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Existing numerical tools for calculating the MHD stability of magnetically confined

plasmas generally assume the existence of nested flux surfaces. These tools are therefore

not immediately applicable to configurations with magnetic islands or regions with an

ergodic magnetic field. However, in practice these islands or ergodic regions are often

small, and their effect on MHD stability can then be evaluated using a perturbation

theory developed in the present paper. This procedure allows the effect of the broken

magnetic topology on the stability of each eigenmode to be calculated without requiring

any knowledge about the perturbed eigenfunctions.
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1 Introduction

The most commonly used numerical codes for calculating the equilibrium and stability

of magnetically confined plasmas presume that the magnetic field possesses nested flux

surfaces. In the case of stellarators, for example, the equilibrium is usually calculated

using the VMEC [1] code, and its stability is assessed by codes such as CAS3D [2] or

TERPSICHORE [3]. There are numerical tools capable of solving the force balance

equation J × B = ∇p in three dimensions without requiring nested flux surfaces (the

PIES [4], HINT [5], SIESTA [6] and SPEC [7] codes), but there is at the moment

no way of directly calculating the stability of the resulting equilibria. In tokamaks,

axisymmetric equilibria are obtained from the Grad-Shafranov equation, and their sta-

bility is routinely evaluated by a large number of codes, but none of these is applicable

if the magnetic topology is broken by error fields or intentionally produced resonant

magnetic perturbations creating magnetic islands or regions with an ergodic magnetic

field.

However, in practice configurations with broken flux surfaces are obviously useful

only if the islands and ergodic regions are small. Any stellarator optimization attempts

to maximize the regions of good flux surfaces [8], and in tokamaks the violation of

axisymmetry is invariably a minor perturbation. The ideal MHD stability properties

are then approximately the same as in an “unperturbed” equilibrium with nested flux

surfaces1, and the effect of the perturbation breaking these surfaces can be calculated

by perturbation theory. It is the aim of the present work to show how this can be done,

using no information other than that already available from existing numerical codes.

Before proceeding with the analyis, we emphasize that we do not consider non-

linear stability issues. Garabedian [11] and Cooper et al. [12] have shown that two-

dimensional equilbria can bifurcate into three-dimensional ones resembling the nonlin-

ear state of a saturated kink mode. Nor do we consider resisitive stability, which can

1A small perturbation of an equilibrium can, in principle, also have a large effect on MHD stability.

This is, for instance, the case if the equilibrium lies close to a stability boundary. More interestingly,

a small resonant perturbation can cause a skin current on the corresponding magnetic surface, which

could affect the MHD stability substantially. Such skin currents are difficult to resolve numerically,

using ordinary equilibrium codes, but can be captured by using a perturbed-equilibrium approach

[9, 10]
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be calculated, both linearly and nonlinearly, using initial-value codes such as NIMROD

[13] or M3D [14].

2 Perturbation theory

We consider the equilibrium of an ideal MHD plasma at rest with pressure p(r) and

density ρ(r). The magnetic field B(r) that confines the plasma is assumed to pos-

sess toroidal nested flux surfaces, so that the stability can be calculated straightfor-

wardly [15]. We then know the spectrum of eigenmodes ξj and eigenvalues ω2

j satisfying

the linearized force balance equation

−ρω2

j ξj = F[ξj ], (1)

where F is the force density

F[ξ] = −∇P + µ−1

0
[(∇× Q) × B + (∇× B) × Q] ,

with ξ the plasma displacement and

P = −ξ · ∇p − γp∇ · ξ,

Q = ∇× (ξ × B),

denoting the perturbations of the pressure and the magnetic field, respectively. (Note

that p denotes the pressure, whilst P [ξ] is a functional equal to the pressure perturba-

tion.) We further consider a second equilibrium (p + δp, ρ + δρ,B + δB) that deviates

only a little from the first one but where the magnetic topology may be broken, so

that magnetic islands or regions with chaotic field lines exist. The reason that the two

equilibria deviate from one another will be different in different applications. In the

case of stellarators, the first equilibrium may have been obtained from the VMEC code

and the second equilibrium from PIES, HINT, SIESTA or SPEC. The first equilibrium

may then have singular currents on rational flux surfaces that prevent magnetic islands

from forming, whilst the second equilibrium will have islands around these surfaces. In

tokamak applications, the first equilibrium may be axisymmetric and the second one

could have had its symmetry perturbed by error fields or externally applied magnetic

perturbations. Mathematically, the difference between the two equilibria then arises
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from different boundary conditions on the ideally conducting wall that we assume sur-

rounds the plasma.

We begin by considering the case where the boundary conditions are the same

for the two equilbria, and henceforth we shall refer to the second equilbrium as the

“perturbed” one. Because of the broken flux surfaces, we are not immediately in a

position to calculate the eigenfunctions and eigenvalues of the perturbed equilibrium,

which are determined by the equation

−(ρ + δρ)(ω2

j + δω2

j )(ξj + δξj) = (F + δF)[ξj + δξ], (2)

where F + δF is the perturbed force operator,

F+δF = −∇(P+δP )+µ−1

0
[(∇× (Q + δQ)) × (B + δB) + (∇× (B + δB) × (Q + δQ)] ,

and for an arbitrary vector field η

δP [η] = −η · ∇δp − γδp∇ · η,

δQ[η] = ∇× (η × δB).

(Again, note that δp denotes the change in the equilibrium pressure whereas δP [η] is

a functional of η.) However, an expression for the change, δω2

j , in the eigenvalue ω2

j

can be derived in a way familiar from perturbation theory in quantum mechanics, by

multiplying the complex conjugate of Eq. (1) by δξj and integrating over the plasma

volume V ,

−

∫

V
ρω2

j δξj · ξ
∗
j dV =

∫

V
δξj · F[ξ∗j ] dV. (3)

Next, we subtract Eq. (1) from Eq. (2), neglect terms that are quadratic in the pertur-

bations, multiply by ξ∗j and integrate over V ,

−

∫

V

[

ρω2

j ξ
∗
j · δξj + (ρδω2

j + ω2

j δρ)|ξj |
2
]

dV =

∫

V
ξ∗j ·

(

F[ξj ] + δF[ξj ]
)

dV. (4)

Subtracting Eq. (3) from this result gives

−

∫

V
(ρδω2

j +ω2

j δρ)|ξj |
2 dV =

∫

V
ξ∗j ·δF[ξj ] dV +

∫

V

(

ξ∗j · F[δξj ] − δξj · F[ξ∗j ]
)

dV, (5)

where the last term vanishes thanks to the self-adjointness of F [15]. We thus obtain

our main result

δω2

j = −

∫

V

(

ξ∗j · δF[ξj ] − ω2

j |ξj |
2δρ
)

dV

/
∫

V
ρ|ξj |

2 dV, (6)
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which makes it possible to determine how much more or less stable each eigenmode

becomes as a result of perturbing the equilibrium. It is important to note that no

knowledge is required about the perturbed eigenfunctions. Only the unperturbed eigen-

functions and the perturbed equilibrium are needed to calculate δω2

j . If this quantity

is positive, the perturbed equilibrium is more stable than the unperturbed one to the

eigenmode in question, and if δω2

j is negative it is less stable.

Note that a perturbation in the density profile alone, without changing the pressure

or the magnetic field, causes δρ 6= 0 and δF = 0, and therefore cannot make an unstable

mode stable, or vice versa, according to Eq. (6).

2.1 Validity

In deriving Eq. (6), we have neglected terms that are quadratic in the perturbations,

which are assumed to be small, but the treatment nevertheless does not exclude the

possiblility that a mode may cross the stability boundary as a result of the perturbation,

although this requires δω2

j > ω2

j . To see why, let us now retain all terms containing

δω2

j , including those that involve perturbations squared. Instead of Eq. (4) we then

obtain

−

∫

V

[

ρ(ω2

j + δω2

j )ξ
∗
j · δξj + (ρδω2

j + ω2

j δρ + δρδω2

j )|ξj |
2
]

dV

=

∫

V
ξ∗j ·

(

F[ξj ] + δF[ξj ]
)

dV,

and instead of Eq. (5)

−

∫

V

[

((ρ + δρ)δω2

j + ω2

j δρ)|ξj |
2 + ρδω2

j ξ
∗
j · δξj

]

dV =

∫

V
ξ∗j · δF[ξj ] dV,

whence it is clear that Eq. (6) holds even if δω2

j is comparable to ω2

j , because δρ ≪ ρ

and
∫

V
ρξ∗j · δξj dV ≪

∫

V
ρ|ξj |

2 dV.

Equation (6) is also valid if the unperturbed equilibrium (p, ρ,B) is only approxi-

mately correct. For instance, if the true equilibrium is given by (p+ δp, ρ+ δρ,B+ δB)

and contains small magnetic islands, but can be approximated by an island-free but ap-

proximate equilibrium (p, ρ,B) whose eigenfunctions ξj and eigenvalues ω2

j are known,

then the eigenvalues ω2

j + δω2

j of the true equilibrium can be obtained from Eq. (6).

This is potentially very useful, because it allows the MHD stability properties of an
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equilibrium with small islands to be calculated even if there is no exact nearby equi-

librium without islands. It is perhaps not immediately obvious that this should be

possible, because if (p, ρ,B) is only approximately an equilibrium then the operator F

is not exactly self-adjoint and the last integral in Eq. (5) does not vanish. Nevertheless,

if the equilibrium (p + δp, ρ + δρ,B + δB) is exact then F + δF is self-adjoint and F is

nearly so, making the last term in Eq. (5) second order.

2.2 Perturbation of the boundary

The result (6) is however not valid if the boundary is perturbed. This boundary is

assumed to be stationary and ideally conducting, but in many cases of interest the

two equilibria (p, ρ,B) and (p + δp, ρ + δρ,B+ δB) occupy slightly different regions, V

and W , say. For instance, the boundary of an axisymmetric plasma may be perturbed

in such a way that resonant magnetic perturbations are created and magnetic islands

inside arise. In such cases the right-hand side of Eq. (6) must be supplemented by a

term describing the boundary perturbation.

The simplest situation occurs if the ideally conducting wall is immediately adjacent

to the plasma, without a vacuum region separating the plasma from the wall. The

boundary condition on the displacement ξ is then ξn = ξ · n̂ = 0, where n̂ is the unit

normal vector, since the normal component of the plasma velocity v = −iωξ then

vanishes and the condition

n̂ × (E + v × B) = n̂ × E + n̂ · Bv − n̂ · vB = 0,

implies n̂ × E = 0, as required near a perfectly conducting wall. If we denote the

boundaries of the two equilibria by ∂V and ∂W , respectively, and the perpendicular

distance between them by ǫ(r), then the normal displacement satisfies

ξn(r0) = 0,

ξn(r0 + ǫn̂) + δξn(r0 + ǫn̂) = 0,

if r0 ∈ ∂V . Here ξn = n̂ · ξj and ξn + δξn = n̂ · (ξj + δξj) denote the normal compo-

nents of the eigenvectors corresponding to the two equilibria. (The subscript j will be

suppressed.) If V and W almost coincide so that ǫ is small, the boundary condition on
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the perturbed eigenfunctions taken on the unperturbed boundary ∂V is thus

δξn(r0) = −ǫn̂ · ∇ξn.

Since this quantity does not vanish in general, the last integral in Eq. (5) does not either;

the self-adjointness of F holds only for displacements without normal component on

the boundary. The contribution from this integral is however easily evaluated from

Eq. (C3) of Ref. [16],
∫

V
(η · F[λ] − λ · F[η]) dV

=

∫

∂V

{

η

[

γp∇ · λ − µ−1

0
(Q(λ) · B + λ · ∇B · B) + λ · ∇

(

p +
B2

2µ0

)]

−λ

[

γp∇ · η − µ−1

0
(Q(η) · B + η · ∇B · B) + η · ∇

(

p +
B2

2µ0

)]}

· n̂dS,

where λ · ∇B · B = λ · ∇(B2/2). Choosing λ = ξ∗j and η = δξj gives

∫

V

(

ξ∗j · F[δξj ] − δξj · F[ξ∗j ]
)

dV = −

∫

∂V

[

γp∇ · ξ∗j − (∇× (ξ∗j × B)) · B/µ0

]

n̂·∇(n̂·ξj)ǫdS,

(7)

which should be added to the numerator of Eq. (6) if the boundary is perturbed.

If both the normal component of the eigenfunction n̂ · ξj and its normal derivative

vanishes on the boundary ∂V , then Eq. (6) is valid without correction. This is, for

instance, the case for ordinary ballooning modes whose eigenfunctions are localized to

the plasma interior.

2.3 Reformulation

The contribution of δF to (6) may be rewritten in a form similar to that appearing in

the standard form of the fluid contribution to the energy principle (see for example Eq.

(8.75) of Ref. [15]). In the usual energy principle, the reformulation is done by using

the identity obtained in proving the self-adjointness of F, Eq. (B1) of Ref. [16] or Eq.

(A4) of Ref. [15],

B · [∇ (ξ · ∇p) + J × Q] = 0, (8)

where J = µ−1

0
∇ × B is the equilibrium current density. Therefore, denoting the

perturbed current density δJ = µ−1

0
∇× δB, we consider the parallel projection

B · [∇ (ξ · ∇δp) + δJ × Q + J × δQ] ,
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taking parallel and perpendicular with respect to the initial equilibrium, to determine

a similar identity for the perturbed force operator.

Remembering that the equilibrium satisfies J×B = ∇p and so δJ×B + J× δB =

∇δp, using standard vector identities the above contributions are

B · [∇ (ξ · ∇δp)] = ∇ · [(ξ · ∇δp)B] ,

B · (J × δQ) = −∇p · δQ

= ∇ · (∇p × (ξ × δB))

= ∇ · [(δB · ∇p) ξ − (ξ · ∇p) δB] ,

B · (δJ × Q) = − (∇δp − J × δB) · Q

= ∇ · (∇δp × (ξ × B)) + Q · J × δB

= ∇ · [(B · ∇δp) ξ − (ξ · ∇δp)B] + Q · J × δB.

Noting from the perturbed equilibrium condition that B ·∇δp = −δB ·J×B, the total

projection can be reduced to

B · [∇ (ξ · ∇δp) + δJ × Q + J × δQ] = −δB⊥ · [∇ (ξ⊥ · ∇p) + J × Q] , (9)

noting that ξ‖ ·∇p = 0 and from the usual identity Eq. (8), that the parallel component

of the bracket on the right of Eq. (9) is zero.

As in the standard formulation, we can write the perturbed eigenfunction as compo-

nents ξ = ξ⊥+ξ‖b̂, where b̂ = B/|B| is a unit vector in the direction of the equilibrium

magnetic field. The contribution of δF to the integral in Eq. (6) is then

ξ∗ · δF [ξ] = µ−1

0
ξ∗ · [(∇× δQ) × B + (∇× Q) × δB] + γξ∗ · ∇ (δp∇ · ξ)

+ξ∗ · [∇ (ξ · ∇δp) + δJ × Q + J × δQ]

= µ−1

0
ξ∗ · [(∇× δQ) × B + (∇× Q) × δB] + γξ∗ · ∇ (δp∇ · ξ)

+ξ∗⊥ · [∇ (ξ · ∇δp) + δJ × Q + J × δQ]

−
1

B
ξ∗‖δB⊥ · [∇ (ξ⊥ · ∇p) + J × Q] .

In the case where the boundary is unperturbed, this expression may be conveniently

integrated by parts and its contribution to Eq. (6) finally reduced to

−

∫

V
ξ∗ · δF [ξ] dV =

1

µ0

∫

V
(δQ · Q∗ + Q · δQ∗) dV + γ

∫

V
δp |∇ · ξ|2 dV
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+

∫

V
[(ξ⊥ · ∇δp) (∇ · ξ∗⊥) − ξ∗⊥ · (δJ × Q + J × δQ)] dV

+

∫

V

[

(

ξ‖b̂ · ∇δp
)

(∇ · ξ∗⊥) +
1

B
ξ∗‖δB⊥ · (∇ (ξ⊥ · ∇p) + J × Q)

]

dV.

2.4 Application to tokamaks

If the unperturbed equilibrium is axisymmetric, it is useful to Fourier decompose the

eigenfunctions

ξj(r, θ, ϕ) = ξ̂j(r, θ)e
inϕ,

where r denotes a flux-surface label, and (θ, ϕ) the poloidal and toroidal angles. It

is then clear from Eq. (6) that only the axisymmetric components of δF and δρ will

contribute to

δω2

j = −

∫

V

(

ξ̂
∗

je
−inϕ · δF[ξ̂je

inϕ] − ω2

j |ξ̂j |
2δρ
)

dV

/
∫

V
ρ|ξ̂j |

2 dV. (10)

Such components arise, for instance, because of the overall flattening of the pressure

profile due to a chain of magnetic islands or ergodic field lines.

3 Summary

We have presented a procedure by which the ideal MHD stability of a magnetically

confined plasma without nested flux surfaces may be determined, as long as any mag-

netic islands or ergodic regions are small. The result is expressed in Eqs. (6) and (7),

which give the relative change in stability compared to that of a nearby equilibrium,

for which the eigenfunctions are known. Crucially, knowledge of the eigenfunctions of

the perturbed equilibrium is not required. In general, we envisage the result (6) to

be evaluated numerically, using output from numerical codes. All that is needed, in

principle, is to numerically evaluate volume integrals of known quantities, namely, the

unperturbed eigenfunctions and the field perturbations.
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