|IPP-Report

F. Merz, J. Geiger, M. Rampp

Optimization strategy for the VMEC stellarator equilibrium code

IPP R/48
October 2013

Optimization strategy for the VMEC stellarator
equilibrium code

F. Merz!, J. Geiger?, M. Rampp?

L IBM Germany
2 Max-Planck-Institut fiir Plasmaphysik,
EURATOM Association,
Boltzmannstr. 2, 85748 Garching, Germany
3 Rechenzentrum (RZG) der Max-Planck-Gesellschaft
und des Max-Planck-Institut fiir Plasmaphysik

October 2, 2013

Abstract

VMEC (Variational Moments Equilibrium Code) [1, 2] is
the main workhorse for computing three-dimensional MHD
equilibria in stellarator experiments such as Wendelstein 7-X
(W7-X). There is a great interest in the community for signifi-
cantly reducing the runtimes of individual VM EC simulations
which, for typical setups, can range up to hours of comput-
ing time on modern processors. In particular, the ability to
enter the regime of ”real-time” diagnostics during the op-
eration of the W7-X machine is considered highly desirable.
Here, we present the results from the assessment and pro-
totypical optimization of the computational performance of
VMEC and propose a strategy for adapting the serial code to
modern multicore-processor architectures. Starting off from
the most recent VMEC version 8.49 we shall demonstrate
that up to threefold speedups can be readily obtained for the
most time-consuming routines by simply eliminating legacy
program structures which presumably were dictated by the
prevalence of vector supercomputers back in the 1980’s when
VMEC was originally written. As a side effect, the code re-
gains readability which had to be sacrificed for achieving high
performance on traditional vector processors.

Once the structure has been updated, the code is amenable
to parallelization using threads (OpenMP) and message pass-

ing (MPI). With an OpenMP parallelization of the relevant
subroutines we achieve speedups by a factor of 10 on a mod-
ern Intel Xeon processor with eight cores, when comparing
with the original code executed on the same hardware and
using ”real-world” parameter sets. On top of these optimiza-
tions we shall outline a second level of restructuring which is
based on a transposed data layout for the three-dimensional
physical domain. This will open up the possibility to imple-
ment a hybrid MPI/OpenMP parallelization which allows to
distribute a VMEC run across multiple nodes of a compute
cluster and thus to gain another order of magnitude in com-
putational performance.

Although conceptually straightforward, the implementa-
tion of these concepts throughout the entire VMEC code will
clearly be a tedious and time-consuming task and requires
careful planning, code management and thorough validation
strategies.

1 Introduction

The development of the Variational Moments Equilibrium Code VMEC |1,
2] goes back to the early 1980’s. The code employs the MHD energy principle
and utilizes a variational method to derive the equilibrium equations in
a conservative form. These equations are solved using a steepest descent
algorithm based on the assumption of toroidally nested flux surfaces. Thus,
the code does not treat islands or stochastic field regions in the magnetic
configuration. The necessary physics input for the code consists of two
profiles to be provided as functions of the flux surface label, i.e. the pressure
profile and either the profile of the toroidal current or that of the rotational
transform. Additionally, a boundary surface must be supplied which VMEC
takes as last flux surface of the computational domain as well as a value for
the total toroidal flux enclosed by the boundary. The code can run in ”fixed-
boundary” mode which means that the geometry of the boundary does not
change during the iteration steps. The other possibility is to also allow the
boundary to adjust to an externally given magnetic field. This so-called free-
boundary mode needs the additional specification of the external magnetic
field.

During the past 30 years a lot of work was invested into the code for
improving performance and robustness and to broaden its applicability with
respect to 3D-MHD equilibrium problems. In particular due to its robust-
ness and reliability VMEC has become rather popular for stellarator appli-
cations. It has also been a centerpiece of the stellarator optimization efforts
which started in the 1980’s. Earlier efforts to optimize the computational
performance, however, were targeted at computer architectures of the pre-
multicore era, i.e. vector computers of the traditional kind [3, 4]. Today,
VMEC is used at virtually all stellarator experiments around the world, al-
though new 3D-MHD equilibrium codes have also been developed, mainly
to avoid the assumption of nested flux surfaces and to be able to treat is-
lands and stochastic regions in the magnetic field configuration [5, 6, 7, 8].
However, these codes are computationally very demanding, and hence their
ability to supply large numbers of equilibrium solutions as required for eval-
uating many experiments is limited.

To date, VMEC has been employed as a post-processing tool to eval-
uate MHD equilibria for experiments. Runtime was not a major issue as
parameter studies, i.e. the computation of sets of equilibria with different
input parameters, could exploit available computing resources simply by
distributing many individual (and mutually independent) VMEC runs to
different processors. Such ”embarrasingly parallel” computations, however,

are no longer relevant if quasi-steady conditions in the operation of stellara-
tors apply and equilibrium calculations need to be performed during long
discharges — for the Wendelstein 7-X (W7-X) machine the aim is 30 min-
utes. In such an application scenario, the runtime of an individual VMEC
simulation needs to be significantly reduced. Currently, typical runtimes for
computing W7-X equilibria with the serial VMEC code range from 30 min-
utes to a few hours, depending on the parameter settings and the employed
hardware.

This report provides an assessment of the computational performance
of the VMEC code and presents results from a number of prototypical op-
timizations. Specifically, we shall report on our efforts to optimize VMEC
with respect to its serial ("single-core”) performance, demonstrate the po-
tential for parallelization on contemporary multicore processors and outline
a strategy for distributed parallelization. So far the assessment and op-
timization is confined to the current implementation of the code (VMEC
8.49), focussing on the most time consuming subroutines and using relevant
test setups that are used in production for W7-X analysis at IPP. Possible
algorithmic optimizations are beyond the scope of this study but should cer-
tainly not be disregarded as an option for further speeding up the VMEC
code.

2 Assessment and optimization of computational
performance

2.1 Preliminaries

VMEC in its present version has been implemented with an apparent fo-
cus on achieving maximum performance on traditional vector computers.
The data is stored in three dimensional arrays corresponding to (s, m,n) or
(s,0,() coordinates, where s is the flux surface label and (m,n) and (6, ()
are the two periodic dimensions (poloidal, toroidal) on a given flux surface in
Fourier space and direct space representations, respectively [9]. VMEC is a
Fortran code, which means that the first index of an array is the ’fastest vary-
ing’ index, i.e. it labels contiguous memory locations. In most subroutines,
the three-dimensional arrays (3Dy), corresponding to the three-dimensional
physical domain are mapped (”serialized”) to one-dimensional arrays (1Dy,)
and these arrays are manipulated (added, multiplied, ...) as a whole!. This

1The subscripts p and n distinguish between the original, ”physical” dimension of an
array and its dimension used in the "numerical” implementation, respectively.

increases the so-called vector length which was crucial for achieving good
performance on traditional vector processors, but — as we shall show below
— turns out to be detrimental for the performance on modern, cache-based,
multicore processors.

In a first step we will demonstrate that already by abandoning the seri-
alization of the 3D}, arrays and introducing loops over the new dimensions,
appreciable performance improvements can be achieved. In a second step
we will assess the parallelizability of the VMEC code. We note that the
code employs a steepest-descent algorithm for computing the equilibrium
solution of the given boundary value problem. Numerically, this leads to
a "pseudo-time” evolution similar to solving an initial-value problem. As a
consequence, parallelization in the code is performed within a single iteration
step.

2.2 Test cases and hardware platform

To evaluate the performance and the potential for optimization, we use two
different test setups which are representative for applications at W7-X.

Case 1 represents the currently used standard grid resolution for free-
boundary calculations for W7-X, namely, ns = 99, nu = 30, nv = 36, mpol =
12, ntor = 12. Here, ns is the number of flux surfaces, nu and nv are the
numbers of poloidal and toroidal grid points for the direct-space represen-
tation and mpol and ntor are the parameters for the Fourier representa-
tion. To be specific, the range of Fourier modes for this parameter set is
m=20,...,mpol —1 and n = —ntor,...,ntor.

Case 2 utilizes the parameter set of a fixed boundary calculation in
which the main emphasis is on a high resolution in the angle variables. The
parameters used are ns = 99, nu = 60, nv = 60, mpol = 20, ntor = 20. Note
that the speed of convergence, i.e. the number of iterations needed to reach
the same convergence in terms of the force tolerance levels, decreases with
increasing resolution due to timestep restrictions.

The measurements were performed on a compute server with two eight-
core Intel ”Sandy Bridge” sockets (Xeon E5-2670 CPU with a frequency of
2.6 GHz and 20 MBytes of L3 cache). The configuration of this server is
very typical for compute nodes of state-of-the-art HPC clusters with x86
architecture such as the HPC system "Hydra” operated by RZG.

2.3 Optimization of prototypical routines

The VMEC internal timings showed, that the major fraction of the com-
puting time is spent in four routines: TOTZSP and TOMNSP, which implement
Fourier transforms, and the BCOVAR and FORCES routines (see Table 1).

Case 1 Case 2
Code section T [s] % T [s] %
VACUUM LOOP 142.75 33.9 - -
TOTZSP 84.57 20.1 | 727.17 35.8
TOMNSP 78.78 18.7 | 662.61 32,6
FORCES 33.13 79| 18345 9.0
BCOVAR 45.30 10.8 | 233.86 11.5
RESIDUE 7.98 2.0 30.11 1.5
(REMAINDER) IN FUNCT3D | 25.19 6.0 | 180.91 8.9
TOTAL TIME 420.64 100 | 2031.11 100

Table 1: Exclusive timings as reported by the VMEC code and relative
contribution of the individual code parts to the total runtime for the two
representative test cases, Case 1 (free-boundary calculation with standard
resolution), and Case 2 (fixed-boundary calculation with high angular res-
olution).

Since the Fourier transform routines together with the routines BCOVAR and
FORCES take a large fraction of the total runtime (about 60% for case 1
and almost 90% for case 2), we focus our analysis on those four routines.
Moreover, the routines BCOVAR and FORCES are structurally very similar, so
that working on one of the two routines (namely BCOVAR) is sufficient to
assess the potential for optimization and parallelization. Because it is not
relevant for all cases, we have not optimized the VACUUM routine at this stage.

In the following, we will focus on the more highly resolved case 2, per-
forming 100 iterations with full resolution. The results are in principle trans-
ferrable to test case 1.

2.3.1 Fourier transforms

The TOTZSP and TOMNSP routines implement the two directions of the trans-
formation between direct and Fourier-space representations in the angular
coordinates of the various fields used in VMEC. Since the direct-space rep-
resentation maintains the split between even and odd modes (i.e. the back-

transform from Fourier space is not complete), standard discrete Fourier
transform (DFT) libraries can not be used. Instead, the transforms are im-
plemented via convolutions with precomputed arrays.

The Fourier transforms are global operations in the two angular coodinates,
but are completely decoupled in the different flux surfaces (the s coordinate).
In the current data layout (with s being the first index) we found very lim-
ited potential for OpenMP parallelization. To exploit the parallelism in s
and to improve the cache locality of the convolutions, we introduced trans-
poses of all arrays on entry and exit of the TOTZSP and TOMNSP routines and
computed the actual transforms on the arrays (m,n,s) and (6, ¢, s).

After a complete restructuring of the routine, it was possible to rewrite
the convolutions in the two angular directions using the highly efficient
matrix-matrix multiplies (DGEMM) of the BLAS (Basic Linear Algebra
Subroutines) library. We used the BLAS implementation of the Intel MKL
library, which is highly tuned for the Sandy Bridge processor of the test
system.

The speedup due to the rewrite was significant, even for the serial case. In
addition, OpenMP parallization was trivial to implement in the new data
layout. The convolutions are computationally intensive and the data locality
in the new layout is optimal, which leads to a very good parallel efficiency,
as can be seen in Fig. 1.

The transposes that are used to map between the original data layout

10 10
old

new: transform old

new: transpose - -~ - . new: transform
—_ . hew:total e @ new: transpose - -* -
L, ml ideal scaling o Lo new: total - ---
§ 2 ideal scaling
21} » §1 ..

1 # threads 10 1 # threads 10

Figure 1: Runtime of the old and new implementions of the Fourier trans-
form routines for test case 2.

used in VMEC and the new data layout used for the Fourier transforms
add a significant overhead and reduce scalability. As can be seen in the
plots (Fig. 1), the contribution of the transposes exceeds the computing
time of the actual Fourier transform for high thread counts. Without the

transposes, the speedup compared to the old implementation for 1, 8, 16
OpenMP threads is 4.2x, 27.4x, 47.8x for TOTZSP and 3.0x, 20.3x, 35.8x for
TOMNSP, respectively. When the transposes to and from the old data layout
are included, the speedups for 16 threads are still as large as 22.6x and 15x
for TOTZSP and TOMNSP, respectively.

Since the Fourier transforms are decoupled in the flux surface label s,
this dimension could also be used very efficiently for a future MPI paral-
lelization of the TOTZSP and TOMNSP routines via domain decomposition. A
domain decomposition in the angular dimensions is expected to be much
less favourable — the global nature of the Fourier transforms would require
a lot of data transfer, thus strongly reducing the parallel efficiency.

2.3.2 Subroutine BCOVAR

The subroutine BCOVAR computes the 3D, metric coefficients and other quan-
tities. The dominant operation is element-wise multiply or add like e.g.

A(:)=B(:)*C(:)+D(:).

There are more than 30 of these 3D, arrays used in BCOVAR, and most of
them are first used to store intermediate results of other computations before
they are finally updated with their actual output values.

For the test case described above, the number of elements in the s dimen-
sion is ng = 99, the combined angular coordinates have n¢g = n¢*ny = 1860
elements. With double precision numbers (8 byte), this amounts to 792 bytes
for a 1D, (1 : n,) array, 14.5 KB for a 2D, array describing one flux surface,
i.e. with range (1 :n¢), and 1.4 MB for a full 3D, array.

The large number of 3D, arrays used in BCOVAR can not be held in cache
at the same time, so that the current implementation leads to a lot of cache
misses. Even when arrays are reused in consecutive lines of code,

AC:)=B(:)*C(:)+D(:)
B(:)=B(:)*E(:)+A(:)

only the L3 cache can be used, because the arrays are multiplied as a whole
and are bigger than the L2 cache. Introducing blocking

do n=1,nblocks
1b=(n-1)*blocksize+1
ub=n%*blocksize
A(1b:ub)=B(1b:ub)*C(1lb:ub)+D(1lb:ub)
B(1b:ub)=B(1b:ub)*E(1b:ub)+A(1b:ub)

end do

with appropriate block size helps to improve performance significantly, be-
cause the blocks now fit into cache and can efficiently be reused during the
loop iteration. Blocking occurs naturally when the flux surface label s is
reintroduced:

do n=1,nznt
A(C:,n)=B(:,n)*C(:,n)+D(:,n)
B(:,n)=B(:,n)*E(:,n)+A(:,n)

end do

In this form, the operations can still be vectorized in the first index to ex-
ploit the SIMD units of the CPU, and this structure can also be exploited for
OpenMP parallelization. The introduction of blocking and a restructuring
of BCOVAR and the related subroutines resulted in a speedup of 2.1x on a
single core and 10.4x on 8 cores (see Fig. 2).

A future restructuring of BCOVAR into smaller, independent sections, each

L~
_

> old
AN new: bcovar
) ideal scaling - -= -

0.1

threads 10

Figure 2: Runtime of the old and new implemention of the BCOVAR routine
for test case 2, without the serial I/O part.

operating on a smaller data set, would probably improve performance (and
parallel efficiency) further.

MPI parallelization of the BCOVAR routine would be possible for both the
flux surface label and the angular coordinates. A domain decomposition in
s (cf. Sect. 2.3.1) would require the introduction of one ghost cell at the
left and right s boundary and corresponding updates via nearest-neighbour
communication. The data to transfer is non-contiguous in the current data

layout, but would consist of a single contiguous block in the transposed data
layout described in the previous section. A domain decomposition in the an-
gular coordinates would introduce some reduction operations with collective
communication (MPI_Allreduce, see next section), but would nevertheless
also be feasible for BCOVAR.

Because of the similarity to BCOVAR, we expect that the measures de-
scribed above will lead to a similar speedup for the FORCES subroutine.
2.3.3 Computing sums over flux surfaces

An operation that occurs in several places across the code are sums over
flux surfaces. The following example is taken from the fbal routine:

DO js = 2, ns
buco(js) = SUM(bsubu(js:nrzt:ns)*wint(js:nrzt:ns))
bvco(js) = SUM(bsubv(js:nrzt:ns)*wint(js:nrzt:ns))
END DO

Reintroducing the flux surface label, this corresponds to

DO js = 2, ns

buco(js) = SUM(bsubu(js,:)*wint(js,:))
bvco(js) = SUM(bsubv(js,:)*wint(js,:))
END DO

The 3D, arrays bsubu, bsubv and wint are too big to fit into L2 cache, so
the data has to be fetched from L3. The strides length is n¢y. For each js,
data scattered over the whole array has to be fetched.

Using the same data layout, this operation can be written as

buco=0.
bvco=0.
DO 1 =1, nznt
buco(2:ns) = buco(2:ns) + bsubu(2:ns,l)*wint(2:ns,1)
bvco(2:ns) = bvco(2:ns) + bsubv(2:ns,1l)*wint(2:ns,1)
END DO

which improves the access pattern for the arrays significantly. The 1D, ar-
rays buco and bvco are very small and remain in L1 cache, the big 3D,
arrays are accessed with stride 1 in a continuous stream from start to end.
This improves the single core performance by a factor of 5. OpenMP par-
allelization in this (ng,n¢p)-layout requires a reduction at the end, which

10

reduces scalability.

A future MPI parallelization of the s direction would not lead to any com-
plications. A parallelization of the angular coordinates, by contrast, would
require an MPI_Allreduce operation with negative effects on performance
and scalability.

In a transposed data layout, the same operation can be implemented in a
very natural and efficient way, without the need for any parallel reduction
operations:

DO js = 2, ns
buco(js) = SUM(bsubu(:,js)*wint(:,js))
bvco(js) = SUM(bsubv(:,js)*wint(:,js))
END DO

2.3.4 Treatment of radial boundary conditions

Boundary conditions apply at the innermost and outermost flux-surface la-
bel. In the current data layout (s, (,6), these points are spread across the
entire array. In a transposed layout (¢, 0, s), by contrast, the inner and outer
boundaries are just indexed as (:,:, 1) and (:,:, ns), respectively, i.e. they are
represented as small contiguous subarrays that even fit into L1 cache and
thus can be handled very efficiently. A transposed data layout would speed
up the special treatment of boundary conditions in routines like BCOVAR, but
would probably also lead to big speedups for the VACUUM routine, which is
used to compute the outermost flux surface (s = ns) in free-bondary cal-
culations. So far, only a few OpenMP statements have been added to this
routine, while the general structure has been left untouched.

2.4 Overall speedup

The aim of this work was to assess the potential for optimization and par-
allelization in the VMEC code. In order to get to a fully optimized, paral-
lelized, and validated version, a considerable amount of work still remains to
be done (cf. Sect. 3). Nevertheless, the improvements for the total runtime
are quite significant already, as can be seen from the following measure-
ments created with our optimized version on 8 cores. In particular, the
measurements shown in Tabble 2 demonstrate that our optimized and par-
allelized VMEC variant could already run faster by an order of magnitude
on a single multicore processor. Rather than just continuing by extending
our optimization strategies to the remaining subroutines (which is concep-

11

tually straightforward) we propose to launch a coordinated effort together
with the VMEC development team (see below).

Case 1 Case 2
Code section Tg [s] S| Ts[s] S
VACUUM LOOP 84.83 1.68 - -
TOTZSP 1211 6.98 | 60.32 12.06
TOMNSP 11.23 7.02 | 60.55 10.94
FORCES 34.27 097 | 18288 1.00
BCOVAR 4.49 10.09 | 21.89 10.68
RESIDUE 793 1.01 | 29.10 1.03
(REMAINDER) IN FUNCT3D | 31.95 0.79 | 179.31 1.01
TOTAL TIME 189.69 2.21 | 547.07 3.71

Table 2: Internal timings (7g) as reported by the VMEC code after proto-
typical optimization and relative speedup (S = T'/Tg) with respect to the
original code, using the two representative test cases, Case 1 (free-boundary
calculation with standard resolution), and Case 2 (fixed-boundary calcula-
tion with high angular resolution). Runtimes, Ty and 1" (see Tab. 1) were
obtained with the new implementation on 8 cores of an Intel Xeon E5-2670
CPU, and with the original VMEC code on a single core of the same pro-
cessor, respectively. Note that Tg includes all overhead introduced by the
transformations from and to the original data layout of VMEC. In a trans-
posed data layout, the speedup for the Fourier transforms would be larger
by a factor of two (cf. Fig. 1).

The corresponding source code with our modifications to VMEC 8.49 is
available in a subversion repository with IPP-internal access and is ready
for use in production applications.

3 Summary and Conclusions

We have presented an assessment of the computational performance of the
VMEC code (version 8.49) using "real-world” setups which are relevant for
computing 3D-MHD equilibria at the Wendelstein 7-X (W7-X) experiment
and have demonstrated a considerable potential for optimization on (clusters
of) multicore CPUs. Speedups by one to two orders of magnitude are in
reach, but the code requires significant restructuring.

Focussing on the three most time-consuming routines, namely BCOVAR,
and the Fourier-transforms TOMNSPS, TOTZSPS, we have straightened out

12

legacy data structures and have adapted the coding style, which — besides
improving performance — significantly improves the readability of the code.
In particular, we had to revert the ”serialization” of three-dimensional ar-
rays and heavy, temporary reuse of the resulting one-dimensional ” vectors”,
the introduction of which presumably was motivated by the paradigms of
the era of vector computers in the 1980’s, when VMEC was originally writ-
ten. These measures already lead to performance improvements by a factor
of two to three, when comparing with the original code executed on a single
core of the same processor (Intel Xeon E5-2670 with 8 cores). Adding an
OpenMP parallelization layer to the three routines we achieve total speedups
on the order of 10 which, for typical setups, translates to a twofold to four-
fold overall speedup of the entire VMEC code. Production applications at
W7-X could already take advantage of these improvements. The restruc-
turing we have outlined above needs to be applied to the entire code, in
particular to the remaining ”hot spots” (VACUUM, FORCES) which are similar
to BCOVAR. The parallel efficiency and thus overall speedup can be further
improved by using a data layout which is transposed with respect to the
current implementation. Moreover, such a transposed data layout is a pre-
requisite for taking the next optimization step towards a distributed MPI
parallelization. Depending on the setup this will allow to utilize on the order
of a hundred of processor cores with high parallel efficiency, thus enabling
VMEC runs with significantly shorter computation times (up to two orders
of magnitude are in reach) or with correspondingly larger resolution.

Due to the appreciable efforts which we expect for implementing the
proposed changes throughout the entire code and for their validation a co-
ordinated effort with the VMEC developers appears highly desirable. By
contrast, the Fourier-transformation routines (TOMNSPS, TOTZSPS) are rela-
tively encapsulated and the functionality is expected to remain static. Thus,
these parts could be immediately integrated into the VMEC code base to
allow the user community taking immediate advantage of the acceleration
we have already achieved.

In conclusion we provide a concise list of specific recommendations which
are thought to serve as a basis for initiating and planning a comprehensive
optimization effort on the VMEC code, ideally conceived as a close collab-
oration between IPP (with application support by RZG), and the VMEC
development team.

1. In order for VMEC to take advantage of the capabilities of modern
multicore processors the code needs significant restructuring. With

13

the current structure (VMEC version 8.49) no major performance im-
provements can be expected from the forthcoming technology devel-
opments.

2. With the proposed restructuring and parallelization, typical VMEC
simulations could run faster by a factor of ten on a single multi-core
processor, and eventually up to two orders of magnitude using about
100 processor cores.

3. The restructuring should be done in close collaboration with the main
developers of VMEC (S. Hirshman and coworkers) in order not to
”fork off” a variant of VMEC which will be tedious and error-prone
to keep in sync with regular functionality upgrades from the main
development line.

4. A scientist either from IPP or from the VMEC development team
who is familiar with the relevant numerics of the code and also the
underlying physics should coordinate the project and actively engage
in the restructuring and optimization effort.

5. A comprehensive test suite for automated and reliable code validation
should be established in collaboration with the VMEC developers.

6. We recommend to implement the transposed data layout throughout
the entire code immediately, rather than deferring this change to a
subsequent optimization step. First, it is no less intrusive to the im-
plementation than the straightening of the code which we consider as
a prerequisite for all optimization efforts. Second, it helps to improve
the efficiency of the OpenMP parallelization. Third, it is indispensable
for achieving speedups beyond a factor of 10 by distributed paralleliza-
tion.

References

[1] S. P. Hirshman and J. C. Whitson. Steepest-descent moment method for
three-dimensional magnetohydrodynamic equilibria. Physics of Fluids,
26(12):3553-3568, 1983.

[2] S.P. Hirshman, W.I. van Rij, and P. Merkel. —Three-dimensional
free boundary calculations using a spectral green’s function method.
Computer Physics Communications, 43(1):143 — 155, 1986.

14

3]

[6]

[9]

L. F. Romero, E. M. Ortigosa, E. L. Zapata, L. Romero, E. M. Ortigosa,
E. L. Zapata, and J. A. Jimenez. Parallelization strategies for the VMEC
program. Lecture Notes in Computer Science, 1150:123-456, 1998.

L. F. Romero, E. M. Ortigosa, and E. L. Zapata. Data-task parallelism
for the VMEC program. Parallel Computing, 27(10):1347-1364, 2001.

A. H. Reiman and H. Greenside. Calculation of three-dimensional mhd
equilibria with islands and stochastic regions. Comp. Phys. Comm.,
43(1):157-167, Dec 1986.

Yasuhiro Suzuki, Noriyoshi Nakajima, Kiyomasa Watanabe, Yuji Naka-
mura, and Takaya Hayashi. Development and application of hint2 to
helical system plasmas. Nucl. Fusion, 46:1.19-1.24, November 2006.

S. P. Hirshman, R. Sanchez, and C. R. Cook. Siesta: A scalable iter-
ative equilibrium solver for toroidal applications. Physics of Plasmas,
18(6):062504, 2011.

S. R. Hudson, R. L. Dewar, G. Dennis, M. J. Hole, M. McGann, G. von
Nessi, and S. Lazerson. Computation of multi-region relaxed magneto-
hydrodynamic equilibria. Physics of Plasmas, 19(11):112502, 2012.

PPPL, http://vmecwiki.pppl.wikispaces.net/ VMEC. VMEC Wiki.

15

	IPP R_48.pdf
	IPP-report_VMEC

