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Abstract

The dynamics of filaments or blobs in the scape-off layer of magnetic fusion devices are studied

by magnitude estimates of a comprehensive drift-interchange-Alfvén fluid model. The standard

blob models are reproduced in the cold ion case. Even though usually neglected, in the scrape-off

layer the ion temperature can exceed the electron temperature by an order of magnitude. The ion

pressure effects the dynamics of filaments amongst others by adding up to the interchange drive

and the polarisation current. It is shown, how both effects modify the scaling laws for filament

velocity in dependence of its size. Simplifications for experimental relevant limit regimes are given.

These are the sheath dissipation, collisional and electromagnetic regime.
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INTRODUCTION

One of the critical issues of magnetically confined fusion devices is the exhaust of par-

ticles and heat without seriously damaging the vessel walls of the device. The transport

in the region of open field lines beyond the confined region, called scape-off layer (SOL),

is dominated by filamentary structures, which are elongated along the magnetic field lines

and localized in the drift plane perpendicular to them. This localization gave them the

name blobs. Blob motion has been and is extensively studied in fusion devices, but the

comparison with theoretical models is constrained by limited diagnostic accessibility. That

gave basic low-temperature experiments the possibility to accomplish theory comparisons

in more detail, where the satisfying results seem to imply a robust almost understood the-

oretical description of the plasma blob dynamics. However, most of the blob theories and

simulations invoke cold ion models. While Ti ≪ Te is realistic for most basic plasma physics

experiments [1–8], it is not realistic for the tokamak scrape-off layer (SOL), where Ti > Te

is typical [9]. While theory and experiments of plasma blobs in the cold ion case seem to

converge [10], the SOL physics in the warm ion case is not yet understood and investigations

are still rare [11–13]. The ion temperature enters the physics in several ways: First, ion pres-

sure adds to the electron pressure of the interchange drive, which is responsible for charge

separation, propagation and therefore for the transport capabilities of the blobs. Second, ion

temperature effects the Bohm sheath condition and third it leads to polarisation currents

and thus adds to the vorticity. Further effects cannot be excluded.

Here, scaling laws for the filament or blob velocity in dependence of its size in the presence

of warm ions for the limit cases of the inertial, sheath dissipative, collisional and electromag-

netic regime are derived. The scaling between blob velocity vb and size δb is one of the most

experimentally studied dependences of plasma blobs or filaments and therefore of interest

for experimental investigations in fusion experiments. From the blob velocity further infor-

mation can be obtained. As a first approximation the blob velocity also gives the effective

growth rate ωb ≈ vb/δb and the scape-off layer width L⊥ ≈ vbτ [14], with blob dissipation

time scale τ , which is for example τ = L‖/2cs for sheath connected plasmas with connection

length L‖.
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STANDARD BLOB MODELS

The standard blob model provides a simple radial transport mechanism. Starting with a

monopole (single peaked) density perturbation with a peak value higher than 2.5 times the

surrounding rms level, the magnetic curvature induces a charge polarization. Two E × B

flow vortices with different signs are created poloidally above and below the blob. The blob

has an associated potential and vorticity dipole structure. The charge separation creates a

poloidal electric field, and the resulting E × B drift moves the density in the direction of

lower magnetic field strength or to larger major radius R.

The most prominent blob scaling based on the pioneer work of Krasheninnikov addresses

its radial propagation given by [10, 15, 16]

vb = 2cs

(
ρs
δb

)2 L‖

R
, (1)

where cs is the sound speed, L‖ the parallel connection length, ρs =
√
Temi/eB with electron

temperature Te, ion mass mi, magnetic field strength B and elementary charge e. In this

model the radial blob velocity scales inversely with the square of the size of the blob δb.

The application of this model to the radial propagation of ELM induced filaments has been

developed by Fundamenski [17]. The Krasheninnikov model is derived in the following way

from the polarisation equation [18]

∇ · d

dt

(

enρ2s
e

Te

∇⊥φ

)

+
2c2smi

RB

∂n

∂y
=

2ne2cs(φ− φfl)

L‖Te

, (2)

where φ is the plasma potential. The first term is the vorticity evolution, the second term is

the so-called interchange forcing responsible for the charge separation and the term on the

right hand side results from the sheath, where the floating potential φfl ≈ 3Te/e is assumed

to be constant. As a stationary situation the parallel dynamics, i.e. the parallel current

(right hand side of Eq. (2)) is balanced with the interchange forcing (second term on the

left hand side of Eq. (2)) to gain an expression of the potential dynamics

φ =
csρ

2
sBL‖

R

1

n

∂n

∂y
+ φfl.

The time derivative of the vorticity (first term on the left hand side of Eq. (2)) is neglected,

which leaves, as explained before, the polarisation due to the magnetic field curvature as

responsible for the blob propagation. It is assumed that the blob is radially advected with
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the E × B velocity associated with this potential. As the floating potential is constant it

does not have impact on the radial velocity

vb = − 1

B

∂φ

∂y
= −csρ

2
sL‖

R

∂

∂y

1

n

∂n

∂y
.

By making the ansatz of an isolated parabolic in y direction shaped blob propagating in ra-

dial (x) direction n(x, y, t) = n(x)(x− vbt)e
−(y/δb)

2 → ∂
∂y

1
n
∂n
∂y

= −(2/δ2b ) the prominent blob

scaling (1) arises.

As described by Garcia, there are several reasons why the conventional approximation of

the sheath current may be insufficient [19]. It does not comply with the observed ballooning

and transport driven parallel flows and the assumption implies that it should be collisionless,

while SOL plasmas often have significant collisionality. By neglecting the parallel current

Garcia et al. obtain a blob propagation scaling independent of the parallel scale length and

proportional to the square root of the blob size [19]

vb ∼ cs

√

2δb
R

p̃e, (3)

where p̃e gives the blob pressure amplitude normalized to the background pressure. This

scaling results from a balance between the first and the second term on the left hand side of

Eq. (2)). Recently this so-called inertial regime (Garcia scaling) and the sheath dissipation

regime (Krasheninnikov scaling) have been united by order of magnitude estimates [20] or

inclusion of neutral collisions [4].

BLOB MODEL WITH WARM IONS

DALF model

The DALF model [21–23] describes drift-Alfvén turbulence in toroidal geometry and

therefore also considers interchange and MHD instabilities. It has been used mostly for nu-

merical investigations of turbulence, however here only an analytical treatment is intended.

The blob scaling laws will be deduced from the vorticity Ω̃ equation

dΩ̃

dt
+

τi
B2

(∇∇φ̃) : (∇∇p̃e) = B∇‖

J̃‖
B

− (1 + τi)K(p̃e), (4)

the electron pressure p̃e evolution

dp̃e
dt

= B∇‖

J̃‖ − ũ‖

B
+K(φ̃− p̃e), (5)
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and the parallel current J̃‖ equation of the DALF model as given by

β̂
∂Ã‖

∂t
+ µ

dJ̃‖
dt

= ∇‖(pe + p̃e − φ̃)− CJ̃‖. (6)

The different terms and parameters will be explained now, more details can be found in

Refs. [21–23]. the ion sound speed is given by cs =
√

Te/mi and does not include the

contribution from the ions (this is not accidental, it serve the purpose of normalization), L‖

is the parallel connection length, ρs =
√
Temi/eB with electron temperature Te, ion massmi,

magnetic field strength B and elementary charge e. d/dt = ∂/∂t+ vE×B ·∇ is the advective

derivative with E × B velocity vE×B. The DALF model also includes an equation for the

parallel ion velocity ũ‖ including sound-wave physics, which is neglected here by assuming

the parallel ion motion to be constant ũ‖ = cs. The main fluctuating quantities are the

electrostatic potential φ̃ = eφ/Te0 normalized to the background mean electron temperature

Te0 and the electron pressure fluctuations p̃e1 normalized to the mean background pressure

pe0 (p̃e = p̃e1/pe0). Times are normalized to L⊥/cs, perpendicular spatial scales to ρs and

parallel length scales are normalized to the parallel connection length L‖/2π, where L⊥ is

the mean profile scale length. Relative amplitudes of the fluctuations are given in ρs/L⊥.

The ratio between ion and electron temperature is given by τi = Ti/Te. The normalized

magnetic field strength is B = 1.

The total ion flow stream function W̃ = φ̃ + τip̃e determines the vorticity Ω̃ =

(1/B2)∇2
⊥W̃ . The first main difference to the standard blob models will result from the

inclusion of the ion diamagnetic contribution p̃i = τip̃e to the polarisation drift, which is

neglected in the cold ion case. The negligence of ∇2
⊥p̃i in the vorticity is equal to the negli-

gence of the ion diamagnetic contribution to the polarisation drift, which indirectly assumes

MHD ordering [24]. If ∇2
⊥p̃i is neglected, also ∇‖J̃‖ should be neglected in a self-consistent

treatment [24], which has been done in the Garcia scaling (3).

The second term in Eq. (4) is the ion diamagnetic nonlinearity, which cascades energy

from larger to smaller scales [25]. It can be also written as
[

∇⊥φ̃,∇⊥p̃i

]

[24] consistent

with the models in [11, 12]. Here [·, ·] denotes the Poisson bracket. The ion diamagnetic

nonlinearity is neglected in the derivation of the scaling laws here and its impact is only

touched briefly.

The coordinates used here are (x, y, s), where locally x is radial, y is binormal and s

in direction of the unperturbed magnetic field line. The curvature operator is given by
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K = ωB(sin s∂x + cos s∂y) with ωB = 2L⊥/R with the curvature radius R, which is set to

the major radius. Neglecting the geodesic curvature and the magnetic shear the curvature

operator reduces to K = ωB∂y. Therefore the interchange forcing is given by ωB. The

interchange effect provides an effective gravity in the notation of blob theory. The effective

gravity is in direct competition with the first term on the right hand side of Eq. (4).

Both terms are responsible for the transfer of free to kinetic energy [26]. If the first term

dominates we are in the drift-wave regime, which is accompanied by an almost depletion

of the density gradients within the blob resulting in more diffuse blobs at greatly reduced

velocities [27]. If the effective gravity dominates we are in the interchange regime. In

general due to the nonlinear vorticity advection the high wavenumber k⊥ρs ≥ 0.1 and

corresponding high frequency regimes can be expected to be drift-wave dominated, whereas

the low wavenumbers, where plasma blobs are expected, should be dominated by the linear

instabilities [26]. The ion to electron temperature ratio τi does increase the relative impact

of the effective gravity against the parallel divergence of the current and therefore increases

the drive of blobs.

The parallel current J̃‖ = −∇2
⊥Ã‖ induces changes in the magnetic field, where A‖ is the

parallel component of the magnetic vector potential. The equations (4) and (6) describe

Alfvén dynamics, (4) and (5) drift-wave and interchange dynamics. Different regimes are

set by β̂ = (4πnTe/B
2)(L‖/L⊥)

2 and µ̂ = (me/mi)(L‖/L⊥)
2, which determines the relative

transit Alfvén and electron thermal frequencies, respectively. Electromagnetic effects are

important, if β̂ > µ̂ equivalent to β = β̂(L⊥/L‖)
2 = (cs/vA)

2 > (me/mi) with the Alfvén

velocity vA. This is called finite β turbulence. The collisionality is given by C = νµ̂ with

ν = νei(L⊥/cs), where νei is the ion-electron collision frequency.

To get a feeling for these three dimensionless parameters (β̂, µ̂, C) at different radial

positions (separatrix, near SOL, far SOL) results from a multi-machine comparison [28] are

briefly summarized now. In H mode at the separatrix β̂ ∼ 102–104 and µ̂ ∼ 102–104, at the

near SOL β̂ ∼ 101–102 and µ̂ ∼ 102–104, while in the far SOL β̂ ∼ 10−2–1 and µ̂ ∼ 102–104.

The collisonality is between 10 and 105. In L mode at the separatrix β̂ ∼ 101 and µ̂ ∼ 1–102,

at the near SOL β̂ ∼ 101 and µ̂ ∼ 102, while in the far SOL β̂ ∼ 10−2–10−1 and µ̂ ∼ 1–102.

The collisonality is between 1 and 102.

To investigate the impact of the ion dynamics on the blob dynamics the parallel current

equation (6) will be further simplified. First, no variation of the background pressure on a
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field line ∇‖pe = 0 is assumed. Second, the normalized mass ratio µ̂ is neglected, which is

justified as long as the effective growth rate of the blob stays below the ion-electron collision

frequency. Both contributions to Eq. (6) possibly have an impact on the blob dynamics,

but neither they result from the ion dynamics nor they are considered in the standard blob

models. We leave these effects for future investigations.

In summary, the ion to electron temperature ratio τi has three main effects, all in the

vorticity equation: It increases the interchange forcing and the drive of the blobs, it leads to

polarisation currents which have a direct impact on the vorticity and it induces an additional

nonlinearity which cascades energy to smaller scales, which can break blobs apart.

Blob model with warm ions and the hierarchy of scalings

Due to the simplifications explained above the scaling laws will be derived from the

evolution of the polarisation

d∇2
⊥(φ̃+ τip̃e)

dt
= ∇‖J̃‖ − (1 + τi)

2L⊥

R

∂

∂y
p̃e, (7)

the electron pressure
dp̃e
dt

= ∇‖J̃‖ +
2L⊥

R

∂

∂y
(φ̃− p̃e) (8)

and the parallel current

β
∂Ã‖

∂t
= ∇‖(p̃e − φ̃)− CJ̃‖. (9)

With the blob correspondence principle [10, 18] the linear instability of these fluid equations

is related to the radial blob velocity and scale size by

ωb →
vb
δb

(10)

k⊥ → 1

δb
, (11)

where ωb is the characteristic blob frequency and k⊥ is its perpendicular wavenumber. In

the inertial regime of the standard blob models this characteristic blob frequency is a growth

rate γb. In principle the blob correspondence principle also includes L⊥ → δb and k‖ → 1/L‖,

which is not applied here. The blob velocity is determined by the polarisation (7), where in

the inertial (or resistive) regime ∇‖J̃‖ = 0. If losses to the wall become important the sheath

dissipation has to be considered. Sheath dissipation σφ/B [20] with sheath conductivity
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σ = cs/L‖ρ
2
s can be included in the polarisation equation (7). Due to its physical dimension

it has to be normalized by L⊥ρ
2
s/cs and it is included as σ = L⊥/L‖ resulting in

∇‖J̃‖ = L⊥/L‖φ̃. (12)

In the collisional regime the parallel current will be determined by Eq. (9) (in the limit

of high collisonality). Both regimes contain the inertial regime as a limiting case. To de-

cide in which regime the experiments are done, one has to compare the sheath resistivity

ηsh = L‖/L⊥ with the collisional resistivity ηc = C (derived from Eq. (9) neglecting elec-

tromagnetic effects and assuming, that potential and pressure fluctuations are phase shifted

by π/2 for interchange modes). For Λ = (νeiL‖)/(ωceρs) = C(L⊥/L‖) < 1 the sheath is

dominating the parallel resistivity for Λ > 1 the collisonality is the relevant dissipation

mechanism. Here ωce is the electron cyclotron frequency. The boundary between sheath

dissipation and collisional regime at Λ = 1 has been also found in Ref. [29]. In particular

interesting for ELM filaments are large-scale events, which are in the electromagnetic regime

if (vb/cs)(δb/ρs)(L⊥/ρs) > (C/β̂) (balancing electromagnetic and collisional effects in Eq. (9)

under the blob corresponding principle). In the electromagnetic regime, additionally, Eq. (8)

will be used to determine the adiabatic coupling.

LIMITING CASES

Inertial regime

In the limit of a highly resistive plasma the parallel current is neglected. This regime

corresponds to the hydrodynamic regime in the Hasegawa-Wakatani frame [30]. First as

consistency check, the standard cold ion case (τi = 0) (the case under MHD ordering) is

derived. Than the warm ion case (τi ≫ 1) is studied and finally both regimes are united.

In the cold ion case, both the polarisation velocity and the vorticity are given by the

potential W = φ̃. The renormalized polarisation equation (7) then reads

L⊥

cs

d

dt
ρ2s∇2

⊥

L⊥

ρs
φ̃ = −2L⊥

R
ρs

∂

∂y

L⊥

ρs
p̃e. (13)

The blob velocity is the E ×B velocity ∇φ̃ = −vb/(ρscs)

−L⊥

c2s

d

dt
ρs∇⊥

L⊥

ρs
vb = −2L⊥

R
ρs

∂

∂y

L⊥

ρs
p̃e. (14)
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Applying dimensional analysis (∂/∂x → ikx, ∂/∂y → iky) to Eq. (14), assuming the blob is

purely growing (/.t. → γb the blob correspondence principle (γb = vb/δb, δb = 1/k) we obtain

L2
⊥

c2s

v2b
δb

1

δb
=

2L⊥

R
ρs

1

δb

L⊥

ρs
p̃e. (15)

and recover the scaling of Garcia (3). We want to note that all derivations in this contribution

are also valid for blobs, that are more radially than poloidally extended δb = 1/ky ≫ 1/kx.

For moderate to high τi and/or strong pressure fluctuations which seems certainly justified

for a blob, the ion flow stream function is determined by the ion pressure contribution

W = φ+ τipe ≈ τipe and the polarisation equation (7) reads

L⊥

cs

d

dt
ρ2s∇2

⊥

L⊥

ρs
τip̃e = −(1 + τi)

2L⊥

R
ρs

∂

∂y

L⊥

ρs
p̃e. (16)

Applying dimensional analysis (d/dt → iωb = ivb/δb)

−L⊥

cs

vb
δb
ρ2s

1

δ2b

L⊥

ρs
τip̃e = −(1 + τi)

2L⊥

R
ρs

1

δb

L⊥

ρs
p̃e. (17)

From the equation above a scaling law for blob propagation can be derived

vb = 2cs
(1 + τi)

τi

(
δb
ρs

)2
ρs
R

(18)

which scales with the square of the blob size in difference to the standard models in Eqs.

(1) and (3).

Before we take both contributions to the vorticity into account, we want to discuss the

difference of the cold and warm ion cases in more detail. As the electrostatic potential φ has

been neglected in the total ion stream function W , one might think that the electrostatic

potential is not important for the blob dynamics and may ask the question, what is the

mechanism for blob propagation? The charge separation responsible for the blob motion is

hidden in the term d/dt = ∂/∂t + vx∂/∂x with the advection vx. Due to the gyroviscous

cancellation upon advection the advective derivative vx is given by the E ×B velocity only

[26, 31]. As iωb = d/dt ≈ vx∂/∂x ≈ ivb/δb the advective motion due to charge separation

is contained in vb = ωbδb. The propagation is still given by the E × B velocity due to the

charge separation resulting from the interchange drive. This can be also interpreted as wave

propagation vb = ω/kx = ωbδb. In the cold ion case the blob correspondence principle is

used to relate the blob growth rate to the blob velocity and size by dimensional arguments
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d/dt ≈ ∂/∂t = γb = vb/δb, in the warm ion case it is an advection induced dispersion

d/dt ≈ vx∂/∂x ≈ ivb/δb = iωb balancing the effective gravity in stationary conditions.

An important difference to the cold ion case is that the dipolar vortex induced by the

interchange drive is due to the ion pressure. This dipolar perturbation adds to the blob

pressure inducing an asymmetry in poloidal direction, a feature also seen in simulations

[11, 13]. Due to the asymmetry additional dipoles may form [13]. As the interchange drive

will be stronger at the steeper flank this part of the blob will move faster resulting in a tilt

of the blob. Due to this tilt the blob velocity is no longer just in the radial direction and

a large fraction of the blob velocity vb given by Eq. (18) may be in the poloidal direction.

Also this has been seen in simulations [11, 13]. The poloidal fraction of the blob velocity

will increase with the distance to the separatrix, effectively reducing the radial velocity of

the blob.

vb
c s

�b
�
s

�b
�
s

(   )
2

�b
�
s

(   )
1/2

Eq. (20) ~

Eq. (18) ~ 

FIG. 1: Blob velocity against blob size in the hot ion inertial regime. Plasma parameters

used for this example are τi = 3, p̃e = 1, ρs = 10−4 m, R = 1.5 m. Blobs with δb/ρs ≪
3

√

τ2i R/(8(1 + τi)ρs) ≈ 16 are dominated by the ion contribution to the polarization, larger blobs

are determined by the plasma potential.

Finally both contributions ∇2
⊥φ̃ and ∇2

⊥p̃i to the vorticity are taken into account. We

apply d/dt → iωb to both terms. The contributions from potential and pressure fluctuations

are not in phase obvious from the imaginary parts
(
vb
cs

)2
1

δ2b
− i

(
vb
cs

)
τiρs
δ3b

p̃e = −i(1 + τi)
2

Rδb
p̃e. (19)

After completing the square
((

vb
cs

)

− i

(
τiρs
2δb

p̃e

))2

= −
(
τiρs
2δb

p̃e

)2

︸ ︷︷ ︸

fi

−i (1 + τi)
2δb
R

p̃e
︸ ︷︷ ︸

g
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and matching real and imaginary parts, the blob velocity is given by

∣
∣
∣
∣

vb
cs

∣
∣
∣
∣
=

√
√

f 2
i + g2 − fi

2
.

This result has two limits illustrated by Fig. 1. For |g| ≫ |fi|, which holds for large blobs

(δb/ρs)
3 ≫ τ 2i Rp̃e/(8(1 + τi)ρs), besides a factor of

√

(1 + τi)/2, the τi-modified Garcia

scaling is obtained
∣
∣
∣
∣

vb
cs

∣
∣
∣
∣
=

√

(1 + τi)
δb
R
p̃e. (20)

For smaller blobs |g| ≪ |fi| and since fi > 0

∣
∣
∣
∣

vb
cs

∣
∣
∣
∣
=

√

fi
√

1 + g2/f 2
i − fi

2

≈
√

fi(1 + g2/2f 2
i )− fi

2
=

1

2

√

g2

fi
(21)

Eq. (18) is recovered. Therefore there are two inertial regimes, for smaller blobs the ion

diamagnetic contribution to the polarisation current is responsible for their acceleration,

where for larger blobs it is the E × B contribution. We call the first one the ion pressure

dominated resistive ballooning regime (iRB) and the second the conventional resistive bal-

looning regime (RB). For typical SOL parameters (ρs ∼ 10−4 m, R ∼ 1 m) the boundary

between quadratic and square root blob size dependence is about δb/ρs ∼ 10.

The ion diamagnetic nonlinearity τi
B2 (∇∇φ̃) : (∇∇p̃e) is in the frame of the blob corre-

spondence principle equal to the left-hand side of Eq. (16). Therefore Eq. (18) gives also the

maximum radial velocity at a given size in the linear approximation. Faster or non-isotropic

structures will be strongly effected by the direct cascade of the ion diamagnetic nonlinearity

and those structures will decay. Because the ion diamagnetic nonlinearity is dimensionally

equal to the ion diamagnetic contribution to the polarisation one might expect that those

cancel each other leaving the same equation as in the cold ion case. Therefore even if the

physics is much more complicated as in the derivation of the Garcia scaling (3) it still could

be valid in the warm ion case. Because potential and pressure perturbations do not have

the same spatial structure and the ion diamagnetic nonlinearity influence is stronger on

smaller structures compared to the ion diamagnetic contribution to the polarisation, just

dimensional arguments could be misleading. A detailed numerical study is necessary to

investigate the canceling capabilities of the ion diamagnetic nonlinearity and its effects on

the blob dynamics, which we leave for future investigations.
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Sheath dissipation regime

�b

�
s(   )

2

Eq. (24) ~

�b
�
s

(   )
2

Eq. (18) ~ 

a)

b)

�b
�
s

L
bc s

vb
c s

�b
�
s

(   )
1/2

Eq. (20) ~ 

Eq. (23)Eq. (22)

�

FIG. 2: Blob velocity (a) and effective growth rate (b) against blob size in the sheath dissi-

pation regime. Plasma parameters used for this example are τi = 3, p̃e = 1, ρs = 10−4 m,

R = 0.4 m, L‖ = 10 m. Blobs with δb/ρs ≪ 3

√

τ2i R/(8(1 + τi)ρs) ≈ 10 are dominated by the

ion contribution to the polarization, larger blobs are determined by the plasma potential. Above

(δb/ρs) ≈ 5

√

8(1 + τi)p̃eL2
‖/(ρsR) ≈ 38 the sheath dissipation dominates.

To model losses to the wall the divergence in the parallel current ∇‖J̃‖ = L⊥/L‖φ is taken

into account. Just this term is included in the polarisation equation (7), everything else stays

the same as in the full model Eq. (19). The sheath dissipation adds to the seconds term in

Eq. (19) with i(1/L‖)(δ
3
b/ρ

2
s)(vb/cs). The balance between the seconds term in Eq. (19) and

i(1/L‖)(δ
3
b/ρ

2
s)(vb/cs) gives the boundary

(δb/ρs) =
4

√

τi(L‖/ρs)p̃e (22)

between the inertial and the sheath effected regime. Blobs smaller than (δb/ρs)
4 <

τi(L‖/ρs)p̃e are in the iRB inertial regime (18) (Fig. 2). If the sheath dissipation is

stronger than the ion diamagnetic contribution to the polarisation, fi can be substituted

by fc = ((1/L‖)(δ
3
b/ρ

2
s))

2. There are two subregimes of the sheath effected regime. The

boundary is given by |g| = |fc| or

(δb/ρs) ≈ 5

√

8(1 + τi)p̃eL2
‖/(ρsR). (23)
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For blobs smaller than (δb/ρs)
5 ≪ 8(1+τi)p̃eL

2
‖/ρsR the interchange forcing is most effective

(|g| ≫ |fc|) and the inertial RB scaling (20) recovers. As seen in Fig. 2 the RB scaling gives

an inaccurate reproduction of the curve taking all terms into account. It is advised to

take all terms into account in this regime. Further, it should be noted that the difference

between the first and the second boundary is usually small, therefore the RB regime is very

narrow and usually more difficult to see than in Fig. 2. Larger blobs will follow the the

Krasheninnikov scaling
∣
∣
∣
∣

vb
cs

∣
∣
∣
∣
= (1 + τi)

(
L‖

R

)(
ρs
δb

)2

p̃e, (24)

beside the additional drive by the factor of (1 + τi)/2. This regime will be called the sheath

connected (SC) regime, here. Therefore under consideration of sheath dissipation we observe

three regimes: the sheath non-effected iRB (18), the interchange dominated conventional

RB regime (20) and the sheath connected regime (24).

Obviously one might ask the question in which of these regime most of the blobs can be

expected to occur? The blob correspondence principle states that the effective growth rate

relates to the blob velocity by γb = vb/δb. Due to the additional factor of 1/δb, the maximum

of the effective growth rate exhibits a maximum at the first boundary (22). For larger blobs

the growth rate slightly decreases until the second boundary (23), where the growth rate

strongly drops to ∼ δ−3
b . As explained above the diamagnetic nonlinearity, which breaks the

blob in smaller structures apart, as well as the tilt by the generation of additional dipoles

in the vorticity will reduce the effective growth rate close to the first boundary and shift

the scale, where most of the blobs will be detected closer to the second one. Beside a

factor of 5

√

8(1 + τi) ≈ 2 this expectation is in line with the standard blob theory [18]. As

explained above the region of the RB regime is quite narrow and this might explain, why in

experimental investigations often only one blob size is detected [32].

Collisional regime

Collisional dissipation should be considered for Λ = C(L⊥/L‖) > 1 instead of the sheath

dissipation. In the collisional regime Eq. (9) can be approximated by

∇‖J̃‖ =
1

C
∇2

‖(p̃e − φ̃), (25)

13



instead of Eq. (12). This approximation is also used in the derivation of the Hasegawa-

Wakatani equations. The radial velocity is given by the E × B velocity and φ̃ = −i δbvb
ρscs

.

Equation (25) then reads

∇‖J̃‖ = − 1

C

(
L‖

δ‖

)2
L⊥

ρs

(

p̃e + i
δbvb
ρscs

)

.

Inserting the divergence of the parallel current in Eq. (7), completing the square, matching

real and imaginary parts results in
((

vb
cs

)

− 1

2

(

τiρs
δb

p̃e +
1

C

(
L‖

δ‖

)2
δ3b

ρ2sL⊥

)

i

)2

= − (1 + τi)
2δb
R

p̃e
︸ ︷︷ ︸

g

i

−




1

4

(

τiρs
δb

p̃e +
1

C

(
L‖

δ‖

)2
δ3b

ρ2sL⊥

)2

− 1

C

(
L‖

δ‖

)2
δ2b

ρsL⊥

p̃e





︸ ︷︷ ︸

fc

As in the sheath dissipative regime the collisionality does only impact the dynamics for blobs

larger than the boundary

(δb/ρs) =
4

√

τi(C(δ‖/L‖)2L⊥/ρs)p̃e, (26)

below which blobs are in the iRB regime. As in the sheath dissipation case there is an

intermediate scale, which is dominated by the interchange forcing. The boundary between

square root (RB regime) and inverse square dependence is located at

(δb/ρs) ≈ 5

√

8C2(δ‖/L‖)4(1 + τi)p̃eL2
⊥/(ρsR). (27)

Blobs larger than this limit, are in the collisional dissipative regime (col), where they fulfill

the scaling
∣
∣
∣
∣

vb
cs

∣
∣
∣
∣
= (1 + τi)C

(
δ‖
L‖

)2(
L⊥

R

)(
ρs
δb

)2

p̃e. (28)

Therefore the blob velocity increases linear with the collisionality and plasma density C ∼ n

consistent with experimental observations [32].

Electromagnetic regime

It is known that ELM filaments carry a substantial current [33]. Due to Ampére’s law the

parallel current induces a magnetic field J̃‖ = −∇2
⊥A‖, which translates within our scaling

14



to Ã‖ = (δb/ρs)
2J̃‖. For large blobs this will give a large contribution even at rather small

β̂. If the electromagnetic contribution dominates over the collisionality, Eq. (9) is given by

β̂
L⊥

cs

vb
δb

(
δb
ρs

)2

J̃‖ = −L⊥

ρs

L‖

δ‖
(φ̃− p̃e) (29)

which is solved for (φ̃− p̃e) and inserted into (8). From that a response of the parallel current

can be deduced

∇‖J̃‖ =

L2

⊥

ρsδb

vb
cs
p̃e

1− 2L2

⊥β̂

Rρs
(
δ‖
L‖
)2 vb

cs

. (30)

For 1 ≫ 2L2

⊥β̂

Rρs
(
δ‖
L‖
)2 vb

cs
the adiabatic limit (∇‖J̃ = d/dt(p̃e) → φ̃ = p̃e). is taken. The electro

magnetic effects dominate the divergence of the parallel current for

1 ≪ 2L2
⊥β̂

Rρs
(
δ‖
L‖

)2
vb
cs
. (31)

Note that here β̂ is additionally normalized with (L‖/L⊥)
2. For example, an experimental

observed β = nT/(B2/2µ̂0) in the order of 0.01 translates with (L‖/L⊥) ∼ 102 to a β̂ in the

order of 102. Of course, for typical SOL conditions a β of only 10−5 to 10−4 can be expected,

which let basically exclude electromagnetic effects to modify the dynamics. However, at

least during pellet ablation, the formation of high β ∼ 0.05 drifting plasmoids has been

observed [34] and it can be expected that the local β of ELM filaments is much higher than

10−4. Then Eq. (30) reads

∇‖J̃‖ = − R

2δbβ̂

(
L‖

δ‖

)2

p̃e. (32)

This gives the closure for the parallel current in (7). This term adds to the effective gravity.

With the Alfvén velocity vA = B/
√
4πn0mi, β̂ = (cs/vA)

2(L‖/L⊥)
2 and a normalized Alfv́en

frequency ωA = (vA/δ‖)(L⊥/cs) the effective gravity can be written as

g = ωB
ρs
L⊥

(

1 + τi +

(
ωA

ωB

)2
)

.

Usually g ≫ fi and the radial velocity is given by

∣
∣
∣
∣

vb
cs

∣
∣
∣
∣
=

√

ωB

2

ρs
L⊥

(

1 + τi +
ω2
A

ω2
B

)(
δb
ρs

)

(33)

which gives a square root dependence on the filament size as suggested in experiments [35].

As the contribution of the electromagnetic part ωA ∼ 1/δ‖ depends on the parallel extent of

15



the structure, different parallel extents will result in a branch-like distribution in the vb-δb

scatter plot as experimentally observed [35].

Finally the requirements for the electromagnetic regime are summarized. For blobs larger

δb/ρs > 2ΛL‖/R = CωB, also (ω2
A/ωB)(δb/ρs) > C/β̂ holds. Together with relation (31),

which is equal to (L⊥/ρs)(vb/cs) ≫ (ω2
A/ωB), (vb/cs)(δb/ρs)(L⊥/ρs) > (C/β̂) is fulfilled.

Therefore, the electromagnetic regime is valid in finite beta turbulence (β > me/mi), for

blobs exceeding the velocity of (vb/cs) > (Rρs)/(2βL
2
‖) with a size above (δb/ρs) > 2ΛL‖/R.

CONCLUSION

In the scrape-off layer of fusion experiments the ion temperature often exceeds the electron

temperature, which has strong effects on the dynamics of turbulent structures. However,

most of blob theory is done for cold ions. Hot ions modify the SOL by strengthening the

interchange drive. Besides that, the ion diamagnetic contribution to the polarisation drift

can dominate the total ion stream function, which strongly modifies the response of the

polarisation current to the interchange drive modifying the scaling between radial velocity

and blob size.

By inclusion of the sheath conductivity into the DALF model it has been possible to unite

the inertial and different dissipative regimes of blob models under a comprehensive drift-

interchange-Alfvén fluid model. Considering warm ions, three regimes are derived, two of

them inertial and one dissipative. For blobs smaller than ≈ 10 ρs the blob velocity increases

with the square of the blob size (see Eq. (18)). For larger blobs (> 10ρs) the usual cold ion

inertial scaling (see Eq. (20)) is valid with an additional factor of (1 + τi)/2, where τi gives

the ion to electron temperature ratio.

The velocities of the largest blobs are determined by the parallel dynamics carried by

the electrons, which is not modified by the ion temperature. Therefore also the parallel

closure and the classification in different limit regimes is not effected. In the electrostatic

case, the distinction between sheath limited and collisional dissipative regimes is set by

Λ = C(L⊥/L‖) as in the cold ion case. The results are summerized in Fig. 3. In both cases

two inertial and one specific dissipative regime are observed. As in the cold ion case in the

sheath dissipative or collisional regime the blob velocity increases linear with the parallel

connection length (see Eq. (24)) or collisionality (see Eq. (28)), respectively. Also here we
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FIG. 3: Blob regimes for different collisionalities Λ and scales δb. The inertial regime exhibits two

scaling regimes, the conventional resistive ballooning (RB) regime described by Eq. (20) and the

ion pressure dominated resistive ballooning (iRB) regime, where the blob velocity-size scaling is

given by Eq. (18). Larger blobs undergo dissipative effects, depending on the collisionality Λ. For

Λ < 1 the sheath dissipation dominates (sheath connected (SC) regime Eq. (24)), for Λ > 1 the

blob is in the collisional (col) regime Eq. (28). Plasma parameters used for this example are τi = 3,

p̃e = 1, ρs = 10−4 m, R = 1.5 m, L‖ = 10 m.

find an additional factor of (1 + τi)/2 for finite τi. Also the blob size scales similar to the

cold ion case with an additional factor of about 5

√

8(1 + τi) ≈ 2 (between 1.7 for τi = 1 and

2.4 for τi = 10).

The DALF model allows also to study electromagnetic effects. These are possibly relevant

for ELMs. In the finite beta regime (β > me/mi) currents carried by fast ((vb/cs) >

(Rρs)(2βL
2
‖)), large ((δb/ρs) > 2ΛL‖/R) filaments can enforce the effective gravity by a

factor of (1 + τi + (ωA/ωB)
2), where (ωA/ωB)

2 ≈ R2/(4βL2
‖) is the squared ratio of the

normalized Alfvén frequency to the normalized effective gravity forcing.

In future work also effects of the parallel ion velocity and the sheath conditions as well as

the impact of the ion-diamagnetic nonlinearity have to be investigated in more detail, and

comparisions with simulations are aimed.
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