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Abstract

Investigations of the inverse cascade of magnetic helicity are con-
ducted with pseudospectral, three-dimensional direct numerical simula-
tions of forced and decaying incompressible magnetohydrodynamic tur-
bulence. The high-resolution simulations which allow for the necessary
scale-separation show that the observed self-similar scaling behavior of
magnetic helicity and related quantities can only be understood by tak-
ing the full nonlinear interplay of velocity and magnetic fluctuations into
account. With the help of the eddy-damped quasi-normal Markovian ap-
proximation a probably universal relation between kinetic and magnetic
helicities is derived that closely resembles the extended definition of the
prominent dynamo pseudoscalar α. This unexpected similarity suggests
an additional nonlinear quenching mechanism of the current-helicity con-
tribution to α.

1 Introduction

Understanding large-scale magnetic structure formation in the Universe is one of
the challenging problems in modern astrophysics. In this context, mean-field dy-
namo theory is a prominent approach [Moffatt1978, Biskamp2003, Brandenburg and Subramanian 2005].
Based on a homogenization formalism, it describes the generation of large-scale
magnetic fields by smaller-scale turbulent fluctuations of a magnetofluid. As
a result, this classical two-scale closure [Krause and Rädler1980] yields, next
to a turbulent diffusivity, a scalar, α ∼ τHK , that expresses the nonlinear in-
teraction of large-scale field and smaller-scale turbulence. Here, τ stands for
a correlation time of the turbulent fluctuations and HK = 1

2V

∫
V

dV v · ω is
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the kinetic helicity of the associated velocity field v with V being the vol-
ume under consideration and ω = ∇ × v defining the vorticity. Statistical
closure theory [Pouquet et al.1976] more specifically the eddy-damped quasi-
normal Markovian (EDQNM) approximation, suggests a more complex expres-
sion, α ∼ τ(HK −HJ), that introduces the current helicity HJ = 1

2V

∫
V

dV b · j
with j denoting the electric current density, see also [Blackman and Field 2002,
Field and Blackman2002, Subramanian and Brandenburg2004, Brandenburg and Subramanian 2005].
Its name is actually misleading as HJ expresses the helicity of the magnetic field
and is in this respect a close relative of the kinetic helicity and, furthermore,
also proportional to the total resistive dissipation rate of magnetic helicity (see
below).

While HK is ideally conserved and is spectrally cascading towards smaller
scales in the inertial range of three-dimensional Navier-Stokes turbulence, the
current helicity has apparently no comparable significance for turbulent dy-
namics apart from its meaning for the turbulent dynamo. However, as j =
∇ × b = −∆a, b = ∇ × a standing for the magnetic field and a denoting
the magnetic vector potential (both dimensionless), a link to an ideal invariant
of three-dimensional incompressible magnetohydrodynamics (MHD), the mag-
netic helicity, HM = 1

2V

∫
V

dV a · b, emerges. This quantity characterizing the
topology of the magnetic field [Moffatt1969] is prone to an inverse cascade. The
cascade is a robust nonlinear mechanism that creates large scale order out of the
chaotic randomness of small-scale magnetic turbulence presupposing a sufficient
separation of large and turbulent small scales in the system in combination with
a small-scale supply of magnetic helicity.

The present work is motivated by the potential importance of magnetic helic-
ity for the dynamics of large-scale dynamo configurations. This is not to be con-
fused with the related issue of the effect of boundary conditions on the magnetic
helicity evolution and the consequences for the dynamo process, a topic that has
been subject of a number of investigations, see, e.g. [Brandenburg 2009] and ref-
erences therein. In this work, an idealized system, homogeneous incompressible
MHD turbulence with triply periodic boundary conditions, is investigated by
three-dimensional direct numerical simulations in combination with statistical
closure theory.

2 Model equations and numerical Setup

The dimensionless incompressible MHD equations giving a concise single-fluid
description of a plasma read:

∂tω = ∇× (v × ω − b× j) + µn(−1)n/2−1∇nω + Fv + λ∆−1ω (1)
∂tb = ∇× (v × b) + ηn(−1)n/2−1∇nb + Fb + λ∆−1b (2)

∇ · v = ∇ · b = 0. (3)

Relativistic effects are neglected and the mass density is assumed to be uni-
formly unity throughout the system. Other effects such as convection, radiation
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and rotation are also neglected. Direct numerical simulations are performed
by solving the set of model equations by a standard pseudospectral method
[Canuto et al.1988] in combination with leap-frog integration on a cubic box of
linear size 2π that is discretized with 1024 collocation points in each spatial
dimension. Spherical mode truncation is used for alleviating aliasing errors. By
solving the equations in Fourier space, the solenoidality of v and b is maintained
algebraically.

To observe clear signatures of an inverse cascade of magnetic helicity the
system has to contain a source of this quantity at small scales. This is achieved
in two different ways resulting in two main configurations: a driven system and
a decaying one. In the driven case, the forcing terms Fv and Fb are delta-
correlated random processes acting in a band of wavenumbers 203 ≤ k0 ≤ 209.
They create a small-scale background of fluctuations with adjustable amount of
magnetic and kinetic helicity. The results reported in this paper do not change
if kinetic helicity injection is finite. The theoretical results presented in the fol-
lowing do not depend on the setup of the forcing as they presuppose an existing
self-similar distribution of energies and helicities. For obtaining such spectra
in numerical experiments the magnetic source term Fb is necessary while a fi-
nite momentum source Fv speeds up the spectral development significantly. In
the decaying case the forcing terms are set to zero and the initial condition
represents an ensemble of smooth and random fluctuations of maximum mag-
netic helicity with respect to the energy content (see below) and a characteristic
wavenumber k0 = 70.

To reduce finite-size effects, the simulations are run for 6.7 (forced) and 9.2
(decaying) large-eddy turnover times of the system, respectively. The time unit
is defined using the system size and its total energy. Additionally, a large scale
energy sink λ∆−1 with λ = 0.5 is present for both fields. In the decaying case
λ = 0. The hyperdiffusivities µn and ηn are dimensionless dissipation coefficients
of order n (always even in these simulations), with n = 8 in both runs. They act
like higher-order realizations of viscosity and magnetic diffusivity, respectively.
The magnetic hyperdiffusive Prandtl number Prmn = µn

ηn
is set to unity.

The initial conditions to these simulations are smooth fluctuations with ran-
dom phases having a Gaussian energy distribution peaked around k0 in the de-
caying and the forced cases. Magnetic and kinetic helicity of the initial state can
be controlled in the same way as for the forcing terms, cf. [Biskamp and Müller2000].
The initial/force-supplied ratio of kinetic to magnetic energy is unity with an
amplitude of 0.05 in the forced case and an amplitude of unity in the decaying
case. Hyperviscosity of order n = 8 is chosen in the simulations to obtain suffi-
cient scale-separation. It is difficult to define an unambiguous Reynolds number
owing to the use of hyperviscosity ([Malapaka2009] and the references there in).
With the above mentioned simulation set up, the equations are solved both
for decaying and forced cases separately and the results obtained are discussed
below.
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a) b)

Figure 1: a) Transmission HM
Tr = b̃∗ · ˜v × b (dotted line) and dissipation HM

Di

= ηnk6b̃∗ · j̃ (solid line) of magnetic helicity space-angle-integrated in Fourier
space in the forced case (similar for the decaying case, not shown), b) spectral
flux of magnetic helicity in the forced (top) and decaying cases (bottom), dashed
curves: direct flux, solid curves: inverse flux.

3 Simulation results

Using the simulation setup described in the previous section, inverse cascad-
ing of magnetic helicity with a clear scale separation between large and small
scales is established in both forced and decaying cases for wavenumbers k < k0.
This is indicated by the spectral flux, ΠHM

k =
∫ k

0
dk′

∫
dΩ[b̃∗ · ˜v × b]|k′|=k′ ,

in both cases depicted in Fig.1b and taken at t = 6.7 and 9.2, respectively as
dissipation of magnetic helicity is negligible (see Fig.1a). The tilde indicates
Fourier transformation and ∗ stands for complex conjugate. The inverse flux in
the driven case is constant over a significant spectral interval, indicating equi-
librium of source and sink, while the temporal decay of the magnetic helicity
reservoir in the decaying case is reflected by the associated non constant inverse
flux. In both cases the characteristic wavenumber of the HM -source can be
identified as the separation between inverse and direct flux regions. The spec-
tral flux of magnetic helicity has been extensively studied in earlier numerical
simulations e.g. [Brandenburg 2001] and [Alexakis et al.2006]. These works,
however, are lacking the necessary scale separation to observe self-similar scal-
ing laws. The spectrum of magnetic helicity exhibits scaling behavior ∼ kq with
q ≈ −3.3 and q ≈ −3.6 (forced and decaying case, respectively) which cannot
be explained by the straightforward constant-flux reasoning à la Kolmogorov
adopted in [Pouquet et al.1976] to interprete their EDQNM results.

In fact, the involved dimensional argument (Alfvénic units), [HM
k ] = L4/T 2

(spectrum), [εM ] = L3/T 3 (spectral flux), in combination with the assumption
of spectral self-similarity, HM

k ∼ εa
Mkb, yields a = 2/3, b = −2, but does not

explicitly include the nonlinear interaction of velocity and magnetic fields. As
a first step in the necessary refinement of the theoretical modeling additional
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consideration of the kinetic helicity HK
k seems appropriate.

As a consequence of the inverse spectral transfer of magnetic helicity, all mag-
netic quantities should inherit the observed spectral inverse transfer property.
This is indeed the case for the magnetic energy, the electric current density, and
the current helicity. These quantities also show self-similar scaling that how-
ever, differs to some degree between the two investigated configurations. It is
particularly interesting, that the residual helicity HR =

∣∣HV − k2 HM
∣∣ , also

shows self-similar scaling with q ≈ −1.4 and q ≈ −1.8 in the forced and decaying
cases respectively (see [Malapaka2009] for further details). The interaction of
the magnetic field with the velocity in a progressing inverse cascade of magnetic
helicity appears to be of importance for a better understanding of the observed
scaling laws. At high Reynolds numbers, the process of large-scale magnetic
structure formation by the inverse cascade is accompanied by a continuous stir-
ring of the velocity field caused by the expanding magnetic field structure. The
magnetic stirring of the MHD-fluid leads to a transfer of magnetic to kinetic
energy and generates ever larger velocity fluctuations. These also show self-
similar scaling, as, for example, reflected by the kinetic helicity spectrum with
q ≈ −0.4 (forced case) and q ≈ 0.4 (decaying case).

With regard to the finding, e.g. [Alexakis et al.2006], of the pronounced
spectral non-locality of the nonlinear interactions underlying ΠHM

k a few words
about the physical picture of the inverse cascade are in order. The cascading pro-
cess is realized as a merging of positively-aligned and thus mutually attracting
current carrying structures, cf. [Biskamp and Bremer1993]. It is not necessary
that the structures grow in size as they indeed do in the decaying case, as long as
the corresponding current densities increase. This is observed in the simulation
with small-scale forcing. As there is no obvious fluid-dynamical constraint on
the merging of two current filaments with regard to their size, this picture is
consistent with a spectrally non-local inverse cascade of magnetic helicity.

4 Spectral relationship between kinetic and mag-
netic helicities

A link between kinetic and magnetic helicities can be constructed with the
help of dimensional analysis of the magnetic helicity evolution equation in the
EDQNM approximation, a statistical closure model discussed, e.g., in [Pouquet et al.1976].
Such an approach was successful earlier, in describing the turbulent residual en-
ergy spectrum, ER

k = |EM
k −EV

k | yielding ER
k ∼ kE2

k [Müller and Grappin2005]
with Ek = EM

k +EK
k , which also turns out to be valid in the present simulations,

where EM
k and EV

k are magnetic and kinetic energies respectively.
Assuming that the most important nonlinearities involve the turbulent ve-

locity and stationarity of the spectral scaling range of HM
k , a dynamical equilib-

rium of turbulent advection and the HM -increasing effect of helical fluctuations
is proposed. This can be formulated straightforwardly using the corresponding
dimensionally approximated nonlinear terms from the EDQNM model (for a
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more detailed derivation see [Müller et al.2012]), yielding:

HK
k ∼

(
EK

k

EM
k

)
k2HM

k . (4)

This statement about the spectral dynamics of kinetic and magnetic helicities
(or, equivalently, kinetic and current helicities since HJ

k ∼ k2HM
k ) is also valid

for EK
k /EM

k 6= 1. The agreement of Relation(4) with the numerical experiments
is however significantly improved by a modification (Relation.(5) below) whose
justification is beyond the scope of the presented equilibrium ansatz which ba-
sically assumes spectral locality of the inverse cascade:

HK
k ∼

(
EK

k

EM
k

)2

HJ
k . (5)

Relation.(5) is a significant improvement over the earlier relations of similar
kind [Pouquet et al.1976, Pouquet et al.2010, Müller and Malapaka 2010]. This
is shown in Figs. 2 and 3, a, where Θ = (EK

k /EM
k )γHJ

k /HK
k is shown with

γ = 0, 1 and 2 (corresponding to Θ, Θ1 and Θ2) for the forced and decaying cases
respectively. It is remarkable that Relation.(5) is only fulfilled in wavenumber
intervals where the flux of magnetic helicity is spectrally constant.

This relation brings back the ratio of energies (kinetic to magnetic) into
the picture, which, under the assumption of equipartition of energies was ig-
nored in previous work [Pouquet et al.1976], while linking the magnetic/current
and kinetic helicities. Another interpretation for this expression is the partial
Alfvénization of the turbulent flow [Pouquet et al.2010]. Further, it also high-
lights the influence of kinetic helicity in the inverse cascade of magnetic helicity.

Relation (5) belongs to a class of probably highly universal expressions which
are based statistically on the quasi-normal approximation of nonlinear fluxes. It
is interesting to note that relation (5) also allows to determine the spectral scal-
ing exponent of magnetic helicity from astronomical current helicity measure-
ments using vector magnetograms (see e.g. [Brandenburg and Subramanian 2005]
and references therein) if kinetic and magnetic energy spectra are also measur-
able or can be estimated with sufficient accuracy.

The modification of the current helicity contribution present in relation (5)
suggests a corresponding modification to the residual helicity, HR = HK −
HJ , and accordingly to the mean-field dynamo α. This, however, has to be
taken with care as the present simulations are energetically dominated by the
magnetic field although the modifying factor (EK/EM )2 should compensate for
this. Figs. 2 and 3, b, allow to roughly estimate the respective scale-dependent
influence of kinetic and magnetic helicity on the modified residual helicity. The
spectrum of residual helicity closely follows the spectral kinetic helicity with
growing systematic deviations due to the influence of magnetic helicity at large
wavenumbers, in both cases. Thus, the modified residual helicity complies with
the earlier definitions of α [Krause and Rädler1980, Pouquet et al.1976] at large
scales.
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Figure 2: Plots of Relation.5, and kinetic, magnetic and residual helicities for
forced turbulence at t=6.7. a) Relation.5 Θ = (EK

k /EM
k )γHJ

k /HK
k . γ = 0

(dash-dot curve) γ = 1 (dashed curve), and γ = 2 (solid curve). b) Magnetic
helicity (dash-dot curve), kinetic helicity (dashed curve) and residual helicity
(solid curve).

5 Conclusions

In high-resolution direct numerical simulations of forced and decaying mag-
netically helical homogeneous MHD turbulence, the nonlinear dynamics of ac-
tive inverse cascade of magnetic helicity is studied. The simulation results, in
particular the observed self-similar spectral scaling of magnetic helicity which
contradicts an earlier theoretical explanation [Pouquet et al.1976], motivate the
consideration of velocity field characteristics for the nonlinear evolution of this
purely magnetic quantity. This is done with the help of statistical closure the-
ory yielding a possibly universal relation between kinetic and current helic-
ities. The relation is corroborated by the numerical results. Its form, HK

k −
(EK

k /EM
k )2HJ

k ∼ const., closely resembles the extended definition of the pseudo-
scalar α ∼ HK

k −HJ
k known from mean-field dynamo theory. The inverse cascade

of magnetic helicity is not a dynamo itself as dimensionally HM
k ∼ kEM

k , but a
spectral transport process and not even a turbulent cascade in the strict sense
[Müller et al.2012]. It can as a robust and efficient spectral transporter, nev-
ertheless, play a role in the actual realization of turbulent large-scale dynamos
like the α-dynamo. In this respect it is interesting that the newly obtained re-
lation includes the squared ratio of kinetic and magnetic energies. This leads to
a purely nonlinear quenching of the current helicity contribution to α that has
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Figure 3: Plots of Relation.5, and kinetic, magnetic and residual helicities for
decaying turbulence at t=9.2. a) Relation.5 Θ = (EK

k /EM
k )γHJ

k /HK
k . γ = 0

(dash-dot curve) γ = 1 (dashed curve), and γ = 2 (solid curve). b) Magnetic
helicity (dash-dot curve), kinetic helicity (dashed curve) and residual helicity
(solid curve).

no direct connection to the dynamo-quenching mechanisms considered so far (of
order (EM )−1) in the literature which are seemingly consequences of a combina-
tion of boundary conditions and the approximate conservation of magnetic he-
licity. In this respect, it is encouraging that [Rheinhardt and Brandenburg2010]
for a homogeneous mean flow with Roberts forcing using a test field method ob-
serve α-quenching with an (EM )−2 signature. The comparison with this work
assumes equivalence of their imposed mean field with the root-mean-square
large-scale magnetic fluctuations in the present simulations.

The present relation (5) needs further investigation as it is an additional
possible mechanism for dynamo quenching. This new link between kinetic and
magnetic helicity in the inverse cascade of magnetic helicity has to be veri-
fied in more complex numerical setups such as mean field dynamos, as well as
anisotropic 3D-MHD and isotropic 3D-MHD turbulence with different initial
conditions and forcing mechanisms.
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