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Abstract7

Nonlinear simulations of the early ELM phase based on a typical type-I ELMy ASDEX Upgrade8

discharge have been carried out using the reduced MHD code JOREK. The analysis is focused9

on the evolution of the toroidal Fourier spectrum. It is found that during the nonlinear evolution,10

linearly subdominant low-n Fourier components, in particular the n = 1, grow to energies com-11

parable with linearly dominant harmonics. A simple model is developed, based on the idea that12

energy is transferred among the toroidal harmonics via second order nonlinear interaction. The13

simple model reproduces and explains very well the early nonlinear evolution of the toroidal14

spectrum in the JOREK simulations. Furthermore, it is shown for the n = 1 harmonic, that15

its spatial structure changes significantly during the transition from linear to nonlinearly driven16

growth. The rigidly growing structure of the linearly barely unstable n = 1 reaches far into the17

plasma core. In contrast, the nonlinearly driven n = 1 has a rigidly growing structure localized18

at the plasma edge, where the dominant toroidal harmonics driving the n = 1 are maximal and19

in phase. The presented quadratic coupling model might explain the recent experimental ob-20

servation of strong low-n components in magnetic measurements [Wenninger et al., Non-linear21

magnetic perturbations during edge localized modes in TCV dominated by low n mode compo-22

nents, submitted to Nuclear Fusion].23
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1 Introduction24

Edge-localized modes (ELMs) are relaxation-oscillation instabilities observed at the edge of25

tokamak plasmas in high-confinement regime (H-mode). Ejecting energy and particles from the26

plasma, ELMs have the favorable effect of reducing the impurity content of the plasma and pro-27

viding a mean to control the plasma density [1]. But if too large, they cause large heat fluxes28

which can damage plasma facing components [2, 3]. As the ability of controlling the ELM prop-29

erties decides on whether the H-mode can be a suitable operational regime for ITER and future30

fusion reactors, the understanding of this instability is crucial. Nonlinear MHD simulations are31

an important tool in the quest for theoretical comprehension of ELMs.32

A nonlinear reduced MHD code which has been developed especially for edge instabilities, is33

the JOREK code [4]. In this work, it is used for simulations of the early ELM phase, which are34

based on the geometry and parameters of an ASDEX Upgrade tokamak [? ] discharge. Section35

2 introduces JOREK and gives details about the simulations. The toroidal Fourier spectrum of36

the instability and its nonlinear evolution is analyzed and compared to recent experimental find-37

ings in Section 3. It is observed, that initially weakly unstable toroidal Fourier components can38

become important nonlinearly. In Section 4, the question is addressed, what determines the non-39

linear evolution of the toroidal harmonics in the simulations. A simple model is presented that40

shows how this evolution can be understood in the framework of second order nonlinear cou-41

pling between the toroidal harmonics. Finally, in Section 5 it is investigated how the radial and42

poloidal localization of a linearly subdominant toroidal harmonic changes due to its nonlinearly43

driven growth. A summary and an outlook are given in Section 6.44

2 The JOREK code and the simulations45

JOREK46

The finite element code JOREK solves the nonlinear reduced MHD equations in full toroidal47

X-point geometry including separatrix and open flux surfaces. JOREK has originally been de-48

veloped by G.T.A. Huysmans [6, 7]. For the presented simulations, a single fluid version of49

JOREK1 ("model302") has been used. The code is discretized via a Fourier decomposition in50

toroidal direction and 2D bi-cubic Bézier finite elements in the poloidal plane. The grid in the51

poloidal plane is aligned to the flux surfaces and can be refined in the regions of interest. The52

toroidal Fourier decomposition allows to choose the toroidal harmonics included in the compu-53

tation. The discretization in time is performed according to a fully implicit Crank-Nicholson54

1The used code revision is R706.
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scheme. For the part of the boundary which follows the outermost open flux surface, ideally55

conducting wall boundary conditions are implemented, and for the divertor where the bound-56

ary is crossed by magnetic field lines, modified Bohm boundary conditions apply. The code57

uses a particular normalization of the physical variables. A JOREK time unit corresponds to58

approximately 0.5 µs at the parameters of the presented simulations. In the following, quantities59

indexed with "JOREK" are normalized according to the JOREK normalization scheme (units of60

these quantities are omitted). For the equations solved by the applied JOREK model and details61

about the normalization of the variables, please refer to Reference [8].62

The simulations63

The simulations are focused on the early ELM phase when the instability grows exponentially64

before the onset of nonlinear saturation. Emphasis has been put on the analysis of the nonlinear65

interaction of the toroidal Fourier harmonics, thus a large number of included toroidal harmon-66

ics and a high flexibility in combining them was required. The simulations are based on the67

simulations presented in Reference [8]2 with an additional modification of the code providing68

the possibility of excluding desired harmonics from the simulation. The baseline simulation69

includes 16 toroidal Fourier harmonics n = 1,2, ...,16 in addition to the axisymmetric n = 070

part. To analyze the interaction of the different harmonics in more detail, a large number of71

simulations including different subsets of these harmonics has been carried out.72

The simulations are based on an equilibrium reconstruction of a typical type-I ELMy H-mode73

ASDEX Upgrade discharge (#23221 at 4.7s). The equilibrium reconstruction has been per-74

formed with the CLISTE code [9, 10]. The corresponding equilibrium pressure and safety factor75

profiles are shown in Figure 1. The particle density in the plasma center is 6 ·1019 m−3. Heat76

and particle sources and perpendicular heat and particle diffusivities are chosen such that the77

background profiles do not change significantly during the simulation. The parallel particle dif-78

fusivity is set to zero, parallel particle transport is thus provided by convection only. The heat79

diffusion anisotropy at the separatrix is about κ‖/κ⊥ = 7 ·106. Viscosity and resistivity have a80

T−3/2
N temperature dependency where TN is the temperature normalized by its value at the plasma81

center. The core viscosity is set to about 1.2 ·10−5kgm−1s−1. The resistivity (η ≈ 5 ·10−5 Ωm82

in the core, leading to a Lundquist number of about 105) is larger than in a realistic ASDEX83

Upgrade discharge3 due to computational restrictions.84
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Figure 1: Equilibrium pressure (red) and safety factor (blue), obtained from an equilibrium re-
construction of an ASDEX Upgrade discharge. The values of the safety factor in the
center and at the edge are q(0)≈ 1 and q(0.95)≈ 4.7.

Figure 2: Time evolution of the energies contained in the different toroidal Fourier harmonics
in the early ELM phase of a simulation with included mode numbers n = 1,2, ...,16.
The linearly dominant harmonics are n = 9 and n = 10. Energy is transferred from
the dominant to the linearly subdominant harmonics, like n = 1 or n = 2, by nonlinear
interaction.
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Figure 3: Growth rates of the toroidal Fourier harmonics in a simulation with n = 1,2, ...,16. In
the linear phase at the beginning of the exponential growth of the perturbation, the har-
monics grow at constant growth rates and independently of each other. Subsequently,
the growth rates of the linearly subdominant harmonics increase due to nonlinear in-
teraction between the different toroidal harmonics. At the end of this early nonlinear
phase, the growth begins to saturate.

3 Nonlinear evolution of the toroidal harmonics85

The time evolution of the toroidal Fourier harmonics of the perturbation in the early phase of86

an ELM can be subdivided into three phases, a linear phase, an early nonlinear phase and the87

nonlinear saturation. Time traces of total energies and growth rates of the different toroidal88

harmonics in a simulation with 16 included harmonics (n = 1,2, ...,16) are shown in Figures 289

and 3.90

At the beginning of the exponential growth of the instability, the toroidal harmonics grow at91

a constant rate. The growth rate of a toroidal Fourier component in this linear phase of the92

evolution is the same as in a simulation where this component is the only included one. It is93

observed that in the linear phase of this simulation, the Fourier components with mode numbers94

n = 9 and n = 10 grow the fastest. In our simulations, diamagnetic drift effects are neglected95

which would act stabilizing on high-n harmonics. However, the poloidal resolution limited by96

computational restrictions also reduces the growth rates of harmonics with high mode numbers.97

Linearly dominant mode numbers in the intermediate range, as we observe them here, are thus98

in line with linear theory again.99

2The same equilibrium and parameters as in the "eta5" simulation in Reference [8] have been used here.
3The core resistivity in ASDEX Upgrade discharges has values of about 10−8 Ωm.
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In contrast to the linear phase where the toroidal Fourier harmonics grow independently of each100

other, the harmonics start to interact in the subsequent early nonlinear phase. Due to nonlinear101

interactions, energy is transferred among the toroidal Fourier components which influences their102

growth rates. Following this phase, the nonlinear saturation yields a decrease of the growth rates.103

The main saturation effect is, that the background current density and pressure gradient at the104

edge are reduced by the perturbation, which weakens the drive of the instability. Additionally,105

the stabilizing influence of the ideal wall boundary conditions becomes more important if the106

displacement of the plasma due to the perturbation becomes significant compared to the distance107

between separatrix and ideal wall.108

In the following, emphasis is put on the dynamics of the early nonlinear phase before the onset109

of saturation. It is observed that during this phase, growth rates of toroidal Fourier components110

which are linearly subdominant increase and that in particular the n = 1 toroidal harmonic even111

reaches energies comparable to those of the linearly dominant components, which has already112

been pointed out in [8]. This relates to very recent experimental observations. During type-I113

ELMy discharges in TCV (Tokamak à configuration variable) the toroidal mode structure of the114

magnetic perturbations has been found to be often dominated by low mode numbers, in particular115

by the n = 1 component [11]. The magnetic diagnostics in ASDEX Upgrade are not suitable for116

the detection of low-n harmonics4 such that it is unclear at present if this phenomenon is also117

found here.118

4 Simple quadratic coupling model119

The detailed dynamics of the early nonlinear phase, i.e., why the growth rates of the initially120

subdominant toroidal harmonics increase, at which point in time the rise occurs and how large121

the growth rates become, can be explained in the framework of "three wave interaction". Con-122

sidering a superposition of two toroidal harmonics with mode numbers i and j, a second order123

nonlinear term generates harmonics with mode numbers |i± j|. Hence, energy can be trans-124

ferred to other harmonics by quadratic coupling. Based on this idea, a simple model describing125

the time evolution of the amplitudes5 Ai of the ith toroidal harmonics can be set up by126

∂Ai

∂ t
= γiAi +

16

∑
j=1

16

∑
k=1

γ
i
jkA jAkδ (i± j± k) for i = 1,2, ...,16 (1)

4The pick-up coils in ASDEX Upgrade cover only a part of the toroidal circumference. Full coverage would be
required to resolve an n=1 component, as the growth rate of the mode is comparable to the rotation frequency.
Moreover, the pick-up coils measure the time derivative of the magnetic field perturbation which reduces the
contribution of low-n harmonics to the signal.

5Ai is defined as
√

Ei, where Ei is the total energy contained in the ith toroidal harmonic.
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where γi are the constant linear growth rates and γ i
jk are the coupling constants. As the latter127

describe the spatial overlap of harmonics j and k in the poloidal plane, they can be set constant128

assuming that the toroidal harmonics grow rigidly without changing their spatial structure. This129

is indeed the case for all linearly dominant harmonics. The set of coupled nonlinear differential130

equations (1) is able to reproduce to a large extent the time evolution of the toroidal Fourier131

spectrum of the perturbation in the early nonlinear phase of the JOREK simulations. To achieve132

this, the appropriate linear growth rates and coupling constants have to be chosen.133

The linear growth rates γi can be extracted directly from the linear phase of the JOREK simula-134

tions. From simulations with only few included toroidal harmonics, e.g., two linearly dominant135

ones which nonlinearly drive a third harmonic, the relevant coupling constants can be isolated.136

Six coupling constants remain, namely γ1
9,10, γ2

8,10, γ3
7,10, γ4

6,10, γ15
7,8 and γ16

7,9.137

Whereas the linear terms of Equations (1) cause an influx of energy into the system (from the138

axisymmetric n = 0 part), the nonlinear terms only yield an exchange of energy among the139

toroidal harmonics and should thus conserve the total energy. If this conservation of energy is140

taken into account, for each non-zero γ i
jk also γ

j
ik and γk

i j have to be included into the model and141

∂Etot

∂ t
=

∂

∂ t ∑
i

A2
i

!
= 0 (2)

has to be fulfilled at any time by the system of equations (1) omitting the linear terms. Equation142

(2) results in additional constraints for the coupling constants such that, taking into account143

energy conservation, twelve free coupling constants remain. As will be seen later, the additional144

terms necessary to ensure energy conservation only play a role at the very end of the early145

nonlinear phase.146

The free coupling constants can be obtained by fitting the time evolution of the energies con-147

tained in the toroidal harmonics described by Equations (1) to those resulting from a JOREK148

simulation. Initial values for the coupling constants are taken from the simulations with only149

two or three included toroidal harmonics. In every step of the fitting procedure, the system of150

nonlinear coupled differential equations is solved and the quadratic differences of the logarith-151

mic energies for every harmonic and for a large set of points in time are summed and minimized.152

Figure 4 compares the energy time traces of the JOREK simulations to the simple model with six153

free parameters. It can be seen that the results of the simulation in the early nonlinear phase are154

very well reproduced by the simple quadratic interaction model. The values for the six coupling155

constants obtained from the fit6 are close to the initial values verifying that the relevant coupling156

6The coupling constants obtained from the fit are γ1
9,10 = 113, γ2

8,10 = 76, γ3
7,10 = 65, γ4

6,10 = 21, γ15
7,8 = 32 and

γ16
7,9 = 34 (units omitted).
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Figure 4: Time evolution of the energies contained in the toroidal Fourier harmonics of a JOREK
simulation with included mode numbers n= 1,2, ...,16 (straight lines) compared to the
results of the simple model with six free parameters (dashed lines). The model is based
on the idea that energy is transferred among the toroidal harmonics due to second order
nonlinear interaction between them. In the early nonlinear phase, the results from
the simple model agree very well with the JOREK results. The deviations between
JOREK simulation and model at the end of the early nonlinear phase correspond to
the expectations as in this phase the growth is already influenced by saturation effects
which are not described by the simple model.
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Figure 5: Energy spectrum of the toroidal Fourier harmonics in a JOREK simulation with n =
1,2, ...,16 (straight lines) compared to the results of the simple quadratic coupling
model (crosses) for different points in time. It can be seen how the low-n part of the
spectrum increases significantly and the energies become comparable to those of the
linearly dominant harmonics. The plot shows the results of two different versions of
the model, one has six free coupling constants (x) and the other one has twelve free
coupling constants in order to account for energy conservation (+). The results of the
simple model do not deviate from the more accurate one except at the end of the early
nonlinear phase.
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constants were taken into account. From the excellent agreement using only few free parameters,157

it can be concluded that the early nonlinear evolution of the toroidal Fourier spectrum is indeed158

determined by quadratic coupling. Furthermore, it can be seen that the nonlinear growth of a159

driven harmonic is mainly dominated by one single nonlinear coupling term only7. As a linearly160

growing harmonic evolves as A j(t) = A j,0 exp(γ jt), it follows thus from Equation (1) for the161

growth rate of the nonlinearly driven harmonic that γi,nonlinear = d logAi/dt = γ j + γk, i.e., the162

nonlinear growth rate of the driven harmonic equals the sum of the growth rates of the two163

driving harmonics.164

The time evolution of the energy spectrum from JOREK (solid lines) and from the simple inter-165

action model (x) are shown in Figure 5. It is visible that at the end of the early nonlinear phase166

where the saturation sets in, the results from the simple model start to deviate from the JOREK167

results. This corresponds to the expectations, as the mechanisms responsible for the saturation168

are not described by the model. As the linear growth rates are assumed to be constant in the169

model, a reduction of the drive of the instability due to the effects described above cannot be170

reflected. Moreover, the assumption of rigidly growing harmonics leading to constant coupling171

constants, breaks down when saturation sets in. Figure 5 also shows the results from the sim-172

ple interaction model accounting for energy conservation (+). It can be seen that the additional173

terms only play a role at the end of the early nonlinear phase.174

The simple interaction model has also been tested on two JOREK simulations with only four175

included toroidal harmonics (n = 4,8,12,16) and different distances between plasma and ideal176

wall which effectively changes the linear growth rates, but preserves the spatial structure of the177

toroidal harmonics. The results of both JOREK simulations are reproduced well with the simple178

model by only adapting the linear growth rates but keeping the same coupling constants.179

The very good agreement indicates that the simple model provides a good explanation of the180

non-linear drive of low-n harmonics in the JOREK simulations and could well explain the ob-181

servations of strong low-n harmonics in the experiment [11].182

5 Evolution of the n=1 spatial structure183

In the previous section it has been shown how energy is transferred to linearly subdominant184

toroidal Fourier harmonics via nonlinear coupling of the dominant harmonics. It has been shown185

that the n = 1 toroidal component can even become one of the dominant harmonics, driven by186

the interaction between the linearly most unstable toroidal harmonics (n = 9 and n = 10 in this187

case). In this section, the question is addressed, how the spatial structure of the n = 1 harmonic188

in the poloidal plane is affected by this energy transfer.189

7This corresponds to the expectations as among competing exponentially growing terms, the one with the highest
growth rate will always dominate after a short period of time.
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Figure 6: Poloidal cross section of the absolute value of the n = 1 poloidal magnetic field pertur-
bation in the linear phase (a) and in the early nonlinear phase (b) of a simulation with
included mode numbers n = 1,2, ...,16. The dotted white lines show the separatrix and
flux surfaces at ΨN = 0.33 and ΨN = 0.66 where ΨN =(Ψ−Ψaxis)/(Ψseparatrix−Ψaxis)
is the normalized equilibrium poloidal magnetic flux. Contours at 50% of the maximal
value of the absolute value of the poloidal magnetic field perturbation are plotted in
mauve for the n = 9 component and in dark red for the n = 10 component for com-
parison. In the linear phase, the n = 1 toroidal harmonic extends far into the plasma
core. In contrast, in the early nonlinear phase, it is radially localized at the plasma
edge where also the n = 9 and n = 10 are maximal. The poloidal position of the n = 1
on the low-field side in this phase corresponds to the poloidal region where the n = 9
and n = 10 are in phase.
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Figure 6 (a) shows the absolute value of the n = 1 component of the poloidal magnetic field190

perturbation in the linear phase of a JOREK simulation with n = 1,2, ...,16. In the linear phase,191

the n = 1 component extends over a large part of the whole plasma volume. In simulations192

where the n = 1 harmonic is the only included toroidal harmonic, the perturbation grows rigidly193

preserving this structure8.194

In contrast to the simulations with only one included toroidal harmonic, in the simulations with195

n = 1,2, ..,16 the structure of the n = 1 does not continue to grow rigidly. When the growth rate196

of the n = 1 starts to increase due to nonlinear coupling, its structure changes significantly. After197

a phase of transition a new rigidly growing structure is observed. The rigid growth sets in when198

the growth rate of the n = 1 is fully determined by the energy transfer from dominant harmonics.199

This new n = 1 structure in the early nonlinear phase is shown in Figure 6 (b). It is now peaked200

at the edge of the plasma, in the radial region where also the n = 9 and n = 10 are localized. The201

poloidal localization of the n = 1 on the low-field side coincides approximately with the region202

where the n = 9 and n = 10 are in phase9. The rigidity of the new n = 1 structure is illustrated in203

Figure 7, where contours of the absolute value of the n = 1 poloidal magnetic field perturbation204

are drawn for two different points in time during the early nonlinear phase.205

The observed evolution of the n = 1 spatial structure can be interpreted as a superposition of206

two rigidly growing structures. The first one, visible in the linear phase of the simulation, is207

the linearly unstable n = 1 growing at a very small growth rate. The second structure, which208

emerges in the early nonlinear phase, corresponds to a different, linearly stable but nonlinearly209

driven n = 1 which quickly covers the linear structure due to the much stronger growth rate.210

The phase of transition can indeed be approximately reproduced by superposing the two rigid211

structures starting at different initial amplitudes and growing at different growth rates.212

6 Conclusions and Outlook213

Nonlinear reduced MHD simulations of the early ELM phase based on ASDEX Upgrade param-214

eters have been presented. In order to analyze the evolution of the toroidal Fourier harmonics,215

emphasis has been put on simulations including a large set of toroidal harmonics and simula-216

tions including different combinations of these harmonics. It has been observed that linearly217

weakly unstable toroidal harmonics can achieve large growth rates due to nonlinear coupling of218

dominant harmonics. In particular the energy of the n = 1 harmonic becomes comparable to en-219

ergies of linearly dominant harmonics in the course of the nonlinear phase, which corresponds220

to recent experimental observations in TCV [11]. To explain what determines this nonlinear221

8Note, that at very low energies at the beginning of the growth, the structure of the n = 1 is still oscillating both in
the simulation with n = 1,2, ...,16 and in the simulation with only n = 1. But the further time evolution of the
n = 1 only simulation shows, that the structure plotted in Figure 6 (a) later becomes a rigidly growing structure.

9The poloidal angle where this is the case of course depends on the chosen toroidal position.
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Figure 7: Contours at different fractions of the maximal absolute value of the n = 1 component
of the poloidal magnetic field perturbation. The structures at the beginning of the early
nonlinear phase (straight lines) and shortly before nonlinear saturation sets in (dotted
lines) agree very well, which shows that the structure of the n = 1 toroidal harmonic
shown in Figure 6 (b) grows rigidly until the onset of saturation. The grey lines show
the separatrix and flux surfaces at ΨN = 0.33 and ΨN = 0.66.
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behavior of the toroidal Fourier spectrum, a simple quadratic interaction model has been set up,222

based on the idea that second order nonlinear coupling between toroidal harmonics can gener-223

ate harmonics with "sum and difference mode numbers". This model is able to reproduce to a224

large extent the time evolution of the toroidal energy spectrum in the early nonlinear phase of225

JOREK simulations before saturation sets in. In particular, the model reproduces the growth226

rates of the linearly driven toroidal harmonics in the early nonlinear phase. This shows, that the227

nonlinear evolution of the toroidal Fourier spectrum in this phase is predominantly determined228

by quadratic coupling. The growth of the n = 1 harmonic is driven by interaction between the229

two linearly most unstable toroidal harmonics.230

Furthermore, it has been investigated how the spatial structure of the n = 1 in the poloidal plane231

is modified by the energy transfer to the n = 1 in the nonlinear phase. It has been observed that232

the rigidly growing structure of the linearly unstable n = 1 which reaches far into the plasma233

core transitions into another rigidly growing structure of a linearly stable but nonlinearly driven234

n = 1. This second structure is localized at the edge of the plasma, in the region where also235

the two linearly dominant harmonics are maximal, which is in line with the idea that the n = 1236

emerging in the nonlinear phase is generated by the interaction between these harmonics. The237

assumption brought up in Reference [11], that a strong n = 1 component gives access to the238

plasma core, which could explain the large losses of energy observed during type-I ELMs, is239

thus not supported by the simulations, as nonlinearly, the n = 1 becomes highly localized at the240

edge. Nevertheless, strong low-n components could couple easier to core instabilities having a241

similar toroidal structure, such as neoclassical tearing modes.242

As a next step, it would be interesting to render simulations with more realistic values for vis-243

cosity and resistivity possible. As diamagnetic stabilization and sheared toroidal plasma rotation244

are expected to have some influence on the nonlinear coupling between the toroidal harmonics,245

including these effects in the simulations is also planned. Moreover, simulations exceeding the246

early ELM phase are subject of ongoing work.247
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