χϕu
′ + Cρ∗ (52)

where u′ = −R2
0∇ωϕ/vth. The first term in the equation above is the momentum diffusivity

which has been studied in several papers [16, 18, 43]. In the absence of an external torque,

the momentum flux due to the finite ρ∗ parallel derivatives will modify the rotation profile,

until this flux is balanced by the diffusive momentum flux, and Γψϕ = 0. The equilibrium
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toroidal rotation gradient then is

u′EQ = − C

χϕ
ρ∗ (53)

The equation above provides a useful alternative to express the magnitude of the finite ρ∗

momentum flux, as it more clearly indicates its impact on the rotation profile.

Not only the flux due to the finite ρ∗ terms can be expected to be linear in ρ∗, the smallness

of ρ∗ also suggests that the various effects are additive. Both these properties are shown

in Fig. 3, which gives u′EQ as a function of ρ∗ for each of the mechanisms discussed in the

previous section, as well as the sum of all these separate contributions and the momentum

flux calculated including all mechanisms. It can be seen that the flux due to all mechanisms

is nearly perfect linear in ρ∗. For ρ∗ = 0.005(0.009) the momentum flux calculated including

all mechanisms is 1%(5%) smaller than the sum of the contributions calculated for each of

the mechanisms separately. The various symmetry breaking mechanisms therefore do not

have a strong interaction. The finite ρ∗ terms only have a small influence on the growth rate

of the instability and the quasi-linear ion heat flux. For ρ∗ = 0.005(0.009) the growth rate

increases by 0.4%(1.4%) and the ion heat flux decreases by 0.9%(3%).

It can be seen from the figure that the largest contribution to the momentum transport

is the fluctuating ExB velocity in the background gradient, i.e. the mechanism that was

investigated in the introduction through an analytic model. Furthermore, C ≈ 100 for

the results shown in Fig. 1, in reasonable agreement (but larger than) the analytic estimate

C = 3/(q(kθρ)
2ǫL2

θ) = 51 (using Lθ ≈ 1). The effect of the drift in the perturbed distribution

on the momentum flux, as well as the corrections to the gyro-average and the calculation

of the flux are smaller, though non-negligible, compared with the effect of the ExB velocity.

For the parameters used in the simulations the sum of all effects is close to the contribution

of the ExB velocity, due to a cancellation of the other contributions. This is, however, a

coincidence for this particular set of parameters.

Fig. 4 shows the momentum transport for different plasma parameters (with ρ∗ = 2.5 ·
10−3). For all parameters the momentum transport due to the ρ∗ terms leads to a negative

u′EQ as predicted by Eq. (16). Assuming the rotation at the plasma edge is zero, a counter-

current rotation is then generated in the core. It can be seen that u′EQ increases with

decreasing ǫ, in agreement with the prediction of the analytic model. Also the increase with

decreasing kθρ predicted by this equation is found at sufficiently large kθρ. Below kθρ = 0.3
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however, the magnitude of the flux decreases with decreasing kθρ. Because also χϕ decreases

[44] this represents a strong decrease in the momentum flux due to the finite ρ∗ terms. This

decrease in the flux might be related to a larger extension of the mode along the surface (i.e.

a larger Lθ in Eq. (16)), but the exact interpretation is at present unknown. The increase

of the momentum flux with safety factor and magnetic shear can be understood through a

stronger localisation of the mode (smaller Lθ). For the lowest ǫ, no data of u′EQ is shown for

the highest values of the magnetic shear, because at higher shear the dominant instability

is the off-axis ITG [45] (this mode also sets in for kθρ > 0.7). In the lowest order local limit

two modes exist (one shifted towards positive s and one towards negative s) that have equal

growth rates, and drive an equally large momentum flux in the opposite direction resulting

in a zero momentum flux on average. Even a small symmetry breaking results in one of

these modes to be more unstable than the other. The time integration projects out only the

most unstable mode that than drives a large momentum flux which magnitude no longer

depends on the magnitude of the symmetry breaking term. This case is interesting, but

beyond the scope of the present paper.

IV. DISCUSSION

In this paper the effect of finite ρ∗ terms on the toroidal momentum transport is investi-

gated. Essentially, higher order ρ∗ terms connected with the derivative towards the ’parallel’

coordinate s have been investigated. In the ballooning representation, these are the terms

connected with the derivative of the ballooning envelope, rather than the eikonal. The model

equations studied in this paper are homogeneous in the radial direction. Finite ρ∗ effects

due to the radial profiles are, therefore, not included.

This paper discusses only the quasi-linear theory, and assumes an adiabatic electron

response. Clearly, further study is required to assess the magnitude of the effect under

experimentally relevant conditions. Although the momentum is mainly carried by the ions,

kinetic electrons as well as finite beta effects have in the past been found to have a significant

impact on the momentum flux [46–48]. From the analytic model one might, for instance,

expect that the result is sensitive to the extension of the mode along the field line. Finally,

only non-linear simulations can accurately determine the momentum fluxes. These studies
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are left to future work.

H-mode plasmas have been reported to rotate mostly in the co-current direction [49], but

it appears that both co- and counter current rotation can occur if the plasma edge does not

rotate strongly[51]. Experimentally, a transition from co- to counter current rotation is then

observed when the density (or density gradient) exceeds a threshold value [13, 50, 51]. In

our model the momentum flux due to the higher order parallel derivatives is directed such

that the plasma core will rotate more strongly in the counter-current direction.
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FIG. 1: (Color online) Re[φ] [solid (blue) line with symbol ’+’], Im[φ] [dashed (blue) line with

symbol ’x’], Re[w] [solid (red) line with symbol ’o’], and Im[w] [dashed (red) line with symbol ’*’].

The top figure gives φS and wA, while the bottom figure gives φA, wS . All functions shown in the

lower figure are zero in the absence of finite ρ∗ terms.23
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FIG. 2: (Color online) Re[φA] calculated directly from the eigenfunction [solid (blue) line with

symbol ’+’], Im[φA] calculated directly from the eigenfunction [dashed (blue) line with symbol ’x’],

Re[φA] calculated through numerical differentiation of φS [solid (green) line with symbol ’△’], and

Im[φA] calculated through numerical differentiation of φS [dashed (green) line with symbol ’▽’]
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FIG. 3: (Color online) The momentum flux expressed in the equilibrium u′EQ as a function of ρ∗.

The letters on the right relate to the symmetry breaking mechanism identified in Eq. (37-43) A:

red line with symbol ’+’, B1: light blue line with symbol ’*’, B2: dark green with symbol ’⋄’, D:

black line with symbol ’▽’, E: magenta line with symbol ’△’. Additionally the sum of all individual

contributions is given by the (green) curve with the symbol ’o’, and the momentum flux calculated

including all finite ρ∗ terms is given by the (blue) curve with symbol ’x’. The ρ∗ axis contains

typical values of three machines: ITER, AUG and TCV .
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ŝ

u′ E
Q

1 1.5 2 2.5 3

−1

−0.5

0

q

u′ E
Q

0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

kρ

u′ E
Q

0 1 2 3 4
−1.5

−1

−0.5

0

R/L
N

u′ E
Q

8 10 12

−1

−0.5

0

R/L
T

u′ E
Q

FIG. 4: Equilibrium value of u′ as a function of different plasma parameters. From left to right:

magnetic shear (ŝ), safety factor (q), poloidal wave vector (kρ) density gradient length R/LN

and temperature gradient length R/LT . The three curves that are shown in each of the graphs

correspond to different values of the inverse aspect ratio: ǫ = 0.16 solid (red) line with symbol ’x’,

ǫ = 0.08 dash-dotted (green) line with symbol ’+’, and ǫ = 0.05 dashed (blue) line with symbol ’o’.
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