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Summary (344 words) 

1. Phenological observations have a long tradition. By contrast, digital 

webcam-based phenological research has only developed in recent years, 

prompted by the development of cheaper user-friendly digital camera 

systems and by higher staff costs. Webcam photography provides spectral 5 

information in red, green and blue (RGB) wavelengths which mirror the 

seasonal colour changes in trees during bud burst, leaf unfolding, 

senescence and leaf fall.  

2. Recent publications have mainly used two types of image data analysis to 

define onset dates of certain phenological stages and to compare species 10 

and growing seasons. These methods work well, but require high quality 

of the webcam images. However, changing light and weather conditions 

complicate data analysis at increasing camera-to-subject distances. We 

investigated a series of images providing colour information on different 

tree species, e.g. Fagus sylvatica, Populus tremula, as well as of trees at 15 

different altitudes (700-1200 m) in the Bavarian Forest National Park, 

Germany. Webcam images were analysed by the two previously published 

methods and compared with results derived from a newly developed 

Bayesian multiple change point analysis. 

3. The Bayesian analysis described phenological transition dates in spring 20 

and autumn accurately and specified the uncertainties of the model fit. By 

contrast, the compared methods revealed weaknesses regarding the quality 

and consistency in identifying phenological transitions.  

4. Deciduous autumn phenology was detected similarly accurately by change 

point models. In particular, transition dates of leaf development were 25 

identified in the green, as well as the red, colour channel.  
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5. The change point analysis at different elevations showed how the Bayesian 

approach coped with continuously degrading image quality. A delay in 

green-up of about 2.5 days per 100 m of altitude was estimated for Fagus 

sylvatica in the study area. Autumn phenology in different altitudes did not 

show clear patterns.  5 

6. The Bayesian model approach allows not only the calculation of 

phenological change points during the year but also estimates the 

probability of changes occurring on a particular day. This method leads to 

a higher accuracy in estimating phenological events in the growing season, 

especially when handling low quality webcam data.      10 
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altitudinal gradient, Bayesian statistics, digital photography, spring green-up, leaf 

colouring, leaf fall, multiple change point model, phenology, webcam 



 4 

Introduction 

Phenology is “probably as old as civilization itself” (Schwartz 2003). Almost 

certainly, early Man was aware of the relationship between plants and their 

environment in order to help with the cultivation of crops, or the exploitation of 

wild resources. 5 

Phenological observations have a long history. Started with first phenological 

calendars recorded by the Ancient Greeks phenology developed to one of the 

main research fields for assessing the impact of climate change on ecosystems 

(Menzel 2002). Sparks et al. (2009) showed the growing importance of 

phenological research from 1990 to 2009 which can be linked to increasing air 10 

temperatures and the demand for indicators of the influence of climate change on 

the biosphere. In recent years, various studies have focussed on the effect of 

global warming on phenology (Menzel et al. 2006, Rosenzweig et al. 2008, 

Jeong et al. 2011). 

Menzel (2002) suggested that phenology is probably the easiest way to track 15 

climate change effects on species, however it is both labour- and time-intensive, 

therefore satellite- or webcam-based observation methods have been investigated 

as possible alternatives. Due to the insufficient spatial and temporal resolution of 

satellite recordings, inexpensive automated digital cameras have increasingly 

become popular alternatives to the current system of phenological monitoring of 20 

ecosystems (Richardson et al. 2007, Ahrends et al. 2009, Richardson et al. 2009, 

Ide & Oguma 2010, Kurc & Benton 2010, Nagai et al. 2011). Furthermore, 

analyses of worldwide, and freely available, outdoor webcam images have proved 

to be a useful alternative to both ground and satellite phenological observation 

methods (Jacobs et al. 2009; Graham et al. 2010). 25 
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Digital cameras store spectral information in red, green and blue colour channels. 

Changes which occur in this colour information during the year can be directly 

linked to phenological changes. Estimating spring green-up from the green colour 

channel (Ahrends et al. 2009, Richardson et al. 2009, Ide & Oguma 2010) as well 

as detecting leaf colouring in autumn from red colour channel information 5 

(Richardson et al. 2009) has been achieved. However, these analysis methods, 

when applied to other species and/or locations, have not shown the same 

suitability as in the original publications.  

Dose & Menzel (2004) introduced Bayesian analysis for the detection of a change 

point in phenological time series. That study as well as those of 10 

Schleip et al. (2006) and Menzel et al. (2008) demonstrated the possibilities of 

Bayesian statistics for analysing functional behaviour in ecosystems. 

In the current study, we applied Bayesian analysis to describe phenological events 

such as leaf unfolding and maturity in spring, and leaf colouring and fall in 

autumn. Therefore a multiple change point analysis based on the Bayesian one 15 

change point model (Dose & Menzel 2004) was developed. In addition to a 

phenological analysis of deciduous tree species at an altitudinal gradient in the 

Bavarian Forest National Park in Germany we highlighted differences between 

recent image data analysis methods and our Bayesian multiple change point 

method. 20 
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Materials and methods 

STUDY SITE AND CAMERA SETUP 

The mountain “Grosser Falkenstein” (49°05’N, 13°16’E; 1315 m a.s.l.) is located 

in the Bavarian Forest National Park in the south-east of Germany, 3 km west of 

the Czech border. The mountain rises some 600 m above its surroundings. The 5 

climate is humid continental, the mean annual temperature varies between 3 and 

5 °C and the annual precipitation is about 1400 mm, of which a third derives from 

fog. At higher elevations, snow cover lasts up to 8 months (German 

Meteorological Service, National Park Administration). 

A digital single-lens reflex camera (Canon EOS 350 D) facing slightly upwards to 10 

the south slope of the mountain was installed on an outside wall of a house. 

Between March 2006 and August 2007 the camera was automatically controlled 

by a timer and took daily JPEG images (image resolution of 7.9 MP) in the early 

afternoon (1-3 h p.m.). Exposure and aperture mode, as well as the white balance, 

were set to automatic. 15 

The images displayed about 600 metres altitudinal difference. Trees in the 

foreground were located within 50 to 350 m of the camera at the edge of a 

settlement (Lindberg, 680 m) (Fig. 1). These species were European Silver Fir, 

Abies alba MILL., Norway Spruce, Picea abies (L.) H. KARST., Common Beech, 

Fagus sylvatica L. and Common Aspen, Populus tremula L.. Remote trees on the 20 

slope in the background were at a distance of 2.5 to 5 km from the camera and 

mainly consisted of Norway Spruce and Common Beech; sporadically European 

Larch, Larix decidua MILL. occurred in small groups at 800-1000 m. 
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DATA PROCESSING 

Contour lines were created and afterwards distorted to the camera’s perspective 

using ESRI ArcScene (3D visualization application for GIS data), an elevation 

model and the relevant geo-coordinates (camera site, mountain peak). In a second 

step, the contour lines were transferred onto an image by using picture processing 5 

software (Adobe Photoshop) and then indicated the altitudinal bands for further 

analysis.  

Because the camera was installed for educational, and not for scientific purposes, 

just one image was taken per day. By contrast to the image quality control 

measures of Ahrends et al. (2009), who excluded images from days with critical 10 

light or weather conditions such as rain, fog and snow, we analysed the entire raw 

data set. 

Image analysis was conducted by defining different regions of interest (ROI) as 

described by Richardson et al. (2007), Richardson et al. (2009) and 

Ahrends et al. (2009). For each ROI a mask (binary image) was created. Three 15 

ROI of foreground trees (hereafter called beech, aspen1 and aspen2) were selected 

manually based on various images as a compromise between maximizing the size 

of the ROI and avoiding disturbances in the background from tree species with 

different phenological behaviour (Fig. 1).  

For the analysis of altitudinal bands, the use of non-rectangular and discontinuous 20 

ROI was necessary to separate Common Beech (deciduous) and Norway Spruce 

(evergreen) trees during the data processing. For creating masks of the altitudinal 

ROI which covered Common Beech trees, image sections with similar colour 

values were tagged using the “Magic Stick” tool (Adobe Photoshop, tolerance 

value 8) using an image from May 22 2006 (day of year (DOY) 142, Fig. 1). 25 
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Similarly to the methods of Richardson et al. (2007), a custom script (Python 

Software Foundation) colour-split the digital image files sequentially and, taking 

the mask into account, extracted and averaged the colour channel information 

(digital numbers; red DN, green DN, blue DN). This procedure was repeated for 

each mask/ROI. The overall brightness of each ROI (eqn 1, DN = digital number) 5 

and the proportional value for the green and red colour channels (eqn 2) were 

calculated to minimize the influence of sunshine differences between days. 

 

eqn 1  total RGB DN = red DN + green DN + blue DN 

eqn 2  green% = green DN / total RGB DN   10 

  red% = red DN / total RGB DN 

 

DETECTING SEASONALITY BY FORMERLY APPLIED METHODS 

For detecting different phenological stages in the seasonal development of 

deciduous trees, we used the two methods proposed by Richardson et al. (2007, 15 

2009) as well as Ahrends et al. (2009).  

Following Richardson et al. (2007, 2009), we fitted sigmoid-shaped logistic 

functions to the green% and red% time series (eqn 3 and eqn 4, respectively). The 

parameters a and b define the lower (a) and upper (a + b) limits of the function. 

For eqn 3, the parameter c controls the position, d the overall steepness of the 20 

function, or rather of the spring green-up and the autumn photosynthetic 

degradation. 

 

eqn 3  f (x) = a + b / ( 1 + e( c – d * x ) ) 

 25 

The day of year at which f(x) = a + (b/2), thus the functions achieve its half-

maximum (hereafter hspring and hautumn) represent a benchmark to compare 
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patterns between growing seasons and the phenological behaviour of different 

species. 

 

eqn 4  f (x) = a + b / ( ( 1 + e ( c – d * x ) ) * ( 1 + e ( e – f * x ) ) ) 

 5 

Since the red colour values show an increase and subsequent decrease during 

autumn, the expanded logistic function (eqn 4) was applied to fit the red% time 

series. In this case, parameters c and d control the position and steepness of the 

increase of red% during leaf colouring, e and f the decrease of red% during leaf 

fall. For comparisons, the day at which the fit achieves its maximum was 10 

calculated (hereafter xautumn). 

A different approach to characterize the annual phenology of various tree species 

was provided by Ahrends et al. (2009). In an analogous manner, relative colour 

information was extracted from webcam images. Using a methodology adapted 

from Zhang et al. (2003), transition dates were derived from time series as 15 

follows: 

(1) the start of the growing season (SOS) – date of budburst of deciduous trees or 

start of photosynthetic activity in general; (2) start of leaf senescence (SEN) – 

decreasing of photosynthetic activity, deciduous tree leaves become coloured; (3) 

end of growing season (EOS) – end of physiological activity, complete foliage 20 

loss. Zhang et al. (2003) mentioned a fourth transition date: “maturity – the date at 

which plant green leaf area is maximum” which was also included in the data 

analysis by Ahrends et al. (2009). The so called “GFmax” (hereafter MAT) 

describes the leaf maturity, the date when leaves had completely unfolded. 

MAT was defined as the date with the highest green% value. SOS, SEN and EOS 25 

were determined by using piecewise first and second derivative analyses. 
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Piecewise derivatives involve calculating the slope at day x from values at days x-

1 and x+1 (eqn 5).  

 

eqn 5  slope (x) = ( y x + 1 – y x – 1 ) / 2 

 5 

Derivatives were calculated and smoothed by 11 point moving averages, start and 

end sections derived from fewer values were excluded from further analysis. SOS 

was identified as the maximum of the smoothed second derivative. Counting 

backwards from the minimum of the smoothed first derivative (negative value), 

SEN was estimated as the day when the first value became positive. Starting from 10 

the minimum value, working forwards, the end of the growing season (EOS) was 

estimated when the first derivative became positive. 

In addition to these transition dates we also intended to estimate the day at which 

the colouring process was completed and defoliation started (SOF – start of leaf 

fall). In high quality webcam datasets of deciduous tree phenology, green channel 15 

values increase again after being reduced during leaf colouring, at SOF red 

channel values decrease after reaching their maximum.    

   

DETECTING SEASONALITY BY MULTIPLE CHANGE POINT ANALYSIS 

The present study is an extension of the Bayesian one-change-point model 20 

presented by Dose & Menzel (2004) for the analysis of phenological time series. 

This earlier work employed a function consisting of two straight line segments 

joining at the change point tc that can be at any time after the beginning of the 

time series ti (ti < tc) and before the end of the series te (tc < te). 

While traditional least squares methods would determine tc as the time tML 25 

yielding the best fit to the data and consequently result in triangular functions, the 
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Bayesian approach also considers change points in the neighbourhood of the 

maximum likelihood change point. The calculation of the probability of the 

change point position shows that a number of choices around the maximum 

likelihood value have comparable probability to tML. The Bayesian answer to the 

fit problem is therefore a superposition of all triangles weighted by their 5 

respective probabilities. The resulting function may not at all resemble a triangle. 

The extension of this one-change-point model consists of a polygon with more 

than two linear sections. For n sections there are then n-1 change points where the 

linear segments match to ensure continuity. With n datapoints we have n-2 

choices for the first change point, n-3 for the second etc. A two change point 10 

model offers nearly (n-3)2 different possibilities for the two positions. The 

computational effort rises dramatically with an increase in the number of change 

points.  

Within Bayesian probability theory it is possible to calculate the probability of the 

number of change points. This probability passes though a maximum 15 

characterized by the tradeoff between better fit with increasing number of change 

points and the concomitant increasing complexity of the data description. The 

mechanism is called Ockham’s razor (Garret 1991). In fact, n-2 change points 

would provide an alternative exact description of the data and nothing would be 

gained from the analysis. Progress in understanding is achieved from a 20 

parsimonious description of the data which captures the essentials and reduces the 

noise. 

Fig. 2 shows an example of the fit of a two change point function to a time series 

with data shown as open circles. Two change points had the overwhelming 

probability in this case. The Bayesian analysis does not only allow for an estimate 25 

of the fit function but also for the associated uncertainty. The uncertainty is shown 
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as a shaded band in Fig. 2. Note the slight increase in the uncertainty at the ends 

of the time series and near the change points. In these regions the function 

estimate is based on a reduced number of data. The lower panel of Fig. 2 shows 

the calculated normalized change point probability distributions. 

In this paper we present the results of the Bayesian analysis of the National Park 5 

datasets. However, rather than display results like in Fig. 2, we summarize the 

change point probability distributions by their means and standard deviations and 

the quality of the fit by the root mean square deviation.  

There is, of course, some mathematics behind this description of the multiple 

change point problem. Those interested in these technical details are referred to 10 

the supporting information of this paper. 
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Results 

From the raw data two sets characteristic for spring and autum phenological 

behaviour were deduced. The spring data range from DOY 80 to DOY 170. For 

autumn DOY 200 to day 35 of the following year, hereafter denoted DOY 400 

were chosen. For both types of datasets buffer times of at least twenty days before 5 

and after an expected transition were included. All datasets were analysed with 

functions containing 1 to 8 change points. The prominent result of this analysis is 

the probability of the respective change point functions. The following results, 

however, refer always to the model with the highest probability.  

 10 

Comparison of methods 

The best change point models (further called CPM) for green% spring time series 

2006 and 2007 were those with two change points. Fig. 3 summarises the CPM of 

aspen1 including the results from the two established methods, Table 1 displays 

further results for all foreground region of interests.   15 

In both years the CPM of aspen1 gave a reasonable fit of the green% time series. 

Data for 2007 were more variable than in 2006 which is mirrored in a wider 

deviation band of the CPM and of the mean of the change point probability. Both 

CPM feature a slight and steady increase of green% before green-up (SOS) and 

decrease after MAT. This behaviour can not, by definition, be described from the 20 

logistic function leading to an unreasonable fit and estimating the hspring date too 

early. 

Comparing to the CPM, SOS transition dates of aspen1 were estimated 2 days 

earlier in 2006 and 2007 by the method of Ahrends et al. (2009). MAT dates, 

described by the maximum green% value, were approximately 13 and 2 days 25 

later, in 2006 and 2007 respectively, than those from the CPM. 
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Beech spring phenology shows a similar pattern to aspen1 (Table 1). SOS and 

MAT occur earlier in 2007 than in 2006, however, leaf development took 2 days 

longer than in 2006. Ahrends et al. (2009)’s SOS dates were nearly the same as 

from the CPM, MAT dates were estimated later. For aspen2, leaf up had a 

duration of 27 days in 2006, but only 6 days in 2007. The compared methods 5 

showed less difference in the duration of green-up, 18, respectively 13 days.  

In autumn, only data from year 2006 were available. The results of the autumn 

CPM were variable regarding the number of change points in the best model fit. 

Three transition dates were expected in both green% and red% time series, i.e. 

SEN, SOF and EOS. However, the calculated number of change points differed 10 

between 1 and 4, which affects the evaluation of the CPM (Table 2). 

In general, change points were assigned to phenological transitions by visual 

assessment. In the case of just one change point (red% of aspen1), the change 

point matched the maximum red value, thus, it was associated with SOF. In the 

case of two calculated change points (green% of aspen1), the first change point 15 

may represent SEN, the second seems to be located between SOF and EOS. In the 

case of four change points, one change point more than expected was revealed by 

the Bayesian analysis. These additional change points did not affect the 

determination of the seasonal transition days. 

Fig. 4 shows CPM for green% and red% of aspen2 in autumn 2006. In both CPM 20 

at least 3 change points were estimated by the Bayesian analysis, green% time 

series was best described with an additional fourth change point in the decreasing 

leaf green part after SEN. In general, green% and red% transition days matched 

each other and did not differ by more than 2 days (Table 2). The green% CPM 

estimated a 11-day period of leaf senescence (SEN till SOF) instead of 14 days by 25 
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red%. Defoliation (SOF till EOS) took 4 days assessed in green% instead of 

5 days in the red% time series. 

As described above, the green% and red% logistic fit can not accommodate 

increases before and decreases after transition dates. By definition, changes in the 

green channel after leaf fall (from SOF on) cannot be detected either. In the red 5 

channel of aspen2 the maximum of the logistic fit (xautumn) estimated SOF 

2 days earlier than from the CPM. Transition dates derived from derivatives 

(Ahrends et al. 2009) indicated a much earlier SEN at DOY 275, and EOS date 

(DOY 304) just one day earlier compared with the CPM.   

Autumn analysis of the beech ROI showed a similar phenology to aspen2, 10 

although transition days SOF and SEN in both colour channels differed up to 

6 days. The standard deviation of SEN of red% is very large, which is not 

apparent in the green% time series. Due to fewer estimated change points of 

aspen1 a comparison with other ROIs is difficult. The CPM describes the green% 

SEN just one day before red% SOF, which has a higher uncertainty (SD = 15 

5.9 days), EOS of green% is estimated 4 days later than red% SOF at DOY 309.    

 

ALTITUDINAL STUDY 

Results of the CPM of altitudinal bands in spring 2006 are displayed in Fig. 5. 

Except for the 800-900 m band, the best CPM were based on two change points. 20 

The third change point at 800-900 m interrupted the decreasing post-MAT part of 

the time series by a further increase. This behaviour may also be apparent for the 

900-1000 m band, though the CPM selected two change points instead. In 2006, 

SOS and MAT became later with increasing altitude, SOS changing from 

DOY 120 to 130, MAT from 129 to 137 (Table 3). There was no clear pattern 25 

between altitude and the length of leaf development, i.e. in MAT-SOS. Standard 
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deviations of change points increased with higher altitude, most likely due to 

decreasing image quality. 

Two remarkable days with exceptional high green% values appeared in every 

altitudinal band, at DOY 139 and 142. Due to good visibility DOY 142 had 

maximum green% values, which would cause Ahrends et al. (2009)’s method to 5 

define it as MAT. By contrast, the CPM reveal more reasonable earlier MAT 

dates.  

The altitudinal analyses of green% time series in 2007 showed an earlier green-up 

than in 2006, although leaf development might have been longer at higher 

locations. In comparison to 2006 the standard deviation of the transition dates did 10 

not increase with altitude.   

For the autumn phenology in altitudinal bands the Bayesian analysis revealed that 

the CPM of red% were based on one change point, green% data on two or three 

change points (Table 4). Dates for SEN, SOF and EOS based on green% seem 

reasonable in their timing. However, red% time series were characterised by 15 

extremely high standard deviations and seem less suitable. Thus the fact that SOF 

of red% occurs after EOS of green% and that the general timing is in fact too late 

in the season should not be over interpreted. 

Results based on CPM did not show a clear pattern between altitude and autumn 

phenology. For example, SEN was earlier from 700 m to 1000 m on, but reversed 20 

above this height, the altitudinal pattern for green% EOS was also ambiguous. 
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Discussion 

The phenological responses of tree species differ greatly (Menzel 2003). Timing 

of bud burst, the duration of leaving, leaf colouring and fall are optimised for 

survival and reproduction strategies. However, phenological phases are greatly 

affected by variation in weather which strongly impacts on the development of the 5 

annual lifecycle. Therefore an evaluation method of phenological time series, also 

from digital cameras, must operate adequately across a range of species and 

environments. 

Our study gives an overview of recent methods and introduces the Bayesian 

multiple change point method in the analysis of phenological transition dates. The 10 

phenology of beech and aspen from distances closer to the camera indicated the 

potential for comparing growing seasons since the CPM described the green% 

time series with high accuracy and detected expected change points with low 

uncertainty (Fig. 3). 

Differences between 2006 and 2007 in the timing and the duration of green-up 15 

reflected differences in spring temperatures. March and April mean temperatures 

in 2006 were about 5 °C lower, and May mean temperature about 1.7 °C lower, 

than in 2007 (German Meteorological Service, station Zwiesel, 615 m a.s.l., 3 km 

from the study site). Davi et al. (2011) found a difference in leafing of 8 days 

between 2006 and 2007 for beeches in south-east France, however, in our study, 20 

where a single tree was observed, the difference was about 14 days.  

The sigmoidal logistic fit after Richardson et al. (2007, 2009) seemed to neglect 

the pre and post leafing variations of the green%, which impacts little on year-to-

year comparisons but leads to incorrect estimates of spring green-up if species 

experience colour changes e.g. after leaf maturity. In our study a decreasing 25 
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amount of green after leaf unfolding caused a too early estimate of the start of the 

growing season. 

Defining transition dates by calculating piecewise derivatives worked well for 

SOS which was estimated about 2 days before those from CPM. Ahrends et 

al. (2009)’s MAT dates, which were defined by the maximum green% value in a 5 

given time series, could describe end of leaf-up but in 2006 (see Fig. 3) they were 

incorrectly assigned to an outlier value derived from a cloudy day with an 

underexposed image. Ahrends et al. (2009) explained uncertainties of green% 

data amongst others by changing illumination conditions, so that camera 

observation requires “expert knowledge”. 10 

The CPM provides a reasonable autumn phenology analysis for foreground ROI. 

In the case of the aspen tree of ROI aspen2 the expected three change points, in 

both green% and red% data, matched perfectly. The other aspen tree of aspen1 did 

not show a strong leaf colouring and finally lost its (nearly almost green) leaves 

after the first snow falls. Therefore the CPM did not result in a three change point 15 

model as it did for beech and aspen2. 

The results of Bayesian analysis for altitudinal bands were very encouraging, 

especially given the decreasing image quality due to increasing camera to tree 

distance as well as changing light and weather conditions. The CPM found 

expected change points at all observed altitudes in 2006 and 2007 and increasing 20 

uncertainties at greater distances and higher altitudes in 2006. By contrast, in 2007 

the view on the Grosser Falkenstein mountain during leafing was clearer, and 

standard deviations in the higher altitude bands were smaller than at lower 

altitudes. 

In both years the growing season at the lower altitude started 10 days earlier than 25 

the highest altitude i.e. a delay of about 2.5 days per 100 m. Similar results were 
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reported for 2006 and 2007 from south-east France (Davi et al. 2011) where a 

mean delay of leaf unfolding of 1.8 days per 100 m was observed on a slope from 

961 to 1528 m. Guyon et al. (2011) detected a shift of about 1 day per 100 m in 

beeches on a slope of 100-1600 m in south-west France. Baumgartner (1962) 

investigated temperature gradients from the Grosser Falkenstein in 1955. In May 5 

he observed a mean temperature difference from 658 to 1157 m of 2.2 °C, from 

796 to 1307 m of 4.2 °C, both about 500 m altitudinal difference. In his 

observation year he detected a shift of about one month (May 10 to June 8) in the 

appearance of the first leaf green of beech from 800 to 1200 m (Baumgartner et 

al. 1956). Dittmar & Elling (2006) analysed the altitudinal effect on leaf unfolding 10 

and leaf colouring of beech at 11 phenological stations (German Meteorological 

Service) distributed in the Bavarian Forest between 400-991 m from 1970 to 

2000, excluding urban location and frost hollows, a delay of 2.3 days per 100 m 

was detected in leaf unfolding, and 0.8 days per 100 m in leaf colouring shift.   

Our altitudinal analysis for autumn 2006 was less successful, since the CPM could 15 

not detect all expected change points and the transition dates for SEN, SOF and 

EOS did not show a clear pattern. This may have been caused by snowfalls close 

to the EOS date around DOY 300. After this date, the view on the slope of the 

Grosser Falkenstein was covered by clouds several times per week. Generally, 

detecting autumn colouring show more difficulties than observing leaf unfolding, 20 

since the phenological behaviour of individual trees varies more in autumn than in 

spring (Baumgartner 1952).     

 

As for the spring analysis the previously published methods assessed in this study 

could not estimate precise transition days, nor their uncertainties during autumn 25 

leaf senescence.  
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The present study showed how Bayesian methods in the form of a multiple 

change point analysis could accurately describe phenological patterns derived 

from webcam photography. This was particularly true for spring green-up when 

the method successfully coped with high altitude phenology some considerable 

distance from the camera. The results for autumn were less successful but for both 5 

seasons the Bayesian method showed considerably more credibility and reliability 

than established methods. 
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Tables 

Table 1: Transition date analysis of ROI in spring 2006 and 2007 based on 

green% data. CPM analysis: RSMD = the root mean square deviation, nCP = 

number of change points in the best model fit, SD = standard deviation, DIF = 

MAT-SOS. Compared methods: SOS and MAT dates (Ahrends et al. 2009), 5 

hspring date based on the sigmoidal logistic fit (Richardson et al. (2007).   

   fits of CPM results of CPM compared methods 

  ROI RMSD nCP SOS SD MAT SD DIF SOS MAT DIF hspring 

beech 0.0076 2 125 0.4 135 0.3 10 125 138 13 130 
aspen1 0.0077 2 128 0.5 137 0.6 10 126 150 24 131 

20
06

 

aspen2 0.0074 2 124 2.1 151 1.4 27 132 150 18 134 
beech 0.0089 2 111 0.6 123 1.1 12 112 129 17 116 

aspen1 0.0122 2 116 1.7 125 1.7 8 114 129 15 118 

20
07

 

aspen2 0.0119 2 130 1.3 135 1.3 6 125 138 13 131 
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Table 2: Transition date analysis of ROI in autumn 2006 based on green% and 

red% data. CPM analysis: RSMD = the root mean square deviation, nCP = 

number of change points in the best model fit, SD = standard deviation. For the 

beech and aspen2 ROI of green% time series, SEN, SOF and EOS were estimated 

from the first, third and fourth change points respectively. Compared methods: 5 

SEN and EOS dates (Ahrends et al. 2009), hautumn and xautumn dates based on 

the sigmoidal logistic fit (Richardson et al. (2007, 2009).  

   fits of CPM results of CPM compared methods 
ROI  RMSD nCP SEN SD SOF SD EOS SD SEN EOS hautumn xautumn

green% 0.0057 4 241 2.6 292 0.5 301 6.2 242 293 268  beech 
red% 0.0278 3 244 12.7 288 3.3 307 6.8    286
green% 0.0078 2 304 1.5   309 1.8 292 313 308  

aspen1 
red% 0.0294 1    305 5.9       304
green% 0.0066 4 290 2.2 301 0.3 305 2.8 275 304 293  

aspen2 
red% 0.0293 3 288 2.6 302 1.0 307 0.6       300
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Table 3: Change points in 100m altitudinal bands (700-1200 m) in spring 2006 

and 2007 based on green% data. SD = standard deviation, DIF = MAT-SOS, 

RSMD = the root mean square deviation, nCP = number of change points in the 

best model fit. For the 800-900 m band in 2006, SOS and MAT were interpreted 

as the first and second change point respectively.  5 

  Altitudinal band SOS SD MAT SD DIF RMSD nCP 

1100-1200 130 2.6 137 4.8 8 0.0035 2 
1000-1100 125 3.3 134 3.6 9 0.0032 2 
900-1000 124 2.2 130 2.1 5 0.0034 2 
800-900 123 2.2 130 1.2 7 0.0030 3 20

06
 

700-800 120 1.9 129 1.2 9 0.0048 2 
1100-1200 112 1.0 120 0.8 8 0.0033 2 

1000-1100 111 1.4 119 1.7 8 0.0030 2 

900-1000 106 2.8 117 2.1 11 0.0034 2 

800-900 103 2.5 115 2.2 12 0.0038 2 

20
07

 

700-800 102 1.9 114 2.2 12 0.0056 2 
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Table 4: Change points in altitudinal bands in autumn 2006 based on green% and 

red% data. SD = standard deviation, RSMD = the root mean square deviation, 

nCP = number of change points in the best model fit. 

altitudinal band  SEN SD SOF SD EOS SD RMSD nCP 
green% 281 3.4 290 2.4 299 2.9 0.0025 3 1100-1200 
red%  330 23.1 0.0145 1 
green% 272 9.5 291 5.1 302 8.4 0.0023 3 1000-1100 
red%  334 28.7 0.0138 1 
green% 265 14.9 292 16.6 0.0027 2 900-1000 
red%  330 15.6 0.0135 1 
green% 268 8.5 291 6.8 0.0028 2 800-900 
red%  319 16.0 0.0145 1 
green% 281 4.4 296 2.5 0.0040 2 700-800 
red%  299 6.8 0.0168 1 
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Figures 

 

Fig. 1: Sample image of the “Großer Falkenstein“ (recorded May 22 2006, DOY 

142). White sections indicate regions of interest (ROI), contours from 700 to 1300 

m in 100 m steps are shown in red. ROI: Aspen1 and aspen2: Common Aspen, 5 

beech: Common Beech, non-numbered sections on the slope refer to altitudinal 

ROI (700-1200 m). The left hand part of the image was excluded from the 

analysis because it wasn’t visible during the whole time series due to interference 

from a foreground tree close to the camera. 
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Fig. 2: Multiple change point representation of green% data in spring shown as 

open circles. The heavy continuous curve is the expectation value, the shaded 

band the ±1σ uncertainty of this estimate. The lower panel shows the normalised 

change point probability distributions. A summary of these distributions in terms 5 

of mean and ±1σ uncertainty is shown by the vertical lines with shaded bands. 
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Fig. 3: Bayesian change point models of green% of aspen1 in spring 2006 and 

2007. For a general description see Fig. 2. Dashed vertical line shows hspring 

value based on the sigmoidal logistic fit (Richardson et al. (2007), dashed line), 

dotted lines show SOS and MAT dates (Ahrends et al. 2009). Parameters of the 5 

Bayesian model fit are given in Table 1. 
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Fig. 4: Bayesian change point models of green% and red% of aspen2 in autumn 

2006. For a general description see Fig. 2. Dashed vertical lines show hautumn 

and xautumn values based on the sigmoidal logistic fit (Richardson et al. (2007, 

2009), dashed line), dotted lines show SEN and EOS dates (Ahrends et al. 2009). 5 

Parameters of the Bayesian model fit are given in Table 2. 
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Fig. 5: Bayesian change point models of green% in 100m altitudinal bands (700-

1200 m), spring 2006. For a description see Fig. 2. Parameters of the Bayesian 

model fit are given in Table 3.  

 5 

 


