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This is the first of two papers about collisionless, electrostatic micro-instabilities

in stellarators, with an emphasis on trapped-particle modes. It is found that, in so-

called maximum-J configurations, trapped-particle instabilities are absent in large re-

gions of parameter space. Quasi-isodynamic stellarators have this property (approxi-

mately), and the theory predicts that trapped electrons are stabilizing to all eigenmodes

with frequencies below the electron bounce frequency. The physical reason is that the

bounce-averaged curvature is favorable for all orbits, and that trapped electrons pre-

cess in the direction opposite to that in which drift waves propagate, thus precluding

wave-particle resonance. These considerations only depend on the electrostatic energy

balance, and are independent of all geometric properties of the magnetic field other

than the maximum-J condition. However, if the aspect ratio is large and the instabil-

ity phase velocity differs greatly from the electron and ion thermal speeds, it is possible

to derive a variational form for the frequency showing that stability prevails in a yet

larger part of parameter space than what follows from the energy argument. Colli-

sionless trapped-electron modes should therefore be more stable in quasi-isodynamic

stellarators than in tokamaks.
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1 Introduction

Trapped-electron modes (TEMs) are believed to cause much of the transport ob-

served in tokamaks. These instabilities were predicted theoretically already in the late

1960’s [1, 2, 3], the analytical theory was further developed in the following decades

[4, 5, 6, 17, 8], and more recently trapped-particle instabilities have been simulated us-

ing gyrokinetic codes. Nearly all the theory and simulations so far have been done for

tokamaks, however, with the exception of analytical theory developed for mirror ma-

chines in the 1980’s [9] and a few more recent gyrokinetic simulations for stellarators

[10, 11, 12]. Little is therefore known about the properties of TEMs and other trapped-

particle instabilities in general magnetic fields, which is the subject of the present work.

Our aim is to understand the general characteristics of these instabilities in stellarators,

and how serious they are in comparison with their tokamak counterparts.

Depending on the collision frequency, TEMs are either collisionless or dissipative,

and we are mainly concerned with the collisionless branch, which is thought to be

particularly harmful in tokamaks. Dissipative TEMs arise whenever there are trapped

electrons with high enough collision frequency, but these modes are otherwise fairly

independent of the magnetic field, so there is no particular reason to believe that

they should be very different in stellarators and tokamaks. The collisionless branch,

however, owes its existence to a resonance between drift waves and the precession of

trapped electrons [5], and should therefore be sensitive to the geometry of the magnetic

field, which determines the direction and magnitude of the trapped-particle precession.

Collisionless TEMs could therefore exhibit different behavior in stellarators and toka-

maks, and they could also be different in different types of stellarators. As we shall

see, this is indeed the case. Anticipating our main result, we note that tokamaks are

fundamentally different from stellarators in the sense that the regions of trapping and

“bad curvature” overlap in tokamaks – both being on the outboard side of the torus –

whereas in stellarators they may do so, or they may not. Collisionless TEMs are caused

by electrons being trapped in regions of bad curvature, and are therfore stabilized in

the absence of such an overlap.

Our work is divided into two parts. The present paper, Part I, is devoted to analyt-

ical theory and contains general derviations, valid in arbitrary toroidal magnetic fields,

as well as results obtained in analytically tractable limits concerning the magnetic-field
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geometry. These are approximately, but never exactly, valid in certain stellarators,

and it is therefore necessary to confirm the results numerically. This is the task of

the second paper, Part II, where the analytical predictions are examined numerically,

using a gyrokinetic code. Many of the key analytical results of Part I have recently

been reported in condensed form in two previous papers [13, 14]. It is the aim of the

present paper to present a more complete picture, providing full mathematical details,

and to extend the previous calculations to enable a more accurate comparison with the

numerical simulations in Part II.

2 Gyrokinetic system of equations

We consider an arbitrary stellarator with nested magnetic flux surfaces, so that the

magnetic field can be written as B = ∇ψ × ∇α, with ψ the toroidal magnetic flux

and α = θ − ιϕ the Clebsch angle, constructed as usual from the poloidal and toroidal

magnetic coordinates. In a gyroradius expansion, it follows from the zeroth-order drift

kinetic equation that the equilibrium distribution function, fa0, of each species a is a

Maxwellian at rest [15, 16], whose density and temperature are constant on each flux

surface. The linear stability of this equilbrium against drift-wave-ordered instabilities

is governed by the gyrokinetic equation

iv‖∇‖ga + (ω − ωda)ga =
eaφ

Ta
J0

(

k⊥v⊥
Ωa

)

(

ω − ωT∗a
)

fa0, (1)

in the collisionless and electrostatic approximation. Here φ is the electrostatic potential

perturbation, J0 is a zeroth-order Bessel function, Ωa = eaB/ma the gyrofrequency,

and

ga(R, v, λ, t) = fa1(r,v, t) +
eaφ(r, t)

Ta
fa0(v)

denotes the non-adiabatic part of the perturbed distribution function, which in lowest

order becomes independent of the gyroangle when written as a function of the guiding-

center position R = r−b× v/Ωa rather than the particle position r [17]. The parallel

derivative is taken at constant magnetic moment µ = mav
2
⊥/2B, and we shall use v

and λ = v2
⊥/(v

2B) as our independent velocity-space variables. In addition to the

mode frequency ω, two characteristic frequencies appear in Eq. (1), the drift frequency
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ωda = k · vda, and the diamagnetic frequency ω∗a = (Takα/ea)d lnna/dψ appearing in

ωT∗a = ω∗a

[

1 + ηa

(

x2 − 3

2

)]

,

with x2 = mav
2/2Ta. Here, na denotes the density, Ta the temperature, ηa = d lnTa/d lnna,

and the wave vector has been written as k⊥ = kψ∇ψ+kα∇α. The system of equations

is closed by the quasineutrality condition,

∑

a

nae
2
a

Ta
φ =

∑

a

ea

∫

gaJ0d
3v. (2)

Although this system of equations is standard, two comments are in order. First,

we have taken all perturbuations to be proportional to eiS , where the eikonal S does

not vary along the magnetic field, so that the wave vector k⊥ = ∇S is perpendicular

to B. In toroidal configurations, this is possible if the magnetic field lines close on

themselves, or if the ballooning transformation is used. The latter was adapted to

stellarators by Dewar and Glasser [18], and a short summary can be found in Ref. [14],

but it cannot be used when the (global) magnetic shear is very small. The second

remark concerns the equilibrium electric field, E0 = −∇φ0(ψ). In a tokamak, such

a field (but not its shear) can be eliminated by transforming to a toroidally rotating

frame [19] and therefore plays no role for microinstabilities in the gyrokinetic ordering,

but it is perhaps not obvious that it should be unimportant in a stellarator. That this

is the case follows, however, quickly from the original formulation of the gyrokinetic

equation [20, 21] retaining an equilibrium electric field of order eφ0/T = O(1), which

simply has the effect of Doppler-shifting the frequency ω.

Apart from the usual assumptions in gyrokinetics, two approximations have been

made in Eq. (1): electromagnetic effects and collisions have been neglected. The former

are unimportant in the limit β → 0, but it is in practice difficult to know a priori

just how small β needs to be (typically below one or a few percent, depending on

the magnetic geometry). Collisions are negligible as long as the collision frequency is

smaller than ω/f2
t , where ft denotes the fraction of trapped particles [22].

3 Conventional tokamak approximation

The conventional way of analytically calculating collisionless TEM stability in tokamaks

is to make two basic approximations. The parallel phase velocity of the instability is
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taken to be intermediate between the ion and electron thermal speeds,

k‖vT i ≪ ω ≪ k‖vTe, (3)

so as to avoid strong Landau damping on either species, and the inverse aspect ratio is

assumed to be small, ǫ≪ 1, implying that the magnetic drift frequency is much smaller

than the diamagnetic frequency,

ωda
ω∗a

∼ ǫ≪ 1, (4)

for all species. Here we have taken the density gradient length scale to be of the order

of the minor radius and the radius of curvature equal to the major radius. In addition,

the fraction of trapped particles then becomes small,

ft ∼
√
ǫ≪ 1. (5)

The ordering (3) makes it possible to solve the gyrokinetic equation (1) very easily. For

the ions, the first term on the left can simply ignored, giving

gi =
ω − ωT∗i
ω − ωdi

eJ0φ

Ti
fio, (6)

which reduces to

gi ≃
(

1 − ωT∗i
ω

)

eJ0φ

Ti
fio, (7)

because of the approximation (4), since the frequency ω will turn out to be of order

ω∗i. For the electrons, the distribution function is expanded, ge = ge0 +ge1 + · · · , giving

ge0 = 0 in the circulating part of velocity space and

gtr
e0 = −ω − ωT∗e

ω − ωde

eφ

Te
feo (8)

in the trapped region. Here, an overbar denotes a bounce average for trapped particles,

φ(λ) =

∫

φ(l) dl
√

1 − λB(l)

/∫

dl
√

1 − λB(l)
,

where the integrals are taken along the magnetic field between two consecutive bounce

points, defined by λB = 1. Since the fraction of trapped particles is assumed to be

small, the quasineutrality condition (2) reduces to

(

1

Te
+

1

Ti

)

φ =
1

ne

∫

giJ0 d
3v
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in lowest order. Using the approximation (7) for gi then gives the drift-wave frequency

[5, 22]
ω

ω∗e
=

Γ0 − ηib(Γ0 − Γ1)

1 + Te

Ti
(1 − Γ0)

, (9)

where Γn(b) = e−bIn(b) and b = k2
⊥Ti/miΩi. In the limits of long and short wavelength

(compared with the ion gyroradius), respectively, this frequency is

ω

ω∗e
→ 1, b→ 0, (10)

and
ω

ω∗e
→ 1 − ηi/2
(

1 + Te

Ti

)√
2πb

, b→ ∞. (11)

Note that the frequency can be of either sign, in general. For modest ion temperature

gradients, ηi < 1.64, ω/ω∗e is however always positive (see Fig. 1 below), so that the

mode propagates in the electron diamagnetic direction.

The next-order correction to the dispersion relation becomes

φ

∫ (

ω + δω − ωT∗i
ω + δω − ωdi

− ω − ωT∗i
ω

)

J2
0fi0 d

3v +
Ti
Te

∫

tr.

ω − ωT∗e
ω − ωde

φfe0 d
3v = 0, (12)

where we have now denoted the zeroth-order frequency by ω and the first-order correc-

tion by δω (still ignoring effects due to finite k‖vT i/ω). The latter acquires an imaginary

part from the resonant denominators, leading to the collisionless TEM. The traditional

way of estimating the growth rate is to take φ ≃ φ and ignore the ion resonance [5, 22],

giving
δω

ω2

∫

ωT∗iJ
2
0fi0 d

3v ≃ −Ti
Te

∫

tr.

ω − ωT∗e
ω − ωde

fe0 d
3v

and hence, since γ ≪ ω,

γ

ω
≃ π/n

1 + Te

Ti
(1 − Γ0)

∫

tr.
(ω − ωT∗e)δ(ω − ωde)fe0 d

3v.

If the real frequency ω has the same sign as ωde, this dispersion relation predicts

instability with an exponentially small growth rate, γ ∼ exp(−ω/ωde).
There is no rigorous justification for these approximations, and we shall instead

assess the stability from more general energy-balance arguments below. Note that

both the ions and the electrons have the potential of destabilizing the mode, through

their respsective resonant denominators in Eq. (12).
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4 Large-aspect-ratio stellarator approximation

4.1 Integral equation

Stellarators typically have large aspect ratio, but the number of trapped particles is

nevertheless not necessarily small. In W7-X, for instance, the magnetic field spectrum

has a strong toroidal mirror component and the fraction of trapped particles is several

tens of percent on the magnetic axis. Thus, although the approximations (3) and (4)

may be appropriate, Eq. (5) is certainly not. We therefore need to take the trapped-

electron response (8) into account already in lowest order, so that the quasineutrality

equation (2) becomes

(

1 +
Te
Ti

)

φ =
φTe
nTi

∫

ω − ωT∗i
ω − ωdi

J2
0fi0d

3v +
1

n

∫

ω − ωT∗e
ω − ωde

H(λ)φfe0d
3v, (13)

where H(λ) denotes a Heaviside function that is equal to unity in the trapped region,

1/Bmax < λ < 1/Bmin and vanishes in the circulating region, λ < 1/Bmax. Here Bmin

and Bmax denote the smallest and the largest magnetic field strength on the flux surface

under consideration.

At the point(s) along the field line where B = Bmax, there are no trapped particles

and the the second integral in Eq. (13) vanishes. It follows from this equation, then,

that there are two possibilities at each such point: φ either vanishes or ω satisfies the

dispersion relation

1 +
Ti
Te

=
1

n

∫

ω − ωT∗i
ω − ωdi

J2
0fi0d

3v

The first possibility corresponds to the TEM and the second to the toroidal ion-

temperature-gradient mode. In the present paper, we focus on the former.

4.2 Zero-magnetic-drift approximation

Ignoring the magnetic drift frequency in Eq. (13) by invoking the ordering (4) gives the

dispersion relation

[

1 +
Te
Ti

(1 − Γ0) −
ω∗e

ω
(Γ0 − ηib(Γ0 − Γ1))

]

φ =
(

1 − ω∗e

ω

) B

2

∫ 1/B

1/Bmax

φ dλ√
1 − λB

, (14)

in the form of an integral equation for φ, where the left-hand side represents the ear-

lier dispersion relation (9). It does not seem possible to solve this integral equation
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analytically, but it is possible to reformulate it as a variational principle, where the vari-

ational quantity is equal to the mode frequency ω. This is accomplished by multiplying

Eq. (14) by φ∗/B and integrating along the entire field line, using

∫ ∞

−∞
φ∗(l)dl

∫ 1/B

1/Bmax

φj dλ√
1 − λB

=

∫ 1/Bmin

1/Bmax

∑

j

τj |φj |2dλ,

where the sum is taken over all relevant magnetic wells, i.e., over all regions with

magnetic field strength B < 1/λ, and

φj(λ) =
1

τj(λ)

∫

φ(l) dl
√

1 − λB(l)
,

denotes the bounce average of φ over the j’th such well, with

τj(λ) =

∫

dl
√

1 − λB(l)
.

It should perhaps be pointed out that, in ballooning space, there is an infinite number

of trapping wells along the field line. These are arranged periodically in the tokamak

and aperiodically in a stellarator. Hence we obtain the following expression for ω,

ω

ω∗e
=
N [φ]

D[φ]
, (15)

where the functionals N and D are defined by

N [φ] =

∫ ∞

−∞
[Γ0 − ηib(Γ0 − Γ1)] |φ|2

dl

B
− 1

2

∫ 1/Bmin

1/Bmax

∑

j

τj |φj |2dλ,

D[φ] =

∫ ∞

−∞

[

1 +
Te
Ti

(1 − Γ0)

]

|φ|2dl
B

− 1

2

∫ 1/Bmin

1/Bmax

∑

j

τj |φj |2dλ.

The denominator D[φ] is always positive, since the Schwarz inequality, |φ|2 ≤ |φ|2,
implies

1

2

∫ 1/Bmin

1/Bmax

∑

j

τj |φj |2dλ ≤ 1

2

∫ 1/Bmin

1/Bmax

∑

j

dλ

∫ |φ2|dl√
1 − λB

=
1

2

∫

|φ|2dl1
2

∫ 1/B

1/Bmax

dλ√
1 − λB

≤
√

1 − Bmin

Bmax

∫

|φ|2dl
B
.

The expression (15) is variational and assumes its minimum for the particular func-

tion φ(l) that satisfies the integral equation (14), as follows from the fact that the

variation vanishes,

δω

ω
=
δN

N
− δD

D
=

1

N

(

δN − ω

ω∗e
δD

)

= 0
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if, and only if, the integral equation (14) is satisfied. Thus, instead of having to solve the

integral equation (14), we expect that a good approximation to ω can be obtained by

inserting an appropriate trial function in the expression (15). The traditional systematic

way of doing this (Rayleigh-Ritz optimization) is to use a trial function containing one

or several free parameters, φ(l, λ1, λ2, . . .), and to minimize the variational form with

respect to these. This means that one avoids having to solve an integral equation, and

in addition one obtains the eigenvalue with enhanced precision: if an error of order δ

is made in the trial function, the ensuing error in ω is of order δ2.

4.3 Sinusoidal wells

As an example, we consider the simplest case where the magnetic field strength varies

sinusoidally along the field line within each trapping well,

B(l) = B0 −B1 cos(l/L).

The simplest possible trial function, without free parameters, which has the required

property of vanishing at the field maxima is

φ(l) =
φ0

2

(

1 + cos
l

L

)

.

Then

τ(λ) =
4L√
2λB1

K(m),

φ(λ) =
E(m)

K(m)
φ0,

where K and E are elliptic integrals of the argument

m =
1 − λ(B0 −B1)

2λB1
,

and we obtain
1

2

∫ 1/Bmin

1/Bmax

τ |φ|2dλ =
2φ2

0L

B0 −B1
I

(

2B1

B0 −B1

)

,

where the function I is defined by

I(x) =
√
x

∫ 1

0

E2(m)

K(m)

dm

(1 +mx)3/2
≃ 0.97

√
x+O

(

x3/2
)

.

This result will be used in Part II. For the moment, we note that, for shallow magnetic

wells, B1 ≪ B0 the correction to the eigenmode frequency (15) that arises from trapped
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particles is proportional to the square root of the well depth B1/B0. Indeed, since to

zeroth order in B1/B0,
∫ L

−L
φ2dl

B
=

3π

4

φ2
0L

B
,

the predicted eigenfrequency (15) becomes

ω

ω∗e
=

Γ0 − ηib(Γ0 − Γ1) − 1.17
√

B1/B0

1 + Te

Ti
(1 − Γ0) − 1.17

√

B1/B0

+O

(

B1

B0

)

.

For what comes later, the most important effect of the finite-trapping correction is that

it can make the sign of the numerator change, and thus reverse the direction in which

the mode propagates.

4.4 Correction due to finite magnetic drift frequency

The expression (15) does not contain ηe and thus predicts mode frequencies that are

independent of the electron temperature gradient. To capture this dependence, it is

necessary to account for corrections due finite values of ωde/ω ≪ 1. Still ignoring the

resonance, we thus expand

ω − ωT∗e
ω − ωde

=

(

1 − ωT∗e
ω

)(

1 +
ωde
ω

)

+O

(

ω2
de

ω2

)

.

Writing ωde = ω̃de(λ)x2, we thus obtain the following electron contribution to Eq. (13),

2B√
π

∫ ∞

0
e−x

2

x2dx

∫ 1/B

1/Bmax

ω − ωT∗e
ω − ωde

φ dλ√
1 − λB

= B

∫ 1/B

1/Bmax

g(ω, λ)
φ dλ√
1 − λB

,

where

g(ω, λ) =
1

2

[

1 − ω∗e

ω
+

3ω̃de
2ω

(

1 − (1 + ηe)ω∗e

ω

)]

.

Similarly expanding the contribution from ωdi/ω ≪ 1 gives for the ion term in Eq. (13)

φTe
nTi

∫

ω − ωT∗i
ω − ωdi

J2
0fi0d

3v =
φTe
nTi

h(ω, l),

with

h(ω, l) = Γ0(b)

[

1 − ω∗i

ω
+
ω̂di
ω

− (1 + ηi)ω∗iω̂di
ω2

+ b

(

ηiω∗i

ω
− ω̂di

2ω
+

5ηiω∗iω̂di
2ω2

)

− b2
ηiω∗iωdi
ω2

]

+Γ1(b)

[

−ηiω∗i

ω
+
bω̂di
2ω

(

1 − ω∗i

ω

)

−
(

3

2
− b

)

ηiω∗iω̂di
ω2

]
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When the effect of a small but finite magnetic drift frequency is taken into account,

the integral equation (14) is thus replaced by an equation of the form

f(ω, l)φ(l) = B

∫ 1/B

1/Bmin

g(ω, λ)φ(λ)
dλ√

1 − λB
, (16)

with

f(ω, l) = 1 +
Te
Ti

[1 − h(ω, l)] .

Again, we can reformulate this integral equation as a variational principle, of a

somewhat less conventional form than Eq. (15). Multiplying Eq. (16) by φ∗/B and

integrating along the entire field line gives a quadratic equation,

S[φ, ω] ≡
∫ ∞

−∞
f(ω, l)|φ|2 dl

B
−
∫ 1/Bmin

1/Bmax

∑

j

τjg(ω, λ)|φj |2dλ = 0, (17)

for the frequency ω if the mode structure φ is known. If the latter is varied, so that φ

is replaced by φ+ δφ, then the corresponding change in the frequency, δω, is given by

the equation

δS[φ, ω] =

∫ ∞

−∞

(

∂f

∂ω
δω|φ|2 + 2fφδφ

)

dl

B

−
∫ 1/Bmin

1/Bmax

∑

j

τj

(

∂g

∂ω
δω|φj |2 + 2gφδφ

)

dλ = 0,

which can be written as

δω = −2

∫ ∞

−∞
δφ

dl

B

(

fφ−B

∫ 1/B

1/Bmax

gφdλ√
1 − λB

)

/





∫ ∞

−∞

∂f

∂ω
|φ|2dl

B
−
∫ 1/Bmin

1/Bmax

∑

j

τj
∂g

∂ω
|φj |2



 .

Hence it follows that δω = 0 if the integral equation (16) is satisfied by the pair (ω, φ).

Conversely, if δω = 0 for all variations δφ, then Eq. (16) is satisfied. The latter is thus,

in this sense, equivalent to a variational principle. This variational property can again

be utilized within a Rayleigh-Ritz optimization procedure. One substitutes a suitable

trial function, φ(l, λ1, λ2, . . .), in the definition (17) of the functional S[φ, ω], which then

becomes a function of ω and the parameters λj . The system of equations

S(ω, λ1, λ2, · · · ) = 0,

∂S

∂λj
= 0,

then produces an approximate solution (for both φ and ω) to the eigenvalue problem

(16). As before, higher accuracy is attained for the frequency than for the eigenfunction.
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5 Stability and electrostatic energy balance

As already mentioned, the modes under consideration can acquire a finite growth rate,

γ = Im ω, through the resonant denominators present in the integral equation (13). In

the ordering adopted, this growth rate is small, γ ≪ ω, and the variational principle we

have derived can be used to calculate the real part of the frequency. Knowing the latter,

we now see what conclusions can be drawn about the growth rate using considerations

of energy balance [13]. Instead of doing this within the large-aspect-ratio approximation

adopted in the previous section, we now consider general stellarator geometry, i.e., an

arbitrary toroidal magnetic field with nested flux surfaces and finite global magnetic

shear.

Using the notation

{· · · } =

∫ ∞

−∞

dl

B

∫

(· · · ) d3v,

we first note that the work done by the electric field on the guiding centers of an

arbitrary particle species a is

−ea
{

fa1(v‖b + vda) · ∇φ
}

= ea
{

φ(v‖b + vda) · ∇fa1
}

,

where b = B/B and the adiabatic part of fa1 does not contribute. If the fluctuating

quantities are written

ga(R) ∼ Re ĝa(R)eiS(R),

φ(r) ∼ Re φ̂(r)eiS(r),

where R and r denote guiding-center and particle positions, respectively, the power

transfer from the fluctuating field to species a is thus

Pa = eaIm
{

J0φ̂
∗(iv‖∇‖ĝa − ωdaĝa)

}

.

This work can be related to the potential energy

Qa = eaIm
{

J0φ̂
∗ĝa

}

by noting that, according to the gyrokinetic equation (1), where we have dropped

carets,

Im
{[

iv‖∇ga + (ω − ωda)ga
]

eaJ0φ
∗
}

= Pa + ωrQa + γRe {eaφ∗J0ga}
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is equal to

γ
nae

2
a

Ta

∫ ∞

−∞
Γ0(b)|φ|2

dl

B
,

where ω = ωr + iγ, and hence

Pa = −ωrQa − γ

(

Re {eaφ∗J0ga} −
nae

2
a

Ta

∫ ∞

−∞
Γ0(b)|φ|2

dl

B

)

Summing over all species and using quasineutrality (2) gives an expression for the

growth rate

γ
∑

a

nae
2
a

Ta

∫ ∞

−∞
[1 − Γ0(b)]|φ|2

dl

B
= −

∑

a

Pa, (18)

valid for all collisionless, electrostatic instabilities in arbitrary stellarator configurations.

The right-hand side expresses how much power is transferred from each species to the

turbulent fluctuations: any species with Pa < 0 is destabilizing, and vice versa. The

quantity in Eq. (18) is a ballooning-space version of the nonlinear electrostatic energy

invariant of gyrokinetic theory [23], and has sometimes been used in the past to estimate

growth rates [24].

If the conventional drift-wave ordering (3) is adopted, the energy transfer to the

ions becomes

Pi = −e
2

Ti

{

|J0φ|2
γ

(ωr − ωdi)2 + γ2
ωdi(ω

T
∗i − ωdi)fi0

}

,

where we have used Eq. (6), and it is clear that the instability requires ωT∗iωdi > 0, at

least in some parts of phase space. Near the marginal stability point, γ → 0+, this

expression reduces to

Pi →
πe2

Ti

{

|J0φ|2ωdi(ωdi − ωT∗i)δ(ω − ωdi)fi0
}

,

and the electron contribution similarly becomes

Pe →
πe2

Ti

{

|φ|2ωde(ωde − ωT∗e)δ(ω − ωde)fe0
}

. (19)

Both expressions can be understood as weighted averages of the quantity ωT∗aωda, which

needs to be positive, at least somewhere along the field line, in order for an instability

to exist.

More generally, whatever approximation is used when solving the gyrokinetic equa-

tion, if the right-hand side of Eq. (18) turns out to be negative as γ → 0+, there cannot

13



exist any marginal stability point and therefore no instability. This argument can be

made more precise [25] by considering the Nyquist plot of

R(ω) =
∑

a

∫

dl

B

(

nae
2
a|φ|2
Ta

− ea

∫

φ∗gaJ0d
3v

)

.

If

Im R(ω) = −
∑

a

Qa

is negative for all real ω, then the Nyquist contour cannot encircle the origin and there

cannot be an instability.

The utility of the variational principle derived in the previous section now becomes

evident. If, for a given magnetic geometry, the frequency predicted by the principle,

i.e., the solution ω to Eq. (16), has the opposite sign from the electron magnetic drift

frequency ωde, then there is no resonance in the denominator of the electron response

(8) and no resonant power transfer from the electrons to the instability according to

Eq. (19). The drift wave then propagates in the opposite direction from the electron

precession, and there is no possibility of a collisionless TEM instability. The variational

principle thus makes it possible to formulate geometry-dependent, sufficient criteria for

TEM stability.

6 Maximum-J configurations

To investigate the sign of ω∗aωda, we write the the magnetic drift frequency as

ωda =
v2

Ωa
(k⊥ × b) ·

(

1 − ξ2

2
∇ lnB + ξ2κ

)

,

where b = B/B, ξ = v‖/v, and

κ = b · ∇b = ∇⊥ lnB +
µ0p

′(ψ)

B2
∇ψ

denotes the curvature of the magnetic field. Decomposing this vector and the wave

vector as

κ = κψ∇ψ + κα∇α,

k⊥ = kψ∇ψ + kα∇α,

and recalling the defintion of ω∗a gives

ω∗aωda =
v2n′aTak

2
α

2manaΩ2
a

[

(1 + ξ2)

(

κψ − kψκα
kα

)

− µ0p
′(1 − ξ2)

2B

]

.

14



Specifically, for modes with kψ = 0, as is typical for interchanges, the product

ω∗aωda =
v2n′aTak

2
α

2manaΩ2
a

[

(1 + ξ2)κψ − µ0p
′(1 − ξ2)

2B

]

consists of two terms, where the first term is destabilising if κψ < 0, corresponding

to “bad” curvature, and the second term is stabilizing for the usual orientation of the

gradients, n′a < 0 and p′ < 0. By this token, the outboard side of a standard tokamak

has unfavourable curvature, but the pressure gradient provides a stabilizing influence

on electrostatic modes [26, 27].

We now turn to the bounce-averaged quantity ω∗aωda, which according to Eq. (19)

is the more relevant instability parameter for the electrons, or indeed any species with

large thermal speed, vTa ≫ ω/k‖. The bounce-average of the magnetic drift frequency

is

ωda = vda · (kα∇α+ kψ∇ψ),

where [4, 26]

vda · ∇ψ =
1

eaτba

∂J

∂α
,

vda · ∇α = − 1

eaτba

∂J

∂ψ
,

the bounce time is denoted by τba = τj/v, and

J(E, µ, ψ, α) =

∫

mv‖dl, (20)

is the parallel adiabatic invariant, with the integral taken between two consequtive

bounce points. We regard J as a function of the kinetic energy, E = mav
2/2 and mag-

netic moment µ = mav
2
⊥/2B, as well as the field-line labels ψ and α. Well-optimized

(omnigenous) stellarators have vanishing, or very small, bounce-averaged radial drift,

vda · ∇ψ = 0, implying that J is constant on flux surfaces, ∂J/∂α = 0. In such config-

urations, we conclude that

ω∗aωda = −k
2
αTa
e2aτba

d lnna
dψ

∂J

∂ψ
(21)

is a negative quantity if ∂J/∂ψ < 0 and dna/dψ < 0. Such fields are called maximum-

J configurations and were recognized already by Rosenbluth [2] to have favourable

stability properties (see also Ref. [4]).

Rosenbluth considered only axisymmetric systems, but for modern stellarator re-

search the maximum-J concept is of renewed importance because quasi-isodynamic
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[28, 29] stellarator designs tend to have this property, at least approximatively and

particularly at high plasma β. This is in contrast to tokamaks, where the particles

trapped on the outboard side of the torus generally have ∂J/∂ψ > 0.

Rosenbluth specifically considered isothermal plasmas with equal ion and electron

temperatures, zero gyroradius and ωda/ω ≪ 1. In this case, he could demonstrate

the absence of collisionless, electrostatic instabilities with low frequencies, ω ≪ k‖vT i,

so-called collisionless trapped-particle modes. From our analysis, we see that stability

prevails well beyond this simple limit [13]. If, for all species, ω ≪ k‖vTa and 0 < ηa <

2/3, then ωT∗aωda < 0 everywhere in velocity space in a maximum-J configuration, and

the right-hand side of Eq. (18) is negative for ω lying slightly above the real axis. All

species are then stabilizing, Pa > 0, so there can be no marginal stability point and no

instability, not only in Rosenbluth’s limit but also for arbitrary values of k⊥ρa, ωda/ω,

and finite temperature gradients up to ηa = 2/3 for all species.

At higher frequencies, ω/k‖ ∼ vT i ≪ vTe, no such absolute statements can be

made about stability, but it is possible to draw conclusions about the nature of any

instability that could arise. If we fix our signs so that the ion diamagnetic frequency

ω∗i is positive, then ωde will also be positive in a maximum-J device (assuming that

dni/dψ < 0, as always), and ω∗e will be negative. If the electron temperature gradient

is modest, 0 < ηe < 2/3, then only modes propagating in the ion diamagnetic direction,

ω > 0, are able to interact resonantly with the precessing electrons, and these will be

stabilizing according to Eq. (19), thus ruling out any instability that may reasonably

be called a TEM. Moreover, if in addition the ion temperature gradient is not too

large, 0 < ηi < 2/3, one can show that the real frequency must be positive [13], so

in this case there are absolutely no TEMs. Since these conclusions only rely on the

maximum-J condition and considerations of energy balance, they are independent of

all other geometrical properties of the magnetic field.

When the normalized temperature gradients exceed ηa = 2/3, it becomes more

difficult to make general stability predictions, but the variational principle derived

above makes it possible to draw conclusions that are more dependent on details of

the magnetic geometry. First, if the aspect ratio is large and the number of trapped

particles is small, then Eq. (9) predicts a frequency that is negative as long as ηi < 1.64,

see Fig. 1. Therefore, in this limit, there is no resonance with the precessing electrons
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(in a maximum-J device) and there should be no TEMs whatsoever, regardless of the

electron temperature gradient. In the more realistic case of an “order unity” fraction of

trapped particles, the real frequency is given by the variational form (15) if the electron

drift resonance is neglected in lowest order, and by Eq. (16) otherwise. In the former

case, one sees that ω/ω∗e is positive for small values of b = (k⊥ρi)
2 and negative for

large values of b, since the function

F (b, ηi) = Γ0(b) − ηib[Γ0(b) − Γ1(b)] (22)

decays (for some values of ηi non-monotonically) with increasing b as indicated by

Eqs. (10) and (11). Thus, the variational principle predicts that any drift-wave-type

instability will propagate in the electron diamagnetic direction if the perpendicular

wavelength is long and in the opposite direction if it is short. Only at short wavelengths

is a resonant interaction with trapped electrons possible, and these will be stabilizing

in a maximum-J device.

0 1 2 3 4
b

-0.2

0

0.2

0.4

0.6

0.8

1

F
Hb

,Η
iL

Figure 1: The function F (b, ηi) defined in Eq. (22) for various ηi. From above, the

curves correspond to ηi = 0, 1, 1.64 and 2.5.

Such magnetic configurations are thus remarkably stable to TEMs, and a simple

physical reason for this property was given in Ref. [14]. Consider any instability with

ω ≪ k‖vTe causing an electron to move the distance ∆ψ radially. Since J is an adiabatic

invariant, this movement must be accompanied by a change in energy, ∆E, satisfying

∆J =
∂J

∂ψ
∆ψ +

∂J

∂E
∆E = 0,
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The electron thus gains the energy

∆E = − ∂J/∂ψ

∂J/∂E
∆ψ,

at the expense of the instability in question. Since ∂J/∂E > 0, it follows that the

condition ∂J/∂ψ < 0 promotes stability if dn/dψ < 0. It also follows that stability is

not guaranteed for modes with frequencies high enough to be comparable to the electron

bounce frequency. Since ω ∼ ω∗e ∼ k⊥ρivT i/Ln, where Ln is the density length scale,

we thus require

k⊥ρi ≪ k‖Ln

√

mi

me

for the stability properties to hold. The parallel wave number for TEMs can be esti-

mated as k‖ ∼ N/R, where N is the number of periods and R the major radius, so we

need

k⊥ρi ≪ Nǫ

√

mi

me
,

where the right-hand side is about 30 in Wendelstein 7-X. As will be seen in Part II of

the present publication, the frequencies of the most unstable modes seen in gyrokinetic

simulations are indeed much below the electron bounce frequency.

All these analytical predictions are, strictly speaking, only valid in exactly omnige-

nous configurations. If the net radial drift does not vanish for some orbits, vda · ∇ψ 6= 0,

then the product ω∗aωda in Eq. (21) acquires an additional term,

ω∗aωda = −k
2
αTa
e2aτba

d lnna
dψ

(

∂J

∂ψ
− kψ
kα

∂J

∂α

)

.

This term is of indefinite sign and can always be made negative by choosing kψ appro-

priately. An instability with finite radial mode number, feeding off the density gradient

of radially drifting trapped particls, is thus in principle possible.

7 Conclusions

In summary, we conclude that collisionless trapped-particle instabilities can be very

different in tokamaks and stellarators. In both types of devices, they reside in regions

where trapped particles are present, and the instability drive is provided by “bad”

curvature. In tokamaks, the regions of trapping and bad curvature usually overlap, but

they need not do so in stellarators. The key instability parameter for the electrons,
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which is the product ω∗eωde, is positive on the outboard side of a typical tokamak,

signifying such an overlap. This implies that the trapped electrons precess in the same

direction as electron drift waves, and therefore have the potential of destabilizing them,

leading to collisionless TEMs. The opposite limit, where trapping is perfectly separated

from bad curvature, is realized in maximum-J configurations, where ω∗eωde is negative

for all orbits. This condition is rarely satisfied exactly, but as we shall see in Part II,

it can be true to a sufficiently good approximation in quasi-isodynamic stellarators,

making TEMs much more stable than in a typical tokamak.

In perfect maximum-J configurations, it can be proved rigorously that the colli-

sionless trapped-particle mode of Kadomtsev and Pogutse [1], which is characterized

by ω ≪ k‖vTa for all species, is stable for arbitrary wavelengths and density gradients

as long as the temperature gradients satisfy 0 < ηa < 2/3. Moreover, at higher fre-

quencies, ω ∼ k‖vT i, the electrons still exert a stabilizing influence if 0 < ηe < 2/3,

so there can be no unstable collisionless TEMs. There may be other instabilities than

TEMs present in the plasma, but they must be drawing energy from the ions rather

than the electrons. Furthermore, as we have seen from a variational principle for the

real mode frequency, the stability window for TEMs is, in several situations, even larger

than these results suggest. In particular, it appears that the destabilizing potential of

the electron temperature gradient is very limited.

Since much of the analytical theory presented here strictly only applies in the ideal-

ized limit of perfect maximum-J geometry, it is pertinent to ask how well the predictions

are borne out in practice, in real stellarators. This question can only be answered by

numerical simulations and is the topic of Part II.
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Appendix

Over the years, the stability criterion ∂J/∂ψ < 0 has surfaced in various guises in the

literature. In this Appendix, we establish the relation to a classic stability criterion

derived by Taylor, Rutherford and Frieman in the 1960’s. Taylor [30] considered flute

modes in mirror machines in the zero-gyroradius-limit, where he wrote the equilibrium

distribution function in (ψ, α, J, µ) space as F [µ, J,E(ψ, α, µ, J)], where E is the particle

energy, and estabilished that a sufficient criterion for stability against electrostatic

modes is
(

∂F

∂E

)

µ,J

< 0. (23)

Rutherford and Frieman derived a similar criterion for configurations where all field

lines close on themselves, again in the drift kinetic limit [31]. Since the phase-space

volume element (integrated over the gyroangle) is

d3rd3v =
4π

m2|v‖|
dEdµdψdαdl,

and
(

∂J

∂E

)

µ

=
∂

∂E

∫

√

2m(E − µB − eφ) dl =

∫

dl

v‖
,

the integral of F is
∫

FdµdJdψdα =
m2

4π

∫

F d3rd3v.

and it is clear that F is simply proportional to our distribution function f . Furthermore,

if we regard J as a function of (E, µ, ψ) in an omnigeneous field (where ∂J/∂α = 0)

and write F = F [E, µ, ψ(E, µ, J)], then

(

∂F

∂E

)

µ,J

=

(

∂F

∂E

)

µ,ψ

+

(

∂F

∂ψ

)

E,µ

(

∂ψ

∂E

)

µ,J

= −F
T

− ∂J/∂E

∂J/∂ψ

(

∂F

∂ψ

)

E,µ

.

if F is Maxwellian with temperature T . Since ∂J/ ∂E > 0, the criterion (23) is satisfied

if ∂J/∂ψ < 0 and
∂F

∂ψ
= F

[

d lnn

dψ
+

(

E

T
− 3

2

)

d lnT

dψ

]

< 0.

This is the case for all E if 0 < d lnT/d lnn < 2/3, as found in Sec. VI above.
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