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Abstract

Zonal flows, widely accepted to be the secondary instability process leading to the nonlinear

saturation of ion temperafture gradient modes, are shown to grow at higher rates relative to

the linear mode amplitude as the plasma pressure β is increased—thus confirming that zonal

flows become increasingly important in the turbulent dynamics at higher β. At the next level of

nonlinear excitation, radial corrugations of the distribution function (zonal flow, zonal density, and

zonal temperature) are demonstrated to modify linear growth rates moderately through perturbed-

field, self-consistent gradients: on smaller scales, growth rates are reduced below the linear rate.

In particular, excitation of kinetic ballooning modes well below their usual threshold is not to be

expected under normal conditions. These findings strengthen the theory of the non-zonal transition

[M.J. Pueschel et al., Phys. Rev. Lett. 110, 155005 (2013)].
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I. INTRODUCTION

Magnetic confinement fusion devices require large pressures if practical and scientific

goals like high reaction rates or continuous operation (via a large bootstrap fraction) are to

be achieved. Associated with large values of the (normalized) plasma pressure are magnetic

fluctuations, which are excited self-consistently by linear instabilities and the correspond-

ing turbulence. It is thus intuitive that thorough theoretical understanding of the physics

connected with magnetic fluctuations be a focus of attention.

In the context of gyrokinetic simulations, the normalized electron plasma pressure β and

related effects have been the subject of various avenues of study in recent years: codes

agree on electromagnetic transport values [1–5], nonlinear stabilization of ion-temperature-

gradient-driven (ITG) turbulence has been found to be related to an enhancement [6] of the

usual nonlinear upshift of the critical gradient [7], and advances have been made regard-

ing microtearing turbulence [8, 9] as well as nonlinearly excited subdominant microtearing

(SMT) [10, 11]. In addition to radially local gyrokinetic simulations – on which the afore-

mentioned studies are based – strides have been made in operating gyrokinetic codes with

global profiles electromagnetically [12–16]. There are, however, still many unanswered ques-

tions that can be addressed within the local limit, two of which the present paper focuses

on.

Firstly, zonal flow physics [17] (where the term zonal flow refers to the electrostatic

potential at both toroidal and poloidal mode number zero), which have been studied in great

detail electrostatically [1, 18–23], can see important modifications in their behavior at finite

values of β [24–26]. Physically, Maxwell and Reynolds stress are competing, and the shearing

rate is diminished as β is increased. To understand the zonal flow dynamics quantitatively,

however, both their drive and their depletion mechanisms have to be considered. The latter,

in the form of nonlinear mode interaction [27–29] or the action of magnetic perturbations

on the residual flow [5, 30, 31], is counteracted by the former: the energy transfer from

the linear mode to the zonal mode via sidebands—a process often referred to as secondary

instability, as zonal flows saturate the linear mode at the onset of turbulence. The growth

rate of the secondary instability gives valuable insights into the zonal flow picture, and its

dependence on β is one of the primary subjects of this paper.

Once the zonal mode has reached a sufficiently large amplitude, its components – the
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ky = 0 mode of the density n, the ion (electron) temperature Ti(e), or the electrostatic

potential Φ – can in turn excite new or influence existing linear modes. Here, ky is the

binormal wavenumber, normalized to the inverse ion sound gyroradius ρ−1
s . This latter

process becomes possible since the zonal mode aligns with the background (equilibrium)

quantities, thus effectively modifying the density gradient ωn → ωn+ω̃n or the ion (electron)

temperature gradient ωT i(e) → ωT i(e) + ω̃T i(e), and introducing E×B shear flow layers. The

convention used throughout this paper is to use the term tertiary instability for linear growth

based on profiles altered by the perturbations of the distribution function as measured in fully

turbulent simulations. Another term – technically more accurate but rather cumbersome –

for this process would be tertiary modification of linear instability.

Considering the potential impact of both tertiary and secondary instability on the physics

of the non-zonal transition (NZT) [5, 30], particular focus is put on the behavior near the

NZT threshold βNZT
crit . First described in Ref. [30], the NZT can cause the heat fluxes in

ITG turbulence to grow to extremely large values as a consequence of the depleting action

of magnetic fluctuations on zonal flows. In that reference, it was mentioned that secondary

and tertiary instability effects were found not to contribute to the transition, a statement

that was based on the studies detailed in the present paper.

While all relevant information on this subject can be found in Refs. [5, 30], a brief

overview of the NZT physics is given here for convenience. At sufficiently large amplitudes

of the magnetic fluctuation level – and, by extension, at sufficiently large β – field lines start

to decorrelate from the magnetic potential, bringing about a sudden increase in field line

diffusivity. As radial diffusive electron motion depletes zonal flows at a rate proportional

to β, the latter are unable, above a certain threshold, to balance the linear ITG drive and

saturate the turbulence. Therefore, after some transient saturation, the linear mode starts

to grow again, ultimately reaching very large heat fluxes (if the driving gradients are held

constant, as is the case in radially local simulations). Note that this potentially catastrophic

effect of β on the zonal flow is not in contradiction with nonlinear (or linear) β stabilization

as described in Refs. [3, 6].

In the following, a brief overview of the numerical tools and parameter settings used in

this work is given. Then, after a brief interlude to illustrate that mere linear physics does

not provide any explanation for the NZT, secondary instability and the physics of zonal flow

drive are discussed in Sec. III. Tertiary effects are detailed in Sec. IV, where previous work
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is reproduced and extended to reflect the turbulent situation at the NZT threshold more

accurately. Last, the results are summarized.

II. NUMERICAL FRAMEWORK

In gyrokinetic theory [32], the time scale of particle gyration about magnetic field lines is

ordered out, retaining all relevant physics of low-frequency, low-collisionality plasmas. This

mathematical transformation reduces the Vlasov and Maxwell equations by one dimension

through elimination of the quickly oscillating gyrophase, in the process significantly improv-

ing computational efficiency.

For the numerical evaluation of the gyrokinetic equations, theGene code [33, 34] was used

in its flux tube mode of operation. Results obtained from Gene have been shown to agree

well with those from other gyrokinetic codes [35–38]; in particular, for the parameters used

here, the turbulent transport levels – and, by extension, the quantitative description of effects

such as secondary and tertiary instability – agree well with data from other codes. See Ref. [5]

for a nonlinear code-code comparison at finite-β Cyclone Base Case (CBC) [7] parameters,

on which the present work is based. These parameters are: safety factor q0 = 1.4, magnetic

shear ŝ = 0.79, inverse aspect ratio ǫt = 0.18 of the flux surface under investigation, density

gradient ωn = 2.2, and temperature gradient ωT = 6.9 (for both ions and electrons), with

both gradients defined as the major radius R0 divided by the respective gradient scale length.

Both ions and electrons (at hydrogen mass ratio) have equal background temperatures. Note

that finite-β and electromagnetic can be used interchangeably, as β directly regulates the

magnetic fluctuation strength.

Numerical convergence was ensured; for the secondary instability investigation, resolu-

tions were used as described in Ref. [5] unless mentioned differently in Sec. III, whereas the

(linear) runs performed to ascertain tertiary effects required resolutions identical to those

for linear simulations in Ref. [3]. It should be pointed out, however, that the conclusions, in

particular those regarding the NZT, are valid even at somewhat reduced resolutions.

In Sec. IV, code-code comparisons were performed with a slightly modified version of the

ŝ-α equilibrium model [39], whereas all other studies employed the usual Gene implemen-
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tation. More specifically, the latter involves curvature-related expressions of the form

K(x|y) ∝
1

B0

(

∂(y|x)B0 +
gx(x|y)gyz − gy(x|y)gxz

gxxgyy − gyxgxy
∂zB0

)

, (1)

in the Vlasov equation, whereas in the other version, the factor 1/B0 ∝ 1 − ǫt cos z ∼ 1 is

dropped (there exists no single standard regarding the treatment of O(ǫt) terms)—it is to

be stressed in this context that the role of the ŝ-α equilibrium has historically been that of

a convenient benchmark point rather than the most accurate numerical implementation of

a particular physical magnetic geometry. In the above expressions, B0 is the background

magnetic field magnitude (which varies along z, the coordinate parallel to the background

field), x and y denote the radial and binormal coordinate, respectively, and g is the metric.

The modified version – which corresponds to the one described in Ref. [21] – yields small

quantitative changes and improves code-code agreement, but all physics-related conclusions

can be expected to be valid in either framework.

The reader’s attention is now focused on the description of physical results from a study

of the secondary instability situation at finite β.

III. SECONDARY INSTABILITY ANALYSIS

The excitation of zonal flows by the linear ITG mode is a well-known process though

which the linear mode can saturate (see Ref. [17] and references therein). It is intuitive to

ask what impact β has on this secondary instability mechanism; however, to reiterate, the

zonal flow drive alone does not adequately describe the zonal flow dynamics, which are also

influenced by other processes.

After a brief summary on why linear effects are ruled out in explaining the NZT, the

standard setup for zonal flow studies is extended to include multi-kx modes and sidebands,

which – while more complex to interpret quantitatively, mirrors the NZT-relevant scenario

more closely.

In the context of the NZT, linear simulations just below and above β ∼ βNZT
crit yield very

smoothly and continuously varying growth rates, frequencies, and linear mode structures.

This holds true for both the unstable modes (of ITG and trapped-electron-mode (TEM) type

for CBC parameters), as well as the stable mode spectrum. Fig. 1 shows the mode spectrum

(6144 linear modes were treated in this analysis). Neither does the complex frequency of
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FIG. 1. (Color online) Linear mode spectrum at ky = 0.2 for β = 0.7% (upper) and 0.9% (lower).

While the most unstable (ITG) mode is marked by a black cross, the other colors logarithmically

indicate the magnitude of the ion electrostatic heat flux contribution of a given mode to the

turbulence (see the text). No significant qualitative changes with respect to linear eigenvalues or

relative nonlinear excitation are observed as βNZT
crit is crossed.

the stable modes change much near βNZT
crit (the only clearly visible difference appears to be

the somewhat shifted dominant ITG mode), nor are there important qualitative differences

with respect to the relative nonlinear excitation of modes and the resulting heat fluxes—in

the figure, log |Qes
i | is plotted, with the colors covering the range of linear eigenmodes 2

to 6144 (some modes lie outside the plot window). Here, Qes
i is the ion electrostatic heat

flux associated with a given linear eigenmode; it is obtained by projecting the nonlinear

fluctuations onto a subset of orthogonalized linear eigenmodes (a similar analysis, along

with more details on the nonlinear excitation of linear modes, can be found in Ref. [40]).

For β = 0.9%, these fluxes were measured not during the initial transient saturation stage
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but at very large heat fluxes, explaining the difference in the absolute values. The most

unstable mode in either plot, in both cases of ITG type, is marked by a black cross; the

logarithmic amplitudes of these modes are 1.31 (for β = 0.7%) and 1.79 (for β = 0.9%).

More details on the energetics near βNZT
crit can be found in Ref. [5].

As the linear physics do not exhibit any discontinuities or other modifications in their

behavior near βNZT
crit , the focus is shifted to whether the zonal flow drive (which is facilitated

through the Vlasov nonlinearity) experiences any sudden changes at this point.

Many studies exist [41–45] that focus on the growth of secondary instabilities (in the case

of ITG as the primary mode: zonal flows) as the saturation mechanism for a particular type

of turbulence. Typically, a linear ITG mode streamer (kx = 0 and ky 6= 0) is held constant in

time, while the zonal flow (at ky = 0) grows exponentially through three-wave coupling with

a sideband. More specifically, the associated growth rate γZF depends on the amplitude of

the frozen streamer, and one can define zonal flow growth (with the zonal flow electrostatic

potential ΦZF) via the relation

ΦZF(t) = ΦZF(t0)e
γZF(t−t0) ≡ ΦZF(t0)e

γ̂ZFΦITG(t−t0) , (2)

where t0 is the point in time when the linear ITG mode is frozen and the nonlinearity

is turned on. γ̂ZF is independent of the linear mode’s amplitude ΦITG (at kx = 0). In

the present paper, time units of R0/cs are used for normalization, and Φ is normalized to

Teρs/(eR0), with the ion sound speed cs, the electron background temperature Te, and the

elementary charge e.

The standard procedure for numerical studies – i.e., confining the linear mode to kx =

0 – is insufficient for the present purpose: while perfectly suitable to scenarios without

background magnetic shear (and thus no parallel coupling to higher kx), for the present, more

complex case, this restriction alters (or rather, under-resolves) the linear physics to an extent

where NZT-relevant effects may be pushed into the linear TEM regime which appears at β

values only slightly above the NZT threshold. Consequently, a somewhat different approach

is indicated, where the linear mode includes a number of radially connected modes in order

to resolve the linear physics more accurately. To this end, simulations are performed with a

total of 17 complex modes in kx, centered around kx = 0, at ky = 0.3 which corresponds to

the strongest linear growth. |kx,min| is chosen to be 0.74, whereas the first kx mode connected
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FIG. 2. Zonal flow growth as a function of β; here, the growth rate is renormalized in order to

be independent of the linear mode amplitude (at kx,y = (0, 0.3)). As β is increased, γ̂ZF grows

continuously, in line with the observation in Refs. [3, 6] that due to zonal flow activity, nonlinear

transport is stabilized more efficiently by finite-β suppression than is the linear growth rate (not

shown here). In addition, no deterioration of zonal flow excitation is observed at β = 0.9% just

above the NZT threshold.

to kx = 0 through the parallel boundary condition,

a(i, j,+π) = (−1)jNa(i+ jN , j,−π) (3)

(here, a is some quantity like a potential or distribution function, i and j are the kx and ky

mode numbers, and N is an integer multiplier determining the size of the radial box), is kx =

1.48—like ky, the radial wavenumber is normalized to ρ−1
s . In other words, only every second

radial mode is part of the extended structure of the linear ITG mode. With this setup, one

effectively models two extended modes, the linear mode and a sideband, each of which consist

of multiple connected kx. In addition to the aforementioned advantage of this approach, the

zonal-flow-related energetics now also mirror those of the fully turbulent system more closely

both in terms of their physical nature and nonlinear simulation properties. Note, however,

that like the standard approach, this concept constitutes a simplified model which clearly

does not contain all mode couplings present in the full turbulence.

Now, after the ITG mode has converged in a linear simulation, not only kx = 0 is frozen,

but so are all modes parallelly connected to it (at ky = 0.3); while all modes at ky = 0 as

well as the modes not connected to kx = 0 at ky = 0.3 are left free to evolve in time. As this

pertains to the distribution function, Φ and the magnetic potential Aparallel (for finite β)
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are both treated in this fashion.

The resulting zonal flow growth rates are shown in Fig. 2 as a function of β—note that

ΦITG = |Φ(kx = 0, ky = 0.3)| is the linear streamer amplitude; alternatively, one could use

the kx-averaged Φ of the linear mode, but both methods result in qualitatively equivalent

γ̂ZF curves. The points in this plot were obtained by fitting linear slopes to the logarithmic

zonal flow data at kx = kx,min; similar results are obtained for higher kx (among those values

not connected to kx = 0 for the linear mode). From the figure, it is straightforward to see

that no sudden changes occur near βNZT
crit , and that as this value is approached, the zonal

flows actually grow more strongly, contrary to what one would expect if modifications to

the zonal flow growth rate were responsible for the NZT. Note, however, that the absolute

values shown in Fig. 2, along with the definition in Eq. (2), do not allow for a straightforward

direct comparison with a linear growth rate, and are only meant to illustrate the relative

change of the secondary growth rate with β.

The behavior of the zonal flows in Fig. 2 is consistent with the findings of Refs. [3, 6],

where zonal flows are found to increase in strength relative to the linear γ as β is increased.

More specifically, in these papers, the shearing rate ωs = 〈k2
xΦfs〉 – a standard measure of

the zonal flow strength – is shown to vary continuously and rather slowly near βNZT
crit . Here,

the index fs denotes a flux surface average, and 〈. . .〉 symbolizes averaging over the spatial

simulation domain. Moreover, it is possible that the enhanced Dimits shift observed at

higher β in Ref. [6], as well as the improved ion energy confinement reported in Ref. [46],

may, at least in part, be related to this γ̂ZF effect—a more detailed investigation will be

necessary to elucidate the exact causes.

Instead using the standard approach of describing a linear mode and its sideband at one

kx each will result in γ̂ZF decreasing with β (and linear mode regimes shifting with respect to

the fully resolved case), in part since the parallel mode structure changes shape as β is varied

(see Fig. 3 for a measure of how finite-kx contributions become more important with larger

β), an effect not properly resolved with this method. However, even there, no significant

change (qualitative or quantitative) of γ̂ZF is observed as the NZT threshold is crossed. The

qualitatively different behavior observed in this simple approach can, at least partially, be

explained as follows. A relative increase of γ̂ZF with β – as found in Fig. 2 – is consistent

with the fact that zonal flows grow faster at higher kx: As the extended ballooning structure

of the ITG mode broadens with β, its amplitude slowly and continuously moves to higher
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FIG. 3. Plotted here is the kx-weighted integrated linear mode structure as function of β. Here,

Φnorm
lin indicates the linear mode centered about kx = 0 with all its radial connections. This

function is normalized such that its total, unweighted ballooning structure integrates to 1. It is

then weighted by the radial wavenumber (a measure for the sideband growth) and integrated over

kx and z, corresponding to an integral over the ballooning angle. The resulting value increases with

β, indicating that mode structure broadening is at least partially responsible for the shortcomings

of the simple model which considers a linear mode only at kx = 0.

kx, in the process shifting sideband activity and coupling to the zonal modes to higher kx.

Therefore, the effective growth rate of the coupled zonal system is enhanced.

It can thus be concluded that changes in the drive of the zonal flows, which is not to be

confused with the impact of the zonal flows on the turbulence, are of minimal consequence

in the context of the NZT. With these findings in mind, the attention is now shifted to the

next level of nonlinear excitation, tertiary instability.

IV. TERTIARY INSTABILITY AND PROFILE CORRUGATIONS

It has been demonstrated that zonal-type modes at ky = 0 can, in turn, excite finite-ky

modes [42], a process also referred to as tertiary instability. The tertiary modes found here

indeed bear similarities with those in Ref. [42] while also exhibiting important differences;

among the latter are different responses to changes in the phase between pressure and

electrostatic potential corrugations, as well as different assumptions with regard to the

strength of the flow shear. A study of the precise relation of these modes will have to be
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undertaken as a separate effort, however.

In this section, previous results are first reproduced before demonstrating that the con-

clusions drawn from them are no longer applicable to the NZT threshold once more relevant

input data and more encompassing analysis techniques are used. Specifically, the amplitude

of profile corrugations, their radial scale, the impact of the zonal flow, and effects from the

full distribution corrugations are brought into the picture consecutively.

In the context of high-β simulations and the NZT, it has been proposed that KBMs

may thus be destabilized nonlinearly [47] at a subcritical β = κβKBM
crit , where κ may be

significantly smaller than one; specifically, to explain the NZT threshold, one would require

κ ≈ 2/3 for CBC parameters. Such scenarios rely on so-called profile corrugations [48],

where local radial gradients in the self-consistent, turbulent perturbations of the density n

and the temperature T can be thought of as enhancements of the corresponding background

gradients ωn and ωT . Conversely, a local gradient of the electrostatic potential Φ implies a

modification of the E×B shear and can thus exert a stabilizing influence. A quantitative

analysis will have to include the correct values of the self-consistent gradients in all these

quantities (at the correct length scales), as will be demonstrated below. Note that while

the background density n0 and temperature T0 are much larger than the perturbations, the

radial gradients can be of similar order, keeping in mind that (n, T ) ∼ (n0, T0)ρs/R0 (here,

j indicates particle species):

ω̃nj = −
R0

n0

∂nj

∂x
∼ ωn , (4)

ω̃Tj = −
R0

Tj0

∂Tj

∂x
∼ ωTj . (5)

These values are measured in the turbulent phase of a nonlinear simulation (averaging over

the parallel coordinate and over time), and then the external gradients ωext
n and ωext

T , as well

as the external Φext, are turned on at those measured values for linear simulations. The

former two are applied at a single wavenumber kext
x |p, the latter on kext

x |Φ, which, in general,

will be set to a different value. It is important to note that Φext is assumed to be sufficiently

weak with respect to the unperturbed equilibrium so as not to exert any influence on the

background Maxwellian F0.

To ensure that compatible approaches are used, some of the results of Ref. [47] are

reproduced here. Fig. 4 shows linear growth rates both from Gene andGyro simulations in

ŝ-α geometry, where the latter were taken from the aforementioned paper—good agreement
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FIG. 4. (Color online) Linear growth rates as a function of β in the absence (Gene: black solid

lines; Gyro: red dashed lines) and presence (Gene: blue dotted lines; Gyro: pink dash-dotted

lines) of profile corrugations. The upper plot shows data for ky = 0.15, the lower for ky = 0.3.

Gyro data points were taken from Ref. [47] (and Ref. [21] for ky = 0.3 without corrugations). The

profile-enhanced curves show good code-code agreement, with only small differences in the TEM

regimes (which occur only when no corrugations are included) at β >
∼ 0.5%; this has no significant

impact on βKBM
crit , however.

is observed between both codes. This is important in particular as the Gene runs shown

here use only a single kext
x |p, whereas Ref. [47] utilized a more flexible approach that allows

for some deformation of the sine wave profiles. Clearly, the effect of these deformations is

small. It needs to be stressed, however, that the simulations in this figure do not include

corrugations of Φ, and that their gradient enhancements are significantly exaggerated with

respect to those typically observed in nonlinear simulations. Regardless of these objections,

Ref. [47] and Fig. 4 demonstrate that in principle – i.e., if certain criteria are met – it may
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FIG. 5. Upper plot: ion electrostatic heat flux for the parameters used to obtain the corrugations

in Ref. [47]. There are at least two transient saturation regimes, one at Qes
i ∼ 103 and one at

Qes
i ∼ 104, the latter well inside the NZT. Both phases exhibit different properties in terms of their

corrugation amplitudes and kextx |p: in the lower plot, the ion density corrugations are shown for

the first (blue dotted line) and second regime (pink dash-dotted line). The former is much more

similar to the corrugations at slightly lower β = 0.2% (black solid line). The background gradient

is shown as a dashed red line for comparison.

be possible to excite modes subcritically, in particular KBMs. Whether this scenario is

applicable to any present-day or future fusion experiments is still an unanswered question,

but the following analyses suggest that it may be difficult to observe subcritical excitation

in realistic cases.

Ref. [47] shows measured radial corrugations of ω̃n,T
<
∼ 0.8ωn,T (or X <

∼ 1.8 in their

notation) for their standard case at β = 0.3%. Reproducing these values quantitatively

requires the following approach: As β lies just above βNZT
crit , to obtain agreement, corrugations
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had to be measured in the transient saturated phase around t ∼ 30, see Fig. 5 (upper plot).

This, however, represents a second transient saturated phase—the first one can be found

around t ∼ 15. Note that only the fluxes during the first phase are consistent with those

at slightly lower β, meaning the second phase is already part of the NZT process. If profile

corrugations and subcritical mode excitation are to be investigated in the context of the

NZT, it is more appropriate to measure corrugations either in the first phase at t ∼ 15 –

as hypothetical NZT-causing, subcritical KBMs would have to be excited there in order for

the heat fluxes to ever reach the second, high-flux phase at t ∼ 30 – or in simulations just

below βNZT
crit , which will have much better statistics. As illustrated in Fig. 5 (lower plot),

both methods lead to both significantly lower ω̃n,T – with ω̃n,T
<
∼ 0.3ωn,T at β = 0.2% –

and a kext
x |p of twice that used to produce the curves shown in Fig. 4. The impact of these

differences will become apparent in the study presented below.

The above results pertain to the GA-std parameter case; for other parameters, the picture

is not complicated by multiple transient saturation regimes: Turning again to the CBC

and the relevance of profile corrugations to the NZT for these parameters, time-averaged

corrugation data from a nonlinear simulation at β = 0.7% is shown in Fig. 6. Note that the

temperature corrugations were obtained through T = (T‖+2T⊥)/2. These plots demonstrate

that the observed corrugations in n and T have mostly kext
x |p = 0.74 (corresponding to

radial mode number n = 12), with some component at n = 4, or kext
x |p = 0.25; whereas Φ

dominantly lives on the n = 1 mode, corresponding to kext
x |Φ = 0.062. Not shown is the

significant temporal variation which may pose another difficulty for tertiary modes which

thus see their corrugation drive changing continuously, and which will be commented on in

more detail below.

A tertiary instability analysis based on these values can be found in Fig. 7. Simulations,

regardless of kext
x |p and ky, retain seven kx connections on each side of kx = 0, and use Nv‖ =

96; both choices were made to resolve the linear physical properties fully—the nonlinear

case (which, in particular, has fewer radial connections at higher ky) can be expected to

behave very similarly, however. The plots demonstrate that for large ωext
n,T (and no Φext),

subcritical destabilization of KBMs is indeed possible for CBC parameters (the original βKBM
crit

lies near 1.3% for both ky shown here [3]). However, the enhancement used for that curve

was ωext
n,T = 1.5ωn,T , the same relative enhancement as in Fig. 4, with kext

x |p = 0.25. With

the measured, lower values ωext
n = 0.5 and ωext

n = 3 (which can be inferred as good estimates
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FIG. 6. (Color online) Radial profile corrugations for CBC parameters, measured at β = 0.7% and

averaged over the saturated phase of the simulation. The quantities shown are the self-consistent

density gradient ω̃ne and temperature gradient ω̃T e of the electrons (similar properties are found for

the ions, at slightly lower values), as well as the electrostatic potential Φ. The former two exhibit

spatial oscillations mostly on two scales, Lx/12 and Lx/4, whereas Φ varies on a scale of Lx due

to zonal flow activity. Dashed red lines indicate the values of the relevant background gradients.
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FIG. 7. (Color online) Growth rates in the presence of profile corrugations for CBC parameters at

two different ky. Black crosses mark the original γ without corrugations, red squares correspond

to artificially large ωext
n = 3.33 and ωext

T = 10.34, resulting in significant destabilization. The effect

is far less pronounced for realistic values (blue triangles), compare Fig. 6. Further reduction of

the enhancement is observed when adding Φext = 30 (pink diamonds). Subcritical KBMs are seen

only for artificially large corrugations.

from Fig. 6), the growth rate enhancement is significantly reduced, and no subcritical KBMs

is visible. Adding Φext at kext
x |Φ = 0.062 further reduces γ. Lastly, Φ corrugations were

neglected again, but since the peaks in Fig. 6 have widths consistent with kext
x |p = 0.74,

simulations were performed with that value and the same realistic ωext
n,T as mentioned above.

The results are not shown in the plot for the simple reason that they almost perfectly

coincide with the data points obtained without any corrugations: the radial regions of

enhanced gradients are too small for tertiary effects to appear.

To ascertain the role of the phases of the corrugations, simulations were performed with

the phase angle φ varied between φ = (0, π/2, π, 3π/2). Here, φ(n) and φ(T ) were always
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set to an identical value. Both the absolute phase and, in cases with Φext, the relative phase

of φ(Φ) had very little impact on the resulting growth rates.

Another feature of these simulations is that, not surprisingly, the ITG and TEM regimes

are also affected by the corrugations. While for realistic corrugation amplitudes, these effects

are relatively small, such modifications may be interesting to take into account for quasilinear

models (see, e.g., Refs. [49, 50])—note, however, that for the most relevant kext
x |p = 0.74, no

enhancement is seen at any β. With regard to the corrugations present in the simulation

of Fig. 5, it can be conjectured that the different kext
x |p in the second transient saturation

phase (relative to the first) may help boost the ITG mode at that point, consistent with the

picture described in Ref. [47], even when this process does not bring about the NZT in the

first place.

Next, it is shown that taking into account effects due to fast temporal variation of the

corrugations are unlikely to change this picture.

The time averages used in this section typically stretch over windows much longer than

a correlation time. In general, it is possible that for periods (much) shorter than the whole

average time, bursts of corrugation amplitudes occur, with subcritical excitation of KBMs

during these events.

Thus, it is necessary to take a closer look at time-resolved corrugations, which are plotted

in Fig. 8. ω̃T i(x, t) exhibits two important features: First, while the time-averaged value is

generally representative of the resolved behavior, there are isolated spikes up to ω̃T i
<
∼ ωT i,

lasting typically a few time units. Second, the characteristic radial structure with of Lx/12

that was observed in the time-averaged plot is very prominent also in the resolved one. The

density and electron temperature corrugations behave similarly (not shown in the figure);

albeit with some extremely short but strong bursts, during which a new mode would not

have enough time to grow much. Φ(x, t), however, shows markedly different features: it

is far less bursty, and instead moves back and forth through the radial box—this means

that the time-averaged value underestimates the instantaneous corrugation by more than a

factor of two. As mentioned above, the varying phase of Φ(x, t) is not expected to have any

bearing on the tertiary growth rates for the present case.

Based on these findings, one could conjecture that subcritical KBMs are excited during

one of the ω̃T i bursts; while it is doubtful that the mode would be able to reach system-

relevant amplitudes during that short phase, another tertiary instability analysis was carried
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FIG. 8. (Color online) Self-consistent ion temperature gradient (upper) and Φ corrugations (lower)

as functions of radial coordinate and time, at β = 0.7%. For the former, clear vertical structures

of width Lx/12 can been seen, with only short bursts (in particular the red regions). The latter

meanders back and forth but is otherwise relatively homogeneous in its structure.

out, this time with values near the peaks of the bursts, with ωext
T i,e = 6, ωext

n = 2, and

Φext = 70, at the proper radial length scales. The results are not surprising, see Fig. 9: due

to the narrow space available to the pressure corrugations, not much enhancement occurs,

and instead, the larger Φ corrugations stabilize the linear mode measurably. Note that the

variability in the tertiary growth rates is a result of extensive beating of competing linear

modes. Even when Φ corrugations are neglected (blue diamonds in the plot), the tertiary

growth rates do not deviate very significantly from the linear ones, and again the subcritical

KBM fails to surface.

Time-resolved analysis of the corrugations therefore is not yielding results supportive of

subcritical excitation. Next, full distribution data from nonlinear simulations is used for the
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FIG. 9. (Color online) Tertiary growth rates at ky = 0.15 with corrugations mimicking enhanced

conditions during turbulent bursts (red squares), see the text, as a function of β. Black crosses

denote the linear rates for comparison, whereas blue diamonds correspond to the same setup as

the red squares, only without Φ corrugations. The larger Φext easily overcomes any destabilizing

effect of the pressure corrugations. In fact, the tertiary points have the ITG mode stabilized so

strongly that throughout the entire β range shown here it is either subdominant or has γ values

comparable with the TEM (which appears to be less affected by Φext).

corrugations, rather than modeled corrugations in only Φ and the pressure.

Maximal realism of the analysis is retained when using corrugation data of the (per-

turbed) distribution function directly and studying its impact on tertiary instability. The

distribution was time-averaged during the saturated phase of a separate nonlinear simula-

tion at β = 0.7% (i.e., just below βNZT
crit ), with the corresponding n, T , and Φ corrugations

being very similar to those in Fig. 6 quantitatively. Growth was then measured the same

way as in the previous studies, but with the resolutions of the nonlinear simulation (except

only one finite ky value was included per run), implying both that higher ky retain fewer

radial connections and that sidebands are included which are not connected to kx = 0.

The results of this study are shown in Fig. 10: at small ky, the tertiary behavior closely

follows that of the linear ITG mode, before the tertiary curve falls below the linear one just

above ky = 0.15—coincidentally, the nonlinear heat flux peaks at that ky. The frequencies

seem not to be affected by this stabilization; however, with the latter appearing to be more

pronounced for the ITG mode than for the TEM, a regime change occurs where the TEM

becomes the dominant tertiary instability. This, however, happens at scales where the heat
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FIG. 10. (Color online) Tertiary growth rates (upper graph) and frequencies (lower graph) as

functions of ky, obtained with realistic corrugations from the distribution function (dashed red

curves). Crosses indicate dominant ITG growth, squares TEM. For comparison, the linear growth

rates and frequencies are plotted as black diamonds, with ITG being the dominant instability

throughout the ky range shown here. For large scales (small ky), little modification is observed

tertiarily, whereas larger scales exhibit some stabilization.

flux has already dropped to relatively small values (not shown).

Before turning to the conclusions, one more argument is presented which is based on

the lack of KBM frequency signatures during the NZT: Another indication that subcritical

excitation cannot be responsible for the NZT threshold can be found in the nonlinear fre-

quencies: both during the runaway phase and during the (likely unphysical, but numerically

relevant) second saturated phase at extreme heat flux levels, the frequency signatures match

the linear ITG frequencies very well [30]. In contrast, the frequencies of the tertiary KBMs

– which are very similar to those of the linear KBMs [3] – are much larger than typical

ITG values and would be easily discernible. Note that the nonlinear frequencies reported
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FIG. 11. (Color online) Logarithmic power as function of mode frequency. Black solid curve:

electrostatic turbulence (CBC parameters). Red solid curve: turbulence in the high-flux saturated

regime at β = 0.9%. Neither data has significant contributions near the linear KBM frequency

(blue dotted line).

in Ref. [3] for β ≥ 0.8% (which apply to the transient saturation phase), while not exactly

matching the linear ITG values, are still much lower than KBM frequencies—as opposed to

linearly dominant KBMs which have strong signatures in KBM-driven turbulence [3, 6].

To further strengthen this point, the frequency analysis algorithm PMUSIC [51] was

used on CBC data in order to obtain better access to subdominant frequencies. For this

technique, the (z-averaged) electrostatic potential at a given ky was analyzed according to

the following prescription: A data matrix is constructed whose upper half contains the input

data divided into overlapping windows—the lower half contains the transpose and complex

conjugate of the same data. Using singular value decomposition on the data matrix, one then

selects the less prominent singular values and designates them as noise components. Finally,

one essentially takes the inverse of the filtered noise eigenvectors—whenever the noise level

becomes small compared to the signal at some given frequency, this quantity becomes very

large. In Ref. [52], all necessary details are readily summarized, and the reader is therefore

referred to that publication (note that in the present paper, no time-dependent frequency

signatures are investigated, however).

For the CBC, the resulting frequency spectrum is found in Fig. 11, in this case for

ky = 0.1. The nonlinear frequencies are compared for the saturated regime of a simulation

in the electrostatic limit (β = 0.01%, black curve) as a baseline and of one that has undergone
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an NZT (at β = 0.9%), meaning the frequencies are analyzed during the high-flux saturated

phase (red curve). Clearly, the spectra in either case peak far away from the values one

would expect if KBM activity played a significant role, and neither are any subdominant

contributions visible near the KBM frequency. Note that the latter, marked with a blue

dotted line, is defined as the frequency of the linear KBM just after it becomes the dominant

mode at this particular ky. These findings underscore the absence of KBM-like features in

the simulations that have experienced an NZT.

Below, the findings of this paper are summarized.

V. SUMMARY

Zonal flows were studied with respect to their growth as a secondary instability excited

by the primary ITG mode—the renormalized growth rate γ̂ZF was shown to have increased

roughly three-fold at β ∼ 1% relative to the electrostatic limit. Unlike in previous zonal

flow simulations, the linear mode, the sideband, and the zonal flow were each resolved

by multiple, connected kx, leading to shifting kx contributions when β was changed—this

approach is more representative of the situation in nonlinear simulations. While not sufficient

by themselves to explain the full zonal flow dynamics of ITG turbulence, these findings

corroborate the theory that zonal flows play a larger role in the saturation for higher β. In

addition, their drive was found not to exhibit any qualitative changes – and, in fact, grew

stronger – as β crossed the NZT threshold; supporting the statements in Refs. [5, 30] that it

is zonal flow decay rather than a change in zonal flow drive that brings about this transition.

Regarding tertiary instability, here defined to mean the impact of zonal mode corrugations

on linear growth, multiple stages of realism were distinguished. At very large turbulent

pressure gradient fluctuations ω̃nj and ω̃Tj on a scale of 1/(ŝky,min), the system is able

to enhance linear growth significantly and even excite KBMs subcritically. When using

realistic values and scales for the corrugations, these effects vanish, however; and at higher

ky, moderate stabilization is observed. It is thus concluded that tertiary instability – and, in

particular, subcritical excitation – does not affect the NZT threshold (this result is expected

to hold universally, whereas the other findings of this paper, such as the enhanced zonal flow

growth at higher β, may apply only to certain parameter regimes). This differs from the

conclusions in Ref. [47] in large part because their measurement of the profile corrugations
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was taken at a point during the simulations when the NZT had already elevated the turbulent

amplitudes significantly—leading to the subcritical excitation of KBMs in Ref. [47] which

are also shown in Fig. 4. Therefore, while subcritical KBMs may, under certain conditions,

play a role in further boosting heat fluxes at later times, they are unable to bring about the

NZT in the first place.
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B. Brañas, M. Hirsch, H.J. Hartfuss, and B.A. Carreras, Phys. Rev. Lett. 84, 4842 (2000)

[20] J. Li and Y. Kishimoto, Phys. Rev. Lett. 89, 115002 (2002)

[21] J. Candy and R.E. Waltz, J. Comp. Phys. 186, 545 (2003)

[22] F. Jenko, Phys. Lett. A 351, 417 (2006)

[23] T.-H. Watanabe and H. Sugama, Nucl. Fusion 46, 24 (2006)

[24] E. Kim, T.S. Hahm, and P.H. Diamond, Phys. Plasmas 8, 3576 (2001)

[25] B.D. Scott, New J. Phys. 7, 92 (2005)

[26] V. Naulin, A. Kendl, O.E. Garcia, A.H. Nielsen, and J. Juul Rasmussen, Phys. Plasmas 12,

052515 (2005)

[27] K.D. Makwana, P.W. Terry, J.-H. Kim, and D.R. Hatch, Phys. Plasmas 18, 012302 (2011)

[28] M. Nakata, T.-H. Watanabe, and H. Sugama, Phys. Plasmas 19, 022303 (2012)

[29] K.D. Makwana, P.W. Terry, and J.-H. Kim, Phys. Plasmas 19, 062310 (2012)

[30] M.J. Pueschel, P.W. Terry, F. Jenko, D.R. Hatch, W.M. Nevins, T. Görler, and D. Told,

Phys. Rev. Lett. 110, 155005 (2013)

[31] P.W. Terry, M.J. Pueschel, D. Carmody, and W.M. Nevins, in preparation (2013)

[32] A.J. Brizard and T.S. Hahm, Rev. Mod. Phys. 79, 421 (2007)

24



[33] F. Jenko, W. Dorland, M. Kotschenreuther, and B.N. Rogers, Phys. Plasmas 7, 1904 (2000)

[34] see http://gene.rzg.mpg.de for code details and access

[35] W.M. Nevins, J. Candy, S. Cowley, T. Dannert, A. Dimits, W. Dorland, C. Estrada-Mila,

G.W. Hammett, F. Jenko, M.J. Pueschel, and D.E. Shumaker, Phys. Plasmas 13, 122306

(2006)

[36] G.L. Falchetto, B.D. Scott, P. Angelino, A. Bottino, T. Dannert, V. Grandgirard, S. Jan-

hunen, F. Jenko, S. Jolliet, A. Kendl, B.F. McMillan, V. Naulin, A.H. Nielsen, M. Ottaviani,

A.G. Peeters, M.J. Pueschel, D. Reiser, T.T. Ribeiro, and M. Romanelli, Plasma Phys. Con-

trol. Fusion 50, 124015 (2008)

[37] X. Lapillonne, B.F. McMillan, T. Görler, S. Brunner, T. Dannert, F. Jenko, F. Merz, and

L. Villard, Phys. Plasmas 17, 112321 (2010)

[38] M.J. Pueschel, F. Jenko, D. Told, and J. Büchner, Phys. Plasmas 18, 112102 (2011)
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