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In this study, a Bayesian based non-stationary Gaussian Process method for the inference of soft X-ray 

emissivity distribution along with its associated uncertainties, has been developed. For the investigation of 

equilibrium condition and fast magnetohydrodynamic (MHD) behaviors in nuclear fusion plasmas, it is of 

importance to infer, especially in the plasma center, spatially resolved soft X-ray profiles from a limited 

number of noisy line integral measurements. For this ill-posed inversion problem, Bayesian probability theory 

can provide a posterior probability distribution over all possible solutions under given model assumptions. 

Specifically, the use of a non-stationary Gaussian Process to model the emission allows the model to adapt to 

the varying length scales of the underlying diffusion process. In contrast to other conventional methods, the 

prior regularization is realized in a probability form which enhances the capability of uncertainty analysis, in 

consequence, scientists who concern the reliability of their results will benefit from it. Under the assumption 

of normally distributed noise, the posterior distribution evaluated at a discrete number of points becomes a 

multivariate normal distribution whose mean and covariance are analytically available, making inversions and 

calculation of uncertainty fast. Additionally, the hyper-parameters embedded in the model assumption can be 

optimized through a Bayesian Occam‟s Razor formalism and thereby automatically adjust the model 

complexity. This method is shown to produce convincing reconstructions and good agreements with 

independently calculated results from the Maximum Entropy (MaxEnt) and Equilibrium-Based Iterative 

Tomography Algorithm (EBITA) methods. 

  

 

I.  Introduction 

In plasma diagnostics the analysis of soft X-ray 

radiation is a very useful way to explore transient MHD 

phenomena. Since the plasma is optically thin for soft X-

ray radiation, and the radiation can be recorded with high 

sampling frequency, the tomographic inversion from a set 

of sight lines can resolve mode structures, rotating 

perturbations, disruptions etc., even in the plasma center. 

A typical setup consists of pinhole cameras with photon-

diode detectors and filters, which are opaque for visible 

and infrared wavelengths. For higher energies in the hard 

X-ray and gamma-range which are mostly filtered out by a 

thin Beryllium coil in front of each detector, the sensitivity 

of the detectors strongly decreases. The measured quantity 

is thus integrated in the spectral range as well as along the 

sight lines. 

The subject of this work is to infer a most probable 

reconstruction among a manifold of conceivable solutions 

through a number of noisy line integrated signals. 

Historically, the techniques for tomographic inversions for 

plasma physics applications started from a standard Abel 

inversion1 method which was used for circular plasma 

cross sections in tokamaks. Other methods based on linear 

least squares techniques2 and restricted Fourier analysis3-6 

have been developed for asymmetrically elongated 

plasmas. The EBITA7 and MaxEnt8 methods with which 

our results will be compared, are based on numerical 

iterative algorithms and able to recover structures with 

localized perturbations from high harmonics. However, 

MaxEnt has the drawback of high computation time cost 

due to the iterative and nonlinear numerical techniques. 

Though EBITA can overcome the drawback of high 

computation time, it uses additional information about the 

toroidal magnetic flux surfaces, which need to be derived 

from equilibrium calculations.  

In this paper we demonstrate a Bayesian based non-

stationary Gaussian Process (GP) tomography technique9, 

to reconstruct the soft X-ray emissivity distribution from a 

number of noisy line integral measurements. Most applied 

numerical inversion techniques are based on representing 

the unknown emissivity function ( )f r


( r


being the spatial 

coordinate) as some parametric functions, (e.g. linear or 

polynomial) whose parameters will then be optimized by 

minimizing a combination of a misfit function and a 

regularizer. In contrast, the approach described in the 

following, realizes a non-parametric model by using a 

Gaussian Process10,11 to represent a prior probability over 

the underlying function ( )f r


. The regularization of ( )f r


 

is directly controlled by the properties of this Gaussian 

Process prior. Once the measurements are attained, this 

prior is updated to a posterior probability through 

multiplying with the likelihood for the measured data.  

Here we will assume a Gaussian error on the 

measurements, which gives a multivariate normal 
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likelihood model. The maximum of the posterior 

probability distribution provides the single most likely 

reconstruction, and the posterior covariance gives the 

uncertainty of this solution.  

This non-stationary GP tomography method does not 

involve nonlinearity or numerical iterations, which makes 

a real time application feasible. An estimation of 

uncertainties of the solution is readily available from an 

analytic posterior. This uncertainty will depend on the 

errors of the measurements, the coverage of sight lines and 

the prior model assumption. 

II. Method 

2.1 Soft X-ray diagnostics in W7-AS 

For the stellarator Wendelstein 7-AS (W7-AS) which 

was in operation until 200312, a soft X-ray imaging system, 

consisting of eight pinhole cameras, each containing a 

Silicon photon detector, was used to measure the 

emissivity within a poloidal cross section. The measured 

value of a line integrated signal is proportional to the 

number of photons collected within a solid angle 

subtended by one detector. The experimental setup of this 

diagnostic system is illustrated in FIG.1.  

 
FIG.1. A schematic view of the miniature soft X-ray system (MiniSoX 

diagnostic system) in Wendelstein 7-AS shows the eight compact detector 

arrays with a total of 256 sight lines in one poloidal cross-section, 

achieving a substantial coverage13,14. The dashed black lines indicate the 

magnetic flux surfaces of a typical plasma in Wendelstein 7-AS. 

 
In the following, the emissivity distribution is 

expressed as a function ( )f r


 over the 2D poloidal cross 

section. The actual data 
l

d obtained from one detector 

element (indexed by l ) is the predicted data p

l
d plus a noise 

term. The mapping between ( )f r


 and predicted data p

l
d  is 

given by: 

=c ( ), =1,2, ...,

l

p

l l

S

d ds f r l M


           (1)   

where, the M integrals are carried out along the paths
l

S , 

of the sight lines. The calibration factors 
l

c  relates to the 

slight differences in spectral efficiencies and solid angles 

between the detectors.  

To calculate the integral of Eq.(1), the function domain 

is subdivided into a number of discrete elements. The 

emissivity area is chosen so as to cover the plasma region 

in case of plasma shifts and expansions. For the following 

we have used = 30 30= 900N   rectangular cells, assuming 

homogeneous emission in each cell, whose size should 

ensure to be small enough to justify a constant emissivity 

within each cell. The reconstruction results won‟t be 

sensitive to the number of cells if the size of each cell is 

guaranteed to be comparable to the resolution of the 

realistic emissivity distribution. The emissions from the 

pixels around the limiting wall are set to be zero, as a 

boundary condition. With this discretization, the matrix 

formulation of Eq.(1) can be written as: 

M M N N
d R f


                                        (2) 

where, the column vector 
N

f is the discretized emissivity 

function ( )f r


 and the contribution matrix 
M N

R


 arises 

from the forward calculation, whose element
lk

R  is the 

contribution from a unit emission in cell k  to the 

calibrated measurement l . Since the number of unknowns 

N  is much larger than M , a direct inversion would suffer 

from the problems of existence and uniqueness of the 

solutions15. A possible solution might also be very 

sensitive to small changes in the measured data. In the 

formulation of Bayesian probability theory, these problems 

are solved by expressing regularizing assumptions as a 

prior probability density function (pdf), which in our case 

is realized through a Gaussian Process. 

2.2 Gaussian Process 

A Gaussian Process is a generalization of a 

multivariate normal distribution over functions, and is 

defined by a mean function, ( )r


 and a covariance 

function, ( , )i jk r r
 

. ( , )i jk r r
 

defines the covariance between 

function values at any two locations ,i jr r
 

and controls the 

properties (e.g. smoothness, differentiability etc.) of 

random sample paths of ( )f r


 under the process. The 

Gaussian Process thus fully describes the properties of the 

underlying function (as a mean and a regularizing 

covariance function), and no further parameterization of 

the underlying function is necessary. The pdf of ( )f r


 over 

any discrete set of locations will be a multivariate normal 
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distribution with its mean, ( ( ))= ( )i iE f r r
 

 and covariance 

function, cov ( ( ), ( ))=k( , )i j i jf r f r r r
   

. 

The choice of a good covariance function is crucial for 

the Gaussian Process inversion since it determines how the 

regularization is imposed on the underlying function. For 

the case when the smoothness of the underlying function 

can be assumed to be the same everywhere, a stationary 

(non position-dependent) covariance function can work 

effectively. Two widely used stationary covariance 

functions are the so called squared exponential (Eq.(3)), 

and the Matérn covariance function (Eq.(4)). For such 

stationary covariance functions, the covariance is 

dependent only on the distance between two locations, 

-i jij
d r r

 
. The argument l in those covariance functions 

corresponds to a length scale of spatial variation of the 

function ( )f r


. 
f

 controls the variance/amplitude of the 

function at a given location.  

 
2

2

2
= exp - , -

2

ij

i jSE ij f ij

d
k d d r r

l


 
 

 
 

 
                   (3)

 
 

1-

2

M atern

2 22 ij ij

ij f

d d
k d K

l l






 




   
   
   
   

        (4)                                                       

where,  is the gamma function and K


is a modified 

Bessel function.   and l  are non-negative parameters of 

the covariance function. The limitation of the stationary 

covariance functions arises when the smoothness of the 

underlying function varies between different locations. In 

this case, a non-stationary covariance becomes necessary 

and can be made to locally adapt to the varying 

smoothness, as described in section 2.3.  The construction 

and usage of various stationary and non-stationary 

covariance functions can be found in various fields, such 

as machine learning16, geophysics (kriging)17 etc. For our 

work, a non-stationary covariance function has been 

applied to adapt to the varying smoothness from a 

diffusion process of the emissivity distribution from 

plasmas. This is accomplished through a specification of 

locally adaptive length scales that are inferred by an 

independent latent Gaussian Process over the local length 

scales. 

2.3 A non-stationary covariance function 

 To address the problem of varying smoothness in an 

emissivity distribution, the following non-stationary 

extension of the squared exponential covariance function 

has been used18,19  

1 2

1 4 1 4

2

1

( ) ( )
( , ) ( ) ( )

2

( ) ( )
exp ( ) ( )

2

i j

i j i jf

i jT
i j i j

r r
k r r r r

r r
r r r r







  
  

         
  

   

 
   

 
   

       (5) 

where, ( )ir


 is a 2D  matrix describing the local length 

scales (and possible local correlations) of the function at 

location ir


. Under an isotropic assumption, we have a 

diagonal ( )ir


: 

2

2

( ) 0
( )

0 ( )

iR
i

iZ

l r
r

l r

 
   

 




                               (6) 

where, 2 2
( ), ( )i iR Z

l r l r
 

are the square of the local length 

scales along R and Z directions respectively. We here 

have equal length scales, 2 2 2
( ), ( ) ( )i i iR Z

l r l r l r
  

in both 

directions (isotropic assumption). In principle, an 

anisotropic assumption can be implemented by adjusting 

the non-diagonal elements of the matrix in Eq.(6).  For 

example, a conventional regularization used in plasma 

tomography is to regularize the emission constant along 

the magnetic flux surfaces, which is particularly essential 

and helpful when available measurements are too few. 

Here, a similar regularization can be realized by 

manipulating the matrix in Eq.(6) to set the length scale 

along the flux surface much smaller than in the 

perpendicular direction, so that the diffusion will be much 

stronger along the contour flux surfaces. However, such a 

kind of constrain often appears to be over strong and even 

incurs biased reconstructions when it conflicts with the 

reality, so in this work with sufficient lines of sight, we 

relax this artificial constraint. From the exponential part of 

Eq.(5), the covariance between two locations is thus 

calculated from the average of two local matrices at 

locations ir


and jr


. In this way, the covariance is location 

dependent and the local characteristics at both locations 

influence the overall modeled covariance. As will be 

described later (section 2.3), we want the local length 

scales to adapt to the measurements, so we need to find a 

low-dimensional representation of the length scales as a 

function of position. We do this (see ref.18) by modeling 

the underlying length scales as another, secondary/latent, 

Gaussian Process. Two Gaussian Processes are thus used 

together: one latent stationary process 
l

GP  to model the 

local length scales, and a second non-stationary 

process
f

G P for the emissivity function ( )f r


, using the first 

process for its local length scales. Each of the these two 

processes has a number of hyper-parameters associated 

with it, which can be taken as fixed values, or optimized 

from the available data, as described further on in section 
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2.5. For a list of notations used to describe the different 

parts of these two processes, see Table 1.  

Table 1: Notations used in overall processes about the model assumption. 

Non-stationary GP over ( )f r


 f
G P  

Hyper-parameters of  
f

G P  ,f f
     

Measurement data set  M
Md    

Prediction of underlying function  *
N

f   at locations 
*

r


 

Latent GP over local length scales 

( )l r


 

l
G P  

Support local length scales   s
P

l   at selected locations 

Prediction of local length scales  * N
l   at location 

*

r


 

Hyper-parameters of 
l

G P  
, ,

s

l l l
l l    

Joint hyper-parameters ,f l     

 

 In above table, 
f

 is a hyper-parameter included in 

the prior covariance (see Eq.(5) ) and  is a parameter used 

to describe the measurement error.   

 For the length scale process
l

GP , we need to specify 

local length scales, ( )
s

l r


at a number of support positions, 

and from which we infer the local length scale at any other 

position using 
l

GP . These support length scales will be 

treated as hyper-parameters of the full model, to be 

optimized (as described in section 2.5) together with all 

other hyper-parameters of the model (Table 1). For our 

problem, to keep the dimensionality low, we have 

specified support length scales only in the central region 

(
c

l ), and in the edge region (
e

l ), each region having a 

single support length scale, and regions in between are 

then interpolated through the latent process. The length 

scale for the latent process has been taken as 0.5m, 

approximately the size of the emissivity region. Since this 

process is a GP, the local length scales at any discrete 

location form a multivariate normal distribution:  

 ( ) ~ ( ( ), ( , ))i jl r N r k r r
   

                            (7) 

where, ( )r


is the prior mean of the local length scales and 

the ( , )i jk r r
 

is a stationary squared exponential covariance 

function as in Eq.(3). Eq.(7) can be imagined as an overall 

distribution of both the support ( )
s

l r


and inferred local 

length scales 
*

( )l r


. To separate these known ( )
s

l r


 and 

unknown 
*

( )l r


quantities explicitly, we decompose them 

into two sub vectors as the following equivalent form20 : 

*
* *

* **

( ) ( )
~ ,

( ) ( )

Ts s

l r r
N

l r r





     
      

             

 

                          (8) 

where, ( )
s

r


and
*

( )r


 are the mean of ( )
s

l r


 and 
*

( )l r


. 

The sub matrices  , *  and ** constitute the compound 

matrix ( , )i jk r r
 

in Eq.(7). In detail, * is the covariance 

between the support and inferred local length scales. 

Similarly, **  is the covariance between the inferred local 

length scales. With P denoting the number of support 

positions, and N the number of positions where length 

scales are to be inferred, the sub matrices can be 

summarized as follows: 

            

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

P

P

P P P P
P P

k r r k r r k r r

k r r k r r k r r

k r r k r r k r r


 

 
   

 
 

     
     


        


      (9) 

                     

* * * *

1 1 1

**

* * * *

1

( , ) ( , )

( , ) ( , )

N

N N N
N N

k r r k r r

k r r k r r


 

 
   

 
  

   


  
   



                  (10) 

From the following formula about conditioning a joint 

normal distribution21, 

 
-1 -1

~ , ~ + - , -

T

T

A Cx a
N x y N a C B y b A C B C

y b C B

       
        
          

 (11) 

a conditional normal distribution over the inferred length 

scales
*

l  can be derived from the joint normal 

distribution( Eq.(8) ) as follows: 

-1 -1
* *

* ** * *~ ( )+ ( - ( )), -

T T
s s s

l l N l l l 
 

      
 

             (12) 

With the prior mean values of both the support and 

inferred length scales ( )
s

l and 
*

( )l are set to be zero, 

Eq.(12) can be rewritten as: 

-1 -1
*

* ** * *~ ( , - )
T T

s s

l l N l                             (13) 

The mean value of the inferred local length scales 
*

l  is 

given by the mean of the posterior normal distribution in 

Eq.(13): 

                         
-1

*

*=

T
s

l l                                      (14) 

Eq.(14) is the expression used to predict the local length 

scales 
*

l  from the support length scales 
s

l . When the 

support local length scales ( )
s

l r


 are optimized as hyper-

parameters, they are simultaneously used to infer the 

values of 
*

( )l r


. Consequently, all the local length scales 

are optimized together to attain a distribution of local 

length scales which is used as the underlying length scales 

for the Gaussian Process describing the emissivity function.  
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2.4 Bayesian formulae 

 For a Bayesian approach to an inversion problem, first 

a prior need to be constructed and applied to regularize the 

unknown quantity
N

f , which is realized in this method by 

the covariance of a multivariate normal probability ( )
N

p f . 

The usage of a parameterized Gaussian process family 

(such as the squared exponential used in this work) assists 

in finding a proper regularizer through its formulation of 

regularizing properties in terms of a priori length scales of 

the underlying function. As shown in section [2.3], these 

length scales can furthermore be estimated directly from 

the data, making it possible to tune this regularizer 

automatically. In addition, a likelihood distribution 

( )M N
p d f acts as a misfit between model predictions and 

measurements. The combination of the prior and 

likelihood leads to a posterior probability 

( )MN
p f d which accounts for both the prior 

regularization and the constraints from measurements, 

according to Bayes formula22,23: 

( ) ( )
( )=

( )

M N N

N M

M

p d f p f
p f d

p d


                      (15) 

where, the prior ( )
N

p f  denotes the probability of a 

possible solution
N

f . The likelihood ( )
M N

p d f includes 

information from data Md  and measures the probability of 

yielding that data given
N

f . The marginal likelihood 

( )Mp d  (also called the model evidence) is a 

marginalization of the joint distribution ( , )M N
p d f  with 

respect to
N

f through a marginal integration:            

( ) ( ) ( , ) ( )M M MN N N
p d f p f df p d f df p d          (16) 

Evaluated at a number of discrete positions, the 

Gaussian Process prior becomes a multivariate normal 

distribution, with mean fm and covariance matrix f : 

 
 

   
-1

1 2
2

1 1
, = exp - - - 

2
2

T

fl f ffN N N
N

f

p f f m f m 



 
 

 


(17) 

where, 
f

  and l are the hyper-parameters about prior 

model assumption. fm is here set to be zero, and f  

includes the hyper-parameters 
f

  and l . The 

regularization of the underlying function is thus imposed 

through the prior covariance function f defining the 

variance and correlation of the function values between 

any two positions on our cell grid. Because of the 

numerical approximation of the integrals in Eq.(1), we are 

only interested in the function values at the grid cell 

positions, which are the positions where the multivariate 

normal distribution in Eq.(17) is defined.  

The measurement noise is assumed to be independently 

normally distributed, giving the following likelihood 

distribution:  

 
 

   

1 2
2

-1

1
, =

2

1
           exp - - - 

2

M N
M

d

T

dM MN N

p d f

R f d R f d



 

 
  

 

             (18) 

where, d is a diagonal covariance matrix with each 

element being the data variance 
2

 ,which accounts for 

uncertainties due to measurement errors (see section 3.1). 

The contribution matrix R is a M N  matrix and as said 

before its elements represent the contributed proportion of 

the N individual emissivity pixels to one of the M chord 

measurements. Multiplication of the prior (Eq.(17)) and 

likelihood (Eq.(18)) leads to a posterior expressed as24: 

     

   

   

-1

-1

, , ,

1
        exp - - - 

2

         + - -         

M M lfN N N

T

dM MN N

T

ff fN N

p f d p d f p f

R f d R f d

f m f m

   

 
  




  

 

            (19)     

where, { , , }lf
    is the combination of all the hyper-

parameters (Table 1) and need to be optimized as 

described in the next section.  

Eq.(19) can be explicitly rewritten as a multivariate 

normal distribution: 

 

 

 

   
-1

1 2

2

, =

1 1
 exp - - -

2
2

MN

T post
post post

ff fN N
post

N

f

p f d

f m f m





  
  

   


   (20) 

with its posterior mean vector, 

 
-1

-1 -1 -1

= + + -

T T
post

d f df f M fm m R R R d R m
 

   
 

          (21) 

and its  posterior covariance matrix, 

                  
-1 -1

= +
post T

f d fR R
 

   
 

                                    (22) 

where, 
post

fm  coincides with the maximum posterior (MAP) 

point, and provides a single most probable solution of 
N

f . 

The uncertainty of the solution is provided by the 
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covariance matrix, whose diagonal elements can be used as 

marginal errors of the solution. A direct way to visualize 

the uncertainties of the result (that includes posterior 

variance of the reconstruction), is to sample directly from 

the posterior probability distribution, to get a range of 

possible solutions of the reconstruction under the posterior. 

Sampling from a multivariate normal distribution is easily 

done through a Cholesky decomposition of the covariance 

matrix: 

                              =

post T

f L L                                          (23) 

where,  L  is a lower triangular matrix. Samples can then 

be taken through:  

+
post

fm L n                                             (24) 

where, n  is a vector of N independently normal random 

variables with zero mean and unit variance.  

2.5 Bayesian Occam’s Razor optimization 

The hyper-parameters  = , , lf
     in the prior and 

likelihood have to be optimized in the light of the 

measurement data. This is accomplished by maximizing the 

posterior probability over the hyper-parameters conditioned 

on the measurements. 
f

  and l come from the non-

stationary prior covariance function (Eq. (5)). The posterior 

probability over the hyper-parameters   is given 

by ( ) ( ) ( )M Mp d p d p   , which is proportional to 

( )MP d  if a flat prior on  was assumed. ( )MP d   is the 

marginal likelihood found in the denominator of the right 

hand side of Bayes rule (Eq.(15)). Since both the prior and 

the likelihood are multivariate normal distributions, and the 

model is linear, the integral in Eq.(16) can be carried out 

analytically and gives another multivariate normal 

distribution over Md under a given model assumption  , 

resulting in the following expression for the logarithm of the 

marginal likelihood term:  

   

     
-1

log log = 

1 1
 - log - log 2

2 2 2

M M

T

d dM Md d

p d p d

M
d d

 

  



 
     

 

    (25) 

where, d ,
d

  are functions of the hyper-parameters. 

Maximizing this expression with respect to the hyper-

parameters  gives the value of the hyper-parameters that 

have highest probability in light of the data. This 

optimization procedure will automatically penalize over 

complex models (models with small length scales) that 

would overfit the data. This happens since over complex 

models are able to explain a larger range of data sets (but 

the marginal likelihood has to be normalized to 1 in the 

space of the data as a probability distribution), thus each 

one having a lower probability than a typical dataset 

explained by a less complex model. If the model can not fit 

the data satisfactorily, the probability of that data under the 

model will also be low, so optimization of the marginal 

likelihood will result in a tradeoff between model 

complexity and data fit. In practice, an optimal model 

assumption is achieved by maximizing the probability in 

Eq.(25) using a multivariate optimization algorithm e.g. 

conjugate gradient on this equation to find the optimal 

values of the hyper-parameters. 

III. Performance and results 

 To assess the performance of our non-stationary GP 

method relative to other existing methods, we first use 

simulated data for a benchmark with the standard MaxEnt 

method8.  Afterwards, we demonstrate the performance of 

this method using experimental data from the stellarator 

devices W7-AS13 and TJ-II25. 

3.1 Error model 

 
    FIG.2 shows time traces of signals from a central and an 

edge channel from the beginning of the discharge in W7-

AS. The variance increases abruptly once the plasma 

discharge starts, which happens for both channels, even 

though the low-level edge channel has a mean value close 

to zero, thus not measuring any emission from the edge. 

The error model we have used for this work assumes a 

constant variation of all channels, with a standard 

deviation given by the hyper-parameter  . A single 

constant error level  is assumed for data from all 

detectors at the same time slice during the same plasma 

discharge. To avoid having to perform a full optimization 

for each time slice in real time application, we have used 

the optimal standard deviation found through the evidence 

optimization in Eq.(25) on a large number of pulses and 

time slices (FIG.3), and compared that with the average 

signal level. This gives an approximately linear 

relationship, as shown in FIG.3, between the optimized 

standard deviation and the average signal level. We can 

then use this heuristic relationship to read off an 

approximate optimal error level from the average signal 

level, and keep the rest of the hyper-parameters constant, 

to achieve real time speed inversions. The optimal value 

occurs around 12.5% of the average of the signal strength. 

Therefore, 12.5% of the average of one data set is used in 

the following as an approximate value of a most likely 

standard deviation of each single data set. Note that the 

large value of 12.5% is due to the significant portion of 

low-level data among each data set in W7-AS, which also 

roughly amount to 2.5% of the maximum data. 
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FIG.2: Experimental data from W7-AS: time trace of signals from two 

different detectors during discharge #56316 shows the variance of data 

increase abruptly once the discharge starts. 

 

 
FIG.3: Scatter plot showing the linear relation between the most likely 

standard deviation of one data set and the average of this data set. The 

possible values of the standard deviation are chosen to be within a certain 

maximum percentage level (from 2.5% to 25%) of the average of one 

data set. The most likely standard deviations of many data sets appear 

around the 12.5% of the average of data. 

3.2 Benchmark using simulated data 

The simulated emissivity distribution shown in FIG.4 

is based on the magnetic flux surfaces of a standard W7-

AS magnetic configuration26 at the toroidal location where 

the soft X-ray diagnostic system is installed. The artificial 

line integral data can be calculated (cf. Fig.5) using the 

forward model of Eq.(2). A normally distributed random 

noise with a zero mean and a 12.5% of the average of the 

data set as standard deviation is added to this artificial data 

set. This artificial noisy data set is then used as input data 

for the calculation of reconstructions by the non-stationary 

GP and MaxEnt methods.  

 

FIG.4: A 2D emissivity distribution in the poloidal plane, where the 

MiniSoX-Tomography system was located, was simulated based on a 

typical magnetic configuration in W7-AS. 

 

Fig.5: To compare the different inversion methods, the artificial line 

integral data calculated from a simulated emissivity distribution is taken 

as input data of the different methods. Red dots: artificial data without 

errors. Green diamonds: artificial data with independently normally 

distributed random noise, used as input data.      
 

The 2D distribution of the optimal local length scales 

from the non-stationary GP (Eq.(14)) is presented in FIG.6. 

Fig.7, FIG.8 and FIG.9 show the comparison of results 

obtained by the non-stationary GP and MaxEnt methods. 

The root-mean-square deviation (RMSD) between the two 

reconstructions (by non-stationary GP and MaxEnt) and 

the simulated emissivity distribution are 0.16 and 0.26 

respectively, indicating the precision of the overall 

condition of the two reconstructions concerning both 

overall magnitude and location. The location of the 

emissivity peak is well reconstructed with both methods. 

Also the difference of the shape in the central region is 

small. However, for the regions with low intensity, the left 

edge of the MaxEnt reconstruction becomes wiggly and 

does not coincide with the simulated emission.  This is 

caused by the use of the entropic prior in the MaxEnt 

method, which assumes that emissivity of neighboring 

pixels are uncorrelated, leading to noisy reconstructions 

especially for low signal measurements. In contrast, the 

better reconstruction of GP case is caused by the non-

stationary covariance in the prior, which correctly 

smoothes the edge of reconstruction by using lager length 

scales. To investigate the reconstruction more intensively 

both at center and edge regions, FIG.8 shows 1D profiles 

of the reconstruction in Fig.7 intercepted at 

R 2.0m and 1.9R m . A better agreement of two 

reconstructed profiles with the simulated profile in FIG.8 

(a) than (b) is mainly attributed to the higher measurement 

density in the center than the edge. The non-stationary GP 

additionally provides the 95% confidence intervals of the 

reconstruction shown by the error bars to indicate the 

reliability of the reconstruction and accounts for the misfits 

between the inferred reconstruction and simulated 

emissivity. Since the non-stationary GP uses a boundary 

condition assuming the emission from the first wall is zero, 

the derived error bars of the reconstruction around the 

boundary become accordingly smaller. This shows that the 

uncertainties of the reconstruction depend both on the prior 

model assumptions and the quality of measurements. In 

FIG.8(b), the profile reconstructed by MaxEnt tends to 

have small positive values at the two edges and misfits the 

simulated profile, whereas the profile by the non-stationary 

GP still coincides well enough with the simulated profile.  
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It is because the role of the prior increases when the 

density of measurement is low at the edge region, the 

MaxEnt reconstruction approaches a default model in the 

prior, keeping small positive values, to which the MaxEnt 

solution will reduce in the absence of any data. On the 

contrary, the non-stationary GP makes inference directly 

on the underlying function and does not necessarily 

involve a default model which may make the 

reconstruction deviate from the true emissivity distribution.  

FIG.9 shows the predicted data from the reconstruction by 

non-stationary GP with their 95% confidence intervals 

which reasonably cover the misfits between predicted and 

artificially noisy data, indicating an appropriate error level 

has been defined for the input data.  

 

 
FIG.6: Distribution of the reciprocal of local length scales inferred by a 

stationary Gaussian Process regression. The black line indicates the 

boundary of the vacuum vessel.   

 

Fig.7: Reconstructions by (a) non-stationary GP and (b) MaxEnt methods 

using the artificially noisy data, and the errors in both methods are exactly 

described as how they are added.  The black contours show the simulated 

emissivity distribution for a clear comparison.  

 

 
FIG.8: The 1D plots about the profiles intercepted at (a) 2.0R m and 

(b) 1.9R m  from the reconstructions by two methods. Red asterisks: 

simulated emissivity profiles. Green dots: the non-stationary GP 

reconstruction with 95% confidence intervals. Blue circles: the MaxEnt 

reconstruction.  

 

 
FIG.9: Fit between the data predicted from reconstruction by non-

stationary GP and the artificially noisy data. Green diamonds: artificially 

noisy data used for the inversion of reconstruction. Red dots: predicted 

data with their 95% confidence intervals.   

 

3.3 Application on W7-AS  

To illustrate the application on the W7-AS stellarator, 

two distinctive data sets with large differences in 

intensities from two shots are chosen as input data to 

compare the performance of the two methods. The 

reconstructions using the first data set with strong intensity 

are shown in FIG.10. The central regions of both 

reconstructions have an elliptic shape conforming to the 

magnetic flux surface. The 3 to 4 cm outward 

displacement relative to the axis of the flux surface is due 

to the Shafranov shift. For the edge region of the 

reconstructions, the non-stationary GP appears to be a 

smoothly triangular shape which is close to the flux 

surface, whereas the reconstruction by MaxEnt displays a 

wiggly boundary as observed in the simulation case. In 

FIG.11(a), the profiles at 2.0R m from two 

reconstructions coincide adequately, however, the 

discrepancy of the profiles at 1.9R m  in FIG.11 (b) 

become evident, especially at the right hand side, the 

profile by MaxEnt even tails up due to the approach to its 

default model. Since the posterior of the non-stationary GP 

is a multivariate normal distribution, the spread of 100 

samples taken (Eq.(24)) from the posterior can be used to 

visualize the uncertainties of the reconstruction as shown 

in FIG.12. In FIG.13 the misfits between predicted data 

and experimental data are reasonably small and covered by 

the error bars. The appropriate coverage of the misfits by 

the error bars also indicates a reasonable error level is 

defined for the experimental data.  
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FIG.10: Comparison of the reconstructions from shot number 56316 by (a) 

non-stationary GP and (b) MaxEnt using the experimental data from W7-

AS. The black contours show the flux surface derived from the 

equilibrium calculation of the vacuum configuration.  

 

 
FIG.11: The 1D plots about profiles intercepted at (a) 2.0R m and (b) 

1.9R m from the reconstructions by two methods using the 

experimental data. The green dots show the reconstructed profile with 

95% confidence intervals given.  

 

 
FIG.12: 100 samples of possible reconstructions, drawn from the 

multivariate normal posterior distribution to visualize the uncertainties of 

reconstruction.  

 

 
FIG.13: Fit between the predicted data from the reconstruction by non-

stationary GP and the used experimental data. Red dots show the 

predicted data with error bars 

 

To verify the performance of the two methods in face 

of emissivity distributions with complex structures, here 

we choose another experimental data from a shot which 

has complex structures in the center. As FIG.14 shows, the 

reconstructions from two methods successfully find an 

m=3 mode structure that distributes symmetrically around 

the axis of the flux surface.  

 

 
FIG.14: Comparison of the reconstructions by two methods using the 

experimental data from shot number 53962 at time point 0.3741s. For 

comparison, black contours show the flux surface derived from the 

equilibrium calculation of the vacuum configuration. 

 
In W7-AS, the dependence of the maximum achievable 

thermal/magnetic pressure ratio  on the equilibrium 

magnetic flux surfaces has been intensively investigated as 

one experimental issue27. Here  , as an indicative 

parameter, is preferably maximized for higher power 

production efficiency; the equilibrium flux surfaces are 

calculated using equilibrium code Variational Moments 

Equilibrium Code28 (VMEC), which is a numerical tool 

widely used for planning experiments and equilibrium 

analysis. Such a code involves the solution of a set of 

MHD equations through finding the minimum total energy 

of the magnetically confined plasma system, so can rapidly 

solve MHD equilibrium configuration. Since the emission 

relevant parameters e.g. plasma density, temperature are 

often assumed to be constant within each contour flux 

surface, the basic features the reconstructed emissivity 

distribution will agree well with the equilibrium flux 

obtained by VMEC, hence the  induced effects on 

equilibrium flux surfaces can be investigated by 

tomographic analysis. The reconstructions by non-

stationary GP in FIG.15 clearly present an outward shift 

frequently occurring during the experiments of high 

 performance27 and also the consistent structures between 

reconstructions and equilibrium flux surfaces except a 

large indentation in the inboard side, which may arise from 

the movement of the plasma center.  

 

 
FIG.15: Reconstructions at two different time points with high 

0
 in 

center from shot number 51755 in W7-AS, calculated by the non-

stationary GP, shows a large horizontal shift, which also coincide with the 

equilibrium flux surfaces (black contours) calculated by free boundary 
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VMEC calculations and also a large indentation frequently occurring in 

the inboard side. The green and red lines indicate the locations of the 

magnetic axis of the vacuum and finite  configurations, respectively. 

Specifically, a strongly inward axis of vacuum configuration is achieved 

by low magnetic fields and comparably higher vertical fields for high 

 experiments. 

 

3.4 Application on TJ-II 

 

     Another implementation of this non-stationary GP 

method was carried out at stellarator TJ-II in Spain, which 

is a medium size stellarator with four periods and a major 

radius of 1.5 m. It has a helical magnetic axis as a great 

flexibility in magnetic configuration and a bean-shaped 

magnetic surface from a combined action of existing 

magnetic fields. The experimental setup of a soft X-ray 

diagnostic system, consisting of 5 cameras with 16 

detectors each, is illustrated in FIG.16 and a total number 

of 80 lines of sight passing through strongly bended 

plasma25. The non-stationary GP reconstruction in 

FIG.17(a) is compared with the  EBITA7 reconstruction in 

FIG.17(b) with the flux surfaces given by the dashed lines. 

Both reconstructions coincide with the magnetic flux 

surface satisfactorily and concentrate in the inner region of 

the plasma, reaching a good agreement both regarding 

shape and location. Note that EBITA uses the flux as 

complementary information for its calculation of the 

reconstruction. 

 
FIG.16: (a) Schematic diagram of the setup of a soft X-ray diagnostic 

system in TJII, which consists of five detector arrays with each array 

having 16 detectors. (b) Experimental data from a typical discharge. 

    

 
FIG.17: Comparison of the reconstructions by the non-stationary GP and 

EBITA methods using the experimental data from shot number 18272 in 

TJ-II. They both have similar shape and location. Black contours show 

the flux surface derived from the equilibrium calculation of the vacuum 

configuration.  

 

IV. Discussion 
 

The difference between the non-stationary GP and 

MaxEnt methods mainly arises from the different ways to 

impose a prior regularization. The non-stationary GP 

imposes a prior regularization directly and naturally on the 

underlying function by defining the correlations between 

any pair of function values, which is a natural way of 

describing a diffusion process. In contrast, MaxEnt method 

uses an entropic prior which regularizes the underlying 

function by maximizing the total entropy of  a number of 

discrete function values based on the statistical description 

of the collective and random behavior of many particles, 

which apparently has different characteristics to a diffusion 

process. Particularly, the Gaussian Process prior is 

improved by using a non-stationary covariance function to 

make the regularization flexible and can be adjusted at 

different locations by the locally adaptive length scales 

which determine the extent of correlation depending on the 

distance.  The smooth edge region is accordingly assigned 

larger length scales and the center is assigned smaller 

length scales to help recover fine structures.  

Additionally, MaxEnt method specifies the underlying 

function in an exponential from as a default model and 

successfully ensures the positivity of its reconstructions, 

here it is found this may distort the gradient of the 

reconstructed profiles and thus degrade the precision. 

Bayesian Gaussian Process method of tomographic 

reconstruction not only seems to be a more suitable model 

for the soft X-ray inversion problem, but also has the 

advantages of making the posterior mean analytically 

without nonlinear iterations, and also provides proper 

uncertainties on the solution.  

V. Summary 

The purpose of this work is to develop a method to 

reconstruct a most probable emissivity distribution with its 

uncertainties, from a number of noisy chord measurements. 

Through comparisons with different inversion methods 

using both simulated and experimental data, our non-

stationary GP method produces convincing reconstructions, 

which is further confirmed by a good agreement between 

reconstructions from other methods, and also good 

correspondence with equilibrium flux surfaces. As can be 

seen from inversions using simulated data, with added 

noise, the non-stationary GP outperforms MaxEnt and 

shows a better resistance to severely noisy data. The 

regularization imposed by a Gaussian Process prior, 

expressed in correlation length scales, is possibly a more 

natural way to describe prior assumptions on diffusion 

processes, than the entropy prior of MaxEnt. The 

application of a non-stationary GP improves the precision 

of the reconstructions by using locally adaptive length 

scales to adapt to the varying smoothness in the emissivity 

distribution. Additionally, this approach is fast enough for 

real time applications since it does not involve an iterative 

or nonlinear computation and does not rely on 
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complementary information from additional calculations.  

Finally, the posterior MAP and covariance are both 

analytically available, the latter giving full uncertainties of 

reconstructions and predicted reconstructed data. 
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