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INTRODUCTION

T. Stoltzfus-Dueck,’*® B.D. Scott,? and J. A. Krommes3

Y Maz-Planck-Institut fir Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1,
17491 Greifswald, Germany

2 Mag-Planck-Institut fir Plasmaphysik, EURATOM Association, Boltzmannstrafle 2, 85748 Garching,
Germany

3) PPPL, Princeton University, P.O. Box 451, MS 28, Princeton, NJ 08543-0451

(Dated: September 30, 2013)

Tokamak edge turbulence is strongly influenced by parallel electron physics, which relaxes density and poten-
tial fluctuations towards electron adiabatic response. Beginning with the paradigmatic Hasegawa-Wakatani
equations (HWEs) for resistive tokamak edge turbulence, a unique decomposition of the electric potential
() into adiabatic (a) and nonadiabatic (b) portions is derived, based on the requirement that a neither drive
nor respond to the parallel current j;. The form of the decomposition clarifies that, at perpendicular scales
large relative to the sound radius, the electron adiabatic response controls the nonzonal ¢, not the fluctu-
ating density n. Simple energy balance arguments allow one to rigorously bound the ratio of rms nonzonal
nonadiabatic fluctuations (b) relative to adiabatic ones (@). The role of the vorticity nonlinearity in trans-
ferring energy between adiabatic and nonadiabatic fluctuations aids intuitive understanding of self-sustained
turbulence in the HWEs. When the normalized parallel resistivity is weak, b becomes effectively slaved, al-
lowing the reduction to an approximate one-field model that remains valid for strong turbulence. In addition
to guiding physical intuition, the one-field reduction should greatly ease further analytical manipulations.
Direct numerical simulation of the 2D HWESs confirms the convergence of the asymptotic formula for b.

Physics in the confined steep-gradient region just in-
side the last closed flux surface (LCFS) of toroidal con-
finement devices plays a critical role in setting the bound-
ary conditions for the core plasma. If core transport
is “stiff,” as some experimental evidence''? and theo-
retical models®® suggest, then the temperature at the
magnetic axis should scale linearly with the pedestal
temperature.® Also, the favorable H-mode confinement
regime,” required for the success of ITER, appears to
have its origins in the physics of the edge region, al-
though its detailed mechanism remains an open question
to this day.®? While the complexity of edge physics re-
quires numerical efforts for quantitative modeling, phys-
ical understanding is enhanced by the development of
simple analytical models, which may capture basic fea-
tures and scalings of the turbulence and aid understand-
ing of both numerical and experimental results, as well as
suggest fruitful new directions for inquiry. Since the non-
linear behavior of edge turbulence may be quite different
from the linear behavior,'® with some models even ex-
hibiting self-sustained turbulence in the absence of linear
instabilities,* 13 it is important that reduced modeling
not be too closely tied to linear mode structure.

Edge turbulence differs significantly from core turbu-
lence due to the strong radial gradients and resulting
extreme anisotropy between parallel and perpendicular
length scales,’ which make the nonadiabatic passing
electron response nonnegligible.'® Concurrently, the com-
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bination of poloidal and toroidal periodicity with mag-
netic shear and strong nonlinearity ensures &k 2 1/qR
for most of the fluctuations,'®!” so that electron parallel
response remains important.'®> The two-field collisional
drift turbulence model of Hasegawa and Wakatani'®!9
represents one of the simplest systems to span this in-
termediate regime between adiabatic and hydrodynamic
electrons, allowing the turbulence to nonlinearly, self-
consistently determine the relation between electron den-
sity and electric potential. While statistical treatments
of two-field plasma turbulence models have enjoyed rea-
sonable success,??2? including successful prediction of
particle flux levels in the Hasegawa-Wakatani equations
(HWEs),?® the resulting statistical moment equations
are relatively complex, motivating the reduction to a
one-field model. The paradigm Hasegawa-Mima (HM)
equation®® enforces adiabatic electron response, thus
missing not only energy growth and damping but also
the E x B nonlinearity. Many one-field generalizations
reincorporate these quantities, almost always by assum-
ing a specified linear relationship between electron den-
sity and potential, leading to so-called id models.2>27
However, numerical simulations in disagreement with
the linear density-potential relationship assumed in such
approaches'®?® provide good motivation for attempts to
extend one-field models to nonlinear density-potential
relationships. Previous id-like generalizations have re-
tained one of the full time-derivatives contributing to the
adiabatic density?® and allowed the frequency in the for-
mula to be nonlinearly shifted.?® Crotinger and Dupree
(CD) nonlinearly extended a linear collisionless density-
potential relation by replacing the linear frequency with
nonlinear time derivatives evaluated using the Hasegawa-
Mima equation, effectively broadening the frequency as
well as shifting it.! Using a similar iterative procedure,
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Naulin and Spatschek (NS) obtained a one-field near-
adiabatic reduction of the 2D HWEs.?? While these re-
ductions to one-field models represent significant simplifi-
cation, the iteration involved in the more faithful models
results in lengthy, complicated equations with terms that
are difficult to interpret physically.

In the spirit of the more systematic reductions,?!:32 the
present work derives a near-adiabatic one-field reduction
of the HWESs, physically resting on rapid parallel elec-
tron motion and slow parallel ion motion relative to the
frequency scales of the perpendicular drifts. The central
new contribution is an exact variable transform decom-
posing the electrostatic potential into uniquely defined
adiabatic and nonadiabatic portions, which makes itera-
tion unnecessary. This leads to a much simpler one-field
model, both physically transparent and amenable to fur-
ther analytic manipulation, that remains valid for fully-
nonlinear strong turbulence. Additionally, the quadratic
invariants in the new variables may be used to set an up-
per bound on the level of nonadiabaticity for nondecaying
turbulence, demonstrating convergence of the approxi-
mation. The presented transformation and asymptotic
reduction may also be applied to fuller model equations,
incorporating electromagnetic fluctuations and X-point
geometry, as will be presented in upcoming publications.

This paper is laid out as follows. Section II presents
a simple discussion of the collisional drift wave instabil-
ity, clarifying the physics addressed by this paper and
explaining why, at larger scales, it is the potential rather
than the density that is slaved by the electron adiabatic
response. Section III executes the variable transforma-
tion that underlies all of the following analysis. Connec-
tions of the new decomposition’s variables with those of
previous authors are highlighted. Section IV discusses
the nonlinear quadratic invariants in the new variables.
A bound on the level of nonadiabaticity in nondecay-
ing turbulence is derived. Possible application to self-
sustained turbulence is discussed. Section V systemati-
cally derives the one-field near-adiabatic approximation
to the HWEs that constitutes the principal result of this
work. Parameter regimes appropriate for its application
are estimated. Section VI presents direct numerical sim-
ulation verifying the derived bounds, convergence of the
near-adiabatic approximation, and lack of convergence of
its ¢d-like linearization. Finally, Section VII summarizes
the results of the paper.

1l. BASIC DRIFT WAVE PHYSICS

In tokamak edge turbulence, the characteristic times
for parallel electron response are often shorter than those
of cross-field drifts, while parallel ion times are always
much longer.®> When parallel electron response is fast,
one expects electrons to approach parallel force balance,
usually referred to in plasma physics as electron adiabatic
response. However, nonadiabatic passing electrons gen-
erally play an important role in edge turbulence, so one
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Figure 1. Schematic of parallel electron response: a) Elec-
trons out of parallel force balance. b) Parallel electron flux is
excited. c¢) Density and potential respond to parallel electron
flux. d) Parallel electron force balance is restored.

must carefully consider the approach of electrons toward
adiabatic response.

If one takes the component of electron force balance
along the magnetic field and neglects electron inertia, col-
lisions, and trapping, the electron pressure and electric
forces are left to balance each other: 0 = —V p. —n.eE).
If one assumes electrons to be isothermal, neglects elec-
tromagnetic effects, and considers small-amplitude fluc-
tuations, this may be rewritten as TeoV)ne = nepeV) ¢
or, using the dimensionless forms n = (ne — Meg)/MNeo
and ¢ = e¢/Teo, as Vn = V”<p.33 It is in fact just this
balance that motivates the standard normalizations.

What happens if this force balance is disturbed? Con-
sider a case in which electrons are out of parallel force bal-
ance, for example the density hump sketched in Fig. 1a.
Due to the unbalanced pressure force, electrons will flow
out of the hump (Fig. 1b). The outflux of electrons causes
a reduced density in the hump region. However, the elec-
tron outflux is also a parallel outflux of negative charge.
Tons polarization-drift out of the hump, across the mag-
netic field, to almost perfectly balance the electron out-
flux, but the electrostatic potential must increase some-
what in order to excite the cross-field ion flux (Fig. 1c).
The decrease in electron density and increase in elec-
tric potential both act to restore parallel electron force
balance (Fig. 1d). The collisional electrostatic limit of
this physics, due in general to shear and kinetic Alfvén
responses,>* is captured by the HWEs treated here.!31°

Notably, this simple analysis has not identified which
of n or ¢ changed more in order to restore parallel
electron force balance. To answer this, one must turn
to the quasineutrality equation which, neglecting cur-
vature contributions, dominantly balances parallel elec-
tron current against perpendicular ion polarization cur-
rent: 0 = V-3 = Vj + VL (nieu; o). Assuming
small-amplitude and small-scale fluctuations and a sin-
gle species of cold, singly ionized ions, this relation may
be linearized and simplified to 9;pIV3 ¢ = V| (jj|/neoe),
where ps = ¢5/Q¢; is the “sound radius,” ¢ = \/Teo/my;
is the cold-ion sound speed, and Q. = eBy/m;c is the



ion gyrofrequency. The density response to the paral-
lel electron outflux follows from the linearized continu-
ity equation, neglecting cross-field electron fluxes and
parallel ion flux: Oine|;, = —V|(newe) = V(4 /e),
or dynlj, ~ V| (jj/neoe). Considering a single Fourier
mode, with k, being the cross-field wave number, one
finds that
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Parallel electron response and perpendicular ion polariza-
tion response combine to form a negative feedback loop.
Although lack of parallel electron force balance always
excites a parallel electron particle flux, this flux causes
both density and potential changes through which it re-
stores electron parallel force balance.

A few notes on Eq. (1). First, the result is totally in-
sensitive to the manner in which the parallel electron
current is determined. Whether the effective parallel
impedance follows from collisional, electromagnetic, or
inertial/kinetic effects is irrelevant to Eq. (1), which in
fact depends only on the ion polarization physics. Sec-
ond, the presence of ps; does not indicate finite Larmor
radius effects—the electron gyroradius is negligibly small
because of the small electron mass, while the ion gyro-
radius is negligibly small because 7; = 0. Rather, p;
appears because of the balance between parallel elec-
tron response to ¢, bringing in 7., and ion polariza-
tion response, bringing in m;. Third, in the frequently
considered limit k&, ps < 1, Eq. (1) takes the limit
dnlj, /Orplj, — 0. This occurs because the ion polariza-
tion response becomes weak, so the change in the elec-
tric potential ¢ must be relatively large to excite the
quasineutral ion density response. As a result, the elec-
tron adiabatic response in the k) p; < 1 limit does not
affect electron density at all, but rather controls the elec-
trostatic potential, forcing ¢ to remain equal to n. Intu-
itive understanding of drift wave physics is greatly clari-
fied by a solid grasp of this simple fact.

Using the preceding results, consider now the phys-
ical mechanism of the “textbook” isothermal, resistive
drift wave. Assume a simple slab geometry, with B =
Byz and Vng = —(no/L,)&, c.f. Fig. 2. Start with
a sinusoidal adiabatic fluctuation n(y,z) = ¢(y,z) =
@sin(kyy) cos(kjz). The y-derivative of ¢ excites an -
directed F x B drift, vg,, which causes a d;n due to the
background density gradient. Since the E x B drift ad-
vects ions and electrons identically in the cold-ion limit,
the potential is unchanged to this point. However, vg,
and Oyn are zero in the plane with kjz = 7/2 (out of the
page), so the electrons are now out of parallel force bal-
ance. Electrons therefore flow quickly out of the density
hump along the magnetic field, rapidly causing ¢ and n
to become equal. For k p; < 1, only ¢ is nonnegligibly
affected by the parallel electron flux, which ties it to n.
Otherwise, the divergence of the parallel density flux is
also non-negligible and opposes vg - Vng. This slows the
drift wave, causing the dispersive correction 1/(1+ k2 p?)
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Figure 2. "Textbook” drift wave instability. Left: An ini-
tially adiabatic fluctuation [with horizontal deflection showing
n(y) = ¢(y)] excites an E x B drift up and down the gradient,
causing a 0yn. Middle: The parallel electron response causes
a corresponding J.p. Right: Nonvanishing parallel resistivity
causes a phase shift between n and ¢ that leads to instability.

to the drift wave frequency. Assuming infinitely fast par-
allel electron response, ¢ = n is maintained at all times,
thus Oyn o vE, x Oy is poloidally 7/2 out of phase with
n at all times and the wave propagates upward (electron
diamagnetic direction) without growing or damping.

Suppose instead that the parallel electron response
were rapid but not infinitely so, a “near-adiabatic”case in
which electrons were slightly slowed by electron-ion col-
lisions. Considering again Fig. 2, this means that after
Vg, changes n, but not ¢, a small but finite time lag is
required before the parallel dynamics causes the corre-
sponding ;. Thus n leads ¢ slightly in time and, since
the wave propagates upward, n is shifted slightly upward
from ¢ in the diagram. This phase shift means that vg,
is slightly outward at the maximum n and inward at the
most negative n, thus the drift wave is now growing in
amplitude. This phase shift, due to the finite electron
parallel response time, is at the heart of the drift wave
instability.

As we will see, the parallel electron response may
be fairly linear even when the perpendicular physics is
strongly nonlinear. In fact, the basic physics of this sec-
tion holds true for a wide variety of more general cases.
In the regime of weak parallel impedance, this will al-
low the systematic derivation of an approximate one-field
model, using a frequency ordering to effectively “slave” a
(¢ — n)-type variable to a (¢ = n)-type variable. The
resulting model catches the sensitive density-potential
correlations, including the important contribution of the
vorticity nonlinearity (physically due to the nonlinear po-
larization drift), in the functional form of the slaved vari-
able, removing that burden from further analytic manip-
ulations such as statistical closures.

I1l. EQUATIONS AND VARIABLE TRANSFORMATION

The HWESs analyzed here represent an extreme simpli-
fication of tokamak edge turbulence. They are local, elec-



trostatic, resistive, isothermal equations in a slab geome-
try. Ions are assumed cold, eliminating FLR effects. Par-
allel ion flux and electron mass are neglected. Toroidal
effects are missing, including coupling to geodesic acous-
tic modes, rendering the HWESs inappropriate for quan-
titative zonal flow studies.?®36 Nevertheless, the HWEs
form a useful paradigm problem, due to their inclusion
of nonlinearly coupled unstable and damped modes, self-
consistently determined linear and nonlinear drive, and
the coupled E x B and vorticity nonlinearities.

Using the resistive Ohm’s Law Cjj = V| (n — ¢), the
HWESs may be written as

atn =+ {(p7 7?,} + Wnay%@ = VH]H = Oilvﬁ (n - QO) ) (23‘)
aVie+{p, Vie} =Vj=C'Vi(n—¢). (2b)

Eq. (2a) advances fluctuations of density from a back-
ground mean value ng, which is assumed constant with
constant radial gradient —ng/L,, a radially local ap-
proximation. Fluctuating density n is normalized to
no(ps/L.1), potential ¢ to (Teo/e)(ps/L1), parallel cur-
rent j; to noecs(ps/Lo)(L/Ly), time t to Ly /c,, ra-
dial z and binormal y coordinates to ps, and paral-
lel coordinate z to Ly, with L > L, of order the
connection length. The standard normalization choice
L, =L, sets w, = L, /L, to 1. The parallel resis-
tivity parameter C' = 0.51(me/m;)(veiL1 /cs)(Lf/LY) is
large in the hydrodynamic regime and small in the adi-
abatic regime.?” The Poisson-bracket notation {p,n} =
(02)(Oyn) — (0yp)(Oyn) indicates the effects of E x B
advection.

Unless otherwise noted, Egs. (2) may be considered to
be either 2D or 3D. They are to be solved in a periodic
domain of normalized dimensions L, L,, and (for 3D)
L,. For 2D equations, substitute Vﬁ — —kﬁ for non-

zonal components and Vﬁ — 0 for zonal components,

with the constant k| nominally unity.®® Although well-
motivated by geometrical constraints,'® the 2D model of
course misses modal resonances with rational surfaces as
well as the nonlinear cascade in k). For a realistic 3D
model, some form of magnetic shear must be incorpo-
rated: The simplest shearless model, V|| — 0, with sim-
ply periodic boundary conditions in z, admits a kj = 0
mode for each and every k| , which is grossly inconsistent
with toroidal and poloidal periodicity for nonvanishing
rotational transform.

As discussed in Sec. I, the relaxation towards electron
adiabatic response is mediated by the parallel current.
The decomposition of an arbitrary potential ¢ into adi-
abatic (a) and nonadiabatic (b) portions may therefore
be defined by a pair of requirements. First, a must not
appear under the parallel gradient in Ohm’s Law. Sec-
ond, j| must not appear in the evolution equation for a.
[With such a definition, neglect of the E x B and non-
linear polarization drifts in Egs. (2) must lead to a sys-
tem that damps Vb to zero, leaving a unaffected. The
definition eliminates the participation of @ in the rapid

parallel current response, much as the guiding-center co-
ordinate transform removes the leading-order contribu-
tion of the rapid gyromotion.] To meet the first crite-
rion, and thereby ensure that purely adiabatic fluctua-
tions (Va # 0, Vb = 0) not excite j, one must set
b < ¢ —n. In order that j not appear in the evolution
equation for a, the relative forms of Eqs. (2) force one to
choose a o n—V? . (This form follows from the relative
response of n and ¢ to jj which, as discussed in Sec. I1, is
entirely independent of the Ohm’s Law, depending only
on ion polarization physics.) Up to convenient scale-by-
scale normalizations, the new variables are thus uniquely
specified as

a=(1-V) T (n-V3g), b=(1-VI) " (p—n).
3)
In terms of a and b, the original variables are simply
¢ = a+band n = a+ V2b, showing that a and b
correspond to the adiabatic and nonadiabatic portions of
. The low-k limits of these relations, a — n, b — p—n,
highlight the fact that the electron adiabatic response
controls ¢ at low &k, no longer affecting n (c.f. Sec. II).
The inverse operator (1 — V2 )~! indicates a smoothing
operation, dividing each Fourier component by 1+ k% .

Although transformation of the HWEs to this vari-
able pair appears to be new,3” each of the variables has
been extensively used separately. Note, however, that
the fluctuations represented by a depend also on the def-
inition of b, and vice versa, as for example alteration of
the poloidal angle represents different real-space displace-
ments in field-line-following and non-field-line-following
coordinate systems.?® The combination Inny; — Vigp,
an inviscid Lagrangian invariant of the HWEs and simi-
lar plasma equations, has been used often.*! Helpfully for
physical intuition, a is scale-by-scale proportional to the
cold-ion limit of the ion gyrocenter density used in gy-
rofluid models,'®4243 a correspondence that follows from
the fact that the polarization drift is absorbed into the co-
ordinate transform from particle to gyrocenter position.**
The nonadiabatic electron density is extensively used
in near-adiabatic approximations,2°2731:32 a5 well as in
other contexts. Note also that a and b are the ampli-
tudes that result from projection onto the C' — 0 limit
of the drift-wave (¢ = n) and damped (n = V2 ¢) eigen-
modes of the HWESs, respectively. There is thus a con-
nection with nonlinear methods that project onto the
eigenmodes,*® although in the present work we obtain
exact equations for limiting eigenmodes rather than ap-
proximate equations for the exact eigenmodes. Also, as
shown in upcoming publications, the a and b variables
may be similarly employed in fuller systems for which
they do not constitute the C' — 0 eigenmodes.

Upon linearly recombining Eqgs. (2), expressing n and
@ as functions of a and b, simplifying using the bilinear-
ity and antisymmetry of the Poisson bracket, and adding
a positive dissipation operator D, acting on a,*® one ob-



tains

(1 = V3)a+w,0ya — {a,Via} + Dsa
= —wpdyb— {b, (1 - V3)a},

Vi (1-V3)b—w,0, V7 (a+b)+{a+bV7 (a+b)}
—-Vi{a+ba+Vib} =(1-Vi)Vj, (4b)
CjH = —V”(l - VL)b. (40)

Except for D,, Egs. (4) have content identical to Egs. (2),
simply expressed in the new variables. In particular,
Egs. (4) hold for all values of C. For later convenience,
a decomposition into zonal b = (L,L.)~! [dy [dzb and
and nonzonal b = b — b components has been used. Dis-
sipation acting on a must be independent of b in order to
guarantee positive dissipation of the mean-squared fluc-
tuating ion gyrocenter density N (c.f. Sec IV), as shown
in Appendix A.

In the adiabatic (b = 0), nondissipative (D, = 0) limit,
Eq. (4a) reduces to the HM equation,?* thus adiabatic
self-dynamics reflect HM dynamics, including the dual
cascade resulting from concurrent nonlinear conservation
of energy and enstrophy. Drive, dissipation via jj, and
the E x B nonlinearity (and resulting direct cascade)
are explicitly proportional to b. As desired, the parallel
current dissipates b without appearing in the evolution
equation for a. Also, although Eq. (4b) appears compli-
cated, it leads to simple forms for the nonlinear invariants
(Sec. IV) and the near-adiabatic approximation (Sec. V).

Of course, one may recapture the well-known linear
modes of the HWEs from Eqgs. (4), neglecting D, and
considering complex amplitudes ag and by for wave vec-
tor k. When wyin = kyw, /(1 + k2 ) is much smaller than
ne = kif(1+ k%) /C’k 7, one obtains two well-separated
eigenmodes. The rapidly damped w ~ —in. resistive de-
cay eigenmode is almost completely nonadiabatic, a ~
t(wiin/Me)be < bk, capturing the strong dissipation of
nonadiabatic fluctuations by the parallel current. The
low-frequency w =~ wy, drift wave eigenmode is nearly
adiabatic, bg =~ i(wiin/Ne )k < g, with correspondingly
small growth rate v & wiin (Wiin /7). For w & wyin, b has a
low enough amplitude that its only non-negligible contri-
bution to its own linear equation occurs via the parallel
current term oc C 1. In particular, one may discard the
time derivative term, thus solving for b as a function of
a rather than dynamically evolving it. Despite its small-
ness, b remains important since its contribution to the
a equation determines the growth rate. This basic sit-
uation persists for the nonlinear problem, enabling the
weakly-nonadiabatic approximation discussed in Sec. V.

When is the drift wave eigenmode weakly nonadia-
batic? The resistive decay rate 7. grows as klz for
k1 <1, despite the fact that the response of j to (¢ —n)
is k -independent, simply because it is Vi(p (not ¢ it-
self) that responds to jj. Since wi, o< ky at low ki,
the ratio win/Ne Ckykf_ drops rapidly with decreas-
ing k. For experimental tokamak edge parameters, C'

is often of order unity, thus wy, /7. always becomes small
as k) drops even modestly below unity, justifying the
weakly nonadiabatic treatment of linear drift waves for
those k. In contrast, the commonly considered “hy-
drodynamic limit” of the HWEs corresponds to setting
1. = 0, which is never justified for realistic tokamak edge
parameters once k; drops to order 1/10, well within the
active turbulent spectrum.

IV. NONLINEAR INVARIANTS

The existence of integral quantities conserved by the
nonlinear terms is known to place important constraints
on the evolution of a turbulent system. For example,
in 2D neutral fluid turbulence, the simultaneous nonlin-
ear conservation of both energy and enstrophy implies a
dual cascade in which energy is transferred from smaller
to larger spatial scales.*” In this section, implications of
the nonlinearly-conserved quantities of the HWEs will be
derived and discussed: Concurrent energy and N bal-
ance will yield a constraint linking the spectra of the a
and b variables purely through the dissipation operators.
Heuristic interpretation of the energy balance equations
will provide intuition about the self-sustained turbulence
exhibited by the HWEs.!? Energy balance arguments will
lead to a rigorous upper bound on the ratio of nonadia-
batic to adiabatic energy for nondecaying solutions.

The HWESs are known to possess the four nonlinear in-
variants %<|VJ_()0|2>7 %((Vi@)%, %(nz), and (nV2 ), in
which angle brackets indicate spatial averaging over the
domain.?” Of these four invariants, one may construct
two linearly independent invariants for which the j | term
may not act as a source: an energy £ = £(n? + |V _1¢[?)
and the mean-squared fluctuating ion gyrocenter density
N; = H{(n— V2 ¢)?).%8 Using Eqgs. (4) and some integra-
tions by parts, one straightforwardly obtains

0 = —an (a0,B) - (810, V2a}) — (aDua),  (50)
06, = wn ((V2) 0,5) + (b {0, Vi a})
— o (v - VI, (5b)
—wn ((a— Via) 8y5> —{(a— Via) D,a),
(5¢)

in which &, = %(a? +|V¢a| ), & = L{(|VLb>+ (V3 D)?),
E=E,+&, and./\/ 3((a—V73 ) ).49 In the purely adi-
abatic limit, b =0, £ and N; — 5 become the Hasegawa-
Mima energy and enstrophy, respectively.?” [Interest-
ingly, although a contributes to two invariants with dif-
fering powers of k,, suggesting dual-cascade dynam-
ics, b contributes to only one, suggesting a direct cas-
cade. Indeed, the E x B nonlinearity, active only for
b # 0, transfers density fluctuations to small scales,
acting concurrently with the vorticity nonlinearity and
the linear parallel coupling of n and ¢ to determine the
turbulent state.’%:5!] The w, terms represent the only
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source, density flux down the density gradient. Since
such a flux requires nonadiabatic electrons with y vari-
ation, these terms vanish for b = 0. The parallel cur-
rent (C~1) term represents definite dissipation, acting
only on &. The resulting dissipation rate becomes very
rapid at low k,, acting with a strength o |bg|? on an
energy ki\i)k|2 The D, term represents the compar-
atively weak direct dissipation on adiabatic fluctuations,
probably dominated by ion Landau damping at small
k) and ion-ion collisions (viscosity) at large k. The
+(b{a, V% a}) terms represent energy exchange between
adiabatic and nonadiabatic fluctuations due to the vor-
ticity nonlinearity.

The £ and N; invariants have identical source terms
but significantly different dissipation. Evaluating the
evolution of N; — &, one obtains

0r(N; = &) = C7H([V(1 = VDI ) = ((-V2a)Dac)

(6)
in which N; =€ = 3(|V1a|?*+(V2a)?— |V Lb]*~ (V3 b)?),
an integral constraint on the steady-state spectra de-
termined solely by the dissipation operators. Although
the parallel current term oc C~! represents by far the
strongest dissipation operator for realistic parameter val-
ues, Eq. (6) implies that nonzero D, is required for a
steady-state solution. Additionally, a must either be
of larger amplitude or have a broader spectrum than
b in order to achieve a steady state. Furthermore,
let k1 = [((—~V2a)Daa)/{aD,a)]'/? represent a char-
acteristic k; for the adiabatic dissipation. The steady-
state balance 0y(N; — &) = 0 then directly implies that
CH[V (1 = V2)b]?) > (aD,a) if and only if k7 > 1,
roughly, the parallel current dominates the energy sink if
and only if adiabatic dissipation occurs mostly at large
k. . Conversely, 9;(N; — ) = 0 implies that direct adia-
batic dissipation is the dominant energy sink if and only
if k1 < 1. [In interpreting this, note that A; may un-
dergo a direct cascade, even if £ has an inverse cascade,
due to the presence of differing powers of k& .]

The form of Egs. (5a) and (5b) may aid intuitive
understanding of self-sustained turbulence, sometimes
also referred to as the nonlinear drift wave instabil-
ity or submarginal turbulence. Numerical investigations
of a superset of the HWEs have highlighted the role
of the vorticity nonlinearity, which was found to cause
self-sustained turbulence by broadening the phase shifts
between 1 and ¢, that is, via nonlinear excitation of
nonadiabatic fluctuations.!**® In Egs. (5a) and (5b),
the +(b{a, V2 a}) terms, both resulting from the vor-
ticity nonlinearity, provide the only net &, <> &, energy
transfer mechanism allowing adiabatic fluctuations to ex-
cite nonadiabatic ones. Since b is much more strongly
damped than a is, and since the energy source for b is
smaller at the relatively small k£, for which the energy
source typically peaks, one expects net energy transfer
from a to b. One may then ask whether b obtains en-
ergy primarily from its source term [w,((V?2 a)d,b)] or
via transfer from a [(b{a, V2 a})], due respectively to the

linear E x B drift and the vorticity nonlinearity (non-
linear polarization drift). In the first case, linear physics
supports the n-p phase shift and the energy source, cor-
responding to standard linear instability drive. In the
second case, b (and therefore the energy source) are sup-
ported by nonlinear interactions, in particular the vor-
ticity nonlinearity, potentially allowing a state of sus-
tained turbulence even in the absence of a linear insta-
bility. Note that if the energy source is dominated by
k., rather less than 1 and the energy sink is dominated
by the parallel current channel, then the steady-state &,
Eq, and &, balances imply that b must dominantly obtain
energy via nonlinear transfer from a. Note also that the
nonlinear term may transfer energy from higher-k; a to
lower-k; b, enhancing the wave number factors relative
to those of the linear term at lower k. Also, due to the
powers of k| in &, transfer of energy into low-k; b may
lead to relatively large b amplitudes.

The form of Egs. (5a) and (5b) allows one to rig-
orously bound the gradients of b relative to those of
a for nondecaying 2D HW turbulence. Letting kj be
a fixed constant (nominally 1), ;£ > 0 directly im-
plies wy, ((9ya)(1 — V1)b) > kfC~H([(1 — V7 )bJ?). The
Cauchy-Schwarz inequality implies |((9,a)(1 — V2 )b)| <
((0,@))Y2([(1 — V?)b]?)/2, allowing one to conclude
that

(0= VD)2 < Conk* (@) 2 (7)

for nondecaying 2D HW turbulence. If 9;€ > 0 holds
only under some temporal or ensemble averaging, then
Eq. (7) holds under the same averaging. In a 3D sys-
tem, Eq. (7) holds with the substitution kj — k| . =
(V) (1=V1)p2) 2 /([(1-V?)b]?)Y/2. Analytical and nu-
merical studies show that the nonlinearity prevents the
energy from concentrating in only extremely small k|
modes,'” suggesting that k|| avg does not become small
in practice. Note that since ((9,a)%) < (|V.al|*) <
(@ + |Vial*) and ([(1 = V1)bJ*) > (VL + (V1D)?),
Eq. (7) implies an analogous relation for the nonzonal
portions of & and &,. [If one retains D,, the relative am-
plitude (b?)/(a%) may also be bounded,?® but this is un-
necessary since only perpendicular gradients contribute
to the non-j; dynamics of Eqs. (4).]

V. NEAR-ADIABATIC APPROXIMATION

When fluctuations are nearly but not totally adiabatic,
the reduction from a two- to a one-field model provides
a strong incentive to develop approximation schemes for
the nonadiabatic response. The strongly nonlinear char-
acter of edge turbulence, exemplified by the nonlinear
instability, suggests that one must go beyond linear i4-
type approximations, in particular incorporating the con-
tribution of the vorticity nonlinearity. While Crotinger
and Dupree®! and Naulin and Spatschek?? have already
developed schemes of this type, the formulation in the



a, b variables that is developed in this section is signifi-
cantly simpler and physically more transparent. The re-
sulting approximation holds for strongly nonlinear turbu-
lence and approximately captures all energy source and
sink terms. Physically, the scheme applies when the ef-
fects of parallel current driven by b dominate those of
the cross-field drifts due to b. Technically, the scheme
will be worked out in 2D as a straightforward perturba-
tion expansion around the purely-adiabatic limit b = 0.
Contributions of zonal b will be neglected here for sim-
plicity, but are retained in Appendix B.

The purely adiabatic limit may be obtained simply by
setting C' = 0 in Egs. (4) while requiring frequencies and
amplitudes to remain finite. Equation (4c) immediately
implies b = 0, thus the RHS of Eq. (4a) vanishes. The
parallel current jj is determined by the nonzonal, zeroth-
order Eq. (4b),

(1-— VZL)VHJH = 7wn8yV2LC~l + {a, Via} (8)
Physically, Eq. (8) is the weak-impedance limit of
the negative-feedback loop of Sec. II: when parallel
impedance is very small, any perpendicular fluxes dis-
turbing the adiabatic balance [RHS of Eq. (8): linear
density flux vg - Vng and the nonlinear polarization cur-
rent (vorticity nonlinearity)] immediately drive a paral-
lel current such that the nonadiabatic fluctuations re-
main negligibly small. One has effectively ordered out
the high-frequency resistive-decay mode, while retaining
its effects on the low-frequency dynamics. [This solution
procedure closely resembles the use of the quasineutrality
equation to solve for ¢, in which the change of the actual
charge density is ordered out in favor of the plasma po-
larization response that it excites.] Notably, due to the
definition of a, the parallel current is a slaved variable to
zeroth order, dependent on a but making no contribution
to the evolution of a.

For the near-adiabatic case, allow C' to be nonzero
but small while taking frequencies, amplitudes, and
wavenumbers to be order unity.? Equation (4c) then
implies b/j; ~ O(C) < 1, so the (nonzonal) leading-
order balance of Eq. (4b) remains Eq. (8), implying
a/jy ~ O(1) thus b/a ~ O(C). Thanks to the definition
of a, only b (and not Jy itself) appears in Eq. (4a), so only
the leading-order j is required for first-order accuracy in
evolving a, the only remaining dynamical variable. Com-
bining Eqgs. (4c) and (8), one obtains the weakly nonadi-
abatic formula b ~ b, for

by = C(1-vi)~ v 2(1-vi)T (wnayvia —{a, Via}) :
(9)
in which (1 — V2)™! is a linear smoothing operation,
corresponding to division of each Fourier component by
(1+ k2). Since we are considering the 2D HWES, Vﬁ

corresponds to dividing by a fixed constant —kﬁ, which is

nominally —1.5% Substituting the RHS of Eq. (9) for b in
Eq. (4a), one obtains the weakly nonadiabatic one-field

approximation of the HW equations (in the absence of
zonal b)

(1 = V3)a+w,0ya — {a,Via} + Dsa

wndy V2 a—{a, V2 a}

1-V2)Ve(I-V2)

wndy V2 a— {a, V2 a}
(- Vv - V)

~ —Cwp0y

+<(1-V3)a,C (10)

Equations (9) and (10) again represent the weak-
impedance limit of the negative-feedback loop of Sec. II,
as discussed after Eq. (8). In this case, the time-partial
and cross-field drift terms due to b are nonzero but re-
main negligible relative to the parallel current term in
Eq. (4b), which therefore again determines the slaved
zeroth-order jj via Eq. (8), allowing the leading-order b
to be determined by Eq. (4c¢) after the fact. Although the
resulting terms on the RHS of Eq. (10) are small ~ O(C),
they are important because they control the energy and
N sources and the resistive energy sink [cf. Egs. (5)].

Several comments on Eq. (10) and its derivation are
in order. First, despite its simple form, Eq. (10) has re-
tained the vorticity nonlinearity on an equal footing with
the linear drift term, thus may be applied to strong tur-
bulence whenever C' is small enough. This is important
since plasma edge turbulence is typically in the strongly-
nonlinear regime,'%'3 in fact even forced HM turbulence
is strong for k£, away from 1, at least in the limit of large
Reynolds number.?* Further, Eq. (10) retains the disper-
sive polarization corrections, which are seen to play an
important role in edge turbulence even when the main
energy source occurs for k; ~ 0.1.1°

Second, besides weak parallel impedance, this approx-
imation scheme relies only on the forms of the parallel
gradient terms in Ohm’s Law and the relative responses
of density and vorticity to jj, thus it is easily generaliz-
able to more complex systems that retain these or similar
forms, as will be presented in upcoming work. Physically,
strongly-nonlinear cross-field drifts disturb adiabatic bal-
ance, while predominantly linear parallel physics returns
the plasma towards adiabatic response. The present
scheme exploits the nearly linear parallel response.

Third, the definitions of a and b are the reason for the
simple form of Egs. (9) and (10). Specifically, b x ¢ — n
allows an expansion in small amplitude, rather than a
small phase shift. [If b were not proportional to ¢ — n,
Eq. (4c) would constrain some linear combination of a
and b to be small, rather than b itself.] Also, if a had
been alternatively defined not proportional to n — V2 ¢,
then its evolution equation would contain an explicit j,
so the fact that jj/a ~ O(1) would imply that a first-
order j were necessary in order to obtain a first-order a.

Since l;/jH ~ O(C"), the b terms in Eq. (4b) would need
to be retained, including 9;b, necessitating an iterative
approximation.



The advantage of our definition of a may be clearly
seen via comparison of the present scheme with those of
CD and NS. If one neglects perpendicular dissipation,
the schemes of CD and NS are in fact identical. They ef-
fectively begin with equations fully equivalent to the 2D
form of our Egs. (2),% except that they retain the par-
allel current damping on all modes including the zonal
component. They expand an equation for n — V2 ¢ in
strong parallel damping, using a leading-order approxi-
mation for h, = n — ¢, resembling our approach. How-
ever, they then use ¢ rather than a as their remaining
dynamical variable, necessitating a substitution for d,p
on their RHS, which they obtain via iteration using the
zeroth-order LHS. Again neglecting perpendicular dissi-
pation, NS and CD arrive at the same approximate form,
which may be written in our notation (after simplifica-
tion) as

3 (1=-V)ptwadyp—{p, Vip} = —Ck*(1-V1) ™!
[7(1 — Vi)flwné"yVi (wnaygo — {ga, Vigﬁ})
+{Vie, (1 =V (wadyp — {0, Vie})}
+{o, Vi1 = V) (wnye — {o, Vie})}
+(1 =V {p, (1= V) (wa8, Vi — {0, Vie}) }] .

(11)

Comparison of Eq. (11) with the D, — 0 limit of our
Eq. (10), which is equivalent to O(C'), highlights the
efficiency of the a, b variables for this problem.

Consider now the appearance of the nonlinear invari-
ants in the weakly nonadiabatic approximation. Identi-
cal manipulations to those of Sec. IV may be applied to
Eq. (10) to obtain

W€, = —wp, <a8yl~)n> — <5n {a, V }> (aDya), (12a)
ON; = —wp, <(a - Via) 8yl~)n> — <(a — VLa) Daa> )
(12b)

The evolution equation for &, has been replaced in the
weakly nonadiabatic approximation by the easily verified
relation

(V1= Vb))
=~ (b1 - V3)VE(L - V3)by )
= Wy, <(V2La) 8y5n> + <1~)n {a, Via}> .

Comparing with Eq. (5b), one sees that b, has been cho-
sen just such that the total energy contributions to 9,&,
sum to zero. One may substitute this result into &, to
obtain the alternate form

0:Eq = —wp, <(a — Via) 8y5n> — (aD,a)
—c! <[VH(1 — Vi)i)n]2> , (14)

just the equation for & with b — b,. The approximation
is thus a simplification of the original energy balance with
b— by and & — 0.

Despite the close similarity, it should be stressed that
the nonlinear term in b, implies that nonlinear terms
now appear in both source and sink roles for £, and N;.
This nonlinear term appears in both the C~! term, which
represents a definite sink just as in Eqgs. (5), and in the
source terms o wy,, which again are of indefinite sign in
general, but must be positive for a turbulent steady state.
Note also that the nonlinear portion of b, contributes a
cubic nonlinearity to Eq. (10), which represents a definite
sink for £, but does not contribute to Nj;.

The derivation of Egs. (9) and (10) took k; ~ O(1)
while C < 1, but one would like the resulting equations
to approximately hold over all relevant &k, . In particular,
given the well-known inverse cascade in the purely adia-
batic limit, do the terms retained in Eq. (8) continue to
dominate the other terms of Eq. (4b) as &k gets small?
To estimate, one may compare each neglected term with
the jj term, using Eq. (4c) to relate the Fourier ampli-
tudes |l§k|/|5”k| = C/ky(1 + k%). Assuming that inter-
actions are local in k|, as seen in simulations,” and es-
timating the k, -dependent frequency content w(ky ) ~
max|[kywy, k] ak, ]/(1 + k%), the neglected terms drop
faster than the j term for decreasing k; < 1, as long
as ay, grows more slowly than k7.5 A simple Kol-
mogorov analysis®® of Eq. (4a) neglecting b and D, sug-
gests that ay, o k:J__4/3 for k; < 1, well satisfying the
required bound, in fact further suggesting that lower-k
portions of the spectrum may typically be weakly nona-
diabatic even when C' is order unity. Since the relative
magnitude of the neglected terms does not grow at large
ki if ap, drops off at least as k , which is predicted
by a Kolmogorov-like analysis of the HM enstrophy cas-
cade for k; > 1,°* convergence of the approximation for
k1 ~ 1 suggests that the approximation should converge
for all £ .

_ One may analytically estimate the dominant error in
b, for the case of purely nonzonal fluctuations by tak-
ing the difference of the nonzonal portions of Eqs. (4b)
and (8), approximating 8tV2l(1 — V32 )b using Eq. (9)
and the zeroth-order Eq. (4a),5" simplifying the result
using b ~ b,, and assuming the spectrum of @ is con-
centrated at much lower k| than that of b, obtaining
the 2D relation b, — b = 2Ck 21-V3%)- [wna V3b—

{a, Vib}+---
order in b/a or involve higher-order derivatives act-
ing on a. The corresponding Snnple estimate ((b, —
D)) ~ (b — b))est = 42T w2 (V3 b/(1 — V2)2P%) +
(IV La?)(|V3 b/(1-V?)??)] indeed tracks {(b,—b)?) rea-

sonably well in numerical simulations, as shown in Fig. 4.

], in which omltted terms are either higher

VI. NUMERICAL VERIFICATION

Equation (9) provides an approximate formula by(a)
for b, expected to hold in the limit of small normalized
parallel resistivity C. The principal underlying ordering,



b/a ~ O(C), was established rigorously for nondecaying
turbulence using energy arguments [Eq. (7)]. However,
this does not conclusively prove that all terms neglected
from Eq. (4b) to get Eq. (8) are negligible at small but
finite C, primarily because of the varying powers of k| .
While scaling arguments near the end of Sec. V suggest
that the approximation in fact converges over the whole
spectrum, direct verification of this convergence is desir-
able. This section provides such verification by numeri-
cally solving Eqgs. (2) in 2D, post-processing the results
to evaluate a and b, and comparing the prediction by (a)
with the actual b. An i6-like linear prediction by, defined
to be the linear term of by, is found to incur order-unity
errors for all C.

Equations (2) were numerically solved with periodic
boundary conditions using a modification of the 2D code
of Ref. 58.5% Poisson brackets and w,,d,¢ were evaluated
using a 4th-order Arakawa scheme,%® while all other spa-
tial derivatives were evaluated spectrally. A 3rd-order
Karniadakis scheme®! was used for time-stepping, treat-
ing parallel conduction implicitly and all other terms ex-
plicitly. Grid-scale dissipation was introduced with ex-
plicit hyperviscous damping, adding terms fl/V‘j_n and
—vV4 (V2 p) to the RHS of Egs. (2a) and (2b), re-
spectively. (This dissipation scheme represents positive-
definite dissipation for both £ and N, as discussed in
Appendix A.) Zonal components were zeroed out for
simplicity. C was scanned from 10 down to 1072, with
nominal parameters w, = 1 and Vﬁ = —1. The simula-
tion domain was 807 ps X 80mp,, with a resolution-refining
procedure used to efficiently obtain convergence, as de-
tailed in Appendix C. Simulations were initialized with
a randomly-phased order-unity bath of adiabatic fluctu-
ations, with (n?) k-spectrum oc k) /[1+ (k1 /k10)8] for
k1o~ 0.28.

The steady-state spectra of n, ¢, and |V 1 ¢| all exhibit
a central peak in &k , dropping for both smaller and larger
wave numbers. As C decreases, the location of the peak
shifts to lower k| , from near 1 for C = 10 to a little below
0.1 for C' = 0.01. However, k; ~ 1 dynamics contribute
significantly to the energy source and sink terms at all
C, since nonadiabatic fluctuations remain strongest there
even at small C. Spectral evolution slows down as C
decreases, with only ~ O(10%) normalized times required
for C = 10 and 1 cases to saturate, but ~ O(10°) for
C = 0.1 and > O(107) for C = 0.01.

The numerical results, drawn from periods of satu-
rated steady-state turbulence,%? confirm that the nonlin-
ear estimate b, does indeed converge to b with decreas-
ing C. Fig. 3 shows joint probability distributions for
b and bn, with both variables centered around b’s mean
and normalized to b’s standard deviation. The predic-
tion by, significantly overestimates b for C' = 10, but is
quite accurate for €' < 1. Fig. 4 shows that the rela-
tive mean-square error ((b, — b)?)/(b?) stays below C2,
quantitatively demonstrating the expected convergence.
In contrast, as expected for strong turbulence, the rel-
ative mean-square error of the ¢d-like linear prediction
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Figure 3. Joint probability distributions of b and by, using
a common logarithmic grayscale with a span of ~106 between
white and black. A diagonal line indicates b, = b.

102 % T T 3
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Figure 4. Normalized error of the nonadiabatic prediction
((b —1)?)/(b*) and of the comparable linear prediction <(bz —
b) >/<b2>, along with the normalized error estimate ((by —
b)?)est/(b?) (c.f. end of Sec. V) and relative nonadiabaticity
measure ([(1 — V3 )52)/((8y8)%).

((be — b)?)/(b?) remains order-unity at small C. The er-
ror estimate ((b, — b)?)est from the end of Sec. V is seen
to be a good predictor of ((b, — b)?) for C' < 1. Finally,
the ratio ([(1—V?2)b]%)/((0,a@)?) indeed well satisfies the
rigorous bound given by Eq. (7).

VIl. CONCLUSIONS

Beginning with the paradigmatic Hasegawa-Wakatani
equations, a unique decomposition of the electrostatic po-



tential ¢ into adiabatic (a) and nonadiabatic (b) portions
was identified in Egs. (3), defining a and b such that a nei-
ther drives nor responds to the parallel current j;. The
adiabatic variable a evolves according to the Hasegawa-
Mima equation with additional terms o b incorporating
the nonadiabatic physics, including energy sources and
sinks and the E x B nonlinearity [Eq. (4a)]. The form
of the a, b decomposition is independent of the type of
parallel impedance, depending only on the ion polariza-
tion physics. At low k), the decomposition reduces to
a =~ n, b = ¢ —n, highlighting the fact that the low-k
electron adiabatic response controls ¢ without influenc-
ing n, as is explained in Sec. II. Recasting the energy
and A; nonlinear invariants of the HWEs in the a and
b variables allowed a rigorous bound on the relative am-
plitude of nonadiabatic fluctuations for nondecaying tur-
bulence [Eq. (7)], while also demonstrating a dissipative
constraint linking the spectra of a and b [Eq. (6)]. The
vorticity nonlinearity was found to cause energy transfer
between a and b [Egs. (5a) and (5b)], providing physi-
cal intuition for the self-sustained drift wave turbulence
observed in Refs. 11 and 13, in which the nonlinear in-
stability was seen to follow from an incoherent spreading
of the n, ¢ phase shift by the vorticity nonlinearity. The
dissipation of a must be independent of b in order that
it not act as a source term for mean-squared fluctuating
ion gyrocenter density A; (Appendix A), an important
constraint on the form of purely dissipative operators for
the HWEs.

In the limit of weak parallel resistivity C' < 1, the
transformation to the a, b variables enabled the deriva-
tion of a noniterative asymptotic functional relation b ~
bn(a), both retaining [Eq. (B3)] and discarding [Eq. (9)]
the contribution of zonal b. Unlike 40 approximations,
the prediction b, retains the contribution of the vortic-
ity nonlinearity, which is important since tokamak edge
turbulence is typically strong. Since iteration is not re-
quired, the predicted functional form of b,(a) is much
simpler than the results of analogous calculations that
do not employ the a, b variables.?!:32 For the C <« 1
limit, this relation provides a one-field approximation to
the HWESs, enhancing physical intuition and greatly eas-
ing the burden on any further analytical manipulations,
such as statistical closures. Direct numerical simulation
of the HWEs demonstrated that the approximation by (a)
indeed rapidly converges to the dynamically evolved b for
C <1 (Figs. 3 and 4), while an 46-like linear approxima-
tion has order-unity errors at all C.

Since the underlying physics (Sec. II) occurs quite
generically in tokamak edge turbulence, the a, b decom-
position may also be fruitfully applied to more general
problems incorporating electromagnetic fluctuations or
an X-point geometry, as will be presented in upcoming
publications.
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Appendix A: Dissipation of Invariants

In the n, ¢ variables, the HW energy and mean-
squared ion gyrocenter density invariants £ and N; are
1n? + [Vip?) and 2((n — V3¢)?). As additional
non-j dissipation, one is tempted to use simple diffu-
sion on n and V2 ¢, adding the terms +D,VZn and
+D,V4 ¢ (with D,, and D, positive constants) to the
RHS of Egs. (2a) and (2b), respectively. Surprisingly,
although this causes positive-definite energy dissipation,
it acts in some cases as a source for N;. To see this,
consider the special case n = ¢1V2 ¢ with unspecified
constant ¢;, in which the diffusion terms jointly con-
tribute a term —(c1 — 1)(c1 Dy — Dy )(| VL (Vigp)ﬁ) to
9 3((n — V3¢)?). Since the quantity under the aver-
age is positive semidefinite, this term is dissipative if and
only if (¢1 — 1)(c1D,, — Dy) > 0. Whenever D,, # D,
values of ¢; between 1 and D,/D, make this product
negative, showing the diffusion to act in those cases as a
source for ;. This is undesirable for two reasons: First,
N, physically the mean-squared ion gyrocenter density
fluctuation,3” should presumably be dissipated by the
dominant non-j dissipation mechanisms: ion-ion colli-
sions and ion Landau damping. Second, the dissipation
operators should certainly not act as sources in the com-
mon case that they are made artificially large to remove
energy and N; at grid and/or box scales in numerical
simulations.

What is then the most general linear operator D that
is guaranteed to dissipate both energy and N;? With
w = V2 ¢ denoting the vorticity, the most general linear
operator takes the form

o +{p,n} +wndyp —Vjj = = [D,, (n) + D, (@)],

(Ala)

Oy +{p, @} = Vyjj = = [Don(n) + Dow(@)],

(Alb)

where D,,,,, D,,.o , Dwn, and Dy are linear operators

acting on the given functions. The evolution of A; may



be written as

05 {(n—2)* ) +wn (ndy ) = — ((n — =) Da(n — )
(0~ @) (Daw ~ Dy —Da) (), (A2)
in which Do = D,,, — Don. If Deo — D, — Da # 0,

then one may consider a w such that (Dgpw — D,y —
Da)(w) #0and an n = w + ¢1(Pww — Dy — Da)(w)
for ¢; a positive constant, in which case ((n —@)(Dgpw —
D,.. — Da)(w@)) = ¢;{(n — @)?) may always be made
larger than ((n — @w)Da(n — w)) by choosing ¢; small
enough. To guarantee positive dissipation of NV, one thus
requires Dy — D,,., = Da. Defining the adjoint of a
linear operator £ in the usual way such that (foL£!f;) =
(f1Lf2), positive dissipation of A; is then guaranteed if
and only if the symmetrized form (Da + DTA) /2 is a pos-
itive operator. Transforming to the a, b variables, one
has the additional dissipative terms for Eqgs. (4):

(1 -=V3)a+---=-D,(a),
0V (1—V3)b+-=—Du(a) — Dy (V3D),
in which D, = Da(1—V?), while D, = (1-V?2)(D,,,, +
Dww — Da) and D, are unconstrained by the require-

ment of positive dissipation of A;. The energy evolution
of Egs. (5a) and (5b) is generalized to

(A3a)
(A3b)

at% <a2 F|Vial?+ |V + (Vib)2> +

— (aDga) — (bDy(—V7)b) + (bDgpa) . (A4d)

Considering fluctuations with b = 0 and with a = 0,
one sees that D, + D}, and Dy(—V?2) + (fVi)Dg must
be positive operators. Additionally, one must have
|(bDapa)| < (aDga) + (bDy(—V?2)b) for all a and b. This
is obviously true for Dy, = 0, the choice made in the
main text, which allows the energy dissipation operator
((Da,0), (=Dap, —DpV?)) to be self-adjoint. It can also
be straghtforwardly verified in other practical cases. For
example, if D,, Dy, and D,y all diagonalize on Fourier
modes, then let d.q(k1), dpw(ky), and dup(k1) be the
coefficients of their Fourier transforms, for which one
must have Re(d, bbkak) < Re(dyq)lar)® + Re(dop) k2 |bre|?
for all k,, ar, and bk, which is true if and only if
Re(daa), Re(dpy) > 0 and |dgp|* < 4k% Re(daa)Re(dpp)
for all k, .63

Appendix B: Near-Adiabatic Approximation with Zonal b

In this appendix, Sec. V is straightforwardly gener-
alized to retain b, the zonal component of b. The fact
that the parallel gradient vanishes for the zonal compo-
nent implies that b is undamped by the parallel current,
requiring its retention as a dynamical variable. The non-
zonal portion b may again be approximated, this time
as a function of both a and b. The calculation is again
restricted to the 2D formulation.
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Begin with Eq. (4a) and the zonal average of Eq. (4b),

noting that {1, &} = {1, 3 } = 0 for arbitrary functions 1
and &:

(1= V2)a+w,0ya—{a,Via}+ (0,b) 9,(1—V?)a

+Dya = —w,Oyb — {l;, (1-V3)a}, (Bla)
802 (1-02)b+{a,v3ia} = —{b,V2a}
—(1-02){a+b,V3ib} —02{a,b}. (Blb)

The dynamical equation for b is simply the difference of
Egs. (4b) and (B1b). Just as in Sec. V, Eq. (4c) implies
that b/jj ~ O(C). The zeroth-order equation for b thus
reduces to

(1 — Vi)VHj” ~ —wnayVi& + {a, Vf_a}
—(2—=V72) [(9ya) (82b)] — 2(8,04a) (92b), (B2)
quite similar to Eq. (8). One may again obtain the

leading-order b by substituting this result into Eq. (4c),
obtaining

b~ C(1-V2) IV 2(1-v2)~! [wnayvia —{a,V2a}

+ (2= V2) [(0,8) (930)] +2(2.0,a) (92b) | . (B3)

Since the leading-order b is already O(C) relative to a
and b, and since j) does not appear explicitly in ei-
ther Eq. (Bla) or (Blb), one may obtain a first-order-
accurate model simply by substituting the formula given
by Eq. (B3) for the appearances of b in Egs. (B1).

Appendix C: Numerical Convergence

In order to achieve converged numerical results despite
the very slow saturation of the turbulent spectra for C' <«
1, a resolution-doubling procedure was used to improve
computational efficiency. Details of this scheme and of
convergence tests are the theme of this appendix.

The temporal evolution of the spectra depends
strongly on C. For C 2 1, the density and potential
spectra saturate rapidly (~ O(10?) normalized times),
then fluctuate around fixed values. For C <« 1, the
density fluctuation spectrum initially develops a steeply-
sloped region (decreasing with increasing k), first at
high %k, then building up towards lower k;. Once the
spectral peak at the low-k, edge of this region reaches
below around k; ~ 0.1, its motion slows greatly and the
k1 2 0.1 spectrum broadens, concurrent with a much
more active energy source and sink near k; ~ 1. Af-
ter this point, the spectral shape stays roughly fixed as
the overall amplitude grows very slowly to its saturated
value. This behavior persisted essentially unchanged for
increasing domain sizes up to (640mp;)? (at C' = 0.1 with
a fixed grid spacing of around 0.98p;), thus appears not



to be a box-size effect. [Similar behavior was observed in
simulations of HM turbulence omitting the linear term,%
thus it presumably follows from the nonlinear structure
of the equations when n &~ ¢.] The fluctuation energy &
eventually saturates at a level that is strongly dependent
on v (increasing with increasing v), despite the fact that
€ is often dominated by low-k, contributions from (n?).

In order to check domain size convergence at each
C > 0.1, reference runs with (807p,)? box size and 0.98p,
grid spacing were run to saturation. Four copies of a
snapshot of the saturated state were set side-by-side as
the initial state of a (160mp,)? run. The resulting sat-
uration levels and spectra were virtually unchanged by
the doubling. However, box sizes of (407mp,)? were some-
times inadequate, losing the low-k, rolloff of the (n?)
spectrum.

The hyperviscosity v was chosen such that the result-
ing damping was larger than the energy source and re-
sistive sink for roughly the last factor of two in large & ,
which resulted in a relatively steep dropoff of the fluctu-
ation spectra in the same k; range. As a further test,
snapshots of saturated reference runs for C' > 0.1 were
used as the initial conditions for 0.49p, grid spacing runs
at the same domain size, linearly interpolating onto the
new grid points. Only modest changes were observed
in saturation levels or spectra, the latter of which de-
cayed steeply for fluctuations smaller than the original
grid scale.

To obtain resolution convergence, snapshots of satu-
rated reference runs were again linearly interpolated onto
grids with halved (0.49p;) spacing, but now used as initial
conditions for runs with v reduced by a factor of 16. After
the subsequent run saturated, the resolution refinement
procedure was repeated until saturation amplitudes and
spectra were no longer significantly affected. The data for
Figs. 3 and 4 were drawn from the concluding saturated,
high-resolution periods. A subsequent additional resolu-
tion refinement and short run at each C' > 0.1 showed no
significant changes from the plotted values (cf. Fig. 6).
Control tests performed for C' = 10 and 1, starting with
the standard initial conditions in the high-resolution box
and running to saturation, also reproduced the results of
the resolution-refinement runs.

The resolution refinements typically reduced (n?) while
increasing vorticity (V2 )?) and without significantly
affecting (|V 1 ¢|?), by reducing fluctuation amplitudes
only at low k, while increasing higher-k, activity. The
observed drop in (n?) was particularly strong for C' = 0.1,
for which the reference runs saturated at (n?) ~ O(102),
with (n?) dropping by about an order of magnitude due
to the resolution refinements. Presumably, the increased
high-k; and nonadiabatic fluctuations allowed by the
higher resolution and lower v allowed a stronger direct
cascade contribution to draw energy out of the lower-k
(n?). Tt is important to note that, even at low C, the
E x B energy (|[V_1p|?) remained ~ O(1) for both ref-
erence and refined runs. Since the nonlinearities depend
only on perpendicular gradients of ¢ and (¢ — n), they
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Figure 5. Vorticity and nonadiabatic fluctuation levels switch-
ing between higher and lower amplitude states, concurrent
with the appearance and disappearance of the k; = 1 feature
in the spectra of the energy source (n) and resistive (¢) and
hyperviscous (h) sink spectra.

did not exceed order-unity for C' < 1 despite the large
(n?).

Because of the very long run times required, the C' =
0.01 reference run was started with an initial amplitude
about 6.7 times larger than the other cases, and was re-
fined before (n?) saturated, although after all other time
traces seemed fairly constant. [Control tests showed that,
after a transient period, the fluctuation amplitudes and
spectra are in fact independent of the initial magnitude
of (n?).] All quantities plotted in Fig. 4 had reached ap-
proximately steady-state values before the end of the ref-
erence runs, as evidenced by their time traces, which be-
came fairly constant when the other non-(n?) time traces
did. The plotted quantities were similarly unaffected by
the evolution of (n?) in the refined runs.

In fact, the amplitude of nonadiabatic fluctuation (b?)
and of the error ((b— b,)?) was most strongly affected by
the presence or absence of the £, ~ 1 feature in the en-
ergy source and sink terms, which also seemed to control
the vorticity level, as shown in Fig. 5. The k; ~ 1 en-
ergy feature only developed later in the C' < 1 runs, and
not at all when v was too large. In intermediate-v cases,
the k; =~ 1 feature sometimes switched on and off irreg-
ularly. In order to concurrently allow the k; = 1 feature
and maintain adequate dissipation at the grid scale, finer
grid spacing may sometimes be required.

Although (b%) and ((b — b,)?) changed somewhat for
grid refinements after 0.49p5, their ratio ((b — b,)?)/(b?)
changed very little (Fig. 6), thus Figs. 3 and 4 are quite
well converged for the final resolutions of 0.12p,, 0.12p5,
and 0.25ps at C' = 10, 1, and 0.1, respectively, while
C = 0.01 appears adequately resolved at 0.49p;.
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0.12p4
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Figure 6. Time traces of ((bn—b)?)/(b*) for C = 10, 1, 0.1 and
0.01. The time axis is distended such that resolution refine-
ments are evenly spaced, and labeled with the dimensional
grid spacing h. Traces from short additionally-refined runs
with grid spacing of 0.06ps, 0.06ps, and 0.12p, for C = 10, 1,
and 0.1 are included.
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