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Abstract

In control-variate PIC simulations, as used to model microturbulence in the tokamak

core, a consequence of the splitting of the background and perturbed parts via f = f0 +δ f

is that analytical transport relations for the relevant fluxes and moments are only conserved

in the large marker number limit. However, the analytic transport equations allow the error

to be written explicitly in terms of the sampling of the background distribution. This imme-

diately allows estimates of the consistency of momentum transport in control-variate PIC

simulations. We then demonstrate numerically that global gyrokinetic simulations repro-

duce these transport equations as expected with sufficient accuracy to determine the slow

evolution of global scale profiles.

Introduction

PIC-based simulations of plasma are a well-established technique for simulating the micro-

turbulence which typically dominates transport in tokamaks. These simulations take advantage

of the conservation of the distribution function along the collisionless particle trajectories, and

sample the distribution function at a set of positions, so that the Vlasov advection problem is

translated into an equation of motion for a set of markers. To reduce the sampling errors in

PIC simulations, control variates are used, so that only the fluctuating components of the dis-

tribution function need to be evaluated with Monte-Carlo sampling, and in combination with

noise-control techniques, this is highly effective as a path to low-noise simulations.

Particle conservation and satisfaction of the integral form of the local particle transport equa-

tion is immediately guaranteed for conventional PIC simulations, but this is no longer the case

when control variates are used, and the particle weights are a function of time, as a result of

computing background quantities f0 analytically. However, we still have

0 =
∂

∂ t
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∂
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and with the decomposition f → f0+δ f , and a decomposition the trajectories into the perturbed

and unperturbed parts, R0 and R1 respectively, we find

∂

∂ t

∫
dZJδ f +

∂

∂R

∫
dZJ[δ f (Ṙ0 + Ṙ1)+ f0Ṙ1] =−

∂

∂ t

∫
dZJ f0−

∂

∂R

∫
dZJ f0Ṙ0, (2)

where f0 and δ f are evaluated using Monte-Carlo sums at the marker positions. The right hand

side is zero analytically when f0 is chosen to be a time-independent equilibrium of the unper-

turbed system, but is only guaranteed to converge to zero in a PIC simulation as the number of

markers→ ∞.

The second term on the RHS of eq. 2 is largely oscillatory, and the first term dominates.

To estimate the error in integrals of f0, let us consider markers which are initially uniformly

distributed, but are displaced randomly in radial position by a normally distributed amount with

RMS amplitude σ (velocities are unchanged). The markers are distributed on a periodic domain

r ∈ [−0.5,0.5], to sample a Maxwellian PDF f (r,v). If f (r,v) = f (v), the expected error in the

Fourier spectrum of the Monte-Carlo error is

< uk >
2= ∑(Ωi fi)

2
{

1− eσ2k2/4
}

(3)

where Ωi is the phase space volume associated with each marker. This expression tends to zero

for small σk and to the usual 1/N result for large marker displacements. When the marker

distribution is Gaussian, thus proportional to the particle distribution, this sum reduces to n2/N,

but will be larger by some constant factor for non-Maxwellian marker loadings.

Based on this caclulation, we can estimate the saturated late time error, once the markers are

fully mixed over the transport time; for weak flows of order of the drift velocities the error in

momentum transport is comparable to the total flow, so such simulations would be challenging.

For intermediate flows in a reactor-scale device, of a few percent of the Mach velocity, the

relative error will be small.

Electrostatic, collisional simulations with no source operators were performed with standard

CYCLONE parameters using the code NEMORB[1] to examine numerical convergence, and

check that the sampling error in f0 agreed with expectations: these matched well, and scaled

correctly.

Toroidal Momentum equation

A toroidal momentum equation for the numerical system, analogous to the the momentum

conservation relations in Ref. [2] beginning from their Equation 73 is
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This formulation is valid for the code NEMORB, where FLR terms[3] need to be carefully

included. We note that the approximation < ∇φ >→ ∇ < φ >, used originally in NEMORB

also needs to be relaxed to obtain accurate momentum conservation.

As with the density transport equation, terms can be split into contributions which are used to

diagnose momentum in the code, and those which are zero in the converged simulation limit, so

that the error in the numerical transport equation can be directly evaluated. Note that, unlike in

the density equation, there is an error term on the RHS of eq. 4 involving the radial integral of

the background distribution, leading to a non-local error in toroidal momentum transport. This

term arises because spurious density sources (which cannot be written as a divergence of a flux)

at a particular radial position lead to an outward electric field between this radius and the edge,

and an associated toroidal flow component.

Convergence of density and toroidal momentum diagnostics

For marker numbers of 2×108,1×109, and 1.6×1010 the relative RMS errors in the time-

and-space integrated momentum transport equation are 0.102,0.069 and 0.0083, and in the

gyrodensity transport errors are 1.1,0.52, and 0.10 respectively. 2D plots of the time-integrated

fluxes are shown in figure 1.

At t = 15a/cs, the Signal-to-Noise Ratio (SNR), as defined in reference [1, 4], is around

600 and 30 for the 16e9 simulation and 1e9 simulation respectively. Typically, we require a

SNR of at least 10 to ensure reasonable convergence of the heat flux and large-scale flows;

however the large scale flow pattern is well converged even for the simulation with the fewest

markers where the SNR criterion is marginal. Reduction in noise is of course visible in plots of

certain quantities, like potential on the poloidal cross section and shearing rates. Qualitatively,

the main difference is the GAM levels seen near the edge converge to close to zero as the marker

number is increased: this is in agreement with the expectation that localised unphysical density

perturbations can drive GAMs across the simulation domain. For the case with fewest markers,

unphysical GAMs are driven at roughly 10% of the maximum flow level in the turbulent region.
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Figure 1: (a) Time integral of gyrodensity flux, and (b) gyrodensity transport error, (time and

radial integral of transport equation), (c) Time integral of toroidal momentum flux and (d) mo-

mentum transport error, vs. radius and time, using 1.6×1010 Markers. ).
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