Nonlinear evolution of the surface morphology under shadowing
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Fluorocarbon thin-film deposition is studied, which shows an anomalous high dynamic growth ex-
ponent and therefore does not fit in any universal class of fractal surface growth models. A detailed
analysis of the nonlinear behavior of the surface morphology evolution is carried out, quantifying
several features of the shadowing instability. A synergy effect with the Kardar-Parisi-Zhang non-
linearity, which couple the large scales induced by shadowing with intermediate scales, may explain

the anomalous high growth exponent.

PACS numbers:
I. INTRODUCTION

Thin film surface morphology controls many important
physical and chemical properties of the films. It is there-
fore of great interest to understand and control the evo-
lution of the surface morphology during thin film growth.
For example very rough surfaces have a low wettability
and can result in so-called super-hydrophobic films with
applications in waterproofing of textiles or biocompati-
ble layers in medical devices. Rough surfaces are charac-
terized by a complex fractal-like surface morphology. As
fractals results from the nonlinear dynamic of the system,
nonlinear processes as spontaneous pattern formation are
strongly linked with rough surfaces. Thus, spontaneous
pattern formation during surface processing is a way to
fabricate nanoscale textured (rough) materials. The ki-
netic roughening of many surfaces follows rather simple
scaling laws [1]. Within this scaling theory, the surface
roughness can be represented by the root-mean-square
w of fluctuations of the surface height h(r,t). At early
times during deposition, the surface roughness should
scale with the time w ~ t”, where 3 is the growth ex-
ponent. The growth saturates after some time t, and
the surface roughness should scale with the system size
w ~ L% where « is called the roughness exponent. These
exponents allow to classify different universality classes,
providing informations about the underlying equations
determining the deposition process.

Continuum growth equations are valid in the small
slope approximation |Vh| < 1 but with increasing sys-
tem size, the slopes increase and the saturation can be
dominated by nonlinear processes. Therefore, several
universal classes include nonlinear terms and also other
processes governing the film growth as redeposition [2] or
shadowing [7] are nonlinear. Thus, there is a necessity
to study the nonlinear behavior during deposition. Pre-
vious experimental investigations of the surface rough-
ening have been restricted to the determination of the
scaling exponents o and § [4-6]. More detailed analy-

ses are in particular necessary, if the experimental scal-
ing exponents do not fit to any universal class. Such
an anomalous scaling have been reported from fluorocar-
bon thin films deposition [4], where shadowing has been
expected to be responsible for the large 5. This study
presents a detailed nonlinear analysis of the surface mor-
phology of fluorocarbon thin films deposition. To gain
inside into the shadowing mechanism the analysis of ex-
perimental data is accompanied by a simple Monte Carlo
simulation of pure shadowing to characterize, quantify
and distinguish the effects of shadowing against other
possible roughening mechanisms. It is found that the
experimentally observed surface morphology shows all
features of shadowing. The development of large scale
structures on the surface is due to shadowing. Although
strongly present shadowing alone cannot account for the
observed large 8. The Kardar-Parisi-Zhang (KPZ) non-
linearity redistributes the surface height perturbations
among the scales and transfers the perturbations from
the large-scale structures induced by the shadowing to
smaller scales. This synergy effect between these two
nonlinearities may be indeed responsible for the anoma-
lous scaling reported in Ref. [4].

II. EXPERIMENTAL SETUP AND PREVIOUS
RESULTS

Fluorocarbon films were deposited on polished Si
wafers on a grounded electrode in a capacitively coupled
plasma reactor driven by an RF generator at 13.56 MHz.
The distance between the grounded and driven electrode
was 39 mm and the total electrode surface area was 43
cm?. As feedstock c-Cy4-Fg was used. The discharge was
operated at 100 Pa and a power of 60 W was applied. The
gas flow was 17 sccm. More details on the experimental
apparatus can be found in [4]. The surface morphol-
ogy of the samples was studied ex situ by atomic force
microscopy (AFM). For AFM measurements no intrinsic
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FIG. 1: AFM images (15um x 15um) at different times and film thickness (a) (h) =0.050, (b) 0.075, (c) 0.100, (d) 0.125, (e)

0.150, (f) 0.200, (g) 0.250 and (h) 0.300 pm respectively.

nonlinearities in the data acquisition are known. Images
of 15um x 15um were taken at a resolution of 256 x 256
points as shown in [4]. A dynamic scaling exponent of
B =1.35£0.08 has been found. Such a large growth ex-
ponent does not fit to any growth model found in [1]. The
largest dynamical scaling exponents (up to one) are pre-
dicted by shadowing [11]. Therefore it can be expected
that shadowing play an important role during the depo-
sition process. As shown in Fig. la and b, the surface
shows a grassy topology at early times, which is indica-
tive for geometrical shadowing effects [1, 3]. However,
shortly after that, cusps develop. These cusps are larger
structures taking over the smaller ones (Fig. 1c and d)
as expected for shadowing where taller surface features
block incoming flux from reaching lower lying areas of
the surface [1, 3]. However as 5 > 1 another roughen-
ing mechanism which is synchronized to shadowing must
be present or the nonlinearity redistributes the spectral
power already deposited on the surface and additional
roughens the surface by means of this process. The static
scaling exponent « increases during the first minutes of
deposition from 0.4 ((a) and (b)) to 0.6 (d) and then sat-
urates at a value of @« = 0.67£0.02. In the case of oblique
incidence during sputter deposition a value of o = 2/3
is predicted by nonlinear growth including surface diffu-
sion. In this particular case a 8 of 1/5 is predicted, which
is not observed in the experiment. Anyhow, in the ex-
periments reported here the particles do not arrive at the
surface under a single oblique angle. A value of & =1
indicate linear growth, a value of & = 1/2 can correspond
to nonlinear growth with relaxation due to surface ten-
sion [1]. Again, none of the universal classes reported in
[1] is consistent with the experiment, but the observed
static scaling exponent « &~ 2/3 points to a further non-
linear mechanism during the deposition.

III. SHADOWING

The primary nonlocal effect is the shadowing effect
[3, 7-11], where taller surface features block incoming
flux from reaching lower lying areas of the surface. The
shadowing effect is active because the incoming flux has
an angular distribution. This allows taller surface fea-
tures to grow at the expense of shorter ones, leading
to a competition between different surface features for
particle flux. This competition leads to a grassy mor-
phology and ultimately to a mounded surface as shorter
surface features receive little or no particle flux and are
suppressed. Shadowing is an inherently nonlocal process
because the shadowing of a surface feature depends on
the heights of all other surface features, not just close
ones.

A model including both non-linear shadowing and dif-
fusion effects has been initially developed by Bales and
Zangwill [7] and by Karunasiri et al [8]. The roughening
of a surface profile is given by the evolution of the surface
height h(z,t)

% = RQ\/1+ (Vh)2 +vV2h +1. (1)

The stochastic arrival of the particles is modeled by white
noise 7. Relaxation is provided by the surface tension v.
The deposition growth R is multiplied with the exposure
or solid angle Q(x, k). The exposure angle gives a mea-
sure of the open sky that one can see from the position
x. The factor \/1+ (Vh)? in Eq. (1) implies that the
growth takes place normal to the surface [9]. Both the
exposure angle and the normal growth are strongly non-
linear functions of the surface height and no analytical
expression is known in Fourier wavenumber space.

The Fourier representation of Eq. (1) taking ¥ =
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FIG. 2: Cross-coherence and -phase between surface height
and exposure angle perturbations during fluorocarbon thin-
film deposition.
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FIG. 3: Crossbispectrum between surface height, exposure
angle and normal surface growth fluctuations during fluoro-
carbon thin-film deposition at different times and film thick-
ness (a) (h) =0.050, (b) 0.075, (c) 0.100, (d) 0.125, (e) 0.150,
(f) 0.200, (g) 0.250 and (h) 0.300 wm respectively. The cross-
bispectrum is shown normalized to its maximum absolute
value. Positive (negative) values are depicted in orange (blue).
Informations on the impact of its amplitude can be found in
Fig. 4.

[ dael01t@=0% = §(q; + g5 — ¢). This results in

3 Z 2
8t =R Q q27 QIa )_Vq h(Qat)7 (3)
4=q1+q2

or equivalent for the spectral density

12 h%(q,t) = Re(R Z Q(g2, 1) ¥(q1,t)h" (g, 1))
9=q1+q2
—vg*h*(q,t), (4)

where the asterisk denotes the complex conjugate.
Therefore in the large slope limit the exposure angle is
nonlinearly interacting with the surface height perturba-
tions and the normal growth fluctuations .

A. Quasi-linear shadowing

For small slopes (¥ & 1) and due to the strong contri-
bution of the ¢ = 0 mode (¥(qg =0) = \/1+ (¢h)2 =1)
in general shadowing is in first order determined by the
exposure angle. As this dependence is linear on the ex-
posure angle, but the exposure angle depends on the sur-
face height perturbations in a nonlinear nonlocal way, it
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FIG. 4: Integrated crossbispectrum between surface height,
exposure angle and normal surface growth fluctuations during
fluorocarbon thin-film deposition.

is called quasi-linear here. Therefore in first order shad-
owing is given by the averaged cross-power spectrum as
given by

Hpa(q) = (h*(9)q)), ()

where h(q) and Q(q) are the Fourier transforms in
wavenumber. As a large number of samples for each con-
dition for experimental data is not available, it seems
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FIG. 5: (a) Comparison of the measured roughening (black,
solid) with the roughening due to quasi-linear (QL, blue,
dashed) and nonlinear shadowing (NL, red, dotted) and KPZ
nonlinearity (KPZ, green, dash-dotted). (b) The ratio be-
tween nonlinear and quasi-linear roughening.

appropriate to carry out the the analysis in one dimen-
sion only, taking the second dimension as the statistical
ensemble taking 128 sub-series of 128 points for ensem-
ble averaging (). As a complex quantity, the cross-power
spectrum can be written as Hj, o(q) = |Hp.o(q)|e™n2@),
where ¢, o(q) is the average cross-phase. The coherence,
defined by

[(h*(9)2(q))]
(I(@))*([2(a) )

measures, how phase locked modes are with values in
[0,1]. Figure 2 shows the cross-coherence and the cross-
phase between the surface height and the exposure fluctu-
ations. If a significant coherence is observed, the cross-
phase is close to zero. Therefore quasi-linear shadow-
ing increases the spectral power and the surface rough-
ness. With deposition time the coherence increases and
shifts to larger structures (lower wave numbers). There-
fore larger and larger structures are getting unstable to
quasi-linear shadowing, where the smaller structures do
only receive a marginal part of the particle flux. We
observe that for these smaller structures the cross-phase
between h and 2 is getting more and more irregular as
the deposition proceeds.

h.a(q) = 7 ; (6)

B. Nonlinear shadowing

Investigating scaling laws power spectral densities
(PSD) are often used in surface topology analysis. How-



ever, the PSD does not distinguish between indepen-
dently excited and nonlinearly coupled waves. A mea-
sure of the quadratic coupling between two waves with
wavelength ¢; and go with a third one ¢ = ¢q; +¢- is given
by the cross-bispectrum [12]

Blqi,q2) = (Uq)¥(g)h (¢ =q1 + ). (7)
If these three waves are spontaneously, independently ex-
cited, their phases are also statistically independent and
the bispectrum vanishes. On the other hand, a nonlinear
coupling between the waves ¢, ¢; and ¢s is locking their
phases with each other. As a result, the bispectrum takes
a finite value. To investigate the fully nonlinear behav-
ior the cross-bispectra (Q2(q1)¥(g2)h*(q)) have been cal-
culated as shown in Fig. 3. For convenience the wave
numbers in Fig. 3 are labeled with the quantity, which
has been Fourier transformed (q1 = ga1, ¢2 = qu2). All
cross-bispectra show the same basic features. The region
q1 < 0 and ¢; + ¢2 > 0 is dominated by negative cou-
pling (Q(g1)¥(g2)h*(¢q)) < 0. For every surface height
perturbation h(g) an associated perturbation in the ex-
posure angle (¢1 = ¢) can be found. As ¥ ~ |Vh| the
normal growth spectra U(gs = 2¢) contains the second
harmonics of h(g). The three-wave coupling condition is
fulfilled. This damping caused by the coupling with the
second harmonics reflects the smoothing of the surface
due to the reduction of the slopes of the surface. The
strongest nonlinear drive is found at ¢; < 0, g2 > 0 and
g = q + g2 < 0 close to the line go = —¢q;. This can
result from the coupling ¥(¢1 — ¢)Q*(q1)h*(—¢q), where
the modulation of the normal surface growth ¥(gq; —q) is
used as a sideband to increase the spectral power in large-
scale features h(q). It is found that two nonlinear mech-
anisms are active during the deposition, damping due to
wavenumber doubling of the normal surface growth and
growth due to its modulation by large-scale structures.

To estimate the impact of nonlinear
shadowing the integrated cross-bispectra
Zqz.q1+q27—q=q1+q2 <Q(q1)\]:l(q2)h* (Q)> are presented

in Fig. 4. The cross-bispectra are integrated over both
propagation directions ¢ and —gq. It shows a similar
behavior as the cross-coherence in Fig. 2. The integrated
cross-bispectra are positive and therefore contribute to
a roughening of the surface. With increasing deposition
time the amplitude in the integrated cross-bispectra
increases. The spectral power concentrates at large
structures, which is also consistent with the shadowing
instability. The impact of this nonlinear roughening will
be investigated next.

The film thickness increases linearly in time (h) = Rt,
where R is the deposition growth rate. To compare
the results presented here against previous work we use
0/0t = RO/O(h). The evolution of the mean free spectral
power (h?) is related to the evolution of the roughness w

by %}i; = Qw%. Since the roughness develops accord-

ing to a power law w = wp(h)? with growth exponent
B the time evolution is given by 8“’> = fw/(h) which

results in

=267 (8)

The actual observed roughening is compared to the
quasi linear (QL) and nonlinear (NL) roughening in

. The quas1 linear shadowing is given by
f \/Q2 )/ h2(q) cos(Q, h) where cos(£2, h) is the cross-
phabe between surface height and exposure angle pertur-
bations as shown on the right hand sight of Fig. 2. Tobe a
possible candidate to explain the actual observed rough-
ening it must be larger than that together with the damp-
ing which is not considered here. The nonlinear rough-
ening given by [ 35 _ Lo (Uq1)P(g2)h"(q)) is
also shown in Fig. 5. The observed anomalous dynamical
scaling exponent 5 = 1.35 of the experimental data can-
not be explained by shadowing alone. As shown in Fig. 5a
the roughening due to QL shadowing is about one order
of magnitude below the actual observed one and the NL
shadowing is even up to three orders of magnitude below
that. For the experimental data NL shadowing is negli-
gible (Fig. 5b). Therefore, the observed dynamic scaling
coefficient 8 can only result from another linear process,
which should be cooperative to QL shadowing or from
nonlinear redistribution of the spectral power by another
nonlinearity as the KPZ-nonlinearity [13] for example as
discussed in section IV.

C. Monte Carlo Simulations

The non-linearity of the shadowing effects can be easily
tested on simple Monte Carlo simulations of the growth
of a periodic one dimensional surface under incoming par-
ticle flux. An illustration is shown in Fig. 6. The method
consists in sticking identically shaped incident particles
on implementation sides at the boundary layer of the
growing surface. All implementation sides are located at
the nods of a uniform 2D mesh. Effects of binding en-
ergy and incident energy distribution are minimized to
a simple form. A first layer of atoms is initiated with
a required horizontal spectrum (red layer at the bottom
of Fig. 6). A succession of particles is then sent from
the top of the domain toward the surface, at a random
discrete horizontal location with a random direction. At
the discrete location where the particle trajectory hits
the surface, the particle sticks with 99% of probability.
If the receiving particle already sticked to the surface is
only bounded to one other particle, within 1% probability
both incident and receiving particles are remitted from
that location, with uniform random directions and half
of the initial probability to erode again. Results shown
in Fig. 6 correspond to a periodic domain of 1024 sites,
with about 10* particles deposited above the initial sur-
face. The high sticking and low erosion probability is re-
sponsible for a highly porous structure, because cascade
processes are rare, and shadowing is clearly manifested.
At each horizontal location z, the vertical position of the



highest particle defines the surface height h(x) at that
position, as illustrated by the red curve at the top of the
surface in Fig. 6. To perform statistical analyses on the
surface growth dynamics, a series of 256 simulations has
been performed with identical power spectrum for the
initial surface roughness.

Surfaces obtained with this Monte Carlo approach give
a roughness exponent of 8 = 0.95, which value does not
depend so much about the sticking coefficient. Indeed,
for higher probability of surface erosion redeposition, the
grass like structure as evident on Fig. 6 will exhibit a
lower internal porosity, but the overall surface will keep a
grassy like organization, due to each structure shadowing
its neighboring ones. Comparing the experimental results
with the those of the simulation, the qualitative agree-
ment of the cross-coherence and cross-phase between {2
and ¥ (Figs. 2 and 7), the cross-bicoherence between (2,
U and h (Figs. 3 and 8) and the integrated one (Figs. 4
and 9) is remarkable. It can be concluded that shadowing
is strongly present during the deposition process.

FIG. 6: Zoom on a grown surface under incident bombard-
ment of highly sticking and low sputtering yield particles (in
black). Implementation sites are discrete. The surface func-
tion h(zx) is locally defined by the position of the highest par-
ticle, as illustrated by the two red curves. The bottom one is
the initial surface, and the top one is the surface a short time
prior the end of the run.

As expected for a pure shadowing MC simulation
(Fig. 5a) the roughening due to quasi-linear shadowing is
close to the actual observed roughening (Eq. (8)). Non-
linear shadowing is below the actual observed roughening
but approaches up to 25 % of the quasi-linear one (as seen
in Fig. 5b).

IV. KARDAR-PARISI-ZHANG NONLINEARITY

The nonlinear generalization of the Kardar-Parisi-
Zhang (KPZ) equation [13] describing the roughening of
a surface is given by the evolution of the surface height
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FIG. 7: Cross-coherence and -phase between surface height
and exposure angle perturbations from MC simulations.
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FIG. 8: Evolution of the crossbispectrum between surface
height, exposure angle and normal surface growth fluctuations
from MC simulations in the same representation as in Fig. 3.

h(r,t)

Oh _ g2 + 1A(Vh)Q — KV*h +1. (9)
ot 2

Additional to the surface tension v the surface self-
diffusion — K V*h give the surface relaxation mechanisms,
where K is a temperature dependent positive coefficient.
Usually v is positive and surface tension dominates over
the surface self-diffusion. In this case, the system is mor-
phologically stable. A negative value of v implements
morphological instability. The balance between only the
surface tension (with v < 0) and self-diffusion results
in periodic height modulation (ripple) with wavelength
Apy = 2m\/2K/|v| called Bradley-Harper instability
[14], The term 1A(Vh)? is the lowest order nonlinearity
possible and is called KPZ-nonlinearity. Taking v < 0
and also the KPZ-nonlinearity into account Eq. (9) is
called the Kuramoto-Sivashinsky equation. In respect to
Vh the KPZ-nonlinearity acts like self-advection, which
can be seen by applying V on Eq. (9) yielding to a
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Burgers-like equations, where the velocity is represented
by Vh. A strong self-advection can result in a nonlin-
ear KPZ-instability. For weak self-advection, the linear
growth is saturated by the KPZ-nonlinearity, which can
result in pattern formation.

In Fourier space, where the surface height is given by
> q P, t)e'? | the KPZ-equation (9) transforms to

0 iqir iqir
5 ;h(qht)e B =N " —vgih(qr,t)e'

a1

1 ,
=D SAa@h(ar, h(qz, e’

a1 Q92

— 3" Kqth(ay, e + F(n). (10)

q1

The Fourier transform of the stochastic arrival of the
particles is given by F(n), which will be neglected for
simplification in the following. By multiplying both sides
of this equation by h*(q,t)e™ e and integrating over dr,
we can make use of the delta function fdrei(qr‘”r =
d(q1 — q) and find

2h(q,t)? = —2(ve® + Kq*)h(q,t)?

—Re Y Aaiqzh(qi, t)h(qz, t)h*(q,1),
q=q1+qz
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FIG. 10: (a) Comparison of the measured roughening (black,
solid) with the roughening due to quasi-linear (QL, blue,
dashed) and nonlinear shadowing (NL, red, dotted) for the
MC simulation. (b) The ratio between nonlinear and quasi-
linear roughening.

where the asterisk denotes the complex conjugate. In
the case of the KPZ equation, the time evolution of the
power spectra h(q,t)? is determined by linear processes
like the surface tension and self-diffusion (—(vq? + Kq*))
and the nonlinear processes, which are reflected by three-
wave coupling which satisfy the constraint q = q; + qo.

The basic shape of the KPZ nonlinearity (KPZ-NL)
—q1g2Re(h(q1)h(g2)h*(q)) as estimated experimentally is
shown in Fig. 11. Before cusps develop (Fig. 11a and b)
the nonlinear interactions appear equally distributed over
all scales. As cusps arise the KPZ-NL is dominated by
local interactions (in ¢-space) at large scales. Stripes de-
velop progressively (Fig. 11e-f), which are nonlocal inter-
actions (in g-space) indicating modulational instabilities
[15]. As seen in the integrated values (Fig. 12) the KPZ-
NL basically transfers the fluctuations from larger to in-
termediate wave numbers. As the interactions are mainly
local this depicts a forward mass cascade, where large-
scale cusps break apart in smaller structures. It should
be noted that this redistribution is only possible, if the
mass input is located at large scales, which is provided
by the shadowing instability. Unfortunately the nonlin-
ear coupling coefficient A is not know and the roughen-
ing due to the KPZ-NL cannot be quantified. However,
to get an impression we set A = R and assuming that
the mass at the low ¢ transferred to the intermediate ¢
is filled up by shadowing at low ¢q. The corresponding
roughening due to the nonlinear redistribution is shown
in Fig. 4. The roughening due to the KPZ-NL nearly
fits the observed roughening. Therefore the KPZ-NL can
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FIG. 11: Bispectrum (weighted by —qig2) between surface
height fluctuations during fluorocarbon thin-film deposition
in the same representation as in Fig. 3.

account for the observed roughening with A > R.

V. SUMMARY AND CONCLUSION

Fluorocarbon thin-film deposition, which sows an
anomalous high dynamic scaling exponent of § = 1.35
[4] is investigated in detail. As the shadowing instability
reports the highest § of close to one, this study is focused
on the shadowing instability. Under shadowing larger
structures shield the incoming flux to smaller structures
and therefore they gain more flux themselves. The shad-
owing nonlinearity depends mainly on the exposure an-
gle, which is a highly nonlinear function of the surface
height. As no general analytical relation between the
surface height perturbation and the exposure angle ex-
ists the exposure angle is treated as an independent func-
tion. Furthermore the investigation is extended to study
the influence of normal growth to the surface, which is
also a highly nonlinear function of the surface height per-
turbation and also treated as an independent quantity,
here. Surface height perturbations induce perturbations
in the exposure angle at the same wavenumber, which
are in phase. These modes can couple quasi-linear and
result in what we call here quasi-linear shadowing. Fur-
thermore normal growth perturbations are induced at the
doubled wavenumber which are expected to be quadra-
ture to the surface height pertubations. Additionally the
normal growth modes are modulated by the large-scale
surface height structures, which can result in additional
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FIG. 12: Integrated bispectrum (weighted by —g1q2) between
surface height fluctuations during fluorocarbon thin-film de-
position.

nonlinear modulational roughening. All three mecha-
nisms (quasi-linear and nonlinear modulational rough-
ening as well as nonlinear relaxation due to wavenumber
doubling in the normal growth) are present in the exper-
iment. Although the anomalous high dynamical scaling
exponent exceeding one cannot be explained by shadow-
ing alone.

The basic considerations are also tested on numerical



surface morphology data, obtained from a simple Monte-
Carlo simulation. Quasi-linear roughening is strong
enough to explain the observed roughening for the sim-
ulation. Here the nonlinear effects show significant con-
tribution to the observed roughening.

As the experiments also report a static scaling expo-
nent of & = 2/3, which is characteristic for nonlinear be-
havior, also the KPZ nonlinearity is studied. The KPZ
nonlinearity does act as a forward cascade under shadow-
ing, transferring fluctuations in the surface height from
the scales of the shadowing to intermediate scales, in-
creasing the roughness. The interplay between these two

nonlinearities can qualitatively explain a scaling expo-
nent higher than one. The actual roughening due to the
KPZ nonlinearity cannot be measured from the experi-
mental data. However, it can be estimated that the non-
linear coupling coefficient of the KPZ nonlinearity has
to exceed the linear growth rate to explain the observed
anomalous high 8. With in situ real-time measurements
of thin film deposition [16] it would be possible to esti-
mate the linear growth rate and the nonlinear coupling
coefficients by a spectral power transfer analysis as done
in Refs. [17, 18].
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