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Abstract 

The effects of neutron and ion irradiations on deuterium (D) retention in tungsten (W) were 

investigated. Specimens of pure W were irradiated with neutrons to 0.3 dpa at around 323 K and then 

exposed to high-flux D plasma at 473 and 773 K. The concentration of D significantly increased by 

neutron irradiation and reached 0.8 at% at 473K and 0.4 at% at 773 K. Annealing tests for the 

specimens irradiated with 20 MeV W ions showed that the defects which play a dominant role in the 

trapping at high temperature were stable at least up to 973 K, while the density decreased at 

temperatures equal to or above 1123 K. These observations of the thermal stability of traps and the 

activation energy for D detrapping examined in a previous study (≈1.8 eV) indicated that the defects 

which contribute predominantly to trapping at 773 K were small voids. The higher concentration of 

trapped D at 473 K was explained by additional contributions of weaker traps. The release of trapped 

D was clearly enhanced by the exposure to atomic hydrogen at 473 K, though higher temperatures are 

more effective for using this effect for tritium removal in fusion reactors. 
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1. Introduction 

Tritium inventory in plasma-facing materials (PFMs) is an important issue to assess the 

safety margins of fusion reactors. As reviewed in [1], ion-irradiation experiments have clearly 

shown that the formation of radiation defects increases the retention of hydrogen isotopes in 

tungsten (W), a potential PFM candidate, owing to the strong trapping effects of those defects. 

To understand the effects of neutron (n) irradiation, the authors irradiated W to 0.025 dpa 

(displacement per atom) with neutrons in a fission reactor at the coolant temperature of the 

reactor (around 323 K) and measured deuterium (D) retention after exposure to high-flux D 

plasma at 373, 473 and 773K under the framework of the Japan–US joint research project 

TITAN[2–7]. A significant increase in D retention with neutron irradiation was observed even 

at a damage level as low as 0.025 dpa, and the D concentration in n-irradiated W reached 

values of 0.1–0.2 at% at all temperatures examined [3,7]. The desorption of D from n-

irradiated specimens continued up to temperatures above 1173 K, while that from non-

irradiated specimen was completed at ≈700K after plasma exposure at 473K [2] and at ≈970K 

after exposure at 773K [6]. The activation energy for D detrapping, Edet, from defects that 

contribute to dominant trapping at 773K was evaluated to be ≈1.8 eV [6, 7]. However, the 

retention of hydrogen isotopes at a higher damage level has not been examined. A simulation 

of tritium release performed in a previous study [6] showed that a trap density of 0.1–0.2 at% 

and Edet of 1.8 eV are sufficiently high to retard the tritium release at moderate temperatures 

(e.g. ≤ 673 K), and hence tritium removal by baking in vacuum could be difficult. 

Nevertheless, it was also found that release of trapped D was strongly enhanced under 

exposure to H2 gas at 673K [6]. This observation suggests that tritium removal may be 

possible by exposure to H and/or D. However, the mechanisms underlying this enhanced 

release of D have not been clarified in detail. 

In this study, W specimens were irradiated with neutrons at around 323 K to 0.3 dpa, and 

the concentration of retained D after exposure to D plasma at 473 and 773 K were examined 

by nuclear reaction analysis (NRA). Radioactivity in n-irradiated W was also measured, 

because this information would be helpful for detailed planning of specimen handling in 

future programs on plasma–surface interaction studies with n-irradiated specimens (e.g. [8]). 

The D concentration in the n-irradiated W specimen was relatively high even after plasma 

exposure at a high temperature (0.4 at% at 773 K). To understand the mechanisms underlying 

such significant trapping at high temperature, the thermal stability of defects was examined 

using specimens irradiated with 20MeV W ions. The effects of coexistence of H on D release 

from an ion-irradiated specimen was investigated at a relatively low temperature (473 K) for a 

better understanding of the mechanism underlying the enhancement of D release by H. 

 

2. Experimental procedures 

2.1. Neutron irradiation and post-irradiation examinations 
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Disc-type specimens (∅6×0.2 mm) were prepared by slicing rods of pure W (99.99 mass%) 

supplied by A. L. M. T. Co., Japan under stress-relieved conditions (1173 K, 1 h). The 

impurity content is summarized in table 1. The total concentration of impurities in at% was 

calculated to be 0.05. The surfaces of the specimens were polished with abrasive papers and 

diamond powders (9 and 3 μm), and were given a mirror-like finish with a colloidal silica 

suspension (40 nm). Then, the specimens were annealed at 1173K for 30 min in vacuum 

(10−6 Pa) to remove H contained as an impurity and relieve stress induced by polishing.  

The specimens were sealed in Mo envelopes and irradiated with neutrons in the high-flux 

isotope reactor (HFIR) at Oak Ridge National Laboratory (ORNL) for 33 and 391 h at the 

coolant temperatures of the reactor (around 323 K). The damage level reached 0.025 and 0.3 

dpa. Radioactivity induced in the specimens was evaluated using the FISPACT-2001 

computer code. These specimens were shipped to Idaho National Laboratory (INL) after 

storage in a water pool and hot cell for around 300 days and 800 days, respectively. 

At INL, the radioactivity of the specimens was examined by γ -ray spectroscopy. The 

surfaces of the specimens were covered by thin oxide layers formed during neutron irradiation 

and/or storage in a water pool. Therefore, they were gently polished with a lapping film (3M, 

aluminium oxide, 0.3μm). The specimens were then exposed to D plasma in a linear plasma 

machine called the tritium plasma experiment (TPE) at 473 ± 10 and 773 ± 10 K. The 

temperature of each specimen was measured with a thermocouple pressed against the back of 

the specimen with a linear motion feedthrough. The depth profiles of D were measured by 

NRA with 3.5MeV 
3
He ions at the University of Wisconsin. The retention of D was measured 

by thermal desorption spectroscopy (TDS); the temperature ramp rate was adjusted to 0.167 K 

s
−1

 (10 K min
−1

). Details of the analyses are described elsewhere [2, 3]. 

 

2.2. Ion irradiation, annealing and D measurements 

Owing to a limited number of n-irradiated specimens, the thermal stability of the traps was 

examined using plates of recrystallized W (99.99 mass%, 10 × 10 × 2 mm) treated at 2073K 

for 1 h in vacuum (≤ 10−3 Pa) [9]. Those plates were supplied by the same manufacturer as 

the n-irradiated specimens and the impurity content was similar to that shown in table 1 

except that the content of Na and Mo was 1 and < 1 mass ppm, respectively. The specimens 

were damaged at room temperature by irradiation with 20 MeV W ions to 0.5 dpa at the 

damage peak. The damage profile was evaluated by the SRIM2008 program
1
 by setting the 

displacement energy to 90 eV [9]. The thickness of the damaged zone created by 20MeV W 

ions was evaluated to be ≈ 2μm as shown later. These specimens were annealed in vacuum 

(10−5 Pa) at 973, 1123, 1273 and 1573 K for 6 h. Then, the specimens were exposed to D2 

gas instead of D plasma at 673 K and 100 kPa in the manner described in [6, 10] in order to 

examine D trapping at a constant concentration of D in the solid solution state. Next, the 

                                                           
1
 Ziegler J.F., www.srim.org/. 
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concentration of trapped D was measured by NRA with 0.69–4.0 MeV 
3
He ions at the Max-

Planck-Institut für Plasmaphysik [10]. As reported in previous papers [6, 7], the probability of 

trap occupancy by D sensitively depends on the concentration of D in the solid solution state 

if the temperature is sufficiently high to attain trapping–detrapping equilibrium. Under plasma 

exposure, the concentration of solute D can vary even at a constant incident flux of D with 

variation in the rate of recombinative release caused by modifications in surface states [11]. In 

contrast, the concentration of solute D is precisely determined by solubility, temperature and 

pressure under gas exposure. Hence, the annealing effects on trap density can be clearly 

observed under exposure to D2 gas. Prior to the annealing experiments, the TDS spectrum of 

D after exposure to D2 gas at 773 K was examined at a ramp rate of 0.5 K s
−1

 to understand 

whether the desorption temperature of D from the ion-irradiated specimens is similar to that 

from n-irradiated specimens. 

The release of D and effects of coexisting H were examined by heating D-loaded 

specimens in vacuum or under exposure to H neutrals (atoms and molecules) at 473 K. First, 

the ion-irradiated specimens were exposed to D2 gas at 673 K and 100 kPa or D neutrals at 

473 K in a dc glow-discharge device in a manner described elsewhere [10] in order to 

introduce D into the traps. In the case of exposure to neutrals, each specimen was put on a 

holder which served as an anode. The cathode was a tungsten disc located at a distance of 

about 100 mm. The discharge voltage, current and deuterium pressure were 400V, 0.18A and 

1 Pa, respectively. In addition to D2 molecules, the specimen was exposed to D atoms, whose 

energy ranged from a few eV (atoms formed in the glow-discharge plasma) to 400 eV (those 

reflected from the W cathode). The implantation flux of D was measured to be 2 × 10
18

 D m
−2

 

s
−1

 by exposure of the Ti probe at room temperature for 10 and 60 min and D retention 

measurement by TDS [10]. The fluence of D to W specimens was 6 × 10
22

 D m
−2

. Then, D-

loaded specimens were heated in the same device in vacuum (10
−3

 Pa) or under exposure to H 

neutrals at 473 K for 10 h. The discharge conditions for exposure to H neutrals were similar to 

those for D neutrals. Finally, the profiles of D were analysed by NRA. 

 

3. Result and discussion 

3.1. Radioactivity in neutron-irradiated specimens 

Measurements of γ -ray spectra carried out for the n-irradiated specimens showed the 

presence of 
188

W and 
188

Re. The latter is the daughter of the former, and the half-life of the 

latter (17 h) is far shorter than that of the former (69.4 days). Hence, the radioactivity of these 

two nuclides was almost equal (secular equilibrium). The values of radioactivity of 
188

W and 
188

Re in the specimens irradiated to 0.025 and 0.3 dpa were 50 and 4 MBq g
−1

 at 353 days and 

926 days after completion of irradiation, respectively. The lower radioactivity for the higher 

neutron dose was due to the longer period of time between completion of irradiation and 

measurement. Figure 1 shows the radioactivity of major radionuclides evaluated with the 
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FISPACT-2001 code as a function of elapsed time after completion of irradiation. In this 

evaluation, the duration of neutron irradiation was set to 30 days (720 h). The half-filled 

circles in this figure indicate the values of radioactivity of 
188

W and 188Re calculated from 

the measured values for the specimens irradiated to 0.025 and 0.3 dpa by assuming that the 

radioactivity immediately after the completion of irradiation is proportional to the irradiation 

duration. The values evaluated with the FISPACT-2001 code and those calculated from the 

measured values agreed with each other within a factor of 2. Both 
188

W and 
188

Re emit high-

energy β-rays, while the probabilities of γ -ray emission are relatively low. The maximum 

energies of β-rays from 
188

W and 
188

Re are 0.349 MeV and 2.12 MeV, respectively [12]. 

Hence, β-rays from 
188

Re were the most important radiation from the viewpoint of safe 

handling of the n-irradiated specimens. 

Although the FISPACT-2001 code predicted the presence of 
181

W and 
185

W, these nuclides 

were not detected by γ –ray spectroscopy. The absence of a γ -ray peak from 
185

W can be 

explained by low probability of γ -ray emission of 
185

W (0.019%) [12]. No detection of 
181

W 

was attributed to the fact that the cut-off energy in the measurement (50 keV) was comparable 

to the energy of the most intense x-rays from 
181

W (57.5 keV) [12]. 

 

3.2. Depth profiles of D in neutron-irradiated specimens 

The depth profiles of D in the n-irradiated specimens measured by NRA after exposure to 

plasma at 473 and 773K to (5–7) × 10
25

 D m
−2

 are shown in figures 2(a) and (b) together with 

those in the non-irradiated specimens. After exposure to D plasma at 473 K, D penetrated to a 

depth of around 3 μm, and the D concentration in the penetration zone increased with increase 

in neutron dose. The concentration of D reached 0.8 at% at 0.3 dpa, while it was 0.3–0.4 at% 

at 0.025 dpa and 0.1 at% in the non-irradiated specimen. After exposure to plasma at 773 K, 

the D concentration in the non-irradiated specimen was significantly low (~0.01 at%). The 

results of TDS measurements showed that the D retention in the non-irradiated specimen 

exposed at 773K was lower than that in the specimen exposed at 473K by an order of 

magnitude. Hence, the lower D concentration at 773K was ascribed to the enhanced 

recombinative release of D and not to deeper penetration by enhanced diffusion. On the other 

hand, the concentrations of D in the n-irradiated specimens reached 0.2 at% at 0.025 dpa and 

0.4 at% at 0.3 dpa even at 773 K. In addition, D penetrated beyond the detection range of 

NRA (∼5 μm) owing to enhanced diffusion of D. These observations clearly indicated that 

strong traps for D were formed by neutron irradiation, and the concentration of those traps 

increased with increase in neutron dose. 

Although the damage level increased by an order of magnitude, the concentrations of D 

after n-irradiation to 0.3 dpa were only higher by a factor of 2 than those at 0.025 dpa at 473 

and 773 K. According to Roth and Schmid [1] who summarized the correlation between 

damage level and trap density in W irradiated with high-energy heavy ions at room 

temperature, the density of traps sharply rises at dpa values < 0.1 and ceases to increase at 
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around 0.3–0.4 dpa and a D concentration of 1.0–1.4 at%. It is plausible that saturation with 

traps also takes place with neutron irradiation, and the trap density after irradiation to 0.3 dpa 

was close to the saturation level. However, measurements of D retention after neutron 

irradiation to higher damage levels are necessary to draw a final conclusion. 

In the specimen irradiated with neutrons to 0.3 dpa, the D concentration after plasma 

exposure at 773K was lower than that at 473 K, but only by a factor of 2. This observation is 

not trivial because vacancies in tungsten can migrate over long distances at 773K as described 

in the review papers by Balluffi [13] and Schultz [14]. The mechanisms underlying such weak 

temperature dependence will be discussed later. 

 

3.3. Thermal desorption of D from neutron- and ion-irradiated specimens 

In figure 3, the TDS spectra of D for the n-irradiated specimens (0.025 dpa) are compared 

with those for the non-irradiated and ion-irradiated (0.5 dpa) specimens. The spectra for n-

irradiated and non-irradiated specimens, except for the one for the n-irradiated specimen 

exposed to plasma at 473 K, are similar to those reported in previous papers [2, 6, 7]. In a 

previous study [2], the oxide films formed during neutron irradiation and/or storage in a water 

pool remained on the edge and back of the specimen even after plasma exposure, and spikes 

were observed in the TDS spectrum at temperatures below 400 K. Spikes were also observed 

at similar temperatures in the TDS spectrum of a non-irradiated specimen intentionally 

oxidized in air at 673K for 2 h and then exposed to plasma at 473 K. Hence, these spikes were 

ascribed to desorption of D from oxide films. As described in section 2.1, the oxide films 

were removed by gentle polishing in this study, and hence no spike was observed. The 

desorption of D from the non-irradiated specimen was completed at around 700 K, as 

described previously. On the other hand, the D release from the n-irradiated specimens 

continued to high temperatures above 1173 K. These observations suggest the formation of 

traps by neutron irradiation. The broad desorption peak after plasma exposure at 473K 

indicates the presence of various types of traps with different activation energies for detapping 

Edet [2, 3, 15]. At 773 K, only strong traps with large Edet contribute to D retention. The value 

of Edet for such strong traps was evaluated to be ≈1.8 eV by simulation using the TMAP 

program in previous studies [6, 7]. The retention of D in the n-irradiated specimen after 

exposure to plasma at 773K was 6.4 × 10
21

 D m
−2

 and significantly greater than that at 473 K. 

This difference can be explained by the deeper penetration of D (figure 2). As described in a 

previous paper [6], the penetration depth of D was calculated to be 50–100μm as the quotient 

of the amount of retained D (6.4 × 10
21

 D m
−2

) and D concentration (0.1–0.2 at% = (6.3–12.6) 

× 10
25

 D m
−3

) by assuming uniform D concentration throughout the penetration depth. The 

measurements of TDS spectra for the specimens irradiated to 0.3 dpa will be carried out in the 

near future, and the results will be reported in a separate paper. 
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The ion-irradiated specimen also showed D desorption in the high-temperature region, i.e. 

930–1150 K. This temperature range of D desorption agreed with that for the n-irradiated 

specimen exposed to plasma at 773 K, although the desorption peak observed for the ion-

irradiated specimen was much narrower and smaller than that for the n-irradiated specimen. 

Therefore, it is reasonable to consider that the types of defects which play a dominant role in 

the trapping effects in these two different specimens were similar. Ion irradiation creates 

defects only in a shallow region behind the surface, while neutron irradiation forms defects 

uniformly throughout the bulk of the material. The thickness of the damaged zone formed by 

irradiation of 20 MeV W ions was ≈2μm, as described above [6]. Hence, the number of traps 

in the ion-damaged specimen was significantly smaller than that in the n-irradiated specimen. 

This is the cause of the smaller D retention in the ion-irradiated specimen than in the n-

irradiated one. The narrower desorption peak observed for the former can also be attributed, at 

least in part, to the shallow depth of D penetration in comparison with the latter (50–100μm, 

as described above). 

 

3.4. Thermal stability of defects formed by ion irradiation 

Figure 4 shows the correlation between the annealing temperature and concentration of 

trapped D examined after exposure to D2 gas at a constant temperature (673 K). The D 

concentration at the damage peak was 0.38% before annealing; the data point was plotted at 

673K because exposure to D2 gas was performed at this temperature. The trap density showed 

no significant reduction after annealing at 973 K, whereas it clearly decreased after annealing 

at 1123 K. A further drop in the concentration of trapped D was observed after annealing at 

1573 K. 

These observations can be interpreted on the basis of literature data on the recovery of 

defects in n-irradiated W. According to Keys and Moteff [16] and Anand et al [17] who 

examined damage annealing over a wide range of temperature after fast neutron irradiation, a 

large extent of defect recovery in W takes place in two temperature regions: 473–773K (stage 

III) and 1073–1273K (stage V). Both Keys and Moteff [16] and Anand et al [17] reported that 

the recovery of defects in stage III was a second-order reaction with an activation energy of 

≈1.7 eV. None of the researchers attributed this recovery stage to vacancy migration because 

the activation energy of vacancy migration is believed to be larger [16, 17]. However, as 

shown in later review papers by Balluffi [13] and Schultz [14], experiments with high-purity 

W showed that the activation energy of vacancy migration is 1.7 eV, and Balluffi [13] and 

Schultz [14] attributed the stage III recovery to vacancy migration. In addition, Eleveld and 

van Veen [18] examined positron annihilation in ion-damaged W and observed vacancy 

migration and clustering at 600–750 K. Therefore, it is plausible that formation of small voids 

by vacancy clustering takes place at stage III. Anand et al [16] ascribed the recovery in stage 

V to the annealing of defect clusters, and this is consistent with the observation of void 
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growth by Eleveld and van Veen [18]. It should be noted that a part of vacancies can be 

present in the form of clusters even immediately after the irradiation of neutrons and heavy 

ions below the stage III temperature (without any subsequent annealing) owing to cascade 

collisions [19]. Indeed, the irradiation of W thin films prepared for transmission electron 

microscope observation with 2.4MeV Cu ions resulted in the formation of nanosized voids, 

and subsequent annealing led to the visible growth of voids only at/above 1073 K. Details will 

be reported in a separate paper. 

As described above, the activation energy for detrapping Edet for defects which play a 

dominant role in trapping at 773K was evaluated to be ≈1.8 eV. This value corresponds to Edet 

for hydrogen chemisorbed on the inner surface of a void, as reported by van Veen et al (1.8–

2.1 eV) [20]. In addition, the traps in the ion-irradiated specimen were stable up to 973 K, and 

then their density started to decrease with increase in annealing temperature to 1123 K. Such a 

change in trap density with annealing temperature agrees well with the abovementioned 

annealing behaviour of small voids. Therefore, it is plausible that D introduced into the 

irradiated specimens by exposure to D plasma and D2 gas at 773K was mainly trapped in 

small voids formed by cascade collisions or the clustering of mono-vacancies during the 

exposure. The maximum temperature in TDS measurements, 1173 K, corresponds to stage V 

where the annealing of voids takes place. Hence, the growth of voids and consequently 

reduction in trap density can take place during the measurements. To understand such 

annealing effects better, the n-irradiated specimen subjected to the TDS measurement was 

exposed to D plasma again at 773 K, and a second TDS measurement was carried out. Indeed, 

a significant reduction in trap density was observed after the first TDS measurement. In the 

case of plasma exposure at 473 K, long-range migration of vacancies is small and the 

contributions of mono-vacancies to the trapping should be larger than in the case of exposure 

at 773 K. The activation energy for D detrapping from a mono-vacancy is smaller than that 

from a small void and is 1.43–1.55 eV [18]. In addition, Edet decreases with increase in the 

number of D atoms trapped in a mono-vacancy [21, 22]. This is one of the reasons for the 

broad desorption peak observed after the exposure at 473 K. Indeed, ‘t Hoen et al [23] 

performed positron annihilation Doppler broadening and D retention measurements for W 

specimen irradiated with 12.3MeV W ions and reported that clustering of vacancies took 

place at 650 K. They observed reduction in D retention with increase in the exposure 

temperature and explained this observation by the reduced amount of mono-vacancies and 

small vacancy clusters in combination with the strong depopulation with D due to thermal 

trapping and detrapping [23]. In any case, an improvement of modelling such as TMAP is 

necessary to analyse the desorption spectra acquired under the conditions where annealing of 

defects is significant. 

 

3.5. Release of D by heating in vacuum and under exposureto H neutrals at 473K 
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Figure 5 shows the depth profiles of D after the exposure of ion-irradiated W to D 

neutrals and D2 gas, and subsequent heat treatments at 473K in vacuum and under exposure to 

H neutrals. The damage profile calculated with the SRIM2008 program is also given in this 

figure. The thickness of the damaged zone was ≈ 2 μm, as mentioned in section 2.2. No 

significant difference was observed between the profiles after exposure to D2 gas and 

annealing in vacuum for 10 h. This observation indicates that D trapped in ion-induced 

defects was immobile at 473K in this time scale. However, the D concentration in the 

specimen exposed to D neutrals clearly decreased by subsequent exposure to H neutrals. In 

other words, the release of D from radiation-induced traps was strongly enhanced by the 

coexistence of H, even at 473 K. Subsequent TDS measurements showed that D retention, 

which was 9.2 × 10
20

 D m
−2

 after exposure to D neutrals, decreased to 3.8 × 10
20

 D m
−2

 by 

exposure to H neutrals. 

In a previous paper [6], the enhanced release of D by H at 673K was explained by 

blocking effects. That is, H atoms in an excess amount immediately filled traps which had 

become vacant by D detrapping and consequently prevented retrapping of D. However, the 

probability of D detrapping, Pdet, is rather low at 473 K. Pdet can be expressed as Pdet = ν 

exp(−Edet/kT )t where ν is the vibration frequency, k is the Boltzmann constant and t is the 

time. With ν = 10
13

 s
−1

, Edet = 1.8 eV and t = 36 ks (10 h), Pdet = 0.02 under the present 

conditions. The above-mentioned blocking effects should play a significant role in the 

enhanced D release when Pdet  ≥ 1. Hence, the enhanced D release at 473K cannot be 

explained solely by the blocking effects by H. It is plausible that the presence of H enhances 

detrapping of D, for example, by isotope effects in the binding energy between hydrogen 

isotopes and defects. However, further investigation is necessary to come to a conclusion on 

this point.  

The thickness of the depleted region of D after exposure to H neutrals was ≈1.4μm. 

Hence, in spite of the strong enhancement by H, the rate of D release at 473K is too low to 

remove D from materials with macroscopic thickness. In other words, higher temperatures are 

preferable for tritium removal by D and/or H in future fusion reactors. 

 

4. Conclusion 

Neutron- and ion-irradiation of W resulted in a significant increase in D retention owing 

to the formation of defects that act as traps. The D concentrations in specimens irradiated with 

neutrons to 0.3 dpa were 0.8 at% at 473K and 0.4 at% at 773 K. The desorption temperature 

also increased owing to the trapping effects with traps of higher activation energy for 

detrapping. These traps were stable at temperatures corresponding to stage III in the recovery 

process (473–773 K), while a significant reduction in trap density was observed by annealing 

at temperatures corresponding to stage V (≥ 1073 K). The thermal stability of the traps and 

the value of the activation energy for detrapping evaluated in a previous study (≈1.8 eV [6, 7]) 
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showed that the defects which play a dominant role in the trapping effects at 773K are small 

voids. The broad desorption spectrum observed after exposure to D plasma at 473K indicated 

additional contributions of weaker traps such as mono-vacancies. Significant enhancement of 

D release under exposure to H neutrals was observed at 473 K, although the rate of release at 

this temperature was too low for practical application in tritium removal in future fusion 

reactors. 
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Table 1. 

Impurity content in W specimen (mass ppm). 

Element        C          N        O        Na        Mg       Al        Si        K       Ca       Cr       Mn       Fe       Ni       Cu       Mo      Sn 

Content       < 10     < 10    < 10     < 1       < 1       < 2       < 5      < 5     < 1      < 1      < 1        1        < 1      < 1        2         < 2 
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Figure 1.  

Radioactivity in W irradiated with neutrons in HFIR for 30 full power days evaluated using 

the FISPACT-2001 code. Half-filled circles indicate the radioactivity of 
188

W and 
188

Re 

calculated from the measured values for W specimens irradiated to 0.025 and 0.3 dpa by 

assuming that the radioactivity immediately after completion of neutron irradiation is 

proportional to the duration of irradiation. 
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Figure 2. 

Depth profiles of D in non-irradiated and n-irradiated W specimens (0.025 and 0.3 dpa) after 

exposure to D plasma at 473 K (a) and 773K (b). 
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Figure 3. 

Thermal desorption spectra of D from non-irradiated, n-irradiated (0.025 dpa) and ion-

damaged W (0.5 dpa); Tex indicates temperature of exposure to D plasma and D2 gas. 

 

  



16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 

Effects of annealing in vacuum on trap density in ion-irradiated W (0.5 dpa). 


