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The impact on turbulent transport of geodesic acoustic modes excited by energetic particles is evidenced for
the first time in flux-driven 5D gyrokinetic simulations using the Gysela code. Energetic geodesic acoustic
modes (EGAMs) are excited in a regime with a transport barrier in the outer radial region. The interaction
between EGAMs and turbulence is such that turbulent transport can be enhanced in the presence of EGAMs,
with the subsequent destruction of the transport barrier. This scenario could be particularly critical in those
plasmas, such as burning plasmas, exhibiting a rich population of suprathermal particles capable of exciting
energetic modes.

Understanding turbulent transport is crucial in numer-
ous plasma physics frameworks, ranging from plasma
laboratories such as nuclear fusion devices1 to astro-
physical systems such as the solar tachocline2 or the
atmospheres3. In this letter, we focus on the turbu-
lent transport in toroidal nuclear fusion devices (toka-
maks), where accurate predictions are essential on the
route towards the steady-state production of energy. To-
gether with turbulence, energetic particles (EPs) con-
stitute a ubiquitous component of current and future
tokamaks, due to both nuclear reactions and heating
systems. EPs are characterized by energies larger than
the thermal energy. Whereas the impact of turbulence
on EP transport has been analyzed and found to be
weak4, the effect of EPs on turbulence has not been
much studied so far (see e.g. Ref. 5) and represents
the aim of our study. This analysis is done via the
excitation by EPs of a class of modes naturally exist-
ing in tokamaks: the geodesic acoustic modes (GAMs)6,
which are the oscillatory component of large scale E ×B
zonal flows. The EP-driven GAMs are called EGAMs.
These modes have been predicted theoretically7,8, ob-
served experimentally9,10 and reported very recently nu-
merically in the absence of turbulence11 in gyrokinetic
simulations with the 5D Gysela code12. The motiva-
tion of the present work relies upon fluid simulations
where the turbulence level was controlled by GAMs in
the core/edge transitional regime13. In addition, ex-
perimental evidence of the role of GAMs in the edge-
turbulence suppression has been reported for the first
time during the analysis of the L-H transition in the AS-
DEX Upgrade tokamak14. However, in the context of
core-turbulence suppression, the role of GAMs is less ev-
ident for several reasons. First, these modes are Landau
damped in the core plasma. Second, since they are non-
linearly generated by turbulence, their external control
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has proven difficult. Last, their frequency ωGAM is close
to the characteristic turbulence frequency ωturb, which
means that the shearing rate provided by GAMs might
be large compared to the autocorrelation time. In that
respect, theoretical predictions of the shearing effect pro-
vided by GAMs are not straightforward. The first two
difficulties are overcome in this letter by the presence
of EPs providing a continuous excitation of the mode.
The possibility to efficiently excite EGAMs in (global)
flux-driven gyrokinetic simulations opens the way to the
analysis of turbulence regulation by external ways as well
as the impact of EPs on turbulence and sheds light on the
third above-mentioned difficulty. In this letter, we pro-
vide first numerical evidence of the excitation of EGAMs
in a fully developed ion temperature gradient (ITG) tur-
bulence as well as the impact of these EGAMs on the
turbulent transport. This is done by a source specifi-
cally designed to increase the population of EPs. Three
main results are presented: (1) EGAMs can be excited in
the presence of ITG turbulence in a steady-state regime,
(2) the resulting oscillating radial electric shear is not
able to suppress the core turbulence, on the contrary (3)
a complex interaction between EGAMs and turbulence
is evidenced, leading to a radial propagation of turbu-
lence and the destruction of an existing transport bar-
rier. These results are illustrated in figure 1, where we
display the dependence on time and minor radius of the
turbulent diffusivity governed by fluctuations of the ra-
dial E × B drift velocity vEr. Three phases are clearly
visible, and will be detailed in the remainder of this letter:
(A) the energetic particle source is applied to a statistical
steady-state turbulence regime, (B) a transport barrier
is triggered and (C) EGAMs and turbulence coexist and
interact with each other.

Gysela solves the standard gyrokinetic equation in
the electrostatic limit for the ion guiding-center distribu-
tion function in a simplified magnetic topology consist-
ing of toroidal flux surfaces with circular poloidal cross-
sections. In this model, the electrons are considered adi-
abatic. The self-consistent system is composed by the
gyrokinetic equation coupled to the quasi-neutrality con-
dition, providing the ion guiding-center distribution func-
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FIG. 1: Colormap of the E × B diffusivity (χE×B) with
the three phases analyzed in the paper.

tion F and the electrostatic potential φ:
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In eqs.(1-2) and hereafter, all quantities are normal-
ized. Three normalizing (constant) quantities only are
needed, namely density n0, temperature T0 and the mag-
netic field on the magnetic axis B0. In this framework,
temperatures are normalized to T0, velocities are normal-

ized to the thermal velocity vT0 = (T0/mi)
1/2

, distances
to ρ0 = mivT0/eB0, time to ω−1

c0 = mi/eB0 and F to
n0/v3

T0. Here, mi is the ion mass and e the elementary
charge. In equation (2), B is the normalized modulus of
the dimensionless magnetic field B = (R0/R)b, where b

is the unit vector parallel to the magnetic field and R0

the major radius on the magnetic axis. R is the major
radius: R = R0 + r cos θ, r being the minor radius and θ
the poloidal angle. The electrostatic potential φ is nor-
malized to the thermal energy (φ standing for eφ/T0).
The subscript eq stands for equilibrium quantities, the
brackets 〈·〉 represent a flux-surface average, and ni is
the normalized ion guiding-center density.

The right-hand side of eq.(1) accounts for collisions
C (F )15 and heat sources S. The source term is essen-
tial for the study of neoclassical and turbulent trans-
ports on energy confinement times, away from the initial
state. The EGAM instability belongs to the more gen-
eral class of bump-on-tail instabilities, where the drive

comes from a positive slope of the distribution function
in velocity space. Therefore, it is required to invert the
negative slope of the initial Maxwellian distribution func-
tion so as to obtain an out-of-equilibrium state. The
system will then tend to relax towards the thermody-
namical equilibrium unless it is forced by additional ex-
ternal sources aiming at inverting continuously the pop-
ulation. To this end, the source S is made of two com-
ponents: S = Sth + SEP, with Sth a source of thermal
energy16 and SEP an EP heating, hence leading to a pos-
itive slope in energy. Sth is localized in the inner re-
gion while SEP is spread across the mid radial position
rmid = (rmin + rmax) /2. The source SEP is built by us-
ing projections onto Laguerre and Hermite polynomial
basis, which enables a separation between injection of
energy, parallel momentum and vorticity with a conve-
nient choice of real coefficients17. The coefficients are
chosen so as to inject only parallel energy. For symmetry
reasons, the source is written as

SEP = SEP,0 (t) Sr (r) (S+ + S−) e−µ̄B(r,θ) (3)

where SEP,0 is the amplitude of the source and Sr its
radial envelope (

∫

r drSr = 1). µ̄ stands for µ/Ts⊥, with
µ the adiabatic invariant and Ts⊥ the normalized trans-
verse temperature of the source, set to 1 in the present
simulations. S± includes the decomposition onto the
specified polynomial basis

S± = e−(v̄‖±v̄0)
2 ∑

h,l

chlHh

(

v̄‖ ± v̄0

)

Ll (µ̄B (r, θ)) (4)

where Hh and Ll are the Hermite and Laguerre poly-
nomials of degree h and l respectively. Here, v̄0 =
v0/

√

2Ts‖ is an arbitrary normalized velocity v0 divided
by the normalized parallel temperature of the source Ts‖,

and v̄‖ stands for v̄‖ = v‖/
√

2Ts‖. Both v0 and Ts‖ are
critical parameters in view of exciting EGAMs (see be-
low). This source mimics the effects of two tangential
neutral beam injectors, oriented in the co- and counter-
current directions so that no external momentum injec-
tion exists.

Two simulations are presented, characterized by the
following dimensionless parameters: the collisionality is
ν⋆ = 0.02 (banana regime), the profile of the safety
factor q is parabolic with relatively low magnetic shear
(0 < r dr log q < 0.4) and such that q (rmid) ≈ 2.7. The
normalized Larmor radius is ρ⋆ = ρ0/a = 1/150 (with a
the minor radius of the poloidal cross-section). The ini-
tial density and temperature profiles are characterized by
R0/Ln = 2.2 and R0/LT = 6.5 respectively, with where

Ln,T = − ( dr log{n, T})
−1

the density and temperature
gradient lengths. Ln remains constant during the simula-
tions. Both simulations are identical in the time window
0 < t < tinit = 2250, where only the source Sth is used,
with an input power of 4 MW. At tinit, turbulence has
reached a statistically steady state. The source SEP is
then switched on, leading to an additional input power
of 2 MW (beginning of phase A). In the following, the
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two simulations are referred to as simulation with EPs

(v0 = 2, Ts‖ = 0.5) and simulation without EPs (v0 = 0,
Ts‖ = 1). In both simulations, the parallel and transverse
injected energies are the same.

In the simulation with EPs, the source SEP modifies
the distribution function by depleting the population of
particles around v‖ ≈ ±v0 and creating two bumps on
the tail of the distribution function. This modification
leads to a reduction of ITG activity, which is explained
as follows. Considering only resonant modes k‖ = 0, the
resonance for ITG modes is ω − nΩdT E = 0, where n
is the toroidal wave number, E the normalized kinetic
energy and ΩdT = q

rR0

Ω̄d the normalized precession fre-

quency, with Ω̄d a dimensionless frequency18. Follow-
ing this simplified framework, the resonance occurs at
E = Eω ≡ ω/(nΩdT ), which is estimated by consider-
ing that turbulence develops around the diamagnetic fre-
quency ω⋆ ≈ kθT/BLn

16, such that Eω ≈ (T/Ω̄d)R0/Ln

for resonant modes. Since the chosen value of R0/Ln

is close to v2
0/2, the source SEP leads to a reduction of

the number of resonant particles for the ITG instabil-
ity in this simulation. In the simulation with EPs, the
depletion around Eω occurs mainly in the outer region
(ρ > 0.5). This is illustrated in figure 2a, where we plot
the time evolution of the distribution function at v‖ = v0

normalized to its value at t = tinit. The observed re-
duction of turbulence for ρ > 0.5 (phase B of fig.1) then
appears consistent with the linear stabilization of ITG
modes due to this depletion mechanism.

In figure 2b we plot the time evolution of the slope
of the distribution function at the resonant velocity
vres = qωEGAMR, with ωEGAM the frequency of the EP
mode7,8,11. After the introduction of SEP, the slope is
clearly inverted, mainly in the region ρ > 0.5. It is the
positiveness of ∂v‖Feq at the resonant velocity vres in the
simulation with EPs which drives EGAMs. This is ev-
idenced by analyzing the contribution of the up-down
poloidally asymmetric components, i.e. sin θ, to the ax-
isymmetric modes, i.e. n = 0, of the electrostatic poten-
tial. The time Fourier transform of the imaginary part
of the mode φ1,0 for t > tinit is shown in figure 3 for both
simulations. We observe a peak at ωEGAM = 0.4ωGAM

(and also the second harmonic at 2ωEGAM) which clearly
dominates the spectrum in the simulation with EPs (solid
red line). In the simulation without EPs (dotted blue
line), the spectrum does not exhibit this peak. The
imaginary part normalized to the modulus |φ1,0| is also
plotted (shadowed region) for the simulation with EPs.
This curve clearly shows that the imaginary part dom-
inates over the real part. Finally, analysis of the non
axisymmetric modes proves that the EGAM frequency is
embedded in the turbulence spectrum (not shown here).
Therefore, analytical predictions of the effect of EGAMs
on turbulence is not straightforward and the gyrokinetic
simulations presented in this letter prove especially use-
ful.
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FIG. 2: Time evolution of the distribution function at
v‖ = v0 (top panel) and the derivative in velocity space

at the EGAM resonant velocity (low panel).

An estimate of the E × B diffusivity is given by

χE×B ≈ −
QE×B

ni∇rT
(5)

where QE×B = 〈vErp〉 is the radial heat flux associated
to vEr and p is the pressure. The time evolution of χE×B

is plotted in figure 4 for both simulations with (solid and
dotted black lines) and without (dashed blue line) EPs
in the region 0.5 < ρ < 0.8. In the simulation with EPs,
the expression 5 is decomposed into the contributions of
axisymmetric and non axisymmetric modes. Three ob-
servations are made from this figure: (1) in the absence
of EPs the modification of turbulent transport remains
within the temporal fluctuations and is therefore not no-
ticeable, (2) the contribution of axisymmetric modes in
the simulation with EPs exhibits large amplitude oscilla-
tions around zero at the EGAM frequency, leading to a
vanishing contribution when averaged over some EGAM
cycles and (3) the E×B diffusivity, mainly due to non ax-
isymmetric modes, increases during the EGAM activity
in phase C and oscillates also at the EGAM frequency,
indicating a strong interaction between turbulence and
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EPs via EGAMs. As shown in figure 4, the increase of
the E × B diffusivity is due to the non axisymmetric
modes and represents therefore an increase of the turbu-
lent transport triggered by the excitation of EGAMs.
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The complex interaction between turbulence and
EGAMs is captured in figure 5, where the evolution of the
oscillating part of R0/LT is plotted at two different time
windows. The oscillating part of R0/LT corresponds to
R0/LT − 〈R0/LT 〉t, where 〈·〉t is a time average. This
figure corresponds to the first instants of the EGAM ex-
citation at the end of the phase B (low panel) and to the
phase where turbulence and EGAMs coexist, during the
phase C (top panel). During the transport barrier, the
inner region exhibits avalanche-like behavior, as observed

in figure 5 (low panel), with fronts propagating outwards
and vanishing at ρ ≈ 0.5. The propagation velocity is of
the order of vaval ≈ 0.8v⋆, with v⋆ the ion diamagnetic ve-
locity. In the same figure, we observe static oscillations
in the outer region, characterized by horizontal traces.
By static we mean that there is no front propagation, i.e.
the beginning of the EGAM oscillations does not exhibit
avalanche-like behavior for ρ > 0.5. However, in phase
C (top panel of figure 5) we see that there is not a sin-
gle propagation velocity, i.e. both outwards propagating
fronts and static oscillations coexist and the outer radial
region is also characterized by an avalanche-like behav-
ior. This means that the inner avalanches propagate also
in the outer region in the presence of EGAMs and the
energy flows along the whole radial dimension by means
of radially elongated structures. This result indicates in
particular that a radial electric shear oscillating at a fre-
quency ω ∼ ωturb is likely not an efficient way to suppress
turbulence.
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In conclusion, we have presented for the first time
evidence of the modification of turbulence by energetic
particles. This has been done in flux-driven gyrokinetic
simulations, which represent a powerful tool in view of
elucidating the complex interaction between turbulence
and energetic particles via the excitation of EGAMs.
We have shown that the presence of energetic particles
in a transport barrier efficiently excites EGAMs, lead-
ing to an oscillating radial electric shear that does not
suppress the turbulence. On the contrary, the effect
on turbulent transport leads to the destruction of the
pre-existing transport barrier. The complex interaction
has been evidenced by the coupling between turbulence-
driven avalanches and EGAM-driven static oscillations,
resulting in a regime where turbulent transport (modu-
lated at the EGAM frequency) and EGAMs coexist in
steady state.
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