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a tokamak plasma is investigated in global, full-f gyrokinetic simulations, performed

with the GYSELA code in the flux-driven regime. During the initial turbulent phase,

a front of positive Reynolds stress propagates radially, generating intrinsic toroidal

rotation from a vanishing initial profile. This is also accompanied by a propagating

front of turbulent heat flux. In the statistical steady-state regime, turbulent transport

exhibits large-scale avalanche-like events which are found to transport both heat and

momentum, and similar statistical properties are obtained for both fluxes. The impact

of scrape-off layer flows is also investigated by modifying the boundary conditions in the

simulations. The observed impact is radially localized for L-mode like poloidal profiles

of parallel velocity at the edge, while a constant velocity at the edge can modify the

core toroidal rotation profile in a large fraction of the radial domain.
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1. Introduction

Toroidal rotation is generally understood to be beneficial for the performance of

tokamaks, as it tends to stabilize the so-called resistive wall modes [1] and may also

contribute, in the case of a sheared rotation profile, to the saturation of turbulent

transport. In most present tokamaks, toroidal rotation is largely controlled externally

thanks to Neutral Beam Injection (NBI). In ITER however, although the torque from

NBI will be larger than in present tokamaks, the large moment of inertia of the plasma

implies that this torque is not expected to lead to significant toroidal rotation velocities.

Thus, there has recently been much interest in the generation of toroidal rotation by

intrinsic mechanisms and in the transport of toroidal angular momentum by the plasma,

In the absence of any external torque, a number of different mechanisms can drive

toroidal rotation. Generally speaking, any breaking of the axisymmetry in a tokamak

can lead to the generation of toroidal rotation. This symmetry can be broken by a

non-axisymmetric magnetic field, which acts trough collisional processes as a friction

term on the toroidal velocity (see for example [2, 3, 4]). For instance, modifications

of the toroidal rotation profile have been reported experimentally in the presence of

toroidal field ripple [5, 6, 7] or externally applied magnetic perturbations [8, 9]. Another

means of breaking the axisymmetry, which is the focus of the present work, is through

electrostatic turbulence, which generates a non-axisymmetric electric potential.

Turbulent transport of toroidal momentum is investigated here in the specific case of

electrostatic ion temperature gradient (ITG) driven turbulence, which is relevant for the

tokamak core. In this limit, turbulent processes can be modelled using the gyrokinetic

equation for the distribution of ion gyrocenters coupled to the quasi-neutrality equation

to compute the electrostatic potential. A review of recent progress in gyrokinetic

simulations can be found in [10]. Recently, several gyrokinetic codes have been developed

to perform simulations in the flux-driven regime, i.e. forcing the turbulence by a

prescribed heat source [11, 12, 13], in order to resemble the experimental forcing.

Including a heat source in the plasma core and a sink near the edge allows one to

model rather accurately the situation in experiments with regards to heat transport.

Conversely, the question of boundary conditions is more complex in the context of

momentum transport, and is crucial because of the local conservation of toroidal

angular momentum, as verified by the gyrokinetic model [14, 15, 16]. The question

is also relevant in experiments as the impact of scrape-off layer (SOL) flows on core

toroidal rotation remains largely an open issue [17, 18, 19]. In the present work, this

issue is investigated by considering various boundary conditions for toroidal rotation in

gyrokinetic simulations. The code is run either with a constant – vanishing or finite

– velocity or with a poloidal profile of parallel velocity imposed at the edge of the

simulation domain.

In this paper we present new results concerning the statistical analysis of turbulent

momentum transport in gyrokinetic simulations and the essential role of boundary

conditions. The organization of this paper is as follows. The model used for the
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simulations with the Gysela code [20] is reviewed in section 2. The dynamics of

turbulent heat and momentum transport are analyzed in section 3, both during the

initial relaxation event observed in gyrokinetic simulations and in the steady-state of

the saturated turbulent regime. In order to investigate the effect of edge flows on core

rotation, the impact of boundary conditions on toroidal rotation is studied in section 4.

2. Flux-driven simulations with the gyrokinetic code Gysela

The simulations are performed with the global flux-driven gyrokinetic code Gysela,

which models the time evolution of the gyrocenter distribution F̄ , with no separation

between equilibrium and perturbations. The semi-Lagrangian numerical scheme is used,

as detailed in [21]. We consider the electrostatic limit and the low plasma β limit, where

β is the ratio of the kinetic energy to the magnetic energy. The time evolution of F̄ is

given by the gyrokinetic equation in its conservative form [22], which reads

∂tF̄ +
1

B∗
||

∇
z
·
(

żB∗
||F̄

)

= C(F̄ ) + S, (1)

where we define B∗
|| = B+(mvG‖/e)b·(∇× b), which corresponds to the volume element

in guiding-center velocity space. The system of coordinates is z = (r, θ, ϕ, vG‖, µ) where

r is the minor radius, θ is the poloidal angle, ϕ is the toroidal angle, vG‖ is the parallel

velocity of the gyrocenter and µ is the adiabatic invariant. The equations of motion in

(1) are the following

B∗
||dtxG = vG‖B

∗ +
1

e
b×∇Λ, (2)

B∗
||mdtvG‖ = −B∗ · ∇Λ, (3)

where we define

Λ = eφ̄+ µB, (4)

B∗ = B+ (mvG‖/e)∇× b, (5)

where m and e are the species mass and charge, and φ̄ is the gyro-averaged electric

potential. Self-consistency is obtained by coupling the gyrokinetic equation (1) with

the quasi-neutrality constraint, which relates the electric potential to the distribution

function. In the electrostatic limit, assuming a single ion species and adiabatic electron

response, this equation reads

−∇ ·
{neqm

B2
∇⊥φ

}

+
neqe

T
(φ− 〈φ〉F.S.) = e

∫

2πB∗
||dµdvG‖J · (F̄ − F̄eq)(6)

where F̄eq is the equilibrium gyrocenter distribution function, associated with a vanishing

electric potential and 〈φ〉F.S. is the flux-surface averaged electric potential. The gyro-

average operator J is computed using a Padé approximation.

The right-hand side of (1) contains the collision operator C(F̄ ), which is

implemented im Gysela as a Fokker-Planck type operator acting on vG‖ only. This

operator conserves density, momentum and energy, and it was demonstrated that it
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allows one to recover the main results of neoclassical theory, in particular concerning

the predictions for heat transport and poloidal rotation, including their dependence on

aspect ratio and collisionality [23]. Additionally, the source term S provides a constant

input of heat in the system. This source is located near the inner radial boundary of

the simulation domain and does not inject any particle or parallel momentum [24]. The

heat sink is provided by an ad hoc diffusion term added to the right-hand side of (1) and

non-vanishing only in a narrow radial region near the radial boundary of the simulation

domain [12]. Using this source, flux-driven simulations can be performed where the

temperature is fixed at the outer radial boundary and may evolve freely elsewhere. In

this type of simulation, since the full distribution is evolved self-consistently with no

assumption on the size of the perturbations, back-reactions of small-scale turbulence on

the large-scale equilibrium are accounted for and the system may evolve far from its

initial state. In terms of flows, boundary conditions impose a vanishing gradient at the

inner radial boundary and zero parallel velocity at the outer boundary, corresponding

to so-called no-slip boundary conditions. The role of these conditions in the simulations

will be discussed further in the following.

3. Dynamics of turbulent heat and momentum transport

Using the gyrokinetic model in the flux-driven regime, the dynamics of both heat

and momentum transport can be analyzed in fully self-consistent simulations. We

consider here a simulation where the normalized gyroradius at the magnetic axis is

ρ∗ = ρi/a = 1/512, where ρi is the thermal Larmor radius and a is the minor

radius of the tokamak. This value is of the order of the expected ρ∗ in ITER.

The normalized collisionality is ν∗ = 0.1, corresponding to the so-called banana

regime of neoclassical theory. The grid in 5D phase-space required for this simulation

is (Nr, Nθ, Nϕ, NvG‖
, Nµ) = (1024, 1024, 128, 128, 16), corresponding to approximately

3 1011 grid points. The safety factor profile is chosen as q(r) = 1 + 2.78 (r/a)2.8 while

the aspect ratio is R0/a = 3.2, where R0 is the major radius at the magnetic axis.

Since the adiabatic electron response impedes particle transport, the particle density

profile remains constant, throughout the simulation. The density profile has a uniform

logarithmic derivative in the simulation domain, R0/Ln = 2.

For flux-driven simulations, the ion temperature profile is allowed to evolve freely,

and depends strongly on the amplitude of the source. In the statistical steady-

state reached by this simulation, a mean ion temperature profile is obtained with

R0/LT ≃ 11.5, where LT = −(dr log T )
−1 is the temperature gradient length. With

these paremeters, the plasma is well above the nonlinear threshold of the ITG instability.

In simulations with lower ion temperature gradient, i.e. closer to the threshold, one

may expect additional features to appear as the system approaches marginal stability,

in particular in the form of time-independent zonal flow structures, as observed for

instance in [25]. Thus, in such cases, the statistical analysis presented here would still

be applicable but further work may be required in order to obtain a complete description
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of the complex self-organization processes at work. The dimensionless parameters used

in the present simulations can be clarified by expressing them in physical units. For

instance, considering a plasma with a major radius R0 = 2.2m, density n0 = 2.1019 m−3

and temperature T0 = 1keV at mid-radius, and with a magnetic field B0 = 2T at the

magnetic axis, one finds that the additional power corresponding to the source used

here is approximately Padd ≃ 0.6MW.§

When initializing the system with a vanishing profile of toroidal rotation,

it was previously reported [15] that, during the exponential growth phase of

turbulence, a dipolar structure of toroidal rotation is generated by a large turbulent

burst.This structure is consistent with the conservation of gyrocenter toroidal angular

momentum [14, 15, 26], which has been shown to be recovered in gyrokinetic

simulations [15]. A more detailed analysis reveals that this initial relaxation event is

in fact characterized by an outward propagating front of both radial heat flux and

Reynolds stress. Both quantities are represented in figure 1(a), at a given time during

the propagation of the front. The time evolution is such that the two fronts, as well as the

dipolar structure of toroidal rotation, are simultaneously propagating towards increasing

minor radius. More precisely, one finds at each time that the center of the dipole (i.e.,

∂tLϕ = 0 where Lϕ is the toroidal angular momentum), coincides with the maximum

value of the Reynolds stress, consistently with the local equation for toroidal angular

momentum transport [15]. As we are considering radial transport of toroidal momentum,

the Reynolds stress considered here corresponds to the off-diagonal (r, φ) component.

Toroidal momentum transport is often split into three terms: a diffusive contribution,

a convective (or pinch) term [27, 28] and the so-called residual stress [29, 30]. For the

event described here, as the initial profile of toroidal rotation is vanishing, the observed

momentum flux corresponds only to a residual contribution. Note that, while the

different contributions may be directly obtained in the steady-state regime from δf

simulations with specific equilibria [31], this splitting is not straightforward in a full-f

simulation as no scale separation is assumed between equilibrium and perturbations.

In order to clarify the dynamics of the propagation of heat and momentum fronts,

a clearer picture can be obtained by representing the Reynolds stress as a function of

the heat flux, for all radii and at a given time, as shown in figure 1(b). Note that a

similar picture can be obtained by representing the quantities at a fixed radius and for

increasing time, the choice made here is simply due to the greater resolution of the

simulation diagnostics in the radial direction. With this representation, one can clearly

identify a cycle, as both fluxes are vanishing at the inner and outer radial boundaries.

An important result is, as can also be observed in figure 1(a), that the largest value

of the Reynolds stress propagates ahead (i.e., is located further out radially at a given

time) of the maximum heat flux. More precisely, the delay between the two maxima

in figure 1 is of approximately 6 ρi. The propagation velocity of the front can also be

§ These figures are only provided as an example to illustrate the results: since the simulation only

employs dimensionless parameters, other sets of parameters can also be considered for the same

simulation.
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Figure 1. Propagation of a front of turbulent heat flux and generation of toroidal

rotation: (a) Radial profiles of the heat flux and toroidal Reynolds stress at a given

time during the initial turbulent burst. (b) Representation of the front (at the same

simulation time) as a cycle in heat flux and Reynolds stress. The cycle starts and ends

with both fluxes at zero, arrows represent the direction of increasing radius.

estimated by following the maximum of either flux over time, and is found to be of

roughly five times the diamagnetic velocity, i.e. Vfront ≃ 5ρ∗vT where vT is the ion

thermal velocity. Thus, one can compute the time delay between the maxima of heat

flux and Reynolds stress, leading to approximately 600ω−1

c , which is of the order of the

correlation time of turbulence τc ∼ a/vT .

As previously mentioned, the gyrokinetic model ensures the conservation of toroidal

momentum. Thus, in the absence of momentum fluxes at the boundaries, one would

only obtain dipolar-like structures, with no net generation of toroidal rotation. In the

simulation considered here, no-slip boundary conditions (i.e. V‖ = 0) are imposed at the

edge of the simulation domain. With no-slip boundary conditions, non-vanishing edge

fluxes are possible, and therefore a net generation of toroidal rotation can occur. This

occurs after the propagation of the initial turbulent front, when turbulence has spread

to the edge regions of the simulation domain, where spatial diffusion is applied. During

this phase of the simulation, a net profile of toroidal rotation builds up with a dominant

contribution in the co-current direction (see figure 4 in [32]).

Eventually, a steady-state is reached with the saturation of turbulence, and we focus

now on the dynamics of turbulent transport in this regime. For large simulations such

as the one considered here, with ρ∗ = 1/512, the numerical cost of the simulations (in

this case, approximately 6.106 CPU hours running on 8192 processors) implies that they

cannot be run on confinement time scales. Thus, while turbulence has indeed reached

a steady-state, the mean flows are still slowly evolving.

It was shown in [32], from simulations with theGysela and XGC1p [33] gyrokinetic
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codes, that both the turbulent heat flux and toroidal Reynolds stress exhibit large-

scale avalanche-like events. We recall that these avalanches are observed to propagate

predominantly outward, although inward propagating fronts can also be observed. The

fronts observed in the steady-state regime are found to propagate at velocities slightly

lower than the diamagnetic velocity, i.e. Vfront . ρ∗vT where vT is the ion thermal

velocity.

The observations in [32] suggest that the same avalanches transport both heat

and momentum. This result can indeed be highlighted by tracking the maxima of

the turbulent heat flux and toroidal Reynolds stress during the steady-state of the

simulation, as shown in figure 2(a). This confirms the observation in [32], as the

maxima of the fluxes – which correspond to the large-scale avalanches – appear strongly

correlated. Moreover, a delay can be identified between both fluxes, with the heat flux

generally propagating ahead, in contrast with the observations made during the initial

turbulent front, figure 1.

A representation of individual avalanches as cycles cannot be confirmed in the

steady-state regime as the time evolution of the fluxes is less coherent and an accurate

tracking of avalanche propagation is not straightforward. However, the link between

avalanches of heat flux and momentum, clearly identified in figure 2(a), can be further

quantified by analyzing the radial distance between the maxima of the fluxes in terms

of statistical distributions, as presented in figure 2(b). First of all, the statistical

distribution of the distance between two successive maxima of the heat flux is described

by the dashed blue curve (labeled Q-Q). Although this distance exhibits significant

variations, one can identify a strong peak corresponding to a typical distance of

approximately 10 Larmor radii, which can also be translated in terms of transit times as

roughly 2 a/cs, given the mean propagation velocity of the avalanches. We stress here

that, as the fluxes considered here are flux-surface averaged, two successive avalanches

may in fact be occuring at different poloidal or toroidal locations. Also, a secondary peak

is observed, corresponding to the edges of the simulation domain, where the turbulent

dynamics are not dominated by large-scale avalanches but rather by steady-state spatial

structures of approximately 20 Larmor radii.

Second, the black curve (labeled R-Q) represents the distance between a heat flux

maximum and the preceding Reynolds stress maximum. In most cases, the maximum of

Reynolds stress is propagating with a slight delay behind the heat flux maximum, of the

order of a Larmor radius. This statistical result clearly confirms the visual observation

from figure 2(a). Finally, the solid blue curve (labeled Q-R) corresponds to the distance

between a heat flux maximum and the following Reynolds stress maximum. By first

considering the strongest peak in the statistical distribution, near ∆ρ = 10ρi, the time

period between two avalanches and the delay between Reynolds stress and heat flux

front, both previously obtained from the other distributions, are recovered. However, a

significant number of events is also identified where the Reynolds stress is propagating

ahead of the heat flux, as was the case for the initial turbulent front. The present

data does not allow us to conclude as to what governs the relative positions of the two
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Figure 2. Avalanches of heat and momentum in the steady-state regime: (a) Space-

time representation of the maxima of turbulent heat flux (Q) and Reynolds stress

(R). (b) Statistical distributions of the distances, in units of Larmor radius, between

successive maxima of (black) Reynolds stress and heat flux, (solid blue) heat flux and

Reynolds stress and (dashed blue) between two successive heat flux maxima.)

fronts, which do not appear to be related to the radial position of the avalanche. As the

generation of toroidal Reynolds stress is necessarily linked to a breaking of symmetry, the

relative position of the avalanches could be determined by the mechanism responsible for

this symmetry breaking. Two key mechanisms have been identified in global gyrokinetic

simulations, namely radial electric field shear and turbulence intensity gradient [34, 32].

However, no clear correlation is observed between the relative positions of the maxima

and the importance of either mechanism. Another related open issue concerns the

difference between the steady-state avalanches and the initial turbulent front, which

propagates at a higher velocity and with opposite relative positions of the heat flux and

Reynolds stress maxima. In order to resolve these issues, future work will focus on the

relation between heat flux and Reynolds stress avalanches when varying the level of the

turbulent drive – i.e. the distance from the nonlinear threshold of the instability – as

well as the nature of the underlying instability.

In summary, the simple picture one can obtain from figure 2(b) is of quasi-periodic

avalanches, with a mean delay of 2 a/cs between them, while for most of the avalanches

the toroidal Reynolds stress front propagates with a delay of the order of 0.2 a/cs relative

to the heat flux front.

In this regime of statistical steady-state, heat and momentum transport can also be

compared by analyzing the probability distribution functions (PDFs) of the turbulent

heat flux and toroidal Reynolds stress. Basic comparisons between the XGC1p and

Gysela code were previously reported in [32], here we present a more detailed analysis

of these statistics. We compute the PDFs of the flux-surface averaged fluxes for a radial
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Figure 3. Statistical distribution functions of the turbulent (a) heat flux and (b)

toroidal (r, ϕ) Reynolds stress, around mid-radius r/a = 0.5. In both cases, with a

Gaussian fit also plotted as a reference. (c) Both distributions are then normalized to

their mean value and standard deviation for direct comparison.

domain around mid-radius and for a time-window of approximately 5.104 ω−1

c during

the steady-state regime. With these intervals, the number of points available for the

statistics is roughly 7.5 104. As the time average of the fluxes may vary depending on

the radial position, we consider for a given flux Γ the PDF of Γ− 〈Γ〉 where 〈Γ〉 is the

time-average of the flux at a given radial position. The resulting statistical distributions

are presented in figure 3(a) for the turbulent heat flux and figure 3(b) for the turbulent

Reynolds stress. In both graphs, a Gaussian fit is plotted for comparison. The two

distributions exhibit similar properties, namely a strong asymmetry and a heavy tail for

large positive values of the quantity. In order to compare them directly, the distributions

can be normalized to their respective mean values and standard deviations, allowing

them to be represented on the same graph, figure 3(c). Once normalized, the two

PDFs appear remarkably similar, in particular in terms of the tails of the distributions.
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A similar result was obtained recently with the XGC1p gyrokinetic code, where the

heat flux had a similar distribution as the opposite of the Reynolds stress [32]. In the

latter simulation, the choice of density and temperature profile led to a turbulent drive

localized near the edge of the domain, which may explain why in that case toroidal

rotation was driven from the edge inward.

The characteristics of the distributions can be quantified by computing their third

and fourth order moments. The normalized third central moment, or skewness, measures

the asymmetry of a distribution and is exactly zero for a symmetric distribution. For

the PDFs in figure 3, we find a skewness of approximately 0.79 for both fluxes. The

normalized fourth central moment, or kurtosis, measures the weight of the tails in the

distribution. A positive kurtosis is indicative of flat distributions, i.e. with heavy tails,

while the kurtosis of a Gaussian distribution is exactly zero. We obtain values of roughly

1.7 for the heat flux and 1.5 for the Reynolds stress, clearly departing from a Gaussian

in both cases. Note that the fluxes used for the analysis are flux-surface averaged, and

the intermittency would be more pronounced for the local (poloidally and toroidally)

fluxes, as observed experimentally [35].

In addition to the statistical analysis of the turbulent fluxes, it is interesting to

investigate the difference between the dynamics of the toroidal Reynolds stress and of

the time evolution of toroidal momentum (noted Lϕ). Although the latter is governed

by the divergence of the Reynolds stress, a statistical analysis by means of PDFs reveals

that they exhibit very different dynamics. The PDF of ∂tLϕ is shown in figure 4(a),

and is then normalized to its mean value and standard deviation for comparison with

the turbulent Reynolds stress in figure 4(b). We recall that, although momentum

transport contains several terms as presented for example in [15], the dominant term

is the divergence of the turbulent toroidal Reynolds stress, with a transport equation of

the form ∂tLϕ +∇Πr,ϕ = 0 where Πr,ϕ is the Reynolds stress.

The PDF for ∂tLϕ is quite different from the PDF of the Reynolds stress obtained

in figure 3(b). The tails of the PDF, while still present, appear less important, as

characterized by the kurtosis of the distribution of approximately 0.46, to be compared

with 1.5 for the Reynolds stress. Also the PDF of ∂tLϕ is much more symmetric, with

a skewness of approximately 0.1, which is only marginally larger than the expected

precision considering the number of points in the distribution. We recall that the PDFs

of heat flux and Reynolds stress had a skewness of approximately 0.79. Note that a

similar result can be shown by comparing the statistics of the turbulent heat flux and

of the time derivative of the local ion temperature. This suggests that, although large

events are very significant in terms of heat and momentum fluxes, their effect on the

profiles may not systematically be of importance. One possible interpretation of this

would be that the larger events in terms of fluxes are also associated with larger radial

extents, leading to moderate local modifications of the profiles.

Finally, a useful tool when analyzing the correlation between two turbulent fluxes

Γ1 and Γ2 is the technique of joint PDF, which represents the statistical distribution of

the variable (Γ1,Γ2). Obviously, this technique requires larger datasets than standard
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Figure 4. (a) Statistical distribution functions of the time derivative of the toroidal

angular momentum (∂tLϕ), around mid-radius r/a = 0.5, with a Gaussian fit also

plotted as a reference. (c) The distribution is normalized to its mean value and

standard deviation for direct comparison with the distribution of the turbulent toroidal

Reynolds stress.

Figure 5. Logarithmic contour of the joint statistical distribution of turbulent heat

flux and toroidal Reynolds stress. Both fluxes are normalized to their respective

standard deviations.

PDFs, as the variable becomes two dimensional. Nevertheless, the 7.5 104 points

previously used are sufficient to obtain a well-resolved joint PDF of turbulent heat

flux and Reynolds stress, as shown in figure 5. A significant number of events with

both large turbulent Reynolds stress and heat flux is clearly identified, which can be

associated with the large-scale avalanches observed in both fluxes [32]. Other events are

also observed with large heat flux and weak Reynolds stress (and vice versa), suggesting
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that decorrelated bursts of either flux are also present. Finally, a striking feature of

the joint PDF is the two lines which can be drawn from the origin of the figure, one

corresponding to the minimum value of the Reynolds stress and another for growing heat

flux and Reynolds stress. These lines are reminiscent of the cycle observed during the

initial front propagation of the simulation in the previous section (figure 1(b)), suggesting

that the mechanism associated with this initial front and the generation of a dipolar

toroidal rotation profile may also be at work during the statistical steady-state of the

simulation.

4. Impact of scrape-off-layer flows on core toroidal rotation

As mentioned previously, the gyrokinetic model used in Gysela verifies a local

conservation law for toroidal angular momentum, with no momentum source. Thus, the

role of boundary conditions is crucial as they represent the only source of net toroidal

rotation. Experimentally, there is evidence that flows from the scrape-off layer (SOL) of

the plasma may influence toroidal rotation in the outer core [17, 18, 19], but this effect

has yet to be confirmed by core turbulence simulations. In the simulation detailed in the

previous sections, no-slip conditions (i.e. vanishing rotation) were imposed at the outer

radial boundary, with an ad hoc diffusion ensuring exchange of momentum between

the plasma and the edge of the simulation domain. This modeling choice, although it

should not presumably affect the statistical dynamics of turbulent transport previously

detailed, may have an impact on the toroidal rotation profiles eventually reached by the

simulations. We investigate in the following the effect of various boundary conditions,

corresponding to different types of edge plasma rotation, on core toroidal rotation in

Gysela simulations.

In order to provide boundary conditions for the Gysela code, which does not

model the open field line region, it is useful to consider first reduced models. From a

simple one-dimensional model of the scrape-off layer, assuming constant temperature

and no momentum source, one can obtain (see for example [36]) the steady-state profile

of the parallel Mach number as

∇‖M =
S

ncs

1 +M2

1−M2
, (7)

where S is the particle source, n is the ion density and cS is the isothermal ion acoustic

velocity. For a simple limiter geometry with a homogeneous particle source, one can

integrate (7), leading to the (solid blue) profile of Mach number shown in figure 6(a).

Notice that the Mach number goes to −1 and +1 at both ends, which correspond to the

two sides of the limiter, with infinite derivatives along the magnetic field line. This basic

profile can be modified when taking into account the asymmetry of the particle source or

a different geometry. As an example, an output from the fluid code SOLEDGE-2D [37]

in the case of a strongly ballooned source is given in figure 6(a).

Shifting to the closed field line region before investigating the question through

gyrokinetic simulations, it is also possible to estimate analytically how such profiles will
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Figure 6. Simple profiles for the parallel Mach number along the magnetic field line

in (a) the scrape-off layer (open magnetic field lines) and (b) in the region of closed

field lines near the last closed flux surface. The solid blue lines correspond to analytical

profiles in the case of a homogeneous particle source, while the dashed red lines are

outputs from SOLEDGE-2D simulations with a strongly ballooned source.

penetrate the core plasma in the case of purely diffusive momentum transport. We

consider a stationary two-dimensional diffusive model for density n and parallel flow Γ

in the closed-field line region near the last closed magnetic flux surface (LCFS), which

reads

−D∆⊥n+∇‖Γ = 0 (8)

−miν∆⊥Γ +∇‖Π = 0 (9)

where D and ν are diffusion coefficients describing radial transport. In the limit where

M2 → 0 (i.e. low flow) and in the isothermal approximation, ∇‖Π = T∇‖n. Thus the

system of equations (8,9) reduces to an equation for the parallel flow

∇2

‖Γ =
Dν

c2s
∆2

⊥Γ (10)

In Fourier space, this reads

−k2

‖ =
Dν

c2s
k4

⊥ (11)

Although this precise result is dependent on the choice of reduced model made here, we

can expect the profiles obtained in the open field line region (figure 6(a)) to be damped

in the closed field line region, with the large k‖ structures being more radially localized

near the LCFS. In particular, the discontinuity between both sides of the limiter will not

be observed inside the LCFS. Schematically, this leads to profiles such as figure 6(b) for

the parallel Mach number. The solid blue line corresponds to the case of a symmetric

source, while the dashed red line is the result of a SOLEDGE-2D simulation with a

strongly ballooned source.

As a starting point for the numerical analysis, we consider a simulation with

ρ∗ = 1/150 and ν∗ = 0.02 which was run with conventional no-slip boundary conditions
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Figure 7. Radial profiles of the parallel velocity at different simulation times

(normalized to a/cs) showing (a) the slow evolution around a mean profile in the

steady-state regime (with ∆t = 21 a/cs), and (b) the rapid modification of the profile

(with ∆t = 4.2 a/cs) near the edge after modifying the boundary condition for parallel

velocity. The velocities are normalized to a reference (i.e., constant) thermal velocity.

for approximately 3.105 ω−1

c . The geometry and profile shapes used were the same

as previously described in section 3 but with the normalized temperature gradient

R0/LT ≃ 7 in the steady-state regime, i.e. closer to the instability threshold than the

simulation analyzed in the previous section. Given the input power and the pressure

profile, the simulation time is comparable to the confinement time, and the plasma

appears to have reached a steady-state for the mean flows, as shown in figure 7(a). From

this steady-state, we impose as a boundary condition for parallel velocity a poloidally

symmetric profile as presented in figure 6(b), with the poloidal position corresponding to

the limiter at θ = 0. The maximum absolute value of the edge velocity is Vedge = 0.25 vth0
at θ = π/4. As a result, the profile is rapidly modified near the edge, as can be

observed in figure 7(b), and a new steady-state is reached by the flows in the simulation.

Inside r/a ≃ 0.75, the profile does not appear to be affected by the modification of the

boundary conditions, even on a long time scale. This has been confirmed by continuing

the simulation with no-slip boundary conditions and comparing the obtained profiles:

the difference between the two remains smaller than the level of fluctuation of the profiles

around their mean steady-state values.

Considering our choice of boundary condition, it is not sufficient to analyze its

effect on the core plasma in terms of flux-surface averaged flows. Even in the absence of

modified boundary conditions, it is useful to recall the poloidal structure of the steady-

state flows. Indeed, in the steady-state regime, the parallel velocity is not homogeneous

in the poloidal direction, as can be observed in figure 8(a). Large variations of the

velocity are present on a given flux-surface, essentially dominated by an m = 1 mode,

which corresponds to Pfirsch-Schlüter rotation. Note that the amplitude of this variation

is of the same order of magnitude – and in fact often larger – than the flux-surface
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(a) (b)

Figure 8. (a) Poloidal cross-section (averaged over ϕ) of the parallel velocity –

normalized to the thermal velocity – in the steady-state regime with no-slip boundary

conditions. The white line corresponds to the V‖ = 0 contour. (b) Modification

of the parallel velocity with SOL-like boundary conditions, i.e. ∆V‖ = V‖(end) −

V‖(steady-state), with a zoom near the outer radial boundary. The white lines

correspond to ∆V‖ = 0 contours.

averaged flow, and can lead to a reversal of the sign of the parallel flow on a given flux-

surface (see the white V‖ = 0 contour in figure 8(a)). After the boundary conditions

have been modified, the poloidal structure of the parallel velocity is affected, but only

in a small region between r/a ≃ 0.75 and the outer boundary of the simulation domain,

r/a = 0.85. In order to highlight the result, the modification of the parallel velocity near

the boundary, ∆V‖ = V‖(end) − V‖(steady-state), is given in figure 8(b). Interestingly,

the effect on the poloidal structure is not localized near θ = 0, where the boundary

condition has been modified, but rather moves to the high-field side with decreasing

minor radius.

In figure 9, we analyze the transition from the last point of the domain, where the

boundary condition is imposed, to the core plasma, where the flows are not affected.

First of all, in the region closest to the simulation edge, the radial diffusion term damps

fluctuations and governs heat and momentum transport. We recall that this radial

diffusion, of the form 1

r
∂r

{

rD(r)∂rF̄
}

, ensures the coupling of the plasma to the fixed

temperature outside the domain and acts as a heat sink for the system in flux-driven

simulations. The radial profile of the diffusion term D(r) is given in figure 9(a), along

with its effect on the poloidal structure of parallel velocity, represented by the radial

profile at two fixed positions of θ corresponding to the minimum and maximum value of

parallel velocity. The main observation is that the boundary condition is transported as

expected by the diffusion coefficient, although an asymmetry appears between positive

and negative parallel rotation. The cause for this asymmetry is not understood at the

moment.
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Figure 9. (a) Maximum (solid red) and minimum (dashed red) of parallel velocity

in the buffer region where radial diffusion is applied, the radial profile of the diffusion

coefficient is given by the dotted blue line. (b) Poloidal profiles of the parallel velocity

at different radii near the boundary of the simulation domain.

In figure 9(b), we consider the effect of the velocity outside the buffer region by

analyzing the poloidal profile at several radii. At r/a = 0.825, corresponding roughly

to the limit of the buffer region, the parallel velocity still has the shape imposed at the

boundary, but with an important asymmetry, as observed in figure 9(a). Further inward,

we clearly observe two lobes of negative parallel velocity moving toward the high-field

side, corresponding to the structures observed in figure 8. Eventually, the initial m = 1

structure identified in figure 8(a) is recovered for r/a . 0.75.

No measurable effect is observed inside r/a ≃ 0.75, suggesting that the impact of

SOL flows on core rotation is limited to a narrow region near the edge. This key result

does not appear to depend directly on the amplitude of the SOL flow, as a simulation

with equivalent boundary profiles and V‖/vth0 doubled from 0.25 to 0.5 (at θ = +π/4)

leads to a comparable penetration in the core. Additionally, running a similar simulation

but with opposite boundary conditions (i.e. V‖ = −0.25vth0 for θ = −pi/4) leads to the

same poloidal structure of the modified parallel velocity (figure 8) but with opposite

signs for the inward propagating lobes.

The SOL flows applied as boundary conditions so far mimicked the structure of

flows in the scrape-off layer, as they are observed experimentally in L-mode plasmas.

When the plasma is in H-mode, the presence of a transport barrier modifies the coupling

of the core plasma to the scrape-off layer. In H-mode plasmas, the boundary condition

for core toroidal rotation can be described by a uniform (or “solid”) rotation of relatively

large amplitude at the radial position of the pedestal. Here, we investigate the effect

of such boundary conditions on the plasma core, starting from the same reference

simulation described previously (ρ∗ = 1/150). Rather than an inhomogeneous poloidal

profile, we set the boundary condition to a fixed non-vanishing value at the edge
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Figure 10. Mean parallel velocity profile for simulations with poloidally homogeneous

boundary conditions, either no-slip or with V‖(rmax) = ±0.1vth0. The profiles have

been averaged over a time frame of approximately 5 103 ω−1

c .

of the simulation domain, i.e. r/a = 0.85. Two simulations have been performed,

with V‖(r/a = 0.85) = ±0.1vth0, which is of the order of the pedestal velocities

observed experimentally [38]. The resulting parallel velocity profiles are shown in

figure 10 approximately 2.3 105 ω−1

c after the modification of the boundary condition,

averaged over 5 103ω−1

c . As a reference, the simulation with no-slip conditions (i.e.

V‖(r/a = 0.85) = 0) has also been run for the same simulation time.

In contrast to the previous simulations where the effect of modified boundary

conditions had a limited impact on the radial velocity profile, the homogeneous

conditions applied here strongly impact the core rotation, at least up to r/a ∼ 0.6.

For the case where V‖(rmax) = −0.1vth0, no significant effect on parallel velocity can

be measured inside this radius, as observed differences remain well within the level of

fluctuations. In the case where V‖(rmax) = 0.1vth0, the gradient of toroidal rotation

is strongly reduced, and this appears to lead to a modification of the rotation profile

throughout the radial domain. However, the modification observed in figure 10 for

r/a < 0.6 is only marginally larger than the observed fluctuations in the velocity profile.

In order to confirm this result with more certainty, the simulation would need to be run

for a time larger than the energy confinement time, which was not the case here due

to limited numerical resources. Additionally, it would be useful to perform similar

simulations at lower values of ρ∗ in order to investigate whether the penetration – or

screening – of edge flows is dependent on the machine size. This additional step, which

would allow for predictions of the impact of edge flows on core toroidal rotation of ITER,

is left for future work due to the significant numerical cost of such simulations.
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5. Conclusion

Flux-driven simulations of turbulent heat and toroidal momentum transport have been

performed with the global and full-f gyrokinetic code Gysela. During the exponential

growth phase of turbulence, a front of turbulent toroidal Reynolds stress propagates

outward, generating a dipolar structure of toroidal rotation. As the simulation is

initialized with a vanishing profile of toroidal rotation, this effect can be interpreted as

the generation of intrinsic toroidal rotation by a turbulent residual stress. The Reynolds

stress front is also accompanied by a front of radial heat flux, with a delay of the order of

the turbulence correlation time τc ∼ a/vT . A strong link between heat and momentum

transport is also identified in the saturated turbulence regime, as avalanche-like events

are observed in the turbulent fluxes, transporting both heat and momentum. For most

of the avalanches in this steady-state regime, fronts of Reynolds stress are found to

propagate with a delay compared to heat flux fronts. The statistical distributions of

the heat flux and toroidal Reynolds stress indicate intermittent dynamics, as they are

positively skewed with a heavy tail for events corresponding to large fluxes.

The conservation of angular momentum implies that scrape-off layer flows may play

an important role in determining core toroidal rotation. This issue is investigated in

gyrokinetic simulations of toroidal momentum transport by modifying the boundary

conditions. On the one hand, imposing a simple poloidal profile mimicking edge flows

in a limited L-mode plasma has only a radially localized effect on core toroidal rotation,

although the penetration of such flows exhibits clear non-diffusive characteristics. On

the other hand, adding an offset rotation at the edge of the simulation domain can have

a strong impact on core rotation in a large fraction of the radial domain.
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