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Abstract.

We present practical expressions involving the toroidal field and the poloidal flux

that describe without approximation the local magnetic shear and normal and

geodesic curvatures in an axisymmetric plasma equilibrium of arbitrary cross-sectional

geometry. Experimental examples from the ASDEX Upgrade tokamak indicate that a

zero crossing of both local shear and poloidal current density in the outboard pedestal

region first occurs with the appearance of ELMs.

(Figures in this article are in colour only in the electronic version)
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1. Introduction

Local magnetic shear, which is a measure of the rate at which initially adjacent field

lines on neighbouring flux surface separate with distance advanced along the field lines,

is a structural property of magnetic fields that has an important influence on plasma

stability. There are two somewhat different definitions of local magnetic shear in the

literature. Greene and Chance [2] and others, e.g. [3], citing Greene and Johnson [1],

define local shear as

S
G

ℓ =
B ×∇ψ
|∇ψ|2 · ∇ × B ×∇ψ

|∇ψ|2 (1)

More recently, Nadeem et al. [4] introduced the definition

S
N

ℓ = 2π e⊥ · ∇ × e⊥ (2)

where the unit vector e⊥ is perpendicular to the local magnetic field direction b = B/B

and lies in the flux surface. It is given by the expression

e⊥ = eψ × b =
∇ψ
|∇ψ| ×

B

B
(3)

where eψ is the unit normal to the flux surface. Note S
N

ℓ has the dimensions of inverse

length. Writing equation (1) as g · ∇ × g with

g =
B ×∇ψ
|∇ψ|2 ≡ B

|∇ψ| × eψ (4)

it is seen that both definitions are similar (although differently dimensioned), however

g has the disadvantage of being unbounded at the magnetic axis and on saddle points

and we accordingly work with definition (2) which is slightly altered here to:

Sℓ = −e⊥ · ∇ × e⊥ (5)

We choose to omit the factor of 2π, while the change of sign is consistent with calculating

the poloidal flux at (R,Z) as the flux through the horizontal disk of radius R centred

on R = 0 and passing through (R,Z). In [4], the integration is carried out from the

magnetic axis to the flux surface.

In the next section, after first presenting a physical interpretation for (5), we proceed

to derive a general expression for the local shear involving only standard quantities

routinely available from an axisymmetric equilibrium code, namely the toroidal field and

the poloidal flux. Similar expressions are derived for the components of the magnetic

field line curvature. In section 3 we give numerical examples using ASDEX Upgrade

experimental data which indicate that local shear reversal takes place in the outboard

pedestal region with the appearance of the first ELM and this also correlates with a

zero crossing of the poloidal current density. A summary and some concluding remarks

follow in the final section.



Practical expressions for local magnetic shear · · · 3

2. Derivation of expressions for local shear and normal and geodesic

curvature in terms of ψ and F

2.1. Local shear

We now give a physical interpretation for Sℓ as given by equation (5) by first relating it

to a widely used conventional expression for shear.

Consider a large aspect ratio plasma, R/a≫ 1 (R and a are the major and minor

radii) with circular flux surfaces of radius r ≤ a where the safety factor profile q(r)

depends only on r. It is shown in Appendix A of [4] that equation (5) in this case

simplifies to

Sℓ ≈
(

B0

Bq

)2
r

R

dq

dr

(

1 − r

R
cos θ

)

(6)

where B0 is the toroidal magnetic field Bφ at the plasma centre and B =
√

B2

φ +B2

θ is

the total field (Bθ is the poloidal field magnitude). For a/R ≪ 1 and q(r) = rBφ/(RBθ)

equal to unity or greater, it follows that Bθ/Bφ ≤ r/R≪ 1 and hence Bφ/B → 1 in the

limit a/R → 0 and expression (6) simplifies to

Sℓ =
1

qR

r

q

dq

dr
≡ s

qR
(7)

where s = (r/q)dq/dr is the widely used dimensionless global shear parameter valid in

the limit of infinite aspect ratio circular plasmas.

For this simplified geometry, the change in poloidal angle ∆θ corresponding to

a toroidal advance of ∆φ radians is given by ∆θ ≡ ∆θ(r) = ∆φ/q(r) at radius

r. For a neighbouring flux surface at radius r + δr the corresponding change in θ

is ∆θ(r + δ r) = ∆φ/q(r + δr) = ∆θ/(1 + (δr/q)dq/dr) to first order in δr. Hence

the poloidal separation δh = r δθ of two field lines initially at the same poloidal and

toroidal angular locations (θ, φ) on neighbouring flux surfaces at radii r and r + δr

following an advance through a toroidal angle of q∆θ radians, to first order in δr, is

given by δh=−∆θ δr(r/q)dq/dr =−∆θ δr s where s = (r/q)dq/dr is the conventional

dimensionless shear parameter. Thus s = −(δh/δr)/∆θ is the poloidal separation per

unit radial separation of the flux surfaces for unit angular poloidal advance ∆θ = 1

radian, corresponding to ∆φ = q radians, or equivalently for travelling a distance

∆L ≈ qR along the field line (∆L = qR is exact in the limit a/R → 0). Since local

and global parameters are identical in this high symmetry case, the local shear, here

given by Sℓ = s/qR, can be interpreted as the differential field line separation per unit

distance along the field line (where here “differential” is shorthand for “per unit radial

separation of neighbouring surfaces”). Evaluation of the cross product (3) in cylindrical

coordinates (R, φ, Z) where RBθ = (−ψZ , 0, ψR) and ψZ = ∂ψ/∂Z, etc. yields

e⊥ =

(

−FψZ
RB|∇ψ| ,

−|∇ψ|
RB

,
FψR

RB|∇ψ|

)

(8)

where F (ψ) = RBφ and ψ ≡ ψpol/(2π) is the poloidal flux per radian.
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Evaluation of Sℓ = −e⊥ ·∇×e⊥ leads to the following compact expression, obtained

with the help of Mathematica[5] :

Sℓ =
F

R4B2

θB
2

{

(ψRR − ψZZ)(ψ2

R − ψ2

Z) + 4ψRψZψRZ
}

+
FψR
R3B2

− F ′B2

θ

B2
. (9)

This exact expression for the local magnetic shear, valid for an axisymmetric MHD

equilibrium of arbitrary poloidal cross-section and aspect ratio, is expressed in terms of

standard equilibrium code outputs, namely the toroidal magnetic field Bφ, the flux

surface quantity F ′ = d(RBφ)/dψ and spatial derivatives of the poloidal flux 2πψ

(including the squared modulus of the poloidal field B2

θ = |∇ψ|2/R2 and that of the

total field B2 = B2

φ + B2

θ ). Note that for the poloidal flux convention employed in [4],

where spatial derivatives of ψ and derivatives of flux functions all change sign, every

term in equation (9) changes sign, so that, apart from the omitted factor of 2π, the

same result, including the sign, is obtained here thanks to the sign reversal in equation

(5). As a consistency check, expression (9) was first evaluated in the straight cylinder

plasma limit R → ∞ where the Grad-Shafranov equation

−∂
2ψ

∂R2
+

1

R

∂ψ

∂R
− ∂2ψ

∂Z2
= µ0R

2p′(ψ) + FF ′(ψ) (10)

simplifies to (ψ is now the poloidal flux per unit length and (R, φ, Z) → (x, z, y))

−∂
2ψ

∂x2
− ∂2ψ

∂y2
= µ0

d

dψ

(

p(ψ) +
B2

z(ψ)

2µ0

)

(11)

and the general expression (9) for local shear simplifies to

S
R→∞

ℓ =
Bz

B2

θB
2

{

(ψxx − ψyy)(ψ
2

x − ψ2

y) + 4ψxψyψxy
}

− B′

zB
2

θ

B2
. (12)

For an arbitrary circular plasma equilibrium with poloidal flux ψ(r) and toroidal field

Bz(ψ), expression (12) further reduces to

Sℓ(r) =
−B′

zB
2

θ +Bz(Bθ/r − dBθ/dr)

B2
z +B2

θ

(13)

where Bθ = −dψ(r)/dr êθ for cylindrical coordinates (r, θ, z) and the magnetic axis is

located at r = 0. The corresponding substitutions in the expression s/qR yield

1

qR

r

q

dq

dr
=

−B′

zB
2

θ +Bz(Bθ/r − dBθ/dr)

B2
z

(14)

which agrees with Sℓ(r) in the approximation B2

θ ≪ B2

z used to obtain equation (7).

2.2. Normal and geodesic curvature

The curvature of a field line is given in terms of the parallel unit vector b:

κ = (b · ∇)b ≡ −b ×∇× b. (15)

Resolving κ normal and tangential to the magnetic surface we obtain the normal

curvature : κn = κ · eψ and the geodesic curvature : κg = κ · (b × eψ). Evaluation of
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equation (15) for b = (−ψZ êR, F êφ, ψR êZ)/(RB) results in the following expressions

for the curvatures κn and κg in terms of standard equilibrium quantities:

κn =
F 2ψR +R(ψRRψ

2

Z + ψ2

RψZZ − 2ψRψRZψZ)

R4BθB2
(16)

κg =
−F [R(ψRZ(ψ2

R − ψ2

Z) − ψRψZ(ψRR − ψZZ)) + ψzR
2B2]

R5BθB3
(17)

The corresponding expressions in the straight cylinder limit are given by

κR→∞

n =
ψxxψ

2

y + ψyyψ
2

x − 2ψxyψxψy

BθB2
, (18)

κR→∞

g =
−Bz

[

ψxy(ψ
2

x − ψ2

y) − ψxψy(ψxx − ψyy)
]

BθB3
. (19)

For an arbitrary circular equilibrium with poloidal flux per unit length ψ(r) and toroidal

field Bz(ψ), expressions (18) and (19) reduce to

κn(r) = − B2

θ

rB2
; κg(r) = 0 (20)

so that in this case the geodesic curvature vanishes, in agreement with the well-known

result that magnetic field lines on circular cylindrical flux surface are geodesics and the

curvature vector here is given by κ = κnêr.

βpol × 10!

PNBI (MW)!

ELM signal (divertor current)!

PECH (MW)!

ne (1019 m-3)!− 

ASDEX Upgrade   # 28389 

Figure 1. (colour online) Line-averaged density (ochre), poloidal beta (green), neutral

beam (red) and electron cyclotron (blue) heating powers and the divertor current

ELM signal (black) for ASDEX Upgrade discharge 28389 (Ip = 1 MA, Bt =−2.5 T,

n̄e = 8.9 × 10−19 m−3) for 1.2 s≤ t ≤ 2.7 s. The first ELM occurs at t = 1.676 s.
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3. Experimental examples from ASDEX Upgrade

As an illustration, we present contour plots of the local shear for ASDEX Upgrade

standard H-mode discharge 28349 (Ip = 1 MA, Bt =−2.5 T, n̄e = 8.9 × 10−19 m−3) for

which the evolution of relevant parameters in the current flat-top time window 1.2 s≤
t ≤ 2.7 s is plotted in figure 1.

Figure 2. (colour online) Sequence of local shear contour plots for ASDEX Upgrade

discharge 28389 for (left to right) t= 1.40 s, t= 1.62 s, t= 1.70 s, t= 2.62 s calculated

from CLISTE equilibrium reconstructions. These time points correspond to ohmic,

pre-first ELM, post-first ELM and during a well-heated phase of the discharge (see

figure 1). Red indicates negative and green positive local shear, and the darkest hues

occur at zero crossings. The separatrix is plotted as a white curve. See text for more

details.

Figure 2 shows a sequence of contour plots of Sℓ(R,Z) evaluated using equation

(9) from a sequence of equilibria constrained by equilibrium magnetic data, divertor

tile current measurements, edge kinetic profiles and axial safety factor ≈ 1.0 using the

CLISTE equilibrium reconstruction code [6, 7]. Each time point was selected to be at

the end of the ELM recovery phase [8]. The first time point at t = 1.4 s lies in the ohmic

phase of the discharge, The second, at t = 1.62 s is ≈ 50 ms before the first ELM. The

third, at t = 1.70 s is 25 ms after the first ELM (but before the second) and the fourth

time point, t = 2.62 s, lies in a well-heated phase of the discharge (βpol ≈ 0.86). To

highlight zero-crossings, the function plotted is of the form y= Tanh(1/x) which has

a step discontinuity (jumping from y = −1 to y = +1) at x = 0. Here, x ∝ Sℓ(R,Z)

with a constant of proportionality chosen to give good contrast in the contour plots.

Red regions indicate negative and green positive local shear, and because of the choice

of plotting function the darkest hues occur at zero crossings while the lightest occur

at extrema. (Local shear is predominantly negative in the plasma because the toroidal

field direction is opposite to that of plasma current flow.) The separatrix is plotted in

white. The two sets of regularly spaced dark blobs near the bottom and top right-hand

corners of each plot are at the locations of the lower and upper arms of the in-vessel

passive conductor in ASDEX Upgrade, where for purposes of equilibrium calculations

each arm is modelled by 12 wire currents.



Practical expressions for local magnetic shear · · · 7

1.2 1.4 1.6 1.8 2.0 2.2
0.0

0.5

1.0

1.5

2.0

2.5 MA�m2

R HmL

rmse= mT1.52

t= 1.4 s
Βp = 0.15

1.2 1.4 1.6 1.8 2.0 2.2
0.0

0.5

1.0

1.5

2.0

2.5 MA�m2

R HmL

rmse= mT1.34

t=1.62s
Βp = 0.26

1.2 1.4 1.6 1.8 2.0 2.2
0.0

0.5

1.0

1.5

2.0

2.5 MA�m2

R HmL

rmse= mT1.27

t= 1.7 s
Βp = 0.40

1.2 1.4 1.6 1.8 2.0 2.2
0.0

0.5

1.0

1.5

2.0

2.5 MA�m2

R HmL

rmse= mT1.26

t=2.62s
Βp = 0.86

Figure 3. (colour online) Sequence of current density profiles corresponding to the

contour plots in figure 2 consisting of local jφ (blue) and flux surface averaged 〈jφ〉 (red)

profiles as a function of major radius along the magnetic midplane as reconstructed by

CLISTE from a combination of magnetic and edge pressure data for ASDEX Upgrade

discharge # 28389. The magnetics fit errors displayed in each plot equate to ≈ 1.1% of

the root mean squared signal magnitude. The black dashed profiles are ±1σ confidence

bands for jφ. The magnetic axis position and the inboard and outboard points of

intersection with the separatrix are marked by vertical lines. The prominent vertical

marks just above the horizontal axis on the outboard side indicate the positions of

nine internal knots used in the spline parameterization of the p′(ψ) and FF ′(ψ) source

profiles for equilibrium reconstruction. The knots are concentrated in the pedestal

region where the pressure data are located.

The most striking feature of the plot sequence is the growth with βpol of a narrow

radial region of positive shear just inside the outboard separatrix. Starting in the

lower outboard quadrant, the positive shear region first crosses the midplane at a time

separated by the order of 10 ms from the occurrence of the first ELM, a pattern that has

been systematically observed in ELMy discharges by plotting the magnetic midplane

profile of Sℓ which is a standard output of CLISTE. With increasing βpol, the region of

positive Sℓ broadens radially and extends poloidally upwards, while remaining confined

to the outboard side. This correlates with the growth in the outboard peak in the

toroidal current density profile shown in the corresponding sequence in figure 3.

The asymmetric figure-of-eight region of positive shear centered on the magnetic

axis and present on all plots can be shown to be a consequence of ellipticity as

follows: Consider the straight cylinder equilibrium ψ(x, y) = ψ0(1 − (ax2 + by2)/2)

with elongation everywhere given by k =
√

a/b and positive, constant current density

j(x, y) = (a+b)ψ0/µ0 where we choose Bz(ψ) = B0

√

1 + 2c ψ/B2
0 and hence B′

z = c/Bz.

Evaluation of equation (12) yields the following expression for the local shear:

Sℓ(x, y) =
(b− a)ψ0Bz

B2

a2x2 − b2y2

a2x2 + b2y2
− c ψ2

0
(a2x2 + b2y2)

BzB2
(21)

where B2 = B2

z + B2

θ = B2

z + ψ2

0
(a2x2 + b2y2). For k = 1, i.e. a = b the first term

vanishes and the second is a function of r2 = x2 + y2 and hence contours of Sℓ in this

case are concentric circles. By contrast, the left-hand plot in figure 4 shows contours of

Sℓ(x, y) for k = 1.5, B0 = −1 and c = 0 (thus Bz is constant). Here, the asymptotes

y = ±k2x divide unbounded regions of positive and negative local shear; b < a and

(b − a)ψ0Bz > 0, hence Sℓ is positive for a2x2 > b2y2 and negative for a2x2 < b2y2. In
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Figure 4. Contour plots of local shear Sℓ for the straight cylinder equilibrium

ψ(x, y) = (1 − (x2 + (2y/3)2)/2) with (left plot) constant Bz = −1 and (right plot)

Bz = −
√

1 − .35ψ. The figure-of-eight positive shear region present in figure 2 is

reproduced in symmetric form in the right-hand plot.

the right-hand plot, c = −0.35, Bz = −
√

1 − 0.35ψ and, along the midplane y = 0, the

negative second term in equation (21) dominates the positive first term for |x| >∼ 0.5

which results in a finite region of positive local shear similar to the figure-of-eight pattern

present in figure 2. In contrast to figure 2, the pattern here is both up-down and in-out

symmetric since Sℓ(x, y) is an even function of both x and y.

Given the pattern of local shear reversal in the pedestal region at the occurrence of

the first ELM, it is interesting to consider the corresponding behaviour of the poloidal

current density profile, recently proposed as a critical quantity in discriminating between

plasma regimes [9, 10] and as a mechanism for phase transitions [11]. CLISTE output

includes error bars for the fitted p′(ψ) and FF ′(ψ) source profiles calculated from the

variance-covariance matrix of the linear regression which determines the set of free

parameters at the cycle where the convergence criterion is met [7]. Error bars for

related quantities such as the poloidal current density profile jθ = F ′Bθ/µ0 are easily

constructed. Figure 5 shows the outboard magnetic midplane profile jθ (R, Zmag. axis)

with 1σ error bars (blue traces) for the four time points in figures 2 and 3. Also plotted

(red trace) is the local shear midplane profile Sℓ (R, Zmag. axis). The evolution of the

two profiles is closely correlated, in particular the Sℓ profile increases through zero at

the same radial location, within 1σ error bars, as jθ for the post-first ELM time points

t = 1.7 s and t = 2.62 s. Note that jθ is already weakly positive for the pre-first ELM

time point t = 1.62 s. In this discharge, the L-H transition occurs at t = 1.59 s but a

systematic study of the correlation of the L-H transition with the zero crossing of jθ
has not been attempted here and instead will form the subject of a future publication.

The last term in equation (9) for Sℓ has a direct dependence on jθ through the presence

of the factor F ′ and hence it might be assumed that this term explains the similar

evolution of jθ and Sℓ. Its magnitude, however, is negligible in the pedestal region
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(|F ′B2

θ/B
2| ≈ 0.01) and instead it is the temporal evolution of ψRR that determines the

development of the sign reversal in Sℓ in the pedestal, as can be seen from the green and

magenta traces in figure 5 which represent a partitioning of Sℓ into the ψRR - dependent

term (F/(R4B2

θB
2))ψRR(ψ2

R − ψ2

Z) (green trace) and all other terms in equation (9)

(magenta trace). Both traces are monotonic in the pedestal region for the ohmic time

point t = 1.4 s. Thereafter the magenta trace, which includes the term −F ′B2

θ/B
2,

remains almost monotonic, but the green trace develops a prominent local maximum 2

cm inside the separatrix which accounts for the sign reversal in Sℓ.
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Figure 5. (colour online) Sequence of outboard magnetic midplane profiles of local

shear components (units: m−1) and scaled poloidal current density (units: MA/m2)

versus major radius for ASDEX Upgrade discharge 28389 and the time points shown

in figure 2. The green dotted trace is the expression (F/(R4B2

θB
2))ψRR(ψ2

R − ψ2

Z).

The magenta trace consists of all other terms in equation (9). The red trace, the sum

of the green and magenta traces, is the local shear. The blue traces consist of the

poloidal current density (solid) and 1σ error bars (dashed). The black vertical line at

R ≈ 2.14 m marks the separatrix location.

4. Summary

An exact relation for axisymmetric equilibria of arbitrary cross-section has been derived

for the local magnetic shear defined in equation (5) in terms of the poloidal flux per

radian ψ and its spatial derivatives, and the flux function F (ψ) = RBφ and its flux

derivative F ′. Similar expressions for the normal and geodesic curvature have also been

derived. These practical formulae are easily evaluated using standard equilibrium code

output quantities. Initial application of the local shear expression to ASDEX Upgrade



Practical expressions for local magnetic shear · · · 10

equilibrium reconstructions with the CLISTE code reveal systematic local shear reversal

in the outboard pedestal region which first appears at a time very close to that of the first

ELM, and is accompanied by a zero crossing of the poloidal current density close to the

same location. The correlation in the evolution of jθ and Sℓ in the pedestal region is not

trivially explained by the presence of jθ = F ′Bθ/µ0 in equation (9). This preliminary

experimental finding of a strong temporal correlation between local shear reversal in

the pedestal, a zero crossing of the poloidal current density and the appearance of the

first ELM merits further careful investigation which will form the subject of a future

publication.
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