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Kurzfassung

Herkömmliche Simulationen hochfrequenter Wellen in Tokamak-Plasmen können den Einfluss

von kurzskaligen Elektronendichteschwankungen nicht korrekt beschreiben und produzieren

außerdem keine akkuraten Ergebnisse, wenn Reflektometriefälle mit spitzen Eintrittswinkeln

untersucht werden. In dieser Masterarbeit wird ein neuer Code (WKBeam) entwickelt, der auf

einer Phasenraumbeschreibung der Wellen aufbaut. Mathematisches Fundament sind Wigner-

Weyl-Symbole. Grundlegende Hintergründe werden besprochen und an die Problemstellung der

Mikrowellen in Fusionsplasmen angepasst. Als Ergebnis wird die wellenkinetische Gleichung

formuliert. Ein numerisches Lösungsschema für diese Gleichung wird dargestellt und imple-

mentiert. Es wird anhand von vereinfachten Modellen gezeigt, dass die Ergebnisse des Codes

gegen korrekte Resultate konvergieren. Zum Schluss wird die Simulation für Heizungs- und

Reflektometriefälle in den Tokamaks ASDEX Upgrade und ITER verwendet.

Abstract

State of the art high frequency wave simulations in tokamak plasmas are not able to describe the

effect of short scale electron density fluctuations on the beam propagation and have accuracy

problems when employed under reflectometry conditions with steep injection angles. Within

the framework of this master thesis, a new code (WKBeam), based on a phase space description

of the beam obtained from Wigner-Weyl symbol calculus, is developed. The basic theoretical

background is reviewed and adapted to the purposes of microwaves in tokamak plasmas, with

the wave kinetic equation as a result. A numerical scheme solving this equation is presented

and implemented. Convergence of the new code to correct results is shown for benchmarks with

various simplified models. Finally, it is employed for heating and reflectometry applications in

the tokamaks ASDEX Upgrade and ITER.
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1
Introduction

In times of climate change, worries about the safety of fission power plants, and an increasing

power demand, it would be extremely beneficial to have a save and reliable energy source. One

future option under investigation is nuclear fusion. Historically, people understood in the 1920s

that the huge amount of energy the sun emits is produced by nuclear fusion processes and in the

1950s, a rough estimate done by E. Teller and E. Konopinsky showed that in principle it would

be possible to exploit fusion power also on earth, envisaging a fusion power plant [1]. It was

recognized soon that this is an ambitious goal and even if during the last 50 years huge technical

progress was achieved, still some obstacles are left. An introduction to contemporary approaches

and problems for nuclear fusion can be found in [2]. As a fuel, a mixture of deuterium and tritium

is considered. This is advantageous because the fusion reaction of deuterium and tritium into

Helium is not based on weak interactions unlike the proton-proton chains taking place in the sun

and hence provides a large cross section which is a welcome property for a fusion power plant.
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1. Introduction

Therefore, the reaction

D + T→4 He + n + 17.6 MeV (1.1)

is planned to be exploited. In general, since the nuclear forces act on very short distances,

there is the problem that the deuterium and tritium nuclei must be brought close together to

react. This requires to overcome or tunnel through their Coulomb barrier. It turns out that a

temperature of 10 keV is needed to provide the required energy. In order to confine the fuel, one

promising concept is the tokamak. In this device, a plasma is confined with a magnetic field.

The confinement is based on Lorentz force. It constrains the charged plasma particles to helical

trajectories around the magnetic field lines. The circular motion in the plane perpendicular to

the field lines is called gyration. A particle mainly following the field lines within the tokamak

chamber cannot escape1. The magnetic field lines for the tokamak ASDEX Upgrade (AUG)

are shown in figure 1.1. On the left, the toroidal plasma chamber can be seen. On the right,

only a cut through the torus is shown. This plane is referred to as poloidal plane. The direction

perpendicular to such a plane is called toroidal direction. The magnetic field lines do not point

purely in the toroidal direction, but they are twisted so that the they span surfaces, referred to as

magnetic surfaces and shown on the left in figure 1.1. This is the plasma configuration considered

in the applications discussed later in this thesis.

Through the fusion reaction (1.1), α-particles with a kinetic energy of Eα = 3.5 MeV are

produced. They are charged and thus confined by the magnetic field. Their high energy allows a

heating of the plasma. For a commercial power plant, energy losses must be minimized so that

the α-particle heating compensates them and basically no external heating is required. In present-

day tokamak experiments, external heating is needed to obtain the targeted plasma parameters.

Moreover, even in a reactor, methods are required to drive part of the current flowing in a tokamak.

One such method is based on the injection of electromagnetic waves resonating with the gyration

of the electrons around the magnetic field lines. Their angular frequency in cgs-units is therefore

in the range

Ω = eB

cme
, (1.2)

1Collisional and turbulence transport, however, can lead to a loss of particles and energy. These losses, together with
the requirement of operational stability, lead to the temperature requirement of 10 keV mentioned above.
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Figure 1.1.: Tokamak ASDEX Upgrade. Left: the toroidal plasma chamber of the tokamak with
closed magnetic field lines lying on one surface (red). Right: a cut through the torus.
The red lines are cuts through the surfaces the magnetic field lines are lying on. The
surfaces inside the bold one are closed within the chamber. The bold surface (called
separatrix) is the first to hit the tokamak walls at the bottom. [Pictures taken from
AUG gallery.]

where B is the magnetic field strength, e the electron charge and me the electron mass. This

frequency is referred to as electron-cyclotron frequency. Waves which are in resonance with this

cyclotron frequency or higher harmonics have the ability of transferring their energy to the plasma

and drive an electric current. Typically, the required frequency is of the order of 100 GHz2 and

thus millimeter wave beams are considered. In general, the magnetic field decreases from the

symmetry axis of the tokamak outwards: B ≡ B(R) where R is the distance to the symmetry

axis. Therefore, properly tuning the microwave frequency, the distance R where the wave gets

absorbed can be chosen. Varying the injection angle of the beam, it can also be determined the

vertical location of absorption and the amount of driven current. Together, this allows to target at

a magnetic surface.

2The electron-cyclotron frequency can be obtained from the simple formula ν[GHz] = 28B[T].
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1. Introduction

In a plasma there also might be regions where no propagating wave exists for a given frequency.

They are referred to as evanescent regions. Instead of propagating, a wave launched from outside

the plasma mainly gets reflected at the boundary of evanescent regions, referred to as cut-off

layer. In the reflectometry technique, this property is exploited: A beam might be launched with

injection parameters such that it gets reflected. Then, the reflected beam can be measured and

conclusions on the plasma properties might be drawn for diagnostics purposes.

The calculation of electromagnetic waves in the electron-cyclotron frequency range usually

employs the fact that the wavelength is much smaller than the typical scale associated to the

variation of the plasma parameters [3], [4], [5]. In the presence of fluctuations of the plasma

parameters on short scales (like those caused for example by plasma turbulence) or in the

vicinity of a cut-off layer, however, this treatment becomes invalid. It is the aim of this thesis

to address this issue. Previous work on scattering of electromagnetic waves from fluctuations

with application to tokamak plasmas is based on simplified models on wave propagation and

on diffusive models [6], [7], which are not always clearly justified. Calculations based on the

solution of the full wave equations are available only in limited cases. However, there are several

hints that wave scattering can play a significant role in determining the region illuminated by the

beam.

In this thesis, a mathematically consistent treatment based on the Wigner-Weyl calculus in

analogy to [8], [9] is developed and implemented in a new code, able to produce accurate results

for the electromagnetic wave field amplitude near cut-off layers and in the presence of background

fluctuations of arbitrary wavelength, provided that their amplitude remains small enough to allow

the use of the perturbative approach described in chapter 3.

This thesis begins with a chapter on the theoretical background, where the fundamental physical

equations to describe propagation of electromagnetic waves are presented and the mathematical

concept of symbol calculus is reviewed. The need for a suitable phase space representation for

the wave is displayed. In the next chapter, based on this framework, an equation describing the

beam propagation in phase space is developed. This is referred to as wave kinetic equation. The

derivation is performed in analogy to [9]. However, considering waves in anisotropic media, the

theory is generalized and adapted to the problem of wave propagation in tokamak plasmas. The

properties of the equation are extensively discussed. A way to deduce physical quantities like the

electric field energy density or the power absorption is presented. A basis for the implementation

4



in the new simulation code is a numerical scheme for the solution of the wave kinetic equation.

Two possible schemes are presented in the numerics chapter. In both schemes, the reduction to

physical quantities is split into a Monte-Carlo part and a direct part in a different way. After a

brief presentation of the newly implemented code (WKBeam) for the simulation, it follows a

chapter on benchmarking tests. An investigation of the results for simplified models confirms the

accuracy of the code, also near turning points and under the presence of fluctuations. Last, in

the applications chapter, results of the simulation for realistic tokamak heating and reflectometry

applications are shown. The effect of fluctuation is compared to the estimate in [6]. These first

results confirm the importance of wave scattering for the propagation of mm-wave beams in

particular in large (reactor-like) devices.
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2
Theoretical background

In this chapter, the problem under consideration is stated and the necessary theoretical background

is reviewed. First, the equations describing the wave propagation in magnetized plasmas are

introduced. It will be seen that a suitable mathematical framework is the Wigner-Weyl symbol

calculus, which is introduced and applied to the wave equation under investigation. Furthermore,

the standard geometrical optics approximation is recalled.

2.1. Electromagnetic wave propagation in plasmas

The aim of this section is to give an overview of the fundamental equations needed to describe

the propagation of electromagnetic waves in a plasma. In addition, the assumptions we make on

the problem are discussed.

The propagation of electromagnetic waves is described using as a starting point Maxwell’s

equations. The reader might refer to the standard textbook of Jackson [10]. In cgs-units,

7



2. Theoretical background

Maxwell’s equations read

∇ ·D = 4πρext, (2.1a)

∇ ·B = 0, (2.1b)

∇× E + 1
c

∂B

∂t
= 0, (2.1c)

∇×H = 4π
c
jext + 1

c

∂D

∂t
, (2.1d)

where E and H denote the electric and magnetic field, respectively. Throughout this work, c

denotes the speed of light in free space. The magnetic induction B is implicitly given by

H = B − 4πM, (2.2a)

where M is the magnetization. The electric displacement is

D = E + 4πP, (2.2b)

with the polarization P . The magnetization and the polarization depend on the electromagnetic

field (E,B) and describe the response of the medium under investigation to an electromagnetic

disturbance. The last two equations complement Maxwell’s equations with the physics of the

medium and, therefore, are called constitutive equations. Maxwell’s equations are invariant under

the gauge transformation

M ′ = M − 1
c

∂V

∂t
, (2.3a)

P ′ = P +∇× V (2.3b)

for the magnetization and polarization, V being an arbitrary vector field [11]. Hence, one is free

to move to the primed quantities without changing physics. For this thesis, it is assumed that the

gauge V is chosen so that the magnetization vanishes, hence, H = B. Furthermore no external

8



2.1. Electromagnetic wave propagation in plasmas

current density jext nor charges ρext are considered so that the systems (2.1) and (2.2) reduce to

∇× (∇× E) + 1
c2
∂2D

∂t2
= 0, (2.4a)

D = E + 4πP, (2.4b)

with the polarization field P describing the whole response of the medium.

In the case of wave propagation in plasmas, in general, the polarization response P (t, r) at the

time t and point r does not only depend on the electric field E(t, r) at (t, r), but it depends on all

previous instants t′ < t [11], [12]; this is referred to as memory effect or temporal non-locality.

Furthermore, the dependence on the electric field is non-local: The response may depend on the

electric field at any point r′ as far as the distance |r − r′| can be covered in time t− t′ without

breaking the assumptions of causality. This means (t′, r′) must be situated inside the backward

light cone of (t, r). In summary, D(t, r) depends on E(t′, r′) where c |r − r′| ≤ t − t′ so that

causality is fulfilled. In this thesis, we limit ourselves to the case of a linear response of the

medium, which is a well-justified assumption for the kind of waves we are going to investigate.

Such a linear relationship can be written in the form

D(t, r) =
∫
ε(t, r, t′, r′)E(t′, r′)dt′dr′, (2.5)

where ε(t, r, t′, r′) is referred to as dielectric kernel. Here, due to causality, this kernel should

vanish in case c |r − r′| > t− t′, but usually ε has contributions only in the center of the light

cone, i.e. for c |r − r′| � t− t′.

In this thesis, a steady state solution is considered. This means that the dielectric kernel depends

only on t and t′ via their difference t− t′, namely, ε(t, r, t′, r′) ≡ ε(t− t′, r, r′). Then, equation

(2.5) amounts to a convolution in time. According to the convolution theorem, for the Fourier

transformed functions

E(ω, r) =
∫
eiωtE(t, r)dt, (2.6)

D(ω, r) =
∫
eiωtD(t, r)dt, (2.7)

9



2. Theoretical background

and, upon changing to the coordinate τ = t− t′,

ε(ω, r, r′) =
∫
eiωτε(τ, r, r′)dτ, (2.8)

the operation of convolution in time is translated to a simple multiplication in the frequency

domain with the result that

D(ω, r) =
∫
ε(ω, r, r′)E(ω, r′)dr′. (2.9)

Here, ω is the angular frequency of the wave. In the frequency domain, the memory effect in

the response operator yields a frequency-dependent kernel, i.e. temporal dispersion. Physically,

this response is related to a displacement of charged particles in the medium provoked by the

electromagnetic wave field. Then, memory effects arise due to the inertia of those particles [13].

As wave beams with one constant frequency (monochromatic beams) are considered in this

work, ω is a fixed parameter of the problem and the wave equation system (2.4) reads

∇× (∇× E(ω, r))− ω2

c2 D(ω, r) = 0, (2.10a)

D(ω, r) =
∫
ε(ω, r, r′)E(ω, r′)dr′. (2.10b)

This is a closed system which, in principle, can be solved for the electric field E.

For plasmas, rather than the kernel ε(ω, r, r′), we have information on its Fourier transform

ε(ω, r, k) =
∫
e−ik·sε (ω, r, r − s) ds, (2.11)

which is referred to as the local dielectric tensor [3]. In the case of a uniform medium, the only

space dependence is via s = r − r′. The Fourier transform is performed with respect to this

distance, which is in analogy to the temporal Fourier transformation in (2.8). Instead, for a

non-uniform medium, the space dependence r appears explicitly also in the local dielectric tensor.

Analogously to the definition of temporal dispersion, the non-locality of the response yields a

dielectric tensor which depends on k and this is by definition spatial dispersion. Therefore, spatial

dispersion is equivalent to the non-locality of the response. When, in particular, a medium has a

10



2.1. Electromagnetic wave propagation in plasmas

local response,

ε(ω, r, r′) = ε(ω, r)δ(r − r′), (2.12)

the corresponding dielectric tensor obtained from (2.11) reads

ε(ω, r, k) = ε(ω, r), (2.13)

which is independent of k. In this case, wave equation (2.10) reduces to a differential equation for

E which does not involve any integral operator. Physically, the response (2.10b) can be explained

by a spread of the particle velocities due to finite temperature: The particles remember the impact

of the electromagnetic field along all points on their trajectory (t′, r′), which is different for

each particle due to the thermal velocity spread. As an example, this effect is not present in

the cold-plasma approximation [12], where the response becomes local. For the purpose of this

work, the general plasma dielectric tensor is employed. It is also referred to as kinetic dielectric

tensor, given the fact that it can be derived from the kinetic theory of the microscopic dynamics

of plasma particles [4].

One common simplification is the adiabatic approximation for the dielectric tensor ε(ω, r, k)

of a plasma. It consists in the use of a dielectric tensor ε(ω, k;n,B0, T ) computed for the case

of a homogeneous plasma with constant equilibrium density n, magnetic field B0 and temper-

ature T and introducing spatial dependence through plasma parameters; that is, ε(ω, r, k) =

ε(ω, k;n(r), B0(r), T (r)), where n(r), B0(r) and T (r) are the equilibrium profiles of plasma

parameters. Then, the space dependence of the dielectric tensor is present via the parameters of

the medium, but their spatial derivatives are neglected. This approach is a good approximation

when plasma parameters are slowly varying. In order to give a measure of the variations of a

parameter f(r), a typical length scale L, measuring the gradients is introduced, namely

|∇f | ≈
∣∣∣∣ fL
∣∣∣∣ , (2.14)

for f = n,B0, T . This length L is used to introduce normalized coordinates

x := r

L
. (2.15)

11



2. Theoretical background

In terms of such normalized coordinates, the wave equation (2.4a) for the electric field E(ω, r)

and the electric displacement D(ω, r) reads

∇x × (∇x × E)− ω2L2

c2 D = 0. (2.16)

One can see that the dimensionless parameter

κ := ωL

c
= k0L (2.17)

appears naturally. Here, k0 is the wave number in free space which can be used as a reference

value for the wave vector k. Let us define a normalized quantity

N := ck

ω
, (2.18)

which is referred to as refractive index vector. From now on, all functions will be written in terms

of functions of x (instead of r) and N (instead of k). This has as a consequence that in Fourier

transformations the parameter κ appears explicitly. For example, for the Fourier transform of a

function f , one has

f̂(N) =
∫
e−iκN ·xf(x)dx, (2.19a)

and for the inverse Fourier transform

f(x) =
(
κ

2π

)m ∫
eiκx·N f̂(N)dN. (2.19b)

Here, m denotes the dimensionality and is m = 3 for the case of electromagnetic wave propaga-

tion in a physical space. Furthermore, the angular frequency ω and the parameter κ both are fixed

parameters of the problem. In this work, for simplicity of writing, they will no longer be listed as

an argument in any functions. The wave equation (2.10) in terms of the just defined normalized
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2.1. Electromagnetic wave propagation in plasmas

coordinates reads

∇x × (∇x × E(x))− κ2D(x) = 0, (2.20a)

D(x) =
∫
ε(x, x′)E(x′)dx′. (2.20b)

Let us note that this wave equation is somehow mixed: the first term on the l.h.s. of equation

(2.20a) consists in a partial differential operator applied to the wave field E while the second

term is an integral operator present through (2.20b). The wave equation can be written in terms

of a single integral operator, namely

∫ [
(∇x ⊗∇x −∆x) δ(x− x′)− ε(x, x′)

]
E(x′)dx′ = 0, (2.21)

where δ(x) is the Dirac’s δ-function. Here, the Graßmann identity

a× (b× c) = b(a · c)− (a · b)c (2.22)

is used for the partial differential operators. After integration, the first term in square brackets

amounts to ∇x × (∇x × E). Upon introducing the Fourier transform of the square brackets with

respect to s = x− x′, namely,

d(x,N) = N2 −N ⊗N − ε(x,N), (2.23)

wave equation (2.21) reads

(
κ

2π

)3 ∫
eiκ(x−x′)·Nd(x,N)E(x′)dNdx′ = 0. (2.24)

The dimensionality for the Fourier transform is fixed to m = 3 due to the physical problem. It is

worth recalling that both, d(x,N) and E(x′), depend on both the frequency and the parameter κ,

although such dependence is suppressed in the notation.

Operators of the form (2.24) are well-known in the mathematical literature as semiclassical

pseudo-differential operators [14]. The adjective "semiclassical" refers to the explicit dependence

on the parameter κ in the Fourier transform (2.19), as opposite to the standard definition. In this

section, such an operator has appeared naturally in the wave equation. However, no mathematical
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2. Theoretical background

details were given. The next section is dedicated to the general mathematical framework of such

pseudo-differential operators.

In this work, we will address equation (2.20) in the high-frequency limit κ → ∞, which is

also called semiclassical limit, in analogy with quantum mechanics [14]. For the special case of

microwave beams in fusion plasmas, we have κ� 1 and hence the asymptotic solution is a good

approximation of the real physical situation.

2.2. Pseudo-differential operators

In the last section, a pseudo-differential operator was identified in the wave equation for mi-

crowave beams. Here, we have to make up for the mathematical details which were skipped

in this physics section. The ideas summarized here can be found in [8], [14] and also nicely

reviewed in [15]. Since they are applicable not just to the special case of wave propagation in

plasmas, a general wave equation is considered and specified to physically relevant equations

later on.

2.2.1. Definition of symbols and multi-index notation

The formulation of pseudo-differential operators in general is presented in the next section, where

we shall need a specific class of functions referred to as symbols. For sake of clearness, in this

section the definition of symbols is explicitly given. As stated in [15], a smooth function p(x,N)

is called symbol of order µ, if

∣∣∣∂αx ∂βNp(x,N)
∣∣∣ ≤ Cα,β (1 + |N |)µ−|β| (2.25)

with some constant Cα,β . Thus, symbols are basically defined as smooth and polynomially

bounded functions. In this definition as well as in following parts of the work, the multi-index

notation is used. For an m-dimensional space, a multi-index α is a m-tuple α = (α1, . . . , αm) of

non-negative integers αi. Let α, β be multi-indices, then the following definitions apply:

• componentwise sum (difference):

α± β := (α1 ± β1, . . . , αm ± βm), (2.26a)
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2.2. Pseudo-differential operators

• partial order:

α < β :⇔ αi < βi ∀i = 1, . . . ,m, (2.26b)

• definition of an absolute value:

|α| := α1 + · · ·+ αm, (2.26c)

• definition of a factorial:

α! := α1! · · ·αm!, (2.26d)

• definitions of powers for a variable x ∈ Rm:

xα := xα1
1 · · ·x

αm
m , (2.26e)

• definition of derivatives with respect to the components of x ∈ Rm:

∂αx := ∂α1
x1 · · · ∂

αm
xm . (2.26f)

2.2.2. Definition of pseudo-differential operators

In this section, pseudo-differential operator calculus is introduced. As it is done in [8], a general

wave equation

D (ψ) (x) = 0 (2.27)

is considered. Here, ψ ≡ ψ(x) is a function ψ : Rm → Rn (so x ∈ Rm and ψ(x) ∈ Rn).

Therefore, the operator D acting on the wave field is an n× n matrix of operators. The "double-

bracket" notation in (2.27) means that the operator D acts on ψ and the result is evaluated at point

x. The kernel d(x, x′) ∈ Rn × Rn of the operator D is defined such that

D (ψ) (x) =
∫
d(x, x′)ψ(x′)dx′. (2.28)
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2. Theoretical background

The Fourier transformed of this kernel with respect to the distance s = x− x′ reads

d(x,N) =
∫
e−iκN ·sd(x, x− s)ds. (2.29)

This is a function on phase space coordinates (x,N). In general, if this function fulfils the

requirement for a symbol (2.25), the operator D is by definition a pseudo-differential operator

and d(x,N) is referred to as the symbol of this operator. For the case of plasma waves presented

in section 2.1, the Fourier transform d(x,N) of the wave operator kernel is given in (2.23). The

first two parts actually are polynomials and therefore are symbols. The last term is the dielectric

tensor which is assumed to be well-behaved. For waves in plasmas, this assumption is justified

by the smooth plasma profiles yielding a smooth dielectric tensor and by the fact that for large

wave vectors |N | → ∞, the waves do not feel the plasma any more, so that the dielectric tensor

of free space is approached. This is polynomially bounded and, thus, also the plasma dielectric

tensor is. In summary, d(x,N) is a symbol and hence for the problem of microwave propagation,

pseudo-differential operator calculus applies.

It must be noted that the relationship between operators and symbols is not unique. It is necessary

to introduce a label in order to distinguish different kinds of these mathematical objects. Symbols

constructed via (2.29) are called L-symbols. Here, L stands for "left" and recalls the fact that the

position argument x for the symbol is just the left one of the kernel. In this thesis, L-symbols are

denoted with small case letters.

Formally, the operation of constructing a symbol a(x,N) given a pseudo-differential operator

A is called symbol map

σL : A 7→ a(x,N). (2.30)

Here, the superscript L reminds one to use the transformation (2.29) to construct an L-symbol.

The inverse operation, namely the construction of an operator given its symbol, is called quantiza-

tion rule and, again, there are several ways how this can be done. One is the left side quantization

rule. Given any symbol a(x,N), the outcoming operator applied on a test function f yields

a(x,− i
κ
∇x)f(x) =

(
κ

2π

)m ∫
eiκ(x−x′)·Na(x,N)f(x′)dx′dN. (2.31)
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2.2. Pseudo-differential operators

Here, the notation for the operator on the l.h.s. is a formal way of writing which should not be

confused with any function at arguments x and − i
κ∇x. It should be rather more considered as

an object which is defined by its effect on a function f given on the r.h.s. Operators constructed

upon the L-quantization rule (2.31) are denoted with small case letters in this work.

If the symbol under consideration is an L-symbol constructed as it is presented in (2.29), the

quantization rule (2.31) just recovers the original operator, i.e.

a(x,N) = d(x,N)⇒ a(x,− i
κ
∇x) = D. (2.32)

The L-symbol and L-quantization rule presented above are the ones which are relatively straight

forward to understand, and a special case is the symbol (2.23) for plasma wave propagation.

The main results of this thesis, however, rely upon an alternative definition. Due to its useful

properties, deriving from its symmetric construction, the so-called Weyl symbol,

A(x,N) =
∫
e−iκN ·sa

(
x+ s

2 , x−
s

2

)
ds, (2.33)

is introduced, where a(x, x′) is the kernel of a given operator A. Throughout this thesis, capital

letters are used for Weyl symbols in order to distinguish them from the L-symbols denoted by

small case letters. The symbol map appropriate to the previously defined Weyl symbols,

σW : A 7→ A(x,N), (2.34)

takes the operator and computes its Weyl symbol, according to equation (2.33). In analogy to the

left quantization rule (2.31), there is the Weyl quantization rule which, given the Weyl symbol

D(x,N) of an operator D, provides the operator itself, i.e.

A(x,N) = D(x,N)⇒ A(x,− i
κ
∇x) = D. (2.35)

This quantization rule, again, is defined via the action of this operator on a test function f :

A(x,− i
κ
∇x)f(x) =

(
κ

2π

)m ∫
eiκ(x−x′)·NA

(
x+ x′

2 , N

)
f(x′)dx′. (2.36)
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2. Theoretical background

Here, the inversion of equation (2.33) is used to express the kernel of the operator A(x,− i
κ∇x).

Operators constructed with the Weyl quantization rule are denoted with capital letters in the

framework of this thesis.

The remaining part of this section is devoted to specific issues arising from the application of

the Weyl symbols to the problem of wave propagation considered in this work. The main ideas,

again, follow [8].

In equation (2.23) the L-symbol corresponding to the wave equation for wave beam propagation

is found. It was mentioned that the Weyl symbol is used instead. So a direct relation between

L-symbols and Weyl symbols is needed in order to compute the latter. In principle, it is clear

what to do: The Weyl symbol A(x,N) is computed with the Weyl symbol map (2.34) for a

given pseudo-differential operator with kernel a(x, x′), explicitly formulated in terms of a Fourier

transformation of the kernel in equation (2.33). Once the symbol a(x,N) is known, its kernel is

obtained from (2.29). The derivation of a final formula linking a(x,N) and A(x,N) is a little

technical and therefore moved to appendix A.1. The final result is

A(x,N) = e
i

2κ∂N ·∂xa (x,N) . (2.37)

Here, the partial derivatives at the exponent are a formal way of writing which makes sense only

if the exponential is expressed in terms of its Taylor series.

As a particular case which will be needed, when

a(x,N) = a1(x) + a2(N), (2.38)

then the derivatives in the exponential (2.37), being mixed derivatives acting on x and N , will

vanish and therefore only the zeroth order term of the Taylor series of the exponential contributes.

This means that the left symbol and the Weyl symbol are the same, i.e.

A(x,N) = a(x,N) = a1(x) + a2(N). (2.39)

For later reference let us write a formula which allows to find the Weyl symbol C(x,N) of the

composition of two operators A and B with Weyl symbols A(x,N) and B(x,N). Again, the
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2.2. Pseudo-differential operators

technical computation is moved to appendix A.2. The final formula is

C(x,N) =A(x,N) ? B(x,N) =

A (x,N) e
i

2κ

[←−
∂x·
−→
∂N−

←−
∂N ·
−→
∂x
]
B (x,N) . (2.40)

The operation denoted by "?" is called Moyal-Weyl product. The arrows on the partial differential

operators indicate the direction in which the operators act.

2.2.3. Differential operators in the framework of pseudo-differential

operator calculus

Pseudo-differential operators can be considered a generalization of differential operators: One

can express differential operators in the form of pseudo-differential operators. Actually, for the

case of the electromagnetic wave equation, the first term on the l.h.s. of (2.21) was formulated in

terms of a symbol in (2.23). In this section, a general argument is presented. A good overview on

this topic is also provided in [15].

A general partial differential operator of order µ in multi-index notation is expressed as

D =
∑
|α|≤µ

(
− i
κ

)|α|
pα(x)∂αx . (2.41)

Here, pα(x) are bounded functions with bounded derivatives on x. This operator acting on a

generic function f , in terms of the kernel d(x, x′), yields the result

D(f)(x) =
∫
d(x, x′)f(x′)dx′. (2.42)

Therefore, the kernel of the differential operator is explicitly given by

d(x, x′) =
∑
|α|≤µ

(
− i
κ

)|α|
pα(x)∂αx δ(x− x′), (2.43)

which can be verified by direct substitution. Derivatives of the δ-distribution must be considered

in a weak sense, as reviewed in appendix B.
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2. Theoretical background

Symbol map (2.29) applied to the operator D with kernel (2.43) yields

d(x,N) =
∑
|α|≤µ

(
− i
κ

)|α|
pα(x)

∫
e−iκN ·s∂αs δ(s)ds. (2.44)

This integral is computed by parts and the result reads

d(x,N) =
∑
|α|≤µ

pα(x)Nα. (2.45)

The function d(x,N) computed in this last equation, being a polynomial in N with smooth and

uniformly bounded coefficients pα(x), is a symbol. Therefore, in general, differential operators

can be considered as pseudo-differential operators. Furthermore the symbols of differential

operators are easily constructed replacing the partial differential operator − i
κ∂x by the conjugate

variable N .

2.3. Geometrical optics and ray tracing

The aim of this section is to present the standard geometrical optics approximation for wave

propagation. Geometrical optics provides asymptotic solutions in the high-frequency limit

κ → ∞, where κ is the dimensionless parameter defined in (2.17) and it can be considered a

cornerstone of semiclassical methods. It shows the Hamiltonian structure which controls the

behavior of the wave field in the semiclassical limit and, hence, makes it possible to use ray

tracing methods [3], [5]. In this section, we shall review the basic ideas of geometrical optics

for the simple case of transverse electromagnetic waves in isotropic media. This simplification

allows us to avoid unessential technical difficulties, while retaining the basic ingredients of the

theory. For transverse waves in isotropic, spatially non-dispersive media, the response operator

(2.20b) simplifies to a multiplication with a scalar function ε(x). Hence, the wave equation (2.20)

reduces to the Helmholtz equation

∆xE(x) + κ2ε(x)E(x) = 0, (2.46)

where∇x · E ≡ 0 has been accounted for.
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2.3. Geometrical optics and ray tracing

The high-frequency limit suggests the use of the Wentzel-Kramers-Brillouin (WKB) ansatz for

the electric field, which is

E(x) = eiκS(x)
[
A0(x) + 1

κ
A1(x) + . . .

]
. (2.47)

Here, S(x) is a scalar function called eikonal. It represents the phase of the wave. Instead, the

functions Aj(x), j ≥ 0 representing the polarization and the amplitude of the field, are vector

valued. They introduce explicitly the expansion of the amplitude in different orders in κ−1. In

analogy with the plane wave, for which

E(x) ∝ eiκN ·x, (2.48)

the local refractive index is defined as

N(x) = ∇xS(x). (2.49)

It is worth noting that the eikonal establishes a relationship between the position x and the

refractive index N(x): At every spatial position x, this relation uniquely defines a value for the

refractive index N(x). The substitution of the WKB ansatz (2.47) into the wave equation (2.46)

after separating different orders of κ→∞, yields for the first two equations in the hierarchy

O(κ2) : (∇xS(x))2 − ε(x) = 0, (2.50a)

O(κ) : 2∇xA0(x) · ∇xS(x) +A0(x)∆xS(x) = 0. (2.50b)

For each point x, the first equation (2.50a), also referred to as eikonal equation, defines the

refractive index N(x), whereas, given this refractive index, the second equation (2.50b) describes

the wave amplitude to lowest order in the WKB ansatz (2.47). A set of eikonal and amplitude to

lowest order (S,A0) which solves the system (2.50) solves the wave equation (2.46) in the limit

κ→∞ with a remainder of order κ−2. Equation (2.50a) is called local dispersion relation. For a

homogeneous medium, a plane wave (2.48) solves the wave equation (2.46) and, by definition, as

dispersion relation an equation is considered which defines the refractive index so that a solution

for the wave equation exists. In the context of the WKB ansatz, the adjective "local" refers to
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the fact that the refractive index to solve the wave equation might depend on the position x, i.e.

N ≡ N(x).

The local dispersion relation (2.50a) has the structure of a Hamilton-Jacobi equation, which is

discussed in some details in appendix C, cf. equation (C.8). The relevant Hamiltonian is

H(x,N) = N2 − ε(x). (2.51)

Therefore, a solution of the nonlinear first-order partial differential equation (2.50) can be obtained

in terms of Hamilton orbits. Hamiltonian orbits are the trajectories in phase space obtained from

Hamilton’s equations of motion (C.1) as, again, discussed in appendix C. More specifically, on

an antenna plane, boundary conditions for the wave equation (2.46) are known. This includes a

knowledge on the phase, called eikonal S in the framework of the WKB approximation and allows

us to construct initial conditions for Hamilton’s equations of motion with Hamiltonian (2.51).

Such equations then are ordinary differential equations which can be solved by using standard

numerical techniques. The projection of the resulting Hamiltonian orbits from phase space into

configuration space determines a bundle of curves in the physical space called geometrical optics

rays. These constitute the light rays in basic optics descriptions. The solution of Hamilton’s

equations of motion in the framework of geometrical optics if often referred to as "ray tracing".

One finds that Hamiltonian orbits resulting from the ray tracing procedure span a hypersurface

of the form (x,N(x)) with geometrical optics refractive index vector as given in (2.49), usually

called Lagrangian manifold. The bundle of geometrical optics rays defines a velocity field on the

physical space, which is given by

vx = ∇NH(x,N) = 2N(x). (2.52)

Upon accounting for (2.52), equation (2.50b) can be written in the form

vx · ∇xA0 + 1
2 (∇x · vx)A0 = 0. (2.53)

This equation describes the evolution of the lowest order amplitude A0. We can see that A0 is

transported along geometrical optics rays. Multiplied with A∗0, equation (2.50b) takes the form of
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a steady-state continuity equation, namely,

∇x ·
(
vx |A0|2

)
= 0. (2.54)

This last equation expresses the conservation of the beam energy at the leading order in the limit

κ→∞. Note that no sources or dissipation is present in (2.46). The exact energy transport of

the electric field is proportional to the normalized Poynting flux:

F (x) = 1
iκ

(
E†(x)∇xE(x)−∇xE†(x)E(x)

)
. (2.55)

Analogously to [16], the WKB ansatz for lowest order in κ−1 yields F = F0 +O(κ−1) with

F0(x) = 2 |A0(x)|2∇xS(x) = |A0(x)|2 vx(x). (2.56)

Here, the velocity (2.52) and the definition of the refractive index (2.49) have been accounted for.

This shows that (2.54) describes energy conservation within the geometrical optics approximation.

The fact that equations (2.50) can be solved by tracing a set of rays makes geometrical optics

computationally very efficient. Ray tracing codes have been the main tool for the study of

waves in inhomogeneous plasmas in the short wavelength limit. Nevertheless, the approach of

geometrical optics breaks down in some situations. Two examples in a two-dimensional geometry

x = (x, y) are displayed in figure 2.1 which shows the bundle of rays (a,c) and the corresponding

Hamiltonian orbits in phase space (b,d), for the case of two-dimensional propagation of beams in

presence of a focal point (a,b) and of a turning point (c,d). In both cases the beam is launched

from the line {x = 0} and propagates towards the negative x-axis. Hamiltonian orbits are smooth

trajectories without crossings. Their congruence determines a hypersurface in the phase space.

When such hypersurface can be written in the form (2.49), we readily have a solution of (2.50a)

as presented in appendix C. One can see that this is not the case near (x = −0.25, y = 0)

for figure 2.1 (b) and near (x = −0.5, y) for figure 2.1 (d). The corresponding geometrical

optics rays are obtained by projecting Hamiltonian orbits into the configuration space and are

shown in figure 2.1 (a,c). For the situation of a focal point shown on top, all rays cross at

(x = −0.25, y = 0) thus violating the requirement (2.49) for which at every point x we can

have only one value of N . This leads to a vanishing beam width at this focal point for which
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the continuity equation (2.54) predicts an infinite amplitude. Both, the zero beam width as well

as the divergent amplitude, are unphysical for finite frequencies. A more detailed analysis [17]

reveals that the geometrical optics ray tracing method does not account for diffractive effects

that are crucial near focal points. For the case of a turning point shown in figure 2.1 (c), the rays

are reflected at x = −0.5. Again, just at the point where the rays change their direction, several

values for N are present which cannot properly be described using geometrical optics. The points

where such projection singularities occur are called caustics. For a more mathematical study on

caustic points, the reader might refer to [18].

It was seen in this section that geometrical optics is a simple approach which allows to compute

the electric field in the semiclassical limit. However, the results projected on configuration space

are inadequate for several situations as for example focal points or turning points. The physical

meaning of the WKB ansatz for the wave field consists in assuming that for each point x only one

value N(x) for the refractive index is present and hence, the field locally near each point can be

approximated by a plane wave. In order to unfold the projection singularities, one should resolve

different values N of the refractive index at each configuration space point x. In the next section,

a quantity is presented which provides a phase space description of the electric field and hence is

suitable for such purposes.
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2.3. Geometrical optics and ray tracing

Figure 2.1.: Two-dimensional geometrical optics rays (a,c) and the corresponding Hamiltonian
orbits (b,d) in phase space. The Lagrangian manifold is visible as a congruence of the
orbits. They are launched at x = 0 and propagate to the left. Two different situations
are shown: On top (a,b) the rays show a focal point. At the bottom (c,d), the media is
such that a turning point is present.
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2.4. Spectral operator and Wigner function

In the last section, it was seen that geometrical optics is a fundamental tool for simulations of

high frequency waves and yet it is limited by the singularities of the projection from phase space

to configuration space. A phase space description not restricting the distribution of rays to a

Lagrangian manifold should solve the problem. In this section, a representation of the wave field

in phase space is introduced. Furthermore, its connection to symbol calculus is presented. Again,

the concept is not restricted to the electric field and the general field ψ is considered.

Let us begin with the spectral operator W (also referred to as density operator in quantum

mechanics) of the wave field ψ ≡ ψ(x) under investigation. This is defined in terms of its kernel

w(x, x′) = ψ(x)ψ(x′)†, (2.57)

where "†" denotes the Hermitian conjugate (i.e. the complex conjugate of the transpose). If the

corresponding operator is applied to a test function f(x), the result is the projection of f on the

wave field ψ, namely

W (f)(x) =
∫
w(x, x′)f(x′)dx′ = ψ(x)

∫
ψ(x′)†f(x′)dx′. (2.58)

It is convenient to introduce the notation

W = ψψ† (2.59)

for the operator W , where ψψ† should be interpreted as a tensor product in the space of functions

{ψ}, which is (2.58).

The symbol map (2.29) applied to the spectral operator yields

w(x,N) =
∫
e−iκN ·sw(x, x− s)ds = e−iκN ·xψ(x)ψ̂†(N). (2.60)

It is worth noting that w(x,N) might not be a symbol in the sense of section 2.2.1. Nevertheless

the Fourier transform implied by the definition of σL (2.29) makes sense also for operators more

general than pseudo-differential operators. With abuse of language, we shall call w(x,N) symbol

of W , but the reader should be aware of the difference.
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In the last step, the Fourier transform (2.19a) of the wave field ψ̂(N) has been inserted, splitting

the symbol w(x,N) into a product of the wave field itself and its Fourier transformed. Therefore,

it is clear that it is significantly different from zero near phase space points (x,N) where both

ψ(x) as well as ψ̂(N) are significant. Thus, this symbol gives a statement on the phase space

distribution of the electric field and therefore, in principle, could be used as a phase space

representation.

On the other hand, the construction of w(x,N) requires both ψ(x) and ψ̂(N), with similar

projection singularities as encountered in geometrical optics [8]. It turns out that the symmetrized

version of the symbol of the spectral operator, referred to as Weyl symbol, does not show this

problem of unexpected singularities. Moreover, as it will be seen later on in this section, a

relatively easy physical interpretation for the Weyl symbol can be given. The Weyl symbol of the

spectral operator is obtained by applying the symbol map (2.34) on the kernel w(x, x′), with the

result

W (x,N) =
∫
e−iκN ·sψ

(
x+ s

2

)
ψ†
(
x− s

2

)
ds. (2.61)

This equation is also referred to as Wigner transform. As for (2.60), W (x,N) is not a symbol

in the sense of section 2.2.1; indeed, it is generally a singular distribution. However, the word

"symbol" referred to W (x,N) is an abuse of language which is common in literature. The phase

space representation W (x,N) of the wave field is also called Wigner function of the wave field,

although, when ψ is a vector, W (x,N) is a matrix. It has the nice properties relating its partial

integrals to physical and spectral energy distributions, namely

(
κ

2π

)m ∫
Tr W (x,N)dN = |ψ(x)|2 , (2.62a)∫
Tr W (x,N)dx =

∣∣∣ψ̂(N)
∣∣∣2 , (2.62b)

for a wave field in an m-dimensional space. Here, Tr denotes the trace of a matrix. In case of

the electric field, ψ = E, integral (2.62a) yields the electric field energy density (energy density

resolved in x), whereas the second integral (2.62b) provides the spectrum of the electric field

(energy density resolved in N ). Therefore, the Wigner function would be a good candidate as

a phase space energy density. Unfortunately, in general, the Wigner function might become
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negative, thus such interpretation is not generally appropriate. One refers to the Wigner function

as an energy quasi-density in phase space. However, we remember that the Wigner function

integrated as is done in (2.62) behaves like an energy density in phase space.

To get familiar with the Wigner function, in the following two examples are presented. In the

second one, in particular, the Wigner function becomes negative at some points.

2.4.1. Example 1: Geometrical optics ansatz

In the WKB ansatz (2.47) for geometrical optics, to lowest order in κ−1, the electric field is

approximated by

E(x) = A0(x)eiκS(x). (2.63)

For simplicity, we shall assume that E(x) and A0(x) are scalar fields, implying that the polariza-

tion of the electric field is fixed. Formula (2.61) with ψ = E provides the Wigner function of the

electric field

W (x,N) =
∫
e−iκN ·s+iκS(x+s/2)−iκS(x−s/2)A0

(
x+ s

2

)
A†0

(
x− s

2

)
ds. (2.64)

It is assumed that the amplitude A(x) and the refractive index vector N(x) = ∇xS(x) are slowly

varying in space. Therefore, a Taylor expansion of the amplitude to zeroth order and of the

eikonal to first order are appropriate with a remainder O(κ−1):

W (x,N) =
∫
e−iκ(N−∇xS)·s |A0(x)|2 ds+O(κ−1). (2.65)

Given the fact that the only s-dependence in the integral is at the exponent, it can be computed

analytically and one finds

W (x,N) =
(2π
κ

)m
|A(x)|2 δ(N −∇xS) +O(κ−1). (2.66)

For a physical electric field, the dimensionality must be set to m = 3. The result in (2.66) shows

again that the restriction of the geometrical optics ansatz consists in taking one value for the

refractive index N for each position x, as it is expressed here by the δ-distribution.
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2.4. Spectral operator and Wigner function

2.4.2. Example 2: Superposition of plane waves

Here an example is presented which shows the problem of the interpretation of the Wigner

function as an energy density in phase space. Let the electric field be the superposition of two

plane waves,

E(x) = eiκx·N0 + e−iκx·N0 , (2.67)

with refractive indices N0 and −N0, respectively. Computing the Wigner function (2.61) yields

W (x,N) =
(2π
κ

)m
[δ(N −N0) + δ(N +N0) + 2 cos (2κx ·N0) δ(N)] (2.68)

and from this Wigner function the electric field energy density, obtained via (2.62a), is

|E(x)|2 = 2 + 2 cos (2κx ·N0) . (2.69)

The first two terms in (2.68) reproduce the phase space energy density contributions one would

have expected for the two plane waves which are singularly supported at the prescribed values

of the refractive index, i.e. N = N0 and N = −N0. In addition, the term 2 cos (2κx ·N0) δ(N)

appears, which leads to the well-known interference pattern in the energy density (2.69). It

is centered at N = 0 and oscillatory in x which means that W might become negative when

N = 0. Such negative values for the Wigner function are incompatible with the interpretation

of W as a phase space energy density. However, when the limit κ → ∞ is considered, the

oscillation period asymptotically goes to zero. Therefore, integrating the Wigner function even

on a small interval, the oscillatory part will vanish because positive and negative contributions

cancel out. Nevertheless, it can be proven that in the semiclassical limit κ → ∞, the Wigner

function approaches a well-defined positive measure on phase space, the calculation of which is

the main purpose of this work.
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3
The wave kinetic equation

The previous chapter contains an overview on pseudo-differential operator calculus, symbol

calculus and basic ideas from geometrical optics. In addition, a phase space representation of the

wave field in terms of the Wigner function is presented. Equations describing the behavior of the

Wigner function in phase space are now required.

In this chapter, such equations are derived. We begin with the simple case of propagation

without absorption and fluctuations of the medium. Next, also these two effects are included

and a discussion on some special related topics follows. The chapter is completed by the outline

of a framework for a phase space description of wave beams: This comprises the extension of

physical boundary conditions for the wave field to phase space, as well as the reconstruction of

physical observables from the Wigner function.
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3. The wave kinetic equation

3.1. Weyl phase space representation of the wave equation

In this section, the evolution equation for the Wigner function is derived from the wave equation,

neglecting absorption and short scale fluctuations. These physical effects are introduced later in

section 3.2. The derivation follows the work of McDonald [8].

Let us begin with an abstract wave equation of the form

Dψ = 0, (3.1)

where D is a pseudo-differential operator referred to as dispersion operator. It is assumed that this

operator is Hermitian and, thus, also its Weyl symbol D(x,N) is a Hermitian matrix. Physically,

such an assumption does not allow us to describe the effect of absorption, which corresponds to a

non-Hermitian part in the wave equation operator. However, it is useful to present the basic idea

of phase space formulation of the wave equation for a simpler problem first.

The abstract vector Dψ is multiplied with its adjoint from the right, the multiplication being in

the sense of the tensor product defined in equation (2.58). The result is

Dψψ†D† = 0. (3.2)

Multiplied from the right with the inverse
(
D†
)−1

it yields

Dψψ† = 0. (3.3)

Here, the spectral operator W as defined in (2.58) is identified:

DW = 0. (3.4)

This shows that, if a non-vanishing solution W is considered, the dispersion operator is singular

and the inverse D−1 cannot be properly defined. Hence, the step from (3.2) to (3.3) is not trivial

to justify. For the moment, we note that even if the inverse itself does not exist, it can be given

sense to it in terms of propagators, addressed in section 3.4, so that formally we can assume that

the inverse exists.
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3.1. Weyl phase space representation of the wave equation

Equation (3.4) is translated into an equation involving the Weyl symbol D(x,N) of the disper-

sion operator and the Wigner function W (x,N) of the wave upon making use of the symbol map

(2.34) and the symbol product rule (2.40), with the result

D(x,N) ? W (x,N) = D (x,N) e
i

2κ

[←−
∂x·
−→
∂N−

←−
∂N ·
−→
∂x
]
W (x,N) = 0. (3.5)

When the Taylor series of the exponential is used, equation (3.5) becomes

∞∑
k=0

1
k!

(
i

2κ

)k
D(x,N)

(←−
∂x ·
−→
∂N −

←−
∂N ·
−→
∂x
)k
W (x,N) ∼ 0, (3.6)

in the sense of asymptotic series in the semiclassical limit κ→∞. Specifically, the sign "∼" is

used instead of the equality to recall that asymptotic series do not converge to a unique sum, but

have a remainder of order O(κ−∞), this is, smaller than O(κ−n) for every positive n.

It was stated in section 2.1 that for the case of millimeter wave propagation in fusion plasmas,

the background parameters are such that the semiclassical limit is a reasonable approximation.

If also fluctuations which might have a much shorter scale length are considered, this could no

longer be true, requiring a special treatment for fluctuations presented in the next section.

In the limit κ → ∞, different orders of κ−1 can be separated. The two leading orders for

equation (3.6) read

O(1) : D(x,N)W (x,N) = 0, (3.7a)

O(κ−1) : − i

2κD(x,N)
(←−
∂x ·
−→
∂N −

←−
∂N ·
−→
∂x
)
W (x,N) = 0. (3.7b)

In equation (3.7) both D(x,N) and W (x,N) are matrices, and a matrix product is implied. In

addition one should note that the derivation of (3.7) by direct separation of orders in (3.6) is

not entirely rigorous, as a perturbation series for W should be employed instead. However, it

is possible to show [19] that equation (3.7) correctly determines the semiclassical limit of the

Wigner function; hence, W (x,N) in (3.7) should be interpreted as the semiclassical limit of the

Wigner function.

The O(1) equation (3.7a) yields a non-vanishing solution for the Wigner function W only on

the surface defined by detD(x,N) = 0. This is called dispersion variety. Equation (3.7a) is

therefore equivalent to the dispersion equation. In this thesis, with some abuse of language, it
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3. The wave kinetic equation

is also referred to as dispersion relation for simplicity. The O(κ−1) equation (3.7b), using the

definition of the Poisson brackets (C.4), states

{D,W} = 0. (3.8)

Let us remark that, for matrix-valued arguments, Poisson brackets imply a matrix multiplication,

namely,

{D,W}ij = {Dik,Wkj} = ∂NDik∂xWkj − ∂xDik∂NWkj , (3.9)

with Einstein’s sum convention.

Equation (3.8) has the form of a steady state kinetic equation and will yield the evolution of

the Wigner function from an antenna plane into phase space, cf. chapter 4. It will alternatively

be referred to as evolution equation or wave kinetic equation. In principle, formulas (3.7) being

simple enough, would be a good starting point for further calculations.

3.2. Derivation of the wave kinetic equation for dispersive,

weakly dissipative, and random media

In the last section, the idea how an equation describing the Wigner function can be formulated

was presented. However, the effect of fluctuations could not be treated directly, because random

fluctuations might have short scale oscillations breaking the limit κ→∞. Moreover, inclusion

of wave absorption breaks the Hermiticity of the dispersion operator. In this section, instead,

a somewhat more sophisticated approach is used. Fluctuations are treated separately and the

limit κ→∞ is only considered when it is appropriate. In addition, the limit of weak dissipation

is considered. The derivation follows basically [9]. The underlying idea for the separation of

different orders was presented in [20] years before and consists in dividing the operator D into

one contribution D0, a separate contribution δDF containing the (possibly short scale length)

fluctuations of the medium and a third part δ2DA containing the effect of absorption, i.e.

D = D0 + δDF + δ2DA. (3.10)
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3.2. Derivation of the wave kinetic equation for dispersive, weakly dissipative, and random media

The parameter δ plays the role of an ordering parameter. It will be assumed small, reflecting

the assumption of a weakly fluctuating and dissipative medium. This ordering is discussed in

more detail later in this section. The lowest-order part of the wave operator D0 as well as the

fluctuating part DF are assumed to be Hermitian, whereas the absorption part DA is described by

an anti-Hermitian operator.

The wave equation written in terms of this perturbed operator is

(
D0 + δDF + δ2DA

)
ψ = 0. (3.11)

In analogy to the previous section, this wave equation is multiplied with its adjoint from the right,

with the result that

(
D0 + δDF + δ2DA

)
ψψ†

(
D†0 + δDF + δ2D†A

)
= 0. (3.12)

Here, we properly put the adjoint signs also to the Hermitian operator D0. Analogously to the last

section, when the inverse of D0 is considered, propagators are involved and D−1
0 and

(
D†0

)−1

must be distinguished, cf. section 3.4. Instead, the "†" is dropped for the operator DF , accounting

for its Hermiticy and regularity.

Again, the spectral operator W = ψψ† is identified in equation (3.12). Multiplying with D−1
0

from the left and with
(
D†0

)−1
from the right, one obtains

W = W0−δ
(
WDF

(
D†0

)−1
+D−1

0 DFW

)
−δ2

(
D−1

0 DFWDF

(
D†0

)−1
+D−1

0 DAW +WD†A

(
D†0

)−1
)
, (3.13)

where contributions of order O(δ3) and higher are neglected. The term W0 has been added on

the r.h.s. so that when fluctuations and absorption vanish (δ = 0), the Wigner function W is a

solution of the corresponding wave equation (3.4), labeled with an index "0" in this section:

D0W0 = 0. (3.14)
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3. The wave kinetic equation

As a consistency check, let us do the step backwards from (3.13) to (3.12), i.e. multiplying

equation (3.13) with D0 from the left and with D†0 from the right. This makes the additional term

W0 disappear and justifies its introduction by hand in (3.13).

Equation (3.13) contains the random term DF accounting for random fluctuation of the medium.

Therefore, the solution W is a random variable: In correspondence of a realization DF of the

random fluctuation of the medium we find a solution W ; moreover, a sample of the random field

DF will produce a sample of solutions for the spectral operator W , characterized by a certain

distribution. Here we are only interested in a deterministic equation that describes the average

of W . With this aim equation (3.13) is averaged over several realizations of the fluctuations,

denoted by E(·). It is assumed that the mean value of the fluctuation vanishes, i.e.

E(DF ) = 0. (3.15)

On the r.h.s. of equation (3.13), there are products of W and DF . When it comes to the

computation of the average E(·) of such terms, there is the difficulty that the solution W will

depend on the realization of the fluctuation DF and, thus, W and DF are not statistically

independent. This problem can easily be avoided by using equation (3.13) iteratively to remove

W from the r.h.s. until only terms dependent on W0 and terms of order O(δ3) and higher are left.

Neglecting those high-order terms, the result yields

W = W0 − δD−1
0 DFW0 − δW0DF

(
D†0

)−1

+ δ2D−1
0 DFD

−1
0 DFW0 + δ2D−1

0 DFW0DF

(
D†0

)−1

+ δ2W0DF

(
D†0

)−1
DF

(
D†0

)−1
− δ2D−1

0 DAW0 − δ2W0D
†
A

(
D†0

)−1
. (3.16)

Next the averaging of the wave equation over fluctuation realizations is performed. According

to (3.15), all terms linear in DF will vanish, but the average of higher powers of DF must be

retained, with the result

E(W ) = W0 + δ2D−1
0 E

(
DFD

−1
0 DF

)
W0 + δ2D−1

0 E (DFW0DF )
(
D†0

)−1

+ δ2W0E
(
DF

(
D†0

)−1
DF

)(
D†0

)−1

− δ2D−1
0 DAW0 − δ2W0D

†
A

(
D†0

)−1
. (3.17)
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3.2. Derivation of the wave kinetic equation for dispersive, weakly dissipative, and random media

Multiplying with D0 from the left, the equation simplifies to

D0E(W ) = δ2E
(
DFD

−1
0 DF

)
W0 + δ2E (DFW0DF )

(
D†0

)−1
− δ2DAW0. (3.18)

Here, the wave equation for the non-fluctuating and non-dissipative case (3.14) has been accounted

for. It is seen that, as a consequence of the ordering of equation (3.10), the effects of fluctuations

and absorption enter at the same order in δ. Equation (3.17) allows us to compute the spectral

operator averaged over fluctuation realizations E(W ), given the non-perturbed solution W0; the

difference between the two is

E(W )−W0 = O(δ2). (3.19)

As we restrict ourselves to orders of O(δ2), W0 on the right in equation (3.18) can be replaced

with E(W ) with negligible fourth order corrections. This provides a closed equation describing

E(W ):

D0E(W ) = δ2E
(
DFD

−1
0 DF

)
E(W ) + δ2E (DFE(W )DF )

(
D†0

)−1
− δ2DAE(W ). (3.20)

As pointed out in section 2.1, considering wave propagation in plasmas, equation (3.20) is

an integro-differential equation. It describes the average spectral operator E(W ), and it has

deterministic coefficients. When such coefficients depend weakly on the position x, semiclassical

asymptotics can be applied even though DF in the original equation (3.11) exhibits short-scale

random variations.

In analogy to the previous section, equation (3.20) can be formulated in terms of Weyl symbols

and the Wigner function using the Moyal-Weyl product rule (2.40):

D0 ? E(W ) = δ2E
(
σW

(
DFD

−1
0 DF

))
? E(W ) + δ2E

(
σW (DFE(W )DF )

)
? D−1

0

− δ2DA ? E(W ). (3.21)

The products involving fluctuations DFADF with A = D−1
0 or A = E(W ) on the r.h.s. are

referred to as triple products. Note that the average operator E commutes with the symbol map

σW , thus, changing the order of application has no effect on the result.
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3. The wave kinetic equation

As a next step, these triple products are investigated: The effect of an operator DFADF on a

test function f(x) is computed explicitly. First, the effect of DF is discussed, then A acts on the

result of this operation, and at last DF is applied on the left. It is assumed that the operator DF

containing the fluctuations is local and does not involve differential operators. This will suffice

for the applications considered in this thesis. The Weyl symbol map (2.33) shows that in this case

the Weyl symbol DF (x,N) of DF does not depend on N , i.e. DF (x,N) ≡ DF (x). The action

of the operator on a test function f(x) then simply consists in the multiplication with the Weyl

symbol:

DF (f)(x) = DF (x)f(x). (3.22)

Also A given in terms of its Weyl symbol A(x,N) applied on this result, according to the Weyl

quantization rule (2.36), yields

(ADF ) (f)(x) =
(
κ

2π

)m ∫
eiκ(x−x′)·NA

(
x+ x′

2 , N

)
DF (x′)f(x′)dNdx′. (3.23)

The last application of DF again just being a multiplication with DF (x) gives the final result

(DFADF ) (f)(x) =
(
κ

2π

)m ∫
eiκ(x−x′)·N

×DF (x)A
(
x+ x′

2 , N

)
DF (x′)f(x′)dNdx′. (3.24)

In this last formula the kernel of the triple product DFADF

(DFADF ) (x, x′) =
(
κ

2π

)m ∫
eiκ(x−x′)·NDF (x)A

(
x+ x′

2 , N

)
DF (x′)dN (3.25)

is identified. The symbol map (2.33) yields the corresponding Weyl symbol

σW (DFADF ) (x,N) =
(
κ

2π

)m ∫
eiκ(N ′−N)·s

×DF

(
x+ s

2

)
A (x,N)DF

(
x− s

2

)
dN ′ds. (3.26)

When symbol calculus was presented in section 2.2, it was stated that the Weyl symbols we are

dealing with are matrix-valued functions and it is not obvious if they commute. However, the
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3.2. Derivation of the wave kinetic equation for dispersive, weakly dissipative, and random media

fluctuations are an input for the simulation. Thus, it is advantageous to rearrange the symbols

in (3.26) such that fluctuations are singled out. Therefore, the matrix multiplication is written

out explicitly in terms of matrix components using Einstein’s summation convention on repeated

indices:

σW (DFADF )ij (x,N) =
(
κ

2π

)m ∫
eiκ(N ′−N)·s

×DF,ia

(
x+ s

2

)
DF,bj

(
x− s

2

)
Aab (x,N) dN ′ds. (3.27)

After applying the statistical average operator E which commutes with both integrals, and formally

exchanging the order of integration, fluctuations are entirely described by

Giabj(x,∆N) =
(
κ

2π

)m ∫
e−iκ∆N ·sE

(
DF,ia

(
x+ s

2

)
DF,bj

(
x− s

2

))
ds, (3.28)

which is up to a prefactor the Wigner transformation applied to the two-point fluctuation correla-

tion function E (DF,ia(x)DF,bj(x′)). With definition (3.28), formula (3.27) for the Weyl symbol

of the triple product simplifies to the convolution

σW (E (DFADF ))ij (x,N) =
∫
Giabj(x,N −N ′)Aab (x,N) dN ′. (3.29)

One should note thatA is usually singular in the cases we are considering; in fact, ifA is either the

propagator D−1
0 or the averaged Wigner function E(W ), A(x,N) is singular on the dispersion

variety. On the other hand, G(x,N) is typically smooth, so that the convolution regularizes A.

The result σW (E (DFADF )) is assumed to be a symbol, an assumption which is fulfilled in

the cases of interest. This justifies the use of the Moyal-Weyl formula in (3.21), which upon

accounting for (3.29) yields

(D0 ? E(W ))ij (x,N) = δ2
[∫

Giabk(x,N −N ′)D−1
0,ab(x,N

′)dN ′
]
? E(W )kj(x,N)

+ δ2
[∫

Giabk(x,N −N ′)E(W )ab
(
x,N ′

)
dN ′

]
?
(
D†0

)−1

kj
(x,N)

− δ2DA,ik(x,N) ? E(W )kj(x,N). (3.30)
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3. The wave kinetic equation

At this point there are two ordering parameters involved in the theory. One is δ, which measures

the strength of fluctuations and of absorption and is assumed to be small. The other is κ, which,

in the short wavelength limit, is assumed to be large and enters through the Moyal-Weyl products.

A simple ordering is suggested in [20], namely:

κ−1 = δ2 (3.31)

The ordering of absorption effects to be O
(
κ−1) as compared to the Hamiltonian part of the

dispersion operator describing wave propagation is customary in the theory of high-frequency

waves in plasmas [3], [4], [5]. Physically, this is appropriate for weak effects of fluctuation and

absorption. Considering zeroth order terms O(1) of equation (3.30), the r.h.s. does not give any

contribution and one obtains

D0(x,N)E(W )(x,N) = 0. (3.32a)

This is the dispersion relation already found in section 3.1 for the case without fluctuations and

absorption. So the solutions E(W )(x,N) are still singularly restricted to the dispersion variety

detD0(x,N) = 0. For the order O(κ−1) equation, terms of order O(δ2) have to be kept on the

r.h.s., with the result that

− i2 {D0(x,N),E(W )(x,N)}ij =
∫
Giabk(x,N −N ′)

×
[
D−1

0,ab(x,N
′)E(W )kj(x,N)

+ E(W )ab
(
x,N ′

) (
D†0

)−1

kj
(x,N)

]
dN ′

−DA,ik(x,N)E(W )kj(x,N). (3.32b)

Here, again the definition of the Poisson bracket (C.4) is used. This last equation is the wave

kinetic equation in case fluctuations and absorption are present.

In this section, applying the semiclassical limit whenever appropriate, dispersion relation (3.32a)

and an evolution equation (3.32b) for the statistically averaged Wigner function of the wave

field are derived. The effects of fluctuations and absorption are taken into account under the

assumption that their level measured by δ and δ2 fulfils δ2 ≈ κ−1. As a matter of fact, the
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3.3. Mode decomposition

functions involved are tensors because the wave field under investigation is vector-valued. In the

next section, it will be seen how the problem can be decomposed in normal modes so that a scalar

description is appropriate. One more point needs to be discussed further, namely, the existence of

the formal inverse D−1
0 . This issue is delayed to section 3.4.

3.3. Mode decomposition

In the last section, the dispersion relation (3.32a) and the wave kinetic equation (3.32b) have been

derived. They describe the propagation of the Wigner function of the wave field. As vector valued

waves are considered, the Wigner function is a tensor. It would be easier to deal with scalar

functions. In this section, a mode decomposition of the vector valued wave field is performed.

Furthermore, we shall prove that the scalar functions that describe the modes independently are

real valued. Therefore, the wave equation is projected on the eigenmodes of the wave field. Note

that this section reviews a sketch of the derivation, which involves a lengthy calculation [21].

We consider the asymptotic series expansion of the averaged Wigner matrix, thus splitting the

different orders of E(W ), i.e.

E(W )(x,N) = W (0)(x,N) + 1
κ
W (1)(x,N) +O

(
κ−2

)
, (3.33)

with the zeroth order contribution W (0) representing the semiclassical limit we are interested

in. Here, W (1) is the first-order corrector which we do not compute explicitly; it is however

important to check that corrections remain bounded so that (3.33) makes sense as an asymptotic

series. With the perturbation series (3.33), the first two orders of wave equation (3.30) read

D0(x,N)W (0)(x,N) = 0, (3.34a)

D0(x,N)W (1)(x,N) = V (W (0))(x,N), (3.34b)

where V (W ) contains the Poisson bracket as well as fluctuations and absorption:

V (W (0))ij(x,N) = VP (W (0))ij(x,N) + VF (W (0))ij(x,N) + VA(W (0))ij(x,N) (3.35)
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3. The wave kinetic equation

with

VP (W (0))ij(x,N) = i

2
{
D0(x,N),W (0)(x,N)

}
ij

(3.36a)

VF (W (0))ij(x,N) =
∫
Giabk(x,N −N ′)

[
D−1

0,ab(x,N
′)(W )0,kj(x,N)

+W0,ab
(
x,N ′

) (
D†0

)−1

kj
(x,N)

]
dN ′ (3.36b)

VA(W (0))ij(x,N) = −DA,ik(x,N)W0,kj(x,N). (3.36c)

Since the averaged Wigner matrix is Hermitian, we are interested in Hermitian solutions of

(3.34). Let eα(x,N) (α = 1, 2, . . . , n) be the set of ortho-normal basis vectors which diagonalize

D0(x,N). Then, it follows from equation (3.34a) that a Hermitian solution W (0) is also diagonal

in this basis, so that it is appropriate to write

D0(x,N) =
∑
α

Hα(x,N)eα(x,N)e†α(x,N), (3.37a)

W (0)(x,N) =
∑
α

wα(x,N)eα(x,N)e†α(x,N) (3.37b)

with Hα and wα being the eigenvalues of D0 and W (0), respectively. Then, equation (3.34a)

takes the form of decoupled scalar equations,

Hα(x,N)wα(x,N) = 0 (3.38)

for α = 1, . . . , n (no implicit sum). This is the dispersion relation for the decomposed modes

labelled by α. It states that the Wigner function wα(x,N) for mode α is singularly supported on

the dispersion surface Hα(x,N) = 0 corresponding to mode α.

Unlike the previously presented matrices, the first-order contribution W (1) is not necessarily

diagonal, but it can be decomposed using eα as a basis, namely

W (1)(x,N) =
∑
α,β

w
(1)
αβ (x,N)eα(x,N)e†β(x,N). (3.39)

We wish to construct Hermitian-valued solutions even including the first-order approximation.

This is obtained from a Hermitian first order corrector matrix W (1). The condition that W (1) is
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3.3. Mode decomposition

Hermitian implies that the coefficients w(1)
αβ in equation (3.39) must be of the form

w
(1)
αβ = w

(1)∗
βα , (3.40)

where the "*" denotes complex conjugation. With Hermitian solutions, the first-order equation

(3.34b) and its Hermitian conjugate projected on e†α from the left and on eβ from the right read

Hαw
(1)
αβ = e†αV eβ, (3.41a)

Hβw
(1)
αβ = e†αV

†eβ. (3.41b)

Equation (3.41b) is subtracted from equation (3.41a), with the result that

α = β : 0 = e†α

(
V − V †

)
eα, (3.42a)

α 6= β : w
(1)
αβ =

e†α

(
V − V †

)
eβ

Hα −Hβ
. (3.42b)

Here, the condition for α 6= β has been divided by Hα −Hβ , assuming that no degeneracy of

the eigenvalues Hα is present, so that this difference never vanishes. Physically, this assumption

implies that no mode conversion occurs in the considered phase space domain. In this thesis

linear mode conversion [22] is not considered as typically it is not an issue for the applications

under consideration.

Equations (3.42) are necessary conditions that must be fulfilled for Hermitian solutions to exist.

Condition (3.42b) explicitly provides the off-diagonal parts of W (1). We next have to see if this

W (1) solves wave equation (3.34b), which would mean that, indeed, the off-diagonal terms given

in (3.42b) are a solution for the wave equation to first order. Multiplying equation (3.42b) by Hα

one obtains

Hαw
(1)
αβ = Hαe

†
αV eβ −Hαe

†
αV
†eβ

Hα −Hβ
. (3.43)

Note that a comparison of (3.41a) multiplied with Hβ and (3.41b) multiplied with Hα yields

Hβe
†
αV eβ = Hαe

†
αV
†eβ. (3.44)
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3. The wave kinetic equation

This relation is used to replace the second term in the numerator in (3.43), yielding

Hαw
(1)
αβ = Hαe

†
αV eβ −Hβe

†
αV eβ

Hα −Hβ
= e†αV eβ. (3.45)

Hence, the r.h.s. of wave equation (3.41a) is recovered. This shows that, indeed, the off-diagonal

terms of the Hermitian W (1) solve the equation.

In order to obtain the wave kinetic equation, V from (3.35) is substituted into the necessary

condition for the diagonal terms (3.42a). Let us split the computation in the Poisson bracket

part, fluctuation part and absorption part and start with the last one: Upon defining a real valued

absorption coefficient

γα := e†α

[
i

2(DA −D†A)
]
eα, (3.46)

the projection on part (3.36c) reads

e†α

(
VA(W (0))− V †A(W (0))

)
eα = 2iγαwα. (3.47)

For the part describing fluctuations, we first need to specify the "inverse"

D−1
0 (x,N) =

∑
α

eα(x,N)e†α(x,N)
Hα(x,N)− iε . (3.48)

Here, in the denominator a small imaginary contribution −iε is added by hand. The inverse is

obtained in the limit ε→ 0. However, this imaginary part ensures existence of the inverse even

if vanishing eigenvalues are considered. A more detailed discussion on this issue follows in

section 3.4. Then, inserting (3.36b) into condition ((3.42a)) yields

e†α

(
VF (W (0))− V †F (W (0))

)
eα =

∫ ∑
β

Gαβ(x,N,N ′)

×
[

wα(x,N)
Hβ(x,N ′)− iε + wβ(x,N ′)

Hα(x,N) + iε
− c.c.

]
dN ′ (3.49)

where "c.c." denotes the complex conjugate part and

Gαβ(x,N,N ′) := e†α,i(x,N)eα,k(x,N)e†β,a(x,N
′)eβ,b(x,N ′)Giabk(x,N −N ′). (3.50)
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3.3. Mode decomposition

One can verify that Gαβ(x,N,N ′) is real-valued as a consequence of the condition DF = D†F .

The term in square brackets in (3.49) is purely imaginary, hence,

e†α

(
VF (W (0))− V †F (W (0))

)
eα = 2i

∫ ∑
β

Gαβ(x,N,N ′)

× Im

[
wα(x,N)

Hβ(x,N ′)− iε + wβ(x,N ′)
Hα(x,N) + iε

]
dN ′ (3.51)

Finally, the Poisson bracket part is found to be [21]

e†α

(
VP (W (0))− V †P (W (0))

)
eα = i {Hα, wα} . (3.52)

Inserting equations (3.47), (3.51) and (3.52) into condition (3.42a) via the decomposition (3.35)

yields the mode-decomposed wave kinetic equation

− i2 {Hα(x,N), wα(x,N)} = i

∫ ∑
β

Gαβ(x,N,N ′)

× Im
[

wα(x,N)
Hβ(x,N ′)− iε + wβ(x,N ′)

Hα(x,N) + iε

]
dN ′

+ iγα(x,N)wα(x,N). (3.53)

It can be seen that also the Wigner function of mode β has an impact on the evolution of mode α.

This is interpreted as mode-to-mode scattering due to the presence of fluctuations. For the case of

waves in plasmas, on one hand, the modes are assumed to be non-degenerate and the different

branches of the dispersion variety in phase space well-distinguished by a minimum distance

∆Nmodes at a given point x. For the problem of fluctuations in fusion plasmas, we assume that

the fluctuation spectrum G(x,N,N ′) is such that the "gap" ∆Nmodes to change mode is not

bridged, i.e. G(x,N,N ′) decreases fast with increasing N −N ′ and for |N −N ′| ≥ ∆Nmodes,

the contribution is negligible. In this work, we neglect mode-to-mode scattering, assuming that

fluctuations act in a region of the plasma where the modes are well separated. A general estimate

of the validity of this assumption is left for future work. Note that there is no theoretical necessity

for this simplifications. Mode-to-mode scattering is turned off by imposing

Gαβ(x,N,N ′) = Gα(x,N,N ′)δαβ, (3.54)
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3. The wave kinetic equation

where δαβ is Kronecker’s delta. This fluctuation spectrum is substituted into wave kinetic equation

(3.53) and multiplied with 2i. The result reads

{Hα(x,N), wα(x,N)} = Sα(wα)(x,N)− 2γα(x,N)wα(x,N). (3.55)

Here, Einstein’s summation convention does not apply, so there is no sum on α. The operator Sα
acting on wα,

Sα(wα)(x,N) := −2
∫
Gα(x,N,N ′)

× Im
[

wα(x,N)
Hα(x,N ′)− iε + wα(x,N ′)

Hα(x,N) + iε

]
dN ′, (3.56)

is defined. It is referred to as scattering operator and, integrated on the refractive indexN , vanishes.

Physically, this expresses the fact that energy is conserved in the presence of fluctuations, which

are described by Sα.

Summarizing, in this section, the wave kinetic equation has been projected on the eigenmodes

of the dispersion matrix D0(x,N), so that (3.38) and (3.55) form a set of dispersion relation and

wave kinetic equation for scalar Wigner functions wα labeled by a mode index α. In case the

solution under consideration is a superposition of those eigenmodes of the dispersion operator,

owing to the linearity of the wave equation, the problem can be solved for the eigenmodes

independently and the single contributions are added up. In writing (3.55), mode-to-mode

scattering has been neglected; when this approximation fails, the more general expression Gαβ

should be kept in equation (3.53).

The problem of a non-defined inverse ofD0 under the integral in (3.32b) was solved for the mode

decomposed equation (3.55) by adding a small imaginary part to the denominator of vanishing

eigenvalues. However, convergence of the integral in the limit ε→ 0 should be studied further.

This is the issue of the following section.

3.4. Singular integrals

In the previous section, a set of equations for the scalar Wigner function has been derived, namely

the dispersion relation (3.38) and, upon neglecting mode-to-mode scattering, the wave kinetic
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3.4. Singular integrals

Figure 3.1.: Complex plane with considered integration path (red) and singularity (blue). The
part along the real axis is denoted ΓRe. Together with the contributions Γ1 and Γ2
parallel to the real axis, the semi circle Γε around the singularity and the contributions
parallel to the imaginary axis for infinite real parts, a closed path in the complex
plane is obtained.

equation (3.55). There, fluctuations are accounted for in an integral which originally involved the

inverse of the eigenvalue H−1
α (x,N). This inverse, not being defined, was regularized by adding

an imaginary contribution −iε. In the limit ε→ 0, the non-defined inverse is recovered. However,

after integration, the result might converge. In this section, in analogy to [9], we analyze the

convergence of the integral describing fluctuations in the scattering operator (3.56) in the limit

ε→ 0.

Note that this regularization procedure is well-known in physics in the framework of propagators,

e.g. in the field of quantum electrodynamics [23]. However, in this physical problem, the sign

of the imaginary part is determined by causality. Instead, we are solving a steady state equation

and no such argument can be applied. Therefore in this thesis we pick the sign which yields

reasonable results.

First, an integral on generic functions f and g which has the same structure as in (3.56) is

investigated, namely

Iε =
∫ +∞

−∞

f(x)
g(x)− iεdx. (3.57)

Let the function g in the denominator exhibit a zero point at x0 ∈ R, i.e. g(x0) = 0. Now, the

integration path in figure 3.1 is considered. A decomposition of the integration in the single

contributions along Γ1, Γ2 and Γε yields

∮
f(x)

g(x)− iεdx =
∫

ΓRe

f(x)
g(x)− iεdx+

∫
Γ1+Γ2

f(x)
g(x)− iεdx+

∫
Γε

f(x)
g(x)− iεdx, (3.58)
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3. The wave kinetic equation

where the contributions at Re x → ±∞ are negligible in the limit ε → 0 and residue theorem

states that the integral along the closed path vanishes. Equation (3.58) can be solved for the

integral along the real axis (3.57):

Iε =
∫

ΓRe

f(x)
g(x)− iεdx = −

∫
Γ1+Γ2

f(x)
g(x)− iεdx−

∫
Γε

f(x)
g(x)− iεdx. (3.59)

In the limit ε→ 0, the first integral on the r.h.s. is denoted principle value integral

P
∫
f(x)
g(x) dx = − lim

ε→0

∫
Γ1+Γ2

f(x)
g(x)− iεdx, (3.60)

and the second integral can be computed with the residue theorem. It is only half a circle around

the singularity at x0 + iε and hence the integral yields half the contribution of the pole of order

one at the singularity, i.e.

− lim
ε→0

∫
Γε

f(x)
g(x)− iεdx = iπ lim

ε→0
Res

f(x0 + iε)
g(x0 + iε) = iπ

f(x0)
∂g/∂x(x0) . (3.61)

With these results, the integral Iε in the limit ε→ 0 reads

I0 = P
∫
f(x)
g(x) dx+ iπ

f(x0)
∂g/∂x(x0) . (3.62)

The second contribution may also be written in terms of an integral on a δ-distribution, namely:

I0 = P
∫
f(x)
g(x) dx+ iπ

∫
f(x)δ (g(x)) dx. (3.63)

Given real valued functions f and g, the principal value is purely real, whereas the contribution

of the singularity is purely imaginary.

After the foregoing discussion on the generic integral (3.57), we go back to the scattering

operator (3.56). Note that the integral involved there recovers the structure of (3.57) and hence is

computed analogously to (3.63):

Sα(wα)(x,N) = 2π
∫
Gα(x,N,N ′)

[
wα
(
x,N ′

)
δ (Hα(x,N))

−wα(x,N)δ
(
Hα(x,N ′)

) ]
dN ′. (3.64)
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3.4. Singular integrals

In this scattering operator, the minus sign in front of the second term in squared brackets is put,

because the complex conjugate of the denominator is considered. In addition, the principal value

parts, yielding real contributions, are dropped in (3.56), where uniquely the imaginary part of the

square brackets contributes to the wave kinetic equation.1

In the scattering operator (3.64), one singular δ-distribution is integrated away, namely

δ (Hα(x,N ′)), whereas the other one, δ (Hα(x,N)), is not involved in the integration and

hence remains a singular contribution. Therefore, also the l.h.s. of the wave kinetic equation

(3.55) should be singular. We note that the Wigner function is indeed singular due to the dispersion

relation (3.38). The singularity can be made appear explicitly by splitting the Wigner function

into a well-behaved, regular function w̃α(x,N) and the singularity in terms of a δ-distribution,

i.e.

wα(x,N) = w̃α(x,N)δ(Hα(x,N)). (3.65)

Substituted into the Poisson brackets on the l.h.s. of equation (3.55), they become

{Hα(x,N), w̃α(x,N)δ(Hα(x,N))} = {Hα(x,N), w̃α(x,N)} δ(Hα(x,N)). (3.66)

Here, the simplified Leibnitz rule (C.7b) and the fact that {Hα(x,N), Hα(x,N)} ≡ 0 due to

anti-symmetry of the Poisson brackets (C.7a) is used. Formula (3.66) makes sense in terms of

distributions. The derivatives of the δ-distribution involved in the Poisson brackets must be seen

as derivatives in a weak sense as reviewed in appendix B. The splitting of Poisson brackets (3.66)

together with scattering operator (3.64) inserted into the wave kinetic equation (3.55) yield

δ(Hα(x,N)) {Hα(x,N), w̃α(x,N)} =
{

2π
∫
Gα(x,N,N ′)δ(Hα(x,N ′))

×
[
w̃α
(
x,N ′

)
− w̃α(x,N)

]
dN ′

− 2γα(x,N)w̃α(x,N)
}
δ(Hα(x,N)). (3.67)

1The real part (principal part of the integral) contributes to equation (3.34b) for the corrector W (1), which is not
solved in practice.
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3. The wave kinetic equation

A necessary condition imposed by this equation is

{Hα(x,N), w̃α(x,N)} = 2π
∫
Gα(x,N,N ′)δ(Hα(x,N ′))

×
[
w̃α
(
x,N ′

)
− w̃α(x,N)

]
dN ′

− 2γα(x,N)w̃α(x,N) (3.68)

for all (x,N) ∈ {(x′, N ′) : Hα(x′, N ′) = 0}.

This last equation now describes well-behaved functions w̃α(x,N). The dimensionality is

reduced to 2m− 1 because one component of (x,N) is fixed by the condition Hα(x,N) = 0.

The dispersion relation is intrinsic in (3.65), where the singular contribution of the Wigner

function is split up.

In this section, we have seen that a physical interpretation can be given to the mathematically

not defined integrals in the scattering operator (3.56). It was recognized that they give rise to a

singularity which is consistent with the one due to dispersion relation. A wave kinetic equation for

well-behaved functions with the dispersion relation already intrinsic (3.68) was derived in order

to point out the meaning of the singular integrals. When the numerical solution is considered,

however, a more practical starting point is the dispersion relation (3.38) and wave kinetic equation

(3.55) derived in the previous section. The singularity in the integral then is written out explicitly

using the scattering operator (3.64).

3.5. Boundary value problem for the steady-state wave

kinetic equation

Within the last sections, the dispersion relation and the wave kinetic equation were extensively

discussed. In the formulation (3.38) and (3.55) for mode decomposed wave fields, they constitute

a set of equations which describes the behavior of the scalar Wigner function for one single wave

mode. In order to solve these equations, some boundary condition for this Wigner function is

needed.

For the considered physical problem, the wave field on an antenna plane is assumed to be known.

For the moment, the geometry of the antenna plane is taken as in figure 3.2 (a). It is represented by

the set A =
{
x = (x, y) ∈ R× Rm−1 : x = 0

}
. The geometric object representing the antenna
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3.5. Boundary value problem for the steady-state wave kinetic equation

Figure 3.2.: Geometry of the antenna plane (red) (a) in configuration space and (b) extended to
phase space. The spatial dimensions y ∈ Rm−1 and the refractive index N ∈ Rm
are shown as if they were only one dimensional due to illustrative limitations.

plane in phase space is the set Aps =
{
(x, y, N) ∈ R× Rm−1 × Rm : x = 0

}
. Once the wave

field is known on the physical antenna plane A, the Wigner transform (2.61) allows to compute

the scalar Wigner functions w̃α(x = 0, y, Ny) of the initial field with Ny ∈ Rm−1 being the

component of the refractive index N corresponding to the coordinates y. At last, the dispersion

relation (3.65) gives the Wigner function wα(x,N)|Aps
.

As a summary, equations (3.38) and (3.55) together with this boundary condition pose a boundary

value problem for the Wigner function wα(x,N):

Hα(x,N)wα(x,N) = 0, (3.69a)

{Hα(x,N), wα(x,N)} = Sα(wα)(x,N)− 2γα(x,N)wα(x,N), (3.69b)

wα(x,N)|Aps
= known boundary value. (3.69c)

The absorption coefficient is given in (3.46) and the scattering operator can be found in (3.64).

The simplifying geometry presented in this section is not appropriate for applications in toka-

maks. Therefore, it is generalized to more realistic situations in section 7.2. However, this

generalization consists basically in a rotation of coordinate axis and therefore does not contain

any interesting physics.
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3. The wave kinetic equation

3.6. Reconstructing physical observables

In the last section, it was shown how boundary conditions for the Wigner function are formulated

and, hence, how one moves from the physically posed boundary conditions in configuration space

to phase space. To complete a framework for the phase space description of wave beams, in

the end, also the way backwards needs to be done: Once the Wigner function in phase space is

known, it must be reduced to meaningful physical observables.

It is postulated here that such physical observables are computed as integrals of the form

〈A〉Ω =
(
κ

2π

)m ∫
Ω
A(x,N)w(x,N)dxdN. (3.70)

The integration area is Ω =W ×V where x and N run onW and V , respectively. An integral

of the form (3.70) provides the value of A(x,N) (called observable in this thesis) weighted

with the Wigner function w on the area Ω. Here, w(x,N) is the scalar Wigner function of a

specific pre-selected wave mode. Integrals (2.62) averaged over a volume are special cases of

(3.70), obtained by the special choice of the integration area V = Rm orW = Rm for (2.62a) or

(2.62b), respectively. If, in addition, the observable A(x,N) is slowly varying, the interpretation

of the Wigner function as an energy density is appropriate. Instead, interference effects might be

missed if the observation area is chosen small in all direction, this is κ∆x . 1 and κ∆N . 1

for the typical edge lengths ∆x and ∆N of W and V , respectively. This was pointed out in

example 2.4.2.

In the following some observables are considered and their physical meaning is shown.

• The simplest observable is A(x,N) ≡ 1. In this case, integral (3.70) is

〈1〉W×V =
(
κ

2π

)m ∫
W×V

w(x,N)dxdN (3.71)

This is just the phase space energy density summed up over the phase space volumeW×V .

Therefore, 〈1〉W×V yields the energy inside this volume. We consider the fixed point x̄,

and the area

W ⊆ {x ∈ Rm : |x− x̄| ≤ d} , (3.72a)

V = Rm, (3.72b)
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3.6. Reconstructing physical observables

with d� Lw, where Lw is the variational length of the Wigner function,

∣∣∣∣w(x,N)
Lw

∣∣∣∣ ≈ |∇xw(x,N)| . (3.73)

Then, integral (3.71) is a good approximation for

〈1〉W×V ≈
(
κ

2π

)m
|W|

∫
Rm

w(x̄, N)dN. (3.74)

Here

|W| =
∫
W

dx (3.75)

is the volume ofW and it is assumed that w(x,N) does not change significantly when x is

moved around inside the areaW . This is true by definition of the variational length Lw

(3.73) for the Wigner function and the areaW (3.72a). In (3.74), the integral (2.62a) is

recovered. This yields the norm of the wave field amplitude squared which is, in case we

are dealing with an electric field, proportional to the electric field energy density and hence

a physically meaningful observable. Therefore, we call the integral (3.74) built upon the

observable 1 the normalized energy density

E(x) :=
(
κ

2π

)m ∫
Rm

w(x,N)dN. (3.76)

Here, the adjective "normalized" recalls the fact that no physical units are involved.

• Another interesting point is the construction of the energy flow. To this aim, the wave

kinetic equation (3.69b) is integrated on N . Under this integration, the scattering operator

(3.56) vanishes, as stated before. The result yields

∫
{H,w} (x̄, N)dN = −2

∫
γ(x̄, N)w(x̄, N)dN. (3.77)

For the derivatives of the Poisson brackets as defined in (C.4), the product rule is applied:

{H,w} (x,N) = ∂NH(x,N)∂xw(x,N)− ∂xH(x,N)∂Nw(x,N)

= ∂x (∂NH(x,N)w(x,N))− ∂N (∂xH(x,N)w(x,N)) . (3.78)
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3. The wave kinetic equation

Here, the second derivatives of H cancel out. This result is substituted into integral (3.77)

and the second term does not contribute due to the fact that w(x,N) is assumed to vanish

at the boundaries N → ±∞. The remaining parts are

∂x

∫
∂NHwdN = −2

∫
γwdN. (3.79)

Defining the normalized energy flux F (x) and the absorption γ(x)

F (x) :=
(
κ

2π

)m ∫
∂NH(x,N)w(x,N)dN, (3.80)

γ(x) := 2
(
κ

2π

)m ∫ γ(x,N)w(x,N)dN
E(x) , (3.81)

equation (3.79) has the shape of a continuity equation

∇x · F (x) + γ(x)E(x) = 0. (3.82)

For absorption turned off, γ(x) ≡ 0, the energy flux is conserved. Instead, if absorption is

turned on, it constitutes either an energy drain when γ(x) > 0 or an energy source when

γ(x) < 0. Upon taking as observables the group velocity of the wave field, i.e. A(x,N) ≡

∂NH(x,N) and the absorption coefficient A(x,N) ≡ 2γ(x,N), an approximation for the

flux F (x) and the absorption γ(x) at some point x can be given. As integration area for

integral (3.70), still (3.72) is used.

In this section it was seen that physically meaningful quantities are computed in terms of

integral (3.70). In particular, the absorbed power will be interesting for heating in tokamaks when

applications are considered.

Still, a numerical scheme to solve the wave kinetic equation needs to be presented. The next

chapter is dedicated to this issue. As it was seen here, the Wigner function is not needed

pointwise, but always integrated over some phase space area. A numerical scheme which is

especially powerful for the computation of such integrals should be used.
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Numerics

In the theory chapter 3, the Wigner function for a mode-decomposed wave field is described by

the dispersion relation (3.38) and the wave kinetic equation (3.53). It was noted in section 3.4 that

the dispersion relation restricts the Wigner function to the class of functions singularly supported

on the dispersion surface whereas the evolution equation has the form of a steady state kinetic

equation. Considering the physical problem of microwave beam propagation with dimensionality

m = 3, the wave kinetic equation is a six-dimensional partial differential equation to be solved

for a singular solution. Furthermore, it involves the integral scattering operator (3.56) which

describes the effect of fluctuations. The boundary condition posed in section 3.5 belongs to the

problem.

We note that a numerical solver for such boundary value problems based on a standard dis-

cretization technique will not work in practice. In order to apply such a solver, first one should

remove the singularity. This in principle is possible as it was presented in section 3.4. Also the

dimensionality then would be reduced to 2m−1 = 5. Anyway, this is a quite high dimensionality;
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4. Numerics

Figure 4.1.: Antenna plane in configuration space with launched rays. Green rays are the geo-
metrical optics rays, the black ones are the configuration-space projections of the
Hamiltonian orbits required for the numerical schemes for the wave kinetic equation.
The initial conditions are such that a focal point is present.

furthermore a global parametrization of the dispersion variety would be required in such reduction

approach. Together with the integral operator involved, it would make the partial differential

equation solver at least numerically expensive. Therefore, in this chapter, numerical schemes are

presented which are more powerful for the purpose of this work. They are especially good when

physical observables are computed as in (3.70).

In the framework of this thesis, two approaches have been developed. The one presented in

section 4.1 solves the wave kinetic equation for the Wigner function. It turns out that, even if

in principle this approach could be extended to the case when fluctuations are present, it is not

particularly appropriate. However, it can be considered a basis for section 4.2, where a scheme

which is also able to cope with fluctuations in a natural way, is presented. The procedure there

is to solve slightly modified equations and to use the result of those to compute the Wigner

function. Both methods are based on a Monte-Carlo scheme and in section 4.3, an estimate for

the statistical uncertainty of the result is given.

Both numerical schemes require tracing Hamiltonian orbits in phase space, introduced in

appendix C. This amounts in solving exactly the same equations as in the geometrical optics ray

tracing method, cf. section 2.3, namely Hamilton’s equations of motion (C.1). For this reason, the

expression "ray tracing" is copied from geometrical optics, even if phase space orbits are meant

instead of rays, with abuse of the vocabulary defined in appendix C. However, the reader should

be warned of an important difference: The geometrical optics method allows only to launch
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one ray from each point on the physical antenna plane in the projection to configuration space.

Instead, in general, there is no such restriction for the phase space description solved in this

chapter. It will be seen in the following sections that both numerical schemes, indeed, will use a

distribution of initial parameters spread over the antenna plane in phase space, i.e. for a given

point x in configuration space various initial values for the refractive index N are considered. A

sketch of ray trajectories with initial parameters as in the geometrical optics approach and with

initial parameters as suggested by the numerical schemes solving the wave kinetic equation is

shown in figure 4.1, pointing out the difference.

Given the fact that in this chapter only one mode α for vector valued wave fields is considered,

the mode label is no longer needed and dropped. All functions which are discussed belong to this

specific, preselected mode.

4.1. Direct approach

This section is dedicated to a first numerical scheme to solve the wave kinetic equation without

scattering by fluctuations. This is referred to as direct approach, considered as a basis for the next

section, where fluctuations are introduced.

For fluctuations turned off, the wave kinetic equation (3.55) reads

{H(x,N), w(x,N)} = −2γ(x,N)w(x,N), (4.1)

where, again, the index α labeling the mode is dropped. The dispersion relation (3.38) and the

boundary condition posed in section 3.5 are additional requirements the solution must fulfil.

It is reviewed in appendix C that the evolution of the Wigner function along Hamiltonian orbits

(x(τ), N(τ)) is given by the Poisson brackets, i.e.

dw (x(τ), N(τ))
dτ

= {H,w} (x(τ), N(τ)) . (4.2)

They are expressed in terms of equation (4.1). This yields the ordinary differential equation

dw (x(τ), N(τ))
dτ

= −2γ (x(τ), N(τ))w (x(τ), N(τ)) . (4.3)
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In appendix C, Liouville’s theorem is discussed. It states that Hamiltonian orbits started from

different points in phase space do not cross. Let (0, y0, N0) be a point on the antenna plane Aps

extended in the phase space, and let (x(τ, y0, N0), N(τ, y0, N0)) be the solution of Hamilton’s

equation (C.1) with the Hamiltonian H(x,N) relevant for the considered mode. Since Hamilto-

nian orbits do not cross, we can regard the function (τ, y0, N0) 7→ (x(τ, y0, N0), N(τ, y0, N0))

as a coordinate transformation in the full phase space.

Given the evolution equation (4.3) along Hamiltonian orbits, the natural choice of coordinates is

(τ, y0, N0). The equation is integrated and the result yields

w(τ, y0, N0) = exp
{
−2
∫ τ

0
γ(τ ′, y0, N0)dτ ′

}
w(τ = 0, y0, N0). (4.4)

We suppose that the rays are launched on the phase-space antenna plane Aps. This means (τ =

0, y0, N0) maps to a point (x,N) on the phase space antenna plane. Therefore, w(τ = 0, y0, N0)

is known from the boundary condition. Then formula (4.4) provides the Wigner function at

any given point in phase space (τ, y0, N0). It is worth noting that solution (4.4) automatically

satisfies the dispersion relation (3.65), as, by construction (cf. section 3.5) w(τ = 0) does, and

the Hamiltonian is conserved along the orbit which is solution to Hamilton’s equations of motion.

The physical observables are computed in terms of the integral (3.70). Given the solution

of the Wigner function parametrized with (τ, y0, N0) as in (4.4), for the integration it is more

appropriate to change to the coordinates (τ, y0, N0):

∫
Ω
A(x,N)w(x,N)dxdN =

∫
Ω′
A(τ, y0, N0)w(τ, y0, N0) |J(τ, y0, N0)| dτdy0dN0. (4.5)

Here, the integration area Ω′ for (τ, y0, N0) is meant to cover the corresponding area Ω for (x,N),

i.e.

Ω′ := {(τ, y0, N0) : (x(τ, y0, N0), N(τ, y0, N0)) ∈ Ω} . (4.6)

In addition, the Jacobian of the coordinate transformation is defined by

|J(τ, y0, N0)| :=
∣∣∣∣ ∂(x,N)
∂(τ, y0, N0)

∣∣∣∣ . (4.7)
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The next important point for the computation of the integral is to find an expression for the

Jacobian along the orbits. Therefore, as an abbreviation for the two sets of coordinates

u := (x,N) ∈ R2m, (4.8a)

v := (τ, y0, N0) ∈ R2m (4.8b)

is introduced. The Jacobian matrix in this notation is

Jij = ∂ui
∂vj

, (4.9)

where i, j = 1, . . . ,m are the matrix indices. The evolution equation of the Jacobian matrix

components Jij reads

d
dτ
Jij = ∂

∂τ

∂ui
∂vj

= ∂

∂vj

∂ui
∂τ

. (4.10)

We note that the evolution of the coordinates u is obtained from Hamilton’s equations of motion

(C.1). They can be cast into the form

dui
dτ

= Mij
∂H

∂uj
. (4.11)

with the matrix

Mij =

 0 −Im
Im 0

 , (4.12)

containing the m-dimensional identity matrix denoted by Im. Substituting the time derivatives

(4.11) into (4.10) yields

d
dτ
Jij = ∂

∂vj
Mik

∂H

∂uk
. (4.13)

As M is a constant matrix, it can be put in front of the partial differential operator. Moreover,

the derivative with respect to vj using chain rule is replaced with derivatives with respect to uk.
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Then, the evolution of the Jacobian matrix along a Hamiltonian orbit (4.13) is given by

d
dτ
Jij = Mik

∂2H

∂ul∂uk

∂ul
∂vj

= Mik
∂2H

∂ul∂uk
Jlj . (4.14)

Equation (4.14) now is an ordinary differential (matrix) equation with the solution

J(τ, y0, N0) = exp
{∫ τ

0
MD2Hdτ ′

}
J0(y0, N0), (4.15)

where D2H is the Hessian matrix of H . Furthermore, the Jacobian matrix at τ = 0 is denoted

with J0. For the integral (4.5), only the determinant of the Jacobian matrix is needed. The

structure of matrix equation (4.15) is

A = eBC (4.16)

with A, B, C matrices. The equation relating the correspondend determinants is

|A| = eTr B |C| . (4.17)

Upon accounting for this identity, the evolution of the Jacobian deduced from (4.15) reads

|J(τ, y0, N0)| = exp
{∫ τ

0
Tr
(
MD2H

)
dτ ′
}
|J0(y0, N0)| . (4.18)

Given the definition ofM (4.12), it can directly be verified that the integrand inside the exponential

on the r.h.s. vanishes identically. Therefore, the Jacobian determinant remains constant along the

Hamiltonian orbits and in the integral (4.5), it is replaced with the initial value:

I =
∫

Ω
A(x,N)w(x,N)dxdN

=
∫

Ω′
A(τ, y0, N0)w(τ, y0, N0) |J0(y0, N0)| dτdy0dN0. (4.19)

The integration area Ω′ is defined in (4.6). The Jacobian at time τ = 0 is easy to compute,

assuming that the antenna is in free space where the ray trajectories are known analytically and

hence the relation between the sets of coordinates u and v is known.
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For the computation of integrals as in (4.19), a mixed approach is employed. The Wigner

function w(τ, y0, N0) is known along Hamiltonian orbits. This means that, for fixed values

of y0 and N0, it is known continuously for all τ from the ray tracing technique, which allows

us to compute the τ -integration directly as integrals along Hamiltonian orbits. Instead, for the

integration on initial conditions (y0, N0), a Monte-Carlo strategy is employed. The Monte-Carlo

approximation for integrals

∫
A
g(z)dz ≈ 1

n0

n0∑
i=1
zi∈A

g(zi)
p(zi)

(4.20)

can be found in several textbooks (e.g. in [24]). Here, n0 samples of values z1, . . . , zn0 are

generated following p(z) as a probability distribution and z is any set of coordinates. As it will

be seen in section 4.3, the approximation is good if n0 is large. For the integral I (4.19), the

Monte-Carlo sum yields

I ≈ 1
n0

∫ n0∑
i=1

(yi,Ni)∈Ω′y,N (τ)

A(τ, yi, Ni)w(τ, yi, Ni) |J0(yi, Ni)|
p(yi, Ni)

dτ. (4.21)

Here, n0 Hamiltonian orbits labeled with i = 1, . . . , n0 are launched on the antenna plane with

initial phase space coordinates (x = 0, yi, Ni) following for the initial parameters the probability

distribution p(y, N) and Ω′y,N (τ) labels a projection of the area Ω′ on the y and N -coordinates,

i.e.

Ω′y,N (τ) :=
{

(y, N) ∈ R2m−1 : (τ, y, N) ∈ Ω
}
. (4.22)

The natural choice of the probability distribution p(y, N) is given by the initial Wigner distribution

w(τ = 0, y, N). With this choice orbits are initialized on the intersection of the extended antenna

plane Aps and the dispersion variety of the considered mode.

In this section a scheme is presented which is appropriate to compute directly physical ob-

servables in terms of the integral (3.70). This scheme works for the case when fluctuations are

not present. However, the solution given here is based on the relation between the coordinates

(τ, y0, N0) and (x,N). When fluctuations are turned on, it will be seen in the next section that the

Hamiltonian trajectories should be modified to take this effect into account. Then, the coordinate
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transformation is no longer naturally present via the ray tracing technique. This obstacle, in princi-

ple, could be overcome just by tracing additional orbits to establish the coordinate transformation.

However, this would make the implementation ineffective and complicated.

4.2. Indirect approach

In this section, a different numerical scheme is presented which is not based on an orbit-following

coordinate transformation and hence can be generalized in a more straight forward way to the

case when fluctuations are present. Like the one in the previous section, it is based on a ray

tracing strategy. The separation of integration variables into one which can be computed along

the rays and the others to compute in terms of a Monte-Carlo estimator is achieved not solving

the boundary value problem posed in (3.69), but a slightly modified problem: The initial value

problem with evolution equation

∂f

∂τ
(τ, x,N) + {H, f} (τ, x,N) = S(f)(τ, x,N)− 2γ(x,N)f(τ, x,N) (4.23)

and known initial condition f(τ = 0, x,N) is considered. This evolution equation is basically the

same as the one valid for the boundary value problem, but it is extended with a τ -dependence by

hand. The solution f ≡ f(τ, x,N) for the moment is a generic time-dependent function which

does not have any physical meaning.

The scattering operator can be written in the form

S(f)(τ, x,N) =
∫
σ(x,N ′, N)f(τ, x,N ′)dN ′ − Σ(x,N)f(τ, x,N), (4.24)

where

σ(x,N,N ′) = 2πG(x,N,N ′)δ
(
H(x,N ′)

)
, (4.25a)

Σ(x,N) =
∫
σ(x,N,N ′)dN ′. (4.25b)

In order to prove this form of the scattering operator, one needs the identity

G(x,N,N ′) = G(x,N ′, N), (4.26)
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which states that the kernel G(x,N,N ′) is symmetric under exchange of N and N ′. In turn,

this symmetry property follows from the definition of Gαβ(x,N,N ′) (3.50), together with the

property

Giabj(x,N ′ −N) = Gbjia(x,N −N ′). (4.27)

This can directly be verified upon accounting for the definition (3.28).

For the time-dependent problem (4.23), a Monte-Carlo scheme is known [24]. The main steps in

this section are hence first to find a solution f(τ, x,N) using this scheme, next to see how, out of

this result, a solution for w(x,N) can be constructed and how the boundary condition for w and

the initial condition for f are related. And finally, as usual, the Wigner function must be reduced

to observables by means of (3.70).

Let us start discussing the relationship between solutions of (4.23) and the orbits of a specific

stochastic process for the case γ = 0, i.e. when the medium is lossless. This generalizes the

relationship between Poisson brackets and Hamiltonian orbits addressed in appendix C. The

effect of absorption is then introduced by a suitable weight along each realization of the stochastic

process, as discussed in reference [24].

The relevant stochastic process (X (τ),N (τ)) is defined as follows. First, a Poisson process

{τk} is generated with mean Σ̄ = sup Σ(x,N); this defines values τ = τk for the parameter

τ and thus intervals [τk, τk+1). In each interval (X (τ),N (τ)) is a classical solution of the

Hamiltonian equations of motion with initial condition (X (τk),N (τk)), namely

dX
dτ

= ∂NH(X ,N ), (4.28a)

dN
dτ

= −∂xH(X ,N ). (4.28b)

At each boundary point τ = τk a jump may be applied. The jump involves the refractive index

variable N and not the position X , as the scattering operator S describes wave-vector scattering

only. The probability of a jump event at the point (x,N) is given by Σ(x,N)/Σ̄. If a jump event

occurs at the phase-space location (x,N), the new momentum is drawn from the local distribution

of probability σ(x,N, ·)/Σ(x,N). It is possible to prove that the probability distribution of orbits
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p(τ, x,N) of such process satisfies the Fokker-Planck equation ( [24], section 2.5.2).

∂p

∂τ
(τ, x,N) + {H, p} (τ, x,N) = S(p)(τ, x,N), (4.29)

which is just equation (4.23) with γ = 0. Since p(τ, x,N) is a probability distribution we must

have

∫
p(τ, x,N)dxdN = 1, (4.30)

and it is enough to fix the normalization of p(τ = 0, x,N) as (4.29) preserves the phase space

integral of p(τ, x,N).

Given f(τ = 0, x,N), one can set

αp(τ = 0, x,N) = f(τ = 0, x,N), with α =
∫
f(τ = 0, x,N)dxdN, (4.31)

and the solution of equation (4.29) with the initial condition p(τ = 0, x,N) is related to the

solution f(τ, x,N) of (4.23) with γ = 0 and the initial condition f(τ = 0, x,N) via (4.31). This

relation is used to evaluate expectation values of physical observables over a phase-space domain

Ω, namely

∫
Ω
A(x,N)f(τ, x,N)dxdN = α

∫
Ω
A(x,N)p(τ, x,N)dxdN, with γ = 0, (4.32)

where the probability distribution p(τ, x,N) can be sampled by tracing the orbits of the stochastic

process (X (τ),N (τ)). More specifically, an estimator for such expectation values is built by

sampling the initial distribution p(τ = 0, x,N) with n0 initial parameters {(xi, Ni)}n0
i=1 in phase

space and then tracing the orbits of the above-described stochastic process; the orbit originating

from (xi, Ni) is denoted (Xi(τ),Ni(τ)). By construction, for every τ ≥ 0, the set of points

{Xi(τ),Ni(τ)}n0
i=1 is a sample drawn from the distribution p(τ, x,N), hence

∫
Ω
A(x,N)f(τ, x,N)dxdN ≈ α

n0

∑
(Xi(τ),Ni(τ))∈Ω

A(Xi(τ),Ni(τ)), with γ = 0, (4.33)

where the sum extends to all orbits such that (Xi(τ),Ni(τ)) ∈ Ω at the considered τ .
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In presence of absorption (γ 6= 0), each orbit is weighted by the "amount of losses" along the

trajectory, namely

Wi(τ) = e−2
∫ τ

0 γ(Xi(τ ′),Ni(τ ′))dτ ′ . (4.34)

The general form of (4.32) accounting for both scattering and dissipation is

∫
Ω
A(x,N)f(τ, x,N)dxdN ≈ α

n0

∑
(Xi(τ),Ni(τ))∈Ω

A(Xi(τ),Ni(τ))Wi(τ). (4.35)

A proof of the general form can be found in [24], section 3.2, theorem 2.5.4.1

Next, a solution for w(x,N) based on function f which solves evolution equation (4.23) should

be constructed. Therefore, this last equation is formulated for the Fourier transform of f in the

variable τ , i.e.

f̂(u, x,N) =
∫
e−iuτf(τ, x,N)dτ. (4.36)

Here the variable u is used for the dual of τ ; it may be understood as a frequency associated to τ ,

but it should not be confused with the physical frequency ω. Derivatives with respect to τ are

replaced by −iu in the Fourier transformed equation with the result that

−iuf̂(u, x,N) +
{
H, f̂

}
(u, x,N) = S(f̂)(u, x,N)− 2γ(x,N)f̂(u, x,N). (4.37)

Here, the Poisson bracket, the scattering operator and absorption are not affected by the Fourier

transformation because they are independent of τ . Now it is obvious that this equation, in case

u = 0, is just the same as the steady state evolution equation (3.69b) for w(x,N). Therefore, a

solution for the Wigner function w can be found in the form

w(x,N) = f̂(u = 0, x,N) =
∫
f(τ, x,N)dτ, (4.38)

given the fact that f(τ, x,N) fulfils its evolution equation (4.23).

1Note that in this textbook only the proof for the special case Ω = R2m with a differentiable observable A ∈ C1 is
presented. The theorem, however, is applied to the more general case Ω ⊆ R2m in this thesis.
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If f(τ, x,N) is singularly supported on a dispersion surface, i.e. on the surface H(x,N) = 0,

by construction also w is so. Instead, it is not straight forward to find initial conditions for f

which reproduce desired boundary conditions for w. As a simplification, the functions f under

investigation are restricted to a certain class: Let us consider only initial conditions which are

singularly supported on the antenna plane defined in 3.5, i.e.

f(τ = 0, x0, y0, N0) = δ(x0)f0(y0, N0). (4.39)

This is an arbitrary assumption and will be justified by the fact that even under this constraint, any

boundary condtition for w can be reproduced. In other word, no generality is lost by imposing

this condition on the auxiliary function f .

We assume that near the antenna plane there is a non-fluctuating and dissipation free medium,

so neither scattering events nor absorption take place and the Hamiltonian orbits starting at

x0 = (x0, y0) around the antenna are given by Hamilton’s equation of motion (C.1a), namely in

integrated form

x = x0 + ∆x(τ), (4.40a)

y = y0 + ∆x(τ), (4.40b)

where the covered distance is

∆x(τ) :=
∫ τ

0

∂Ha

∂Nx
dτ ′, (4.41a)

∆y(τ) :=
∫ τ

0

∂Ha

∂Ny
dτ ′ (4.41b)

with the Hamiltonian Ha around the antenna plane. Then, around the antenna plane the solution

of (4.23) is

f(τ, x,N) = f(τ = 0, x0, y0, N0) = δ (x −∆x(τ)) f0(y−∆y(τ), N) (4.42)
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and the corresponding Wigner function obtained from (4.38) and restricted to the antenna plane

reads

w(x = 0, y, N) =
∫
δ (−∆x(τ)) f0(y−∆y(τ), N)dτ = f0(y, N)

|vx|
. (4.43)

Here, the integral is easily performed thanks to the δ-distribution involved. Solved for f0 and

taking into account the definitions (4.41), this last equation reads

f0(y, N) =
∣∣∣∣∂Ha(x = 0, y, N)

∂Nx

∣∣∣∣w(x = 0, y, N) (4.44)

and provides the initial condition for f given the boundary condition for w. Although there

is this restriction to a special class of functions f , still any kind of boundary conditions for w

can be reproduced. This shows that, by using (4.23) with initial conditions (4.39) and (4.44),

the boundary value problem (3.69) can be solved with no loss of generality except placing the

antenna in a region where no scattering and absorption take place.

As a last point, the reduction of the Wigner function to physical observables (3.70) must be

performed. For this purpose, in the integral, the Wigner function is written in terms of f :

∫
Ω
A(x,N)w(x,N)dxdN =

∫ ∫
Ω
A(x,N)f(τ, x,N)dxdNdτ, (4.45)

where the phase-space and τ -integration have been exchanged and equation (4.38) is used. The

inner integral over phase space is replaced by the Monte-Carlo estimator (4.35) with the result

that

∫
Ω
A(x,N)w(x,N)dxdN ≈

∫  α
n0

∑
(Xi(τ),Ni(τ))∈Ω

A(Xi(τ),Ni(τ))Wi(τ)

 dτ. (4.46)

If Qi denotes the i-th orbit of the stochastic process, i.e.

Qi = {(Xi(τ),Ni(τ)) : τ ≥ 0} , (4.47)

and

Ii,Ω = {τ : (Xi(τ),Ni(τ)) ∈ Ω} (4.48)
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is the interval in τ for which the point (Xi(τ),Ni(τ)) on ray i stays within Ω, the sum and the

integral can be exchanged as follows:

∫ ∑
(Xi(τ),Ni(τ))∈Ω

A(Xi(τ),Ni(τ))Wi(τ)dτ =
∑

Qi∩Ω6=∅

∫
Ii,Ω

A(Xi(τ),Ni(τ))Wi(τ)dτ. (4.49)

The simplest numerical procedure is chosen for the remaining integral over the τ -interval Ii,Ω,

namely, a Riemann quadrature based on the τ -stepping points τj used in generating a numerical

approximation (Xi,j ,Ni,j) ≈ (Xi(τj),Ni(τj)). At last, upon accounting for (4.46), (4.49) and

the above-mentioned approximation we have

∫
Ω
A(x,N)w(x,N)dxdN ≈ α

n0

∑
Qi∩Ω6=∅
τj∈Ii,Ω

A(Xi,j ,Ni,j)Wi(τj)∆τj , (4.50)

where ∆τj = τj+1 − τj is the local step in τ .

The practical implementation of formula (4.50) requires a ray tracing and a binning procedure:

Once numerical approximations (Xi,j ,Ni,j) of the orbits Qi are generated by a ray tracing

procedure, and the domain Ω, also referred to as bin, is selected, one has to find which orbits cross

Ω and what is the crossing interval Ii,Ω. The implementation of both ray tracing and binning is

described in chapter 5.

The Monte-Carlo estimator (4.50) can be considered the final result of this section, from which

the expectation value of physical observables, i.e. the l.h.s., may be deduced, inserting quantities

on the r.h.s. known from ray tracing.

4.3. Statistical uncertainty

The numerical approaches presented in the last two sections are partly based on Monte-Carlo

estimators which are random variables and hence are subject to a statistical uncertainty. The aim

of this section is to provide an estimate of the statistical uncertainty. This will provide a feeling

for the reliability of the result. Furthermore, when benchmarks are performed, possible deviations

of a solution with respect to the reference solution can be compared to the statistical uncertainty

as a consistency check.
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The Monte-Carlo estimators (4.21) or (4.50) have the structure of a sum like

I = 1
n0

n0∑
i=1

Ii. (4.51)

The terms in the sum are obtained from a statistical process and hence the sum is a random

variable. Here, Ii/n0 is the contribution of a single ray i. The empirical variance of the single ray

contributions can be introduced as [24]

VI = 1
n0 − 1

n0∑
i=1

(Ii − I)2 . (4.52)

The only input for this expression are the single contributions Ii of the Monte-Carlo sum (4.51).

This allows to determine the quantity without big additional efforts. It is shown then that the

statistical uncertainty of the Monte-Carlo estimator is given by

σI =
√
VI
n0
. (4.53)

The well-known dependence σI ∝ n
−1/2
0 can be identified here, which results in a slowly

decreasing statistical uncertainty when more and more rays are traced.

4.4. Change of Hamiltonian

The numerical schemes presented in this chapter are based on Hamiltonian ray tracing, where

according to (3.37a) the eigenvalue of the Weyl symbol D0(x,N) of the dispersion operator

D0 for the appropriate mode serves as Hamiltonian H . It is clear that, if the Hamiltonian

H(x,N) is multiplied by some non-vanishing function ξ(x,N), the orbits in the dispersion

variety {H(x,N) = 0} remain the same, but the parameter τ along the orbits changes, cf. the

Hamilton equations of motion (C.1). There is one natural choice of the Hamiltonian, namely

the one obtained from the wave equation directly as explained in section 3.3, which provides

correct results. However, Hamilton’s equations of motion (C.1) might simplify for a Hamiltonian

multiplied by some ξ(x,N), especially when the plasma dispersion tensor for magnetized plasmas

(7.22) is involved, leading to complicated eigenvalues which are solutions of a cubic equation,

but yielding an easier Hamiltonian (7.34) when the multiplication technique is applied. Here it is
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shown how to rescale properly the various terms in Hamilton equations of motion and the wave

kinetic equation to obtain correct results with such rescaled Hamiltonians, following [21].

The natural Hamiltonian is denoted H(x,N) and a modified Hamiltonian

H̃(x,N) := ξ(x,N)H(x,N) (4.54)

is considered. It is assumed that the evolution of a generic phase-space quantity A(τ, x,N) along

a Hamiltonian orbit is given by

dA
dτ

= ∂A

∂τ
+ {H,A} = η(A), (4.55)

where A(x,N) is assumed to be singularly supported on dispersion surfaces and η(A) is some

operator η applied on A. This is the structure of evolution equations present in both numerical

schemes, namely (4.2) and (4.3) with A ≡ w and (4.23) with A ≡ f . For the case of propagation

in fluctuating and weakly dissipative media discussed in chapter 3, the operator η is composed by

the effect of fluctuation described by S(·), cf. (3.56) and the absorption coefficient γ (3.46).

Next, the Poisson bracket involving the modified Hamiltonian H̃(x,N) is computed. We remind

the reader that A is considered singularly supported, requiring a treatment of the Poisson brackets

in the weak sense of distributions. As reviewed in appendix B, the integral representation of this

distribution is considered: Applied on the test function Φ, it reads

{
H̃, A

}
(Φ) =

∫
Φ(x,N)

{
H̃, A

}
(x,N)dxdN (4.56)

with the generating function
{
H̃, A

}
(x,N). Writing out the Poisson brackets (C.4) explicitly

yields

∫
Φ
{
H̃, A

}
dxdN =

∫
Φ
(
∂(ξH)
∂n

∂A

∂x
− x↔ N

)
dxdN

=
∫

Φ
(
ξ
∂H

∂N

∂A

∂x
+ ∂ξ

∂N
H
∂A

∂x
− x↔ N

)
dxdN. (4.57)

Here, the notation "x ↔ N" stands for a repetition with x and N interchanged in derivatives.

The arguments (x,N) have been dropped for simplicity. In the next step, the second term is
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4.4. Change of Hamiltonian

integrated by parts over x (N for the interchanged terms), leading to

∫
Φ
{
H̃, A

}
dxdN =

∫ (
Φξ ∂H

∂N

∂A

∂x
− ∂

∂x

(
Φ ∂ξ

∂N
H

)
A− x↔ N

)
dxdN

=
∫ (

Φξ ∂H
∂N

∂A

∂x
− Φ ∂ξ

∂N

∂H

∂x
A− x↔ N

)
dxdN. (4.58)

In the second line of this equation, the product rule has been applied for the second term. Note that

contributions which involve the product HA vanish, due to the assumption of singular support of

A on the H ≡ 0 surface. The surviving terms can be combined as two Poisson brackets, namely

∫
Φ
{
H̃, A

}
dxdN =

∫
Φ (ξ {H,A}+ {H, ξ}A) dxdN. (4.59)

So dropping the integral, in the sense of distributions, for the Poisson bracket of the modified

Hamiltonian H̃ , one finds

{
H̃, A

}
= {ξH,A} = ξ {H,A}+ {H, ξ}A. (4.60)

Here, the first term on the r.h.s. is the rescaled Poisson bracket involving the natural Hamiltonian

and the second term accounts for the evolution of the prefactor ξ. Defining a modified time

parameter τ̃ along the rays such that

dA
dτ̃

= ∂A

∂τ̃
+
{
H̃, A

}
, (4.61a)

∂A

∂τ̃
= ξ

∂A

∂τ
, (4.61b)

equation (4.60) reads

dA
dτ̃

= ξ
∂A

∂τ
+ ξ {H,A}+ {H, ξ}A. (4.62)

For the first Poisson bracket the natural evolution equation (4.55) is inserted. The second Poisson

bracket is replaced with

{H, ξ} = ξ

ξ
{H, ξ} = 1

ξ
({ξH, ξ} − {ξ, ξ}H) = 1

ξ

{
H̃, ξ

}
. (4.63)
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Here, rules (C.7b) and (C.7a) for Poisson brackets have been applied as well as the definition of

H̃ (4.54) in the last step. With the modified time parameter (4.61), equation (4.62) reads

dA
dτ̃

= ξη(A) + 1
ξ

dξ
dτ̃
A. (4.64)

This equation shows the additional term d log ξ/dτ̃ which should be added to the numerical

weight (4.34). It is however possible to account for the contribution of log ξ in a simple way. A

different quantity

Ã(x,N) := g−1(x,N)A(x,N) (4.65)

which is linear in A is considered. It is easy to show that by properly choosing g, an evolution

equation for Ã without any additional term can be formulated: Substituting (4.65) into (4.64)

yields

dA
dτ̃

= g
dÃ
dτ̃

+ dg
dτ̃
Ã = ξη(gÃ) + g

ξ

dξ
dτ̃
Ã. (4.66)

For the choice g(x,N) ≡ ξ(x,N), one has the simpler evolution equation

dÃ
dτ̃

= η(ξÃ), (4.67)

which is in desired form. This equation can be solved with the numerical schemes to determine

Ã. Then A is obtained directly from equation (4.65).

Note that in the theory chapter on the wave kinetic equation 3, the Hamiltonian also explicitly

appeared in the scattering operator, cf. (3.64), and that the natural Hamiltonian is meant. If

for any reason an other Hamiltonian is in use, it must be accounted for this with the aid of the

correction factor at this point as well, yielding the fully corrected scattering cross section

σα(x,N,N ′) := 2πGα(x,N,N ′)ξ(x,N)ξ(x,N ′)δ
(
H̃α(x,N ′)

)
. (4.68)

Here the factor ξ(x,N) absorbs the necessary rescaling in the evolution equation and the factor

ξ(x,N ′) accounts for the use of the tilded Hamiltonian in Dirac’s delta.
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Implementation

In this chapter, the implementation of the second numerical scheme described in section 4.2 is

summarized. First, the implemented equations and the structure of the code are presented. In a

later section, more details on the implementation from the computer science point of view are

provided. A user guide can be found in appendix E.

Given the fact that the code is based on the wave kinetic equation and that it considers the

semiclassical limit, which is related to the WKB approximation, it will be referred to as wave

kinetic code or alternatively as WKBeam, standing for Wave Kinetic Beam tracing code.

5.1. Physical structure of the code

In this section, the implemented equations are summarized. The structure follows the compu-

tational one, i.e. the extension of boundary conditions to phase space first, then the ray tracing

technique and at last the reduction to physical observables.
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5. Implementation

5.1.1. Boundary conditions and initial conditions for the rays

The physical boundary condition for the simulation is the electric field at the antenna plane,

the geometry of which is discussed in section 3.5. The use of coordinates x = (x, y) with the

meaning of the direction normal to the antenna plane x ∈ R and the coordinates in the antenna

plane y ∈ Rm−1, where m is the dimensionality of the problem, is helpful and allows us to

generalize the antenna plane to the tokamak requirements, cf. section 7.2. As a first step in the

code, initial conditions for the rays to be traced are generated. Relevant quantities are reviewed in

this section and the implemented probability distribution is formulated.

In the code, for simplicity a Gaussian beam profile on the antenna plane is used. This is realistic

enough for later tokamak applications [25]. Furthermore, it allows an analytical computation of

the Wigner function on the antenna plane. The calculation is reported in appendix D, with the

Wigner function (D.11)

w(x = 0, y, N) = 2mπ(m+1)/2

κ(m−1)/2
√

det Φ
e−κy·Φy−κ[(Ny,0−Ny)+Sy]·Φ−1[(Ny,0−Ny)+Sy]

× δ(Nx −Nx,0) (5.1)

as a result. The value Nx,0 ≡ Nx,0(y, Ny)) is fixed by the dispersion relation as a function

of (y, Ny). The implementation allows us to choose between m = 2 or m = 3. The input

parameters describing the beam profile are in this case the initial beam cross section, described

by the matrix Φ and the initial curvature radius of the beam wave front, information which is

contained in the matrix S, cf., again, appendix D.

As discussed in section 4.2, the probability distribution for initial parameters (xi, Ni) for the

ray tracing is p(τ = 0, x,N). Upon accounting for the relation to the function f (4.31), the

restriction to the antenna plane (4.39) and the matching to the Wigner function on the antenna

plane (4.44), this probability distribution reads

p(x,N) = 1
α
|vx| δ(x)w(x = 0, y, N), (5.2)
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5.1. Physical structure of the code

with a normalization constant α, discussed later in this section. Here, vx is the x-component of

the ray velocity projected on configuration space, defined as

vx := ∂Ha

∂Nx
. (5.3)

As a standard Hamiltonian around the antenna plane, the free space Hamiltonian

Ha(x,N) = N2 − 1 (5.4)

is considered. The only situation presented within this thesis where this is not a good choice is

the lens-like medium, section 6.2, where Hamiltonian (6.19) must be used.

Around the antenna plane, via equation (C.11), (5.4) yields the velocity

|vx| = 2Nx. (5.5)

Inserting this velocity component and Wigner function (5.1) into (5.2) provides the probability

distribution

p(x,N) ∝ |Nx| δ(x)δ(Nx −Nx,0)e−κy·Φy−κ[(Ny,0−Ny)+Sy]·Φ−1[(Ny,0−Ny)+Sy]. (5.6)

For implementation purposes (Metropolis-Hastings algorithm, see appendix F), the normalization

constant for this probability distribution is not important and is not further addressed here. It is

obvious that this function can be factorized into

p(x,N) = δ(x)δ(Nx −Nx,0)py(y, Ny) (5.7)

with a function uniquely dependent on (y, Ny)

py(y, Ny) ∝ |Nx,0(y, Ny)| e−κy·Φy−κ[(Ny,0−Ny)+Sy]·Φ−1[(Ny,0−Ny)+Sy], (5.8)

where Nx,0(y, Ny) is obtained as a solution of dispersion relation with Ha(x,N) as Hamiltonian.

Due to the δ-distributions in (5.7), x = 0 and, once the values y and Ny are chosen, also

Nx = Nx,0 are fixed, which is also how they are determined in the code. Instead, (y, Ny) follow
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the probability distribution (5.8), which is not a standard one and hence requires Metropolis-

Hastings algorithm for its sampling. This algorithm is reviewed in appendix F. It internally needs

to propose random numbers, following a probability distribution labeled with "proposal", which

should be as close as possible to the probability density function p(y, Ny). We choose

pproposal(y, Ny) = 1
|Nx,0(y, Ny)|py(y, Ny), (5.9)

which, indeed, is close to py(y, Ny) if the rays leave the antenna plane mainly in x-direction, i.e.

|Nx,0(y, Ny)| ≈ 1.

5.1.2. Phase space description

From a mathematical point of view, the scheme presented in section 4.2 for the solution of

the wave kinetic equation requires the integration of ordinary differential equations, namely

Hamilton’s equations of motion (C.1) and the evolution ofW in differential form of (4.34), i.e.

the set of equations

dXi
dτ

= ∂NH(Xi,Ni), (5.10a)

dNi
dτ

= −∂xH(Xi,Ni), (5.10b)

dWi

dτ
= −2γ(x,N)Wi. (5.10c)

Note that, unlike the derivation in the numerics chapter 4, equations (5.10) are integrated along a

constant interval ∆τ and all scattering kicks which may occur during this step are applied after

the integration on ∆τ , cf. figure 5.1. This scheme is a good approximation to the numerical

scheme described in section 4.2 when the step ∆τ is small. The single computational steps are

explained in more detail in the following.

The integration is discretised using the Runge-Kutta method. For a detailed description on

the numerics behind, the reader may refer to the textbook [26]. Given the initial values Xi(τk),

Ni(τk) andWi(τk) at τk and their derivatives dXi
dτ , dNi

dτ , dWi

dτ , the Runge-Kutta solver provides

the values at a later step τk+1 = τk + ∆τ , i.e. X (τk+1), Ni(τk+1) andWi(τk+1), for a chosen

step ∆τ . In the adaptive Runge-Kutta method, ∆τ is internally subdivided into smaller steps so

that a specified tolerance of the result is reached. After each integration step, a scattering event
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5.1. Physical structure of the code

Figure 5.1.: Comparison of the scattering scheme described in the numerics chapter and the
implementation. Blue marks: one scattering event, red mark: two scattering events,
green mark: three scattering events. On top: τ -axis with one sample of scattering
events along the evolution of a ray, simulated by means of a Poisson process as de-
scribed in section 4.2. Below: Implemented procedure. The integration is subdivided
into intervals ∆τ which are not interrupted by scattering; all scattering kicks which
should be performed during the interval are applied at the end instead.

might be performed to simulate the effect of fluctuations. For this purpose, an integer random

number NS is generated according to a Poisson distribution with mean Σmax∆τ for each ray i

after each integration step k, where Σmax is a guess for an upper limit of the total scattering cross

section Σ(Xi(τk),Ni(τk)), defined in (4.25b). The number NS is the maximum number of kicks

in the interval ∆τ for the current realization. Note that, in case we can afford it numerically, as a

guess for the upper limit Σmax the scattering cross section Σ itself may be taken. In order to decide

how many scattering kicks actually are performed, NS uniformly distributed numbers pi within

[0, 1) are generated and for each a scattering kick is applied if and only if pi < Σ/Σmax. Note

that the above-described procedure generates nS ≤ NS scattering kicks for the ray i after the

integration step k, with nS following a Poisson distribution with mean value Σ∆τ , but requires

evaluating the total scattering cross section Σ not after each step, but only in case NS 6= 0. If the

probability distribution σ for choosing a new value for the refractive index at each jump is not a

standard function, Metropolis-Hastings algorithm (described in appendix F) is applied.

As an output of the ray tracing, the trajectories (Xi(τk),Ni(τk)) and the valueWi(τk) are stored

in an output file for a discrete sample of moments τk with the step ∆τ in between. In addition,

transformed trajectories T (Xi(τk),Ni(τk)) with some coordinate transformation T may be saved.

This is the information required for the reduction to physical observables, presented in the next

section.
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Figure 5.2.: One Hamiltonian orbit (red) entering the volume Ω (referred to as bin) for a parameter
τ0 and leaving for τ1.

5.1.3. Reconstructing physical observables

The reconstruction of physical observables in terms of integral (3.70) is also called binning. In

the code, it is done as a post-processing, so the ray trajectories are read and the Monte-Carlo

estimator (4.50) is computed. In figure 5.2, one Hamiltonian orbit which crosses a bin is shown.

The code executes a linear interpolation between the discrete steps τk where the trajectory of

orbit i (Xi(τk),Ni(τk)) and the valueWi(τk) are known from ray tracing and recognizes the

intersections of the orbits with the bin boundaries. Thereby, the parameter τ when the orbit enters

and leaves the bin τ0 and τ1 are estimated. The Monte-Carlo estimator for the integral to be

computed is given by (4.50). The constant α, defined in (4.31) and involved as a prefactor in the

Monte-Carlo sum, upon accounting for (4.39) and (4.44), reads

α =
∫
|vx|w(x = 0, y, N)dydN. (5.11)

Inserting the Wigner function on the antenna plane (5.1) and the x-velocity component (5.5), this

yields

α = 2
(2π
κ

)m ∫ √
1−N2

y

m−1∏
i=1

e
−κ Di

D2
i

+S2
i

(Ni,0−Ni)2

dNy, (5.12)

where Ny = (N1, . . . , Nm−1) and Di and Si include information on the initial beam width and

the initial curvature radius, as defined in appendix D. This integral must be computed numerically.

Calculating the Monte-Carlo estimator then amounts in summing up all the ray contributions,

obtained from the just presented quantities.
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As a special case, if the absorption coefficient is taken as observable, i.e. A(x,N) = 2γ(x,N),

the corresponding Monte-Carlo estimator (4.46) reads

〈2γ〉Ω = 2
(
κ

2π

)m ∫  α
n0

∑
(Xi(τ),Ni(τ))∈Ω

γ(Xi(τ),Ni(τ))Wi(τ)

 dτ, (5.13)

involving explicit information on the medium in γ also on the r.h.s. It would be beneficial if

in the post-processing, no information on the medium is explicitly needed. Therefore we note

that taking into account the evolution ofWi (5.10c), a factor γ may be obtained by applying a

derivation with respect to τ :

〈2γ〉Ω = −
(
κ

2π

)m ∫  α
n0

∑
(Xi(τ),Ni(τ))∈Ω

dWi(τ)
dτ

 dτ. (5.14)

Upon accounting for the fundamental theorem of calculus, this simplifies to

〈2γ〉Ω = −
(
κ

2π

)m α

n0

∑
(Xi(τ),Ni(τ))∈Ω

Wi(τ)

∣∣∣∣∣∣
τi,1

τ=τi,0

(5.15)

This expression requires no explicit knowledge of the absorption coefficient γ, information which

is present via the change ofW through a bin, simplifying the implementation and improving

performance in terms of computational time.

In the previous discussion a single area Ω (bin) has been considered. Obviously, the code, in

principle, is not restricted to only one such area, but it can deal with a whole set of integration

volumes Ωα, defined by

Ωα =
{

(x,N) ∈ R2m : αi
ni
≤ Ti(x,N)− amin

i

amax
i − amin

i

<
αi + 1
ni

with i = 1, . . . , µ
}
. (5.16)

Here, α is a µ-dimensional multi-index α = (α1, . . . , αµ) and T : R2m → Y ⊂ Rµ × R2m−µ a

transformation to appropriate coordinates, where only the first µ components are resolved. The

boundaries of the area under consideration are defined by amin
i and amax

i in i-th direction, subdi-

vided into ni bins. As an example, for the benchmarking tests, see chapter 6, two-dimensional

Cartesian coordinates (x, y) are appropriate. If we wish to resolve these two spatial coordinates,

the relevant dimensionality for the binning is µ = 2 and the transformation under consideration
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is

T1(x,N) = x, (5.17a)

T2(x,N) = y. (5.17b)

Then, the areas for the binning are squares

Ωµν =
{

(x,N) ∈ R2m : µ
nx
≤ x − xmin

xmax − xmin <
µ+ 1
nx

,

ν

ny
≤ y− ymin

ymax − ymin <
ν + 1
ny

}
. (5.18)

with integer labels µ and ν referring to the x- and y-direction, respectively.

5.2. Implementation of the code

In this section, a few details, from a computer-science point of view, for the numerical implemen-

tation of WKBeam are given. The code is written in the high-level language python [27] with the

scientific libraries numpy and scipy [28]. Parallelization, cf. section 5.2.1, is achieved by the MPI

protocol [29] through the mpi4py-package [30]. Being a script language, python is rather slow.

In order to speed up the code, some expensive parts are moved to cython [31] and precompiled.

Note that WKBeam consists of two parts which are launched independently: One is referred

to as ray tracing part and provides as an output a set of ray trajectories with attached quantities,

namelyWi and T (Xi(τk),Ni(τk)), as described in section 5.1.2. A second part, called binning

part of WKBeam, reads this ray trajectories and does the reconstruction of physical observables,

presented in section 5.1.3.

In the following, the rough structure of these two independent parts of the code is discussed. In

particular, some comments on the runtime are presented. Typically, the ray tracing data which is

created on 16 cores with a runtime of 2 h is binned in a few minutes using one single core. All

simulations performed for this master thesis where processed on the Linux Compute Cluster of

the Rechenzentrum Garching [32].
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Figure 5.3.: Program flow for (a) master core and (b) slave core.

5.2.1. Ray tracing part of the code

In section 4.3, the statistical uncertainty of physical results was presented and it was pointed out

that it decreases with the square root of the number of rays. Running the code, we find that a

reasonable number of rays is of the order of 105, see also section 7.5. Assuming that it takes

about 100 ms to trace a ray, the total runtime amounts to several hours. For this reason the ray

tracing is parallelized: The set of initial conditions is split into several parts, each passed to a

different CPU referred to as "slave core" via MPI interface. The slave cores perform the ray

tracing and communicate the ray trajectories back to a core called "master core", which is in

charge of writing the output file. One master core is responsible for at most seven slave cores. If

there are more, several master cores are present and several output files are written. An upper

limit for the number of slave cores per master core is required, because too many slave cores

overburden the master core, thus forming a bottleneck. In python, for this purpose, the mpi4py

package is available. It labels all cores which are part of the MPI environment with an index, used

in the implementation to decide whether the source code for a master or a slave core is called.

The structure of the codes for both is also displayed in figure 5.3.

A study of the strong scaling of the parallelization is presented in figure 5.4. The plot shows

the runtime T of the ray tracing code, run for a standard case with a reduced number of rays,

making use of various numbers n of cores in a doubly logarithmic plot. The jobs are processed

via a queue which distributes available resources to the users of the computer cluster, providing

the runtime as an output once the code has finished.
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Figure 5.4.: Doubly logarithmic plot of runtime versus number of cores. On top of that, a linear
regression is performed with slope −0.96.

The slope in figure 5.4 is −0.96 which almost corresponds to the ideal scaling law

T ∝ n−1. (5.19)

This is the typical scaling whenever no communication is needed between different cores, as it is

the case for the WKBeam code, except for the communication of the initial parameters for the

rays and the results. This data transfer, however, is negligible and does not spoil the good scaling.

A user guide for this part of the code is presented in appendix E.1.

5.2.2. Binning part of the code

Once the ray tracing is performed and the output files are available, the physical observables can

be computed, cf. section 5.1.3. The corresponding part of the WKBeam code is referred to as

binning. This part of the code, as an input, uniquely requires the output files of the ray tracing

part and does not involve any python objects, which allows us to fully move the code to cython

and precompile it. The code is fast enough so that no parallelization is required.

A users guide for the binning code can be found in appendix E.2.
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Before applying the theory derived previously to realistic situations in tokamak plasmas, bench-

marking tests must be performed to check that the code is free from programming errors. More-

over, such tests allow one to clarify the limitations of the code due e.g. to the semiclassical

limit, the Monte-Carlo uncertainty (4.53) and the approximation in the calculation of physical

observables (3.74) under simple and controllable conditions. This chapter is dedicated to those

tests. Several simplified models have been considered. For each of these, analytical solutions

can be constructed, or at least other well-established numerical schemes can be used as a cross-

check. In each section, the input quantities for the numerical scheme as well as a sketch of the

derivation of a reference solution are described. Fluctuations and absorption first are turned off

and introduced in section 6.4. For later applications, it is of special interest to be aware of the

impact of numerical parameters to choose when the simulation is run, e.g. the number of rays

and the bin size. A study of this issue is delayed to section 6.5. However we note here that for the
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benchmarks reasonable parameters which allow us to resolve the effects under investigation are

chosen.

In this chapter, the antenna plane is, as presented in section 3.5, the x = 0 plane and beams

are launched so that they propagate towards negative values of x. This simulates the low-field

side injection in tokamak plasmas described in section 7.2, when no tilt of the antenna plane is

considered. In all benchmarks, two-dimensional geometries with coordinates x = (x, y) ∈ R2

are considered. As in the previous chapters, the calculations are presented in terms of normalized

coordinates in this thesis. Instead, the implementation deals with lengths in centimeter units. The

reader is reminded that those results are obtained simply by replacing in the equations κ with k0

and the normalized position x with the natural position r. The length scale of possibly involved

background variations is denoted L, in consistency with (2.14).

6.1. Free space

In this section the simplest situation is considered, i.e. the propagation of electromagnetic waves

in free space. Neither absorption nor fluctuations are present.

The wave equation (2.10) for this case reads

[
∆x + κ2

]
E(x) = 0. (6.1)

It was made use of the fact that free space is isotropic and hence the electric field can be described

as a scalar. Furthermore, the response of free space is local and the dielectric operator is nothing

more than the identity. Therefore, equation (6.1) has the form of a Helmholtz equation. The

corresponding L-symbol, as was explained in section 2.2, is obtained by replacing the partial

derivative ∂x in the dispersion operator with −iκN and hence is given by

d(x,N) = 2N2 − 2. (6.2)

Here, a constant prefactor of − 2
κ2 has been introduced. This is an arbitrary choice which leads to

a non-trivial factor ξ, cf. equation (6.4) thus allows to test the rescaling procedure presented in

section 4.4. The L-symbol (6.2) depends uniquely on N and can hence be cast to the form (2.38).
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So, according to section 2.2.2, the corresponding Weyl symbol is identical, i.e.

H(x,N) = d(x,N) = 2N2 − 2. (6.3)

Investigating scalar waves, this Weyl symbol is a matrix of dimensionality 1 and thus equivalent

to its eigenvalue which is considered as Hamiltonian. Comparison of Hamiltonian (6.3) with the

Hamiltonian considered around the antenna plane (5.4) yields the correction factor, cf. equation

(4.54),

ξ(x,N) ≡ 2. (6.4)

In order for this case to be a useful benchmark, a reference solution of the partial differential

equation (6.1) must be obtained. To this aim, the coordinates are split into x = (x, y). Like

in section 3.5, y ∈ R is the coordinate parallel to the antenna plane. A Fourier transform with

respect to y is performed, i.e.

Ê(x, Ny) =
∫
e−iκNy·yE(x, y)dy. (6.5)

This is substituted into the wave equation (6.1) with the result

(
∂2

x + κ2
(
1−N2

y

))
Ê(x, Ny) = 0. (6.6)

Now, x being one dimensional, this last equation is an ordinary differential equation. Integrated it

yields

Ê(x, Ny) = e−iκ
√

1−N2
y xÊ(x = 0, Ny). (6.7)

Note that (6.6) is a differential equation of second order, thus yielding two independent solutions

with refractive indices Nx = ±
√

1−N2
y , representing two possible branches of the dispersion

relation. The one relevant to propagation toward the negative x-axis considered in (6.7) is

Nx = −
√

1−N2
y .

In this solution, the Fourier transformed electric field on the antenna plane Ê(x = 0, Ny) is in-

volved as a boundary condition. The field on the antenna plane itself has the usual Gaussian beam
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6. Benchmarking: simplified models

profile (D.1) with vanishing central refractive index Ny,0 and the central amplitude normalized to

A = 1, i.e.

E(x = 0, y) = e
i
2κy·Sy− 1

2κy·Φy. (6.8)

For the two-dimensional case with propagation perpendicular to the antenna plane considered

here, the matrices Φ and S in fact are scalars and the same as their eigenvalues, with the notation

introduced in appendix D implying Φ = D. The wave field (6.8) can be Fourier transformed

analytically, yielding the boundary condition for (6.7):

Ê(x = 0, Ny) =
∫
e−iκNy·yE(x = 0, y)dy =

( 2π
D − iS

)1/2
e−

1
2κ

N2
y

D−iS . (6.9)

In order to compute the electric field in space E(x, y), the inverse Fourier transform of (6.7) is

computed. It reads

E(x, y) =
(

κ

2π (D − iS)

)1/2 ∫
eiκy·Nye−iκ

√
1−N2

y xe−
1
2κ

N2
y

D−iS dNy. (6.10)

Due to the square root in the exponential, an analytical computation of this integral cannot be

performed. However, a useful approximation is obtained if the power spectrum of the beam, i.e.

the norm squared of (6.9)

∣∣∣Ê(x = 0, Ny)
∣∣∣2 = 2π

D2 + S2 e
− 1

2
κD

D2+S2N
2
y (6.11)

is analyzed. It is identified to be a Gaussian distribution centered around Ny = 0 with width

σ =
√

D2+S2

κD . Apart from situations in which the beam is extremely focused (S large) or the

beam width is of the order of the wave length (D/κ & 1), the spectral width is much smaller then

1. This means that only small values of Ny contribute to the solution, making it appropriate to

use the Taylor expansion

√
1−N2

y = 1− 1
2N

2
y +O

(
N4
y

)
(6.12)
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6.1. Free space

Figure 6.1.: Beam in free space with frequency f = 140 GHz, initial beam width w = 3 cm and
initial curvature radiusR = 100 cm. n0 = 100000 rays have been traced and the size
of the bins is ∆x = 1.5 cm and ∆y = 0.29 cm. It is shown: (a) the result obtained
by the wave kinetic code, (b) the difference to the analytical reference solution, (c)
the statistical uncertainty.

and neglect fourth order terms. This is called paraxial approximation and allows us to compute

the integral in (6.10) analytically, with the electric field as a result:

E(x, y) = 1
(1− (iD + S) x)1/2 e

−iκx−κ2
y2

1
D−iS−ix . (6.13)

The norm squared which is compared to the result of the wave kinetic code is

|E(x, y)|2 = 1(
(1− Sx)2 + (Dx)2

)1/2 e
− κDy2

(1−Sx)2+(Dx)2 . (6.14)
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A set of beam parameters satisfying the paraxial approximation (in physical units, appropriate in

the code: typical frequency of microwaves in tokamak applications f = 140 GHz, initial beam

width of w = 3 cm (large compared to the wave length), slightly focused by a curvature radius

of R = 100 cm) is chosen. The results are presented in figure 6.1. The result of WKBeam (a)

is computed in terms of the Monte-Carlo estimator (4.50) and its statistical uncertainty (c) is

given by (4.53). It can be seen that the difference between the analytical, paraxial solution and

the numerical one (b) is close to zero and of the order of magnitude of the statistical uncertainty.

Furthermore, this difference shows an erratic behavior typical for statistical processes. The wave

kinetic code nicely reproduces, up to the statistical uncertainty, the reference solution.

6.2. Lens-like medium

As a next simplified model, a medium with space-dependent refractive index

n2(y) = 1− y2 (6.15)

is considered in this section. This refractive index allows non-evanescent wave propagation only

for |y| ≤ 1. The wave equation, describing a two-dimensional scalar wave field, reads

(
∂2

∂x2 + κ2
(

1 + 1
κ2

∂2

∂y2 − y2
))

E(x, y) = 0. (6.16)

With the same arguments as in the previous section on free space, the Hamiltonian to be employed

for the ray tracing is obtained by replacing ∂x with −iκN , leading to

H(x, y, Nx, Ny) = 2
(
N2

x +N2
y − 1 + y2

)
(6.17)

with the correction factor defined in (4.54)

ξ(x,N) ≡ 2, (6.18)
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6.2. Lens-like medium

where as a Hamiltonian around the antenna plane (5.4) is not appropriate and replaced by the

Hamiltonian considered natural for this benchmark in the sense of section 4.4

Ha(x, y, Nx, Ny) = N2
x +N2

y − 1 + y2. (6.19)

A reference solution to the wave equation (6.16) can be calculated. We recognize that its y-part

looks like the harmonical oscillator problem in quantum mechanics. The ansatz

E(x, y) = Ex(x)Ey(y) (6.20)

substituted into equation (6.16) allows to separate it in independent equations for x and y, namely

the system

(
∂2

∂x2 + κ2
)
Ex(x) = κ2CEx(x), (6.21a)(

y′2 − ∂2

∂y′2

)
Ey′(y′) = C ′Ey′(y′) (6.21b)

with some constant C ∈ R and the definition of rescaled quantities

y′ :=
√
κy, (6.22a)

C ′ := κC. (6.22b)

The x-equation (6.21a) is an ordinary differential equation with constant coefficients and easy to

solve. The result reads

Ex(x) = Ae−iκ
√

1−Cx (6.23)

with an amplitude A if propagation to the left is assumed, determining the sign of the exponential

in analogy to the free space section 6.1.

For the y-part (6.21b), solutions are provided in [33] in terms of the Hermite polynomials

Hn(y′). For any n ∈ N0, the Hermite-Gaussian mode

Ey′,n(y′) = Hn(y′)e−
1
2 y′2 (6.24)
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solves the wave equation. The corresponding constant C ′ = C ′n depends on the mode index n

and, in quantum mechanics, has the physical meaning of energy. It is given by

C ′n = 2n+ 1 with n ∈ N0. (6.25)

The wave equation is linear, so a general solution is found as a superposition of these eigenmodes,

namely

E(x, y) =
∞∑
n=0

Ane
−iκ
√

1− 2n+1
κ

xHn
(√
κy
)
e−

1
2κy2

. (6.26)

Here, An are coefficients to be determined given the boundary condition E(x = 0, y). The model

of a lens-like medium being also discussed in [34], the computation of the coefficients An may

be borrowed from there: We recall orthogonality of Hermite polynomials

∫
e−y′2Hm(y′)Hn(y′)dy′ = 2nn!

√
πδmn (6.27)

and recover this integral when integrating on y the electric field on the antenna plane E(x = 0, y)

obtained from (6.26) multiplied by the m-th Hermite-mode

Ey,m(y′) = Hm(y′)e−
1
2 y′2 . (6.28)

Kronecker’s δ then simplifies the sum, with the result that

∫
e−

1
2κy2

Hm(
√
κy)E(x = 0, y)dy = 2mm!

√
π

κ
Am. (6.29)

Solved for the coefficients, this reads

Am = 1
2mm!

√
κ

π

∫
e−

1
2κy2

Hm(
√
κy)E(x = 0, y)dy. (6.30)

As initial conditions, a Gaussian beam profile as considered in appendix D is chosen. In this

section, only beams of vanishing initial phase-front curvature, i.e. S = 0, and with vanishing

central refractive index in the antenna plane are studied. Under these conditions, the electric field
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6.2. Lens-like medium

on the antenna plane (D.1) simplifies to

E(x = 0, y) = e−
1
2κDy2

. (6.31)

The coefficients (6.30) are then, in terms of the normalized y′,:

Am = 1
2mm!

∫
e−

1
2 (1+D)y′2Hm(y′)dy′. (6.32)

These integrals are computed recursively in [34], with the result

A2l = 1
(2l)!!2l

(
1
γ − 1

)l
√
γ

, (6.33a)

A2l+1 = 0, (6.33b)

where γ := 1 +D. Upon making use of the floor function defined as

bfc := max {n ∈ Z : n ≤ f} , (6.34)

according to (6.26) modes n with

n > bκ− 1
2 c =: n0 (6.35)

are evanescent and, fading away exponentially on the length scale of the wave length, do not

contribute considerably far from the antenna plane. Therefore, these modes are neglected and

only the first n0 are taken into account.

Let us discuss the periodicity in x-direction of the wave field amplitude of the reference solution

(6.26). At a given position x, the phase shift ∆φmn between two Hermite-modes m and n, is

∆φmn = κ

(√
1− 2m+ 1

κ
−
√

1− 2n+ 1
κ

)
x. (6.36)

A periodicity in x is purely determined by this phase shift, cf. (6.26). The condition for the

superposition of the Hermite-modes to be periodic is that, for x = p with a period p, ∆φmn is a

multiple of 2π for any m and n. Regarding these phase shifts (6.36) containing square roots, we
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6. Benchmarking: simplified models

note that in general the ratio of ∆φmn and ∆φm′n′ is not rational for (m,n) 6= (m′, n′), making

it impossible that all are multiples of 2π for the same value of x. This means that the solution in

general is not periodic. However, it can be shown that in the limit κ→∞, a periodic solution

is obtained: The square roots in the phase shift (6.36) then may be Taylor expanded, i.e. up to

first-order terms O(κ−1)

∆φmn = (n−m)x + (2n+ 1)2 − (2m+ 1)2

8κ x. (6.37)

Upon neglecting the second term on the r.h.s and taking into account that only even numbers n

and m are considered, cf. (6.33), the phase shift is a multiple of 2π for x = π, determining the

periodicity of the solution, p = π. The second term may be neglected for small |x|, namely

|∆x| � κ

ñ2
0

(6.38)

for ñ0 the number of relevant modes with non-negligible amplitude (6.33a). For beams propagat-

ing over a larger distance, however, the first-order term spoils periodicity.

In the following, results are presented, again, in physical units. For the test runs of the simulation,

first a very high frequency, f = 14000 GHz, and an initial beam width of w = 0.1 cm are used.

With a typical variational length scale of the refractive index L = 3 cm. The amplitude in (6.33a)

drops fast with increasing index, justifying the assumption that the number of relevant modes ñ0 is

of order 1. Then, the above-presented parameters, yielding κ ≈ 9 · 103, ensure a periodic solution

over the whole observation range. The results are presented in figure 6.2. The difference between

WKBeam and the reference solution (b) is close to zero. This confirms that the wave kinetic code

produces reasonable results for the chosen set of parameters. In addition it is confirmed that the

result (a) is periodic in x, with a period p = 9.4 cm.

Next, the beam is simulated for another set of parameters, for which we expect a faster breakdown

of the periodicity: The frequency is reduced by a factor of 100, i.e. f = 140 GHz, causing also

a reduction of the parameter κ. In addition, the initial beam width is multiplied by a factor of

10, w = 1 cm. This leaves the parameter D unchanged, cf. (D.13a). According to (6.32) this

results in similar contributions of Hermite-modes as compared to the beam parameters before.

Hence, also the number of relevant modes ñ0 is equivalent. Even if the high-frequency limit

κ ≈ 90� 1 is still fulfilled, a periodic solution is predicted by (6.38) only for |∆x| � 30 cm.
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6.2. Lens-like medium

Figure 6.2.: Beam in a lens-like medium L = 3 cm with frequency f = 14000 GHz, initial beam
width w = 0.1 cm. n0 = 20000 rays have been traced and the size of the bins is
∆x = 0.4 cm and ∆y = 0.004 cm. It is shown: (a) the result obtained by the wave
kinetic code, (b) the difference to the analytical reference solution, (c) the statistical
uncertainty.

The results can be seen in figure 6.3. In this figure, two effects can be discovered: Indeed,

solution (a) is no longer periodic, as it was foreseen considering the input parameters for the

beam. Furthermore, the difference (b) of the outcome of WKBeam (a) to the reference solution

is significantly larger than the statistical uncertainty (c), pointing to an inaccuracy beyond this

uncertainty. The semiclassical limit may serve as an explanation: The spots seen in the difference

plot (b) show a typical interference pattern with a scale of d = 0.2 cm ≈ λ. This can be

attributed to the interference of the Hermite-Gaussian modes composing the beam. As addressed

in section 2.4.2, the semiclassical limit of the Wigner function is defined in weak sense only,
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6. Benchmarking: simplified models

Figure 6.3.: Beam in a lens-like medium L = 3 cm with frequency f = 140 GHz, initial beam
width w = 1 cm. n0 = 20000 rays have been traced and the size of the bins is
∆x = 0.57 cm and ∆y = 0.033 cm. It is shown: (a) the result obtained by the wave
kinetic code, (b) the difference to the analytical reference solution, (c) the statistical
uncertainty.

implying an average of such interference pattern over a scale length of several wave length λ.

This effect is discussed further in the next example. Such interference effects in principle are also

present for the parameters used in figure 6.2. However, the wave length there was λ = 2·10−3 cm,

which is too small to be resolved with the chosen bin size, such that the approximation of the

semiclassical limit does not lead to inaccuracies.
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6.3. Linear layer

6.3. Linear layer

The simplified model under investigation in this section has a linearly decreasing squared refrac-

tive index for propagation to the left, i.e.

n2(x) = 1 + x. (6.39)

This medium does not allow beam propagation beyond a cut-off layer, this means for x < −1,

where n(x) becomes imaginary. This model is interesting particularly with regard to reflectometry

applications in tokamak plasmas, because reflections can be reproduced. The wave equation with

refractive index (6.39) yields

(
∂2

∂x2 + ∂2

∂y2 + κ2(1 + x)
)
E(x, y) = 0. (6.40)

The Hamiltonian for the wave kinetic code is constructed in analogy to the free space case in

section 6.1 and yields

H(x, y, Nx, Ny) = 2
(
N2

x +N2
y − 1− x

)
(6.41)

where the correction factor is, again,

ξ(x,N) ≡ 2. (6.42)

For the construction of a reference solution, we refer to [35]. A Fourier transformation with

respect to y of the wave equation is performed. This leads to

(
∂2

∂x′2 − x′
)
Ê(x′, Ny) = 0. (6.43)

Here, the rescaled coordinate

x′ = −κ2/3
(
1 + x −N2

y

)
(6.44)
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has been introduced. Since Ny is a constant of motion in this case, equation (6.43) is the well-

known Airy equation with the solution referred to as Airy function Ai(x′). Hence, the Fourier

transformed wave field reads

Ê(x, Ny) = f(Ny)Ai
(
−κ2/3

(
1 + x −N2

y

))
. (6.45)

The function f(Ny) contains the boundary conditions, i.e. the electric field at the antenna plane.

Note that, in case the beam gets reflected and comes back to the antenna plane, only the originally

launched contribution EB(y), i.e. the contribution propagating in negatice x-direction, must be

taken into account, for consistency with the wave kinetic code. Around the antenna plane, i.e.

x ≈ 0, we have x′ ≈ −κ2/3
(
1−N2

y

)
� 1, which justifies the following approximation: As

discussed in [36], in the regime x′ � −1, the Airy function can be approximated with

Ai(x′) ≈
sin
(

2
3(−x′)3/2 + π

4

)
√
π(−x′)1/4 . (6.46)

In this approximation, the contribution propagating in negative x-direction is obtained if the

sin-function is replaced with the right exponential, i.e.

sin(·)→ 1
2ie

i(·). (6.47)

This inserted into (6.45) results in

Ê(x, Ny) = f(Ny) e−
2
3κ(1+x−N2

y)3/2

2
√
πκ2/3

(
1 + x −N2

y

)1/4 . (6.48)

For x = 0, this expresses the spectrum of the wave field considered as boundary condition on the

antenna plane. Solved for f(Ny) and inserted into (6.45), the previous equation leads to

Ê(x, Ny) = 2
√
πκ2/3

(
1−N2

y

)1/4

e−
2
3κ(1−N2

y)3/2 Ai
(
−κ2/3

(
1 + x −N2

y

))
Ê(x = 0, Ny). (6.49)
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6.3. Linear layer

Figure 6.4.: Beam in a linear layer with inhomogenity scale L = 90 cm, frequency f = 140 GHz,
initial beam width w = 6 cm and initial curvature radius R = 180 cm. n0 = 10000
rays have been traced and the size of the bins is ∆x = 0.031 cm and ∆y = 0.15 cm.
The beam is launched at (x = 0, y = 0) with an injection angle of 5.7◦ with respect
to the negative x-axis. Around the turning point it is shown: (a) the result from the
wave kinetic code, (b) the reference solution, (c) the difference between WKBeam
and the reference solution and (d) the statistical uncertainty of the wave kinetic code.

The inverse Fourier transform provides the wave field

E(x, y) = κ5/3
√
π

∫ (
1−N2

y

)1/4

e−
2
3κ(1−N2

y)3/2 Ai
(
−κ2/3

(
1 + x −N2

y

))
Ê(x, Ny)dNy. (6.50)

The electric field on the antenna plane is assumed to be (D.1).

As a consistency check, let us assume that wave propagation around x ≈ 0 is studied, with the

physical meaning of a negligible influence of the refractive index variation. Then approximation

(6.46) and, upon assuming propagation to the left also (6.47) is appropriate for the remaining
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Figure 6.5.: Beam propagating in a linear layer with L = 17.7 cm, frequency f = 64 GHz, initial
beam width w = 3.19 cm and initial curvature radius R = 512 cm. n0 = 10000
rays have been traced and the size of the bins is ∆x = 0.023 cm and ∆y = 0.13 cm.
The injection is parallel to the x-axis. It is shown (a) field amplitude along the center
of the, i.e. the x-axis, (b) data from (a) smoothed according to equation (6.53).

Airy function in (6.50), with the result that

E(x, y) = κ

2π

∫
eiκyNy

(
1−N2

y
1 + x −N2

y

)1/4

e
− 2

3 iκ

[
(1+x−N2

y)3/2−(1−N2
y)3/2

]
dNy. (6.51)

We should recover formula (6.10) for free space in this limit. Indeed, a Taylor expansion of the

expression in the exponent around x ≈ 0 yields

(
1 + x −N2

y

)3/2
−
(
1−N2

y

)3/2
≈ 3

2

√
1−N2

y x (6.52)

with the expected consequence.

As an example, in figure 6.4 the results for the case of a reflected beam are shown, with (6.50)

as a reference solution and the integral computed numerically. It can be seen that in the reference

solution (b) an interference pattern is visible. Instead, it is absent in the weak semiclassical limit

κ→∞ considered in the wave kinetic code (a). Therefore, the difference (c) exceeds by far the

statistical uncertainty (d). However, the shape of the beam intensity is well reproduced by the

wave kinetic code.

The smaller the injection angle is chosen, the more the interference pattern is pronounced. The

WKBeam code even produces results for zero injection angle, presented in figure 6.5. Again,
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the interference pattern which is present for the reference solution up to the antenna plane is not

reproduced by the wave kinetic code, cf. figure 6.5 (a). In addition, the numerical result drops

to zero at the cut-off layer x = 17.7 cm whereas the reference solution shows an evanescent

field contribution even beyond. Instead, there is a good agreement in (b), where the result is

smoothed over the interval s = 2 cm � 0.47 cm = λ, large compared to the free space wave

length λ = 2π/k0. The smoothing is realized by mean of a convolution:

A2
smooth(x, y) =

∫
e−

1
2

(x−x′)2+(y−y′)2

s2 A2(x′, y′)dx′dy′. (6.53)

Hence, also for the reflectometry case, the smoothed amplitude is an accurate quantity. The

formalism adapted in the wave kinetic code, however, does not allow a reproduction of the

detailed interference pattern exhibited by the exact solution.

6.4. Fluctuations in free space

The benchmarks presented in previous sections do not involve fluctuations. Here, a simplified

model of a random media is presented to test the numerical scattering scheme for fluctuations,

namely the wave equation

(
∂2

∂x2 + ∂2

∂y2 + κ2(1 + δn2(x, y))
)
E(x, y) = 0. (6.54)

Once again, the dimensionality is specified to m = 2 and scalar waves are considered. Therefore,

all matrix-valued quantities reduce to scalars. Fluctuations are introduced via a random contribu-

tion to the refractive index δn2(x, y). For the special case of no fluctuations, δn2(x, y) ≡ 0, wave

equation (6.54) reduces to the free space wave equation (6.1). Hence, the free space Hamiltonian

(6.3) is still an appropriate choice with correction factor ξ = 2. The fluctuating part δn2(x, y) in

the wave equation is a simple function of the coordinates (x, y), not involving any complicated

operators. For the fluctuation part of the dispersion symbol, this yields

DF (x,N) =
√
κδn2(x), (6.55)
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where the ordering parameter δ, cf. equation (3.10), is accounted for by the prefactor
√
κ on the

r.h.s. The following statistical properties are considered:

E
(
δn2(x, y)

)
= 0, (6.56a)

E
(
δn2(x, y)δn2(x′, y′)

)
= ∆2e

− (x−x′)2

4∆x2 −
(y−y′)2

4∆y2 . (6.56b)

The first property (6.56a) states that the mean value of the fluctuations vanishes. The two-point

correlation function (6.56b) inserted into (3.28) yields the spectral scattering amplitude

G(x,N) = κ3∆2

π
∆x∆ye−κ2(∆x2N2

x +∆y2N2
y). (6.57)

Then, the scattering cross section as presented in (4.68) yields

σ(x,N,N ′) = 8πG(x,N −N ′)δ
(
H(x,N ′)

)
. (6.58)

The parameter Σ for the Poisson process which produces scattering events is obtained as an

integral on the scattering cross section σ, cf. equation (4.25b). Inserting the Hamiltonian (6.3)

into (6.58) and integrating in Nx-direction on Dirac’s delta, this integral reads

Σ(x,N) = 2π
∫
G(x,N −N ′)

|N ′x|

∣∣∣∣
N ′x=−

√
1−N ′2y

dN ′y. (6.59)

Note that Dirac’s delta in (6.58) in principle, yields a contributions for all branches of the

dispersion variety, i.e. for N ′x = ±
√

1−N ′2y . However, for this benchmark a beam composed by

orbits propagating to the left, i.e. Nx = −1 +O
(
N2

y

)
, is considered and the chosen parameters

(κ∆x ≈ 2.6, cf. figure 6.7) suppress large jumps in the refractive index of the order ∆Nx ≈ 2,

which could lead to backscattering. This is seen in the fluctuation spectrum (6.57), where the

factor e−κ
2∆x2∆N2

x ≈ 10−12 is present. In turn such jumps would be required for the orbits

to reach the positive branch with N ′x = 1 + O
(
N ′2y

)
, justifying that we restrict ourselves to

the branch N ′x = −
√

1−N ′2y in (6.59). The remaining integral in (6.59) can be computed

numerically, with G provided by equation (6.57).

Once a scattering event is produced, according to the numerical scheme in section 4.2, the new

refractive index N ′ is chosen following as a probability density σ(x,N,N ′), defined in (6.58).
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6.4. Fluctuations in free space

Upon accounting for the free space Hamiltonian, this probability distribution is

σ(x,N,N ′) ∝ G(x,N −N ′)
|N ′x|

δ
(
N ′x +

√
1−N ′2y

)
. (6.60)

Given the fact that prefactors are not of importance here, they are dropped and the equation

is restricted to a proportionality statement. As mentioned also in section 5.1.2, the probability

distribution is no standard distribution, so no standard functions can be used to generate the

required random numbers. Therefore, the value for N ′y is generated with Metropolis-Hastings

algorithm, see appendix F, where

pproposal ∝ e−κ
2∆y2(Ny−N ′y)2

(6.61)

serves as proposal probability distribution required by the algorithm. Once the value for N ′y is

picked, N ′x is determined by the dispersion relation for Hamiltonian (6.3):

N ′x = −
√

1−N ′2y , (6.62)

as expressed by the δ-distribution in (6.60).

To construct a reference solution, snapshots of the fluctuation δn2(x) are generated randomly

so that the statistical properties (6.56) are fulfilled. The original wave equation (6.54) is solved

for every single set of fluctuations and the resulting electric field amplitude squared is averaged.

This quantity then is suitable to be compared with the wave kinetic code. Of course, given the

complexity of equation (6.54) for each realization of the fluctuations δn2, a numerical solution is

required. As a model for the fluctuations, δn2 is represented in Fourier series

δn2(x, y) =
∑
a,b

Φa,be
iπa y

y0 e
2πib x

x0 , (6.63)

where Φa,b are random numbers. The wave equation is solved by the spectral method in the

variable y transversal to the propagation direction. Specifically, the electric field in such mode

decomposition reads

E(x, y) =
∑
m

Em(x)eiπm
y
y0 , (6.64)
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6. Benchmarking: simplified models

yielding the wave equation

(
∂2

∂x2 −
π2m2

y2
0

+ κ2
)
Em(x) + κ2∑

a,b

Φm−a,be
2πib x

x0Ea(x) = 0. (6.65)

Equation (6.65) being of second order must be equipped with two boundary conditions. The beam

is launched at x = 0 and assumed to propagate to the left, so the electric field on the antenna

plane at x = 0 is mode-decomposed and Em(x = 0) serve as boundary conditions. Physically,

the second condition to be modeled is the information that the beam propagates to the left. In

equation (6.65) this can be described by introducing an absorption layer with non-vanishing

absorption coefficient γ(x) for x ∈ (xmin,−x0) by hand, where xmin < 0 determines the left

boundary for the numerical solver and −x0 < 0. It is assumed that this layer completely absorbs

the beam intensity so that the observed beam is purely propagating in the negative x-direction and

the boundary condition Em(xmin) = 0 applies at x = xmin. Instead, the solution is not affected

by the absorption in the range x0 < x < 0, so in this area the solution for the wave equation

(6.65) without absorption is obtained. The wave equation with absorption reads

(
∂2

∂x2 + iγ(x)− π2m2

y2
0

+ κ2
)
Em(x) + κ2∑

a,b

Φm−a,be
2πib x

x0Ea(x) = 0. (6.66)

This equation with the above-stated boundary condition constitutes a two-point boundary value

problem on the interval [xmin, 0], which is solved by a finite element library.

Note that absorption might not be perfect, causing a small contribution of the beam which gets

reflected at the boundary x = xmin. This can make appear an interference pattern on top of the

desired solution, cf. figure 6.7 and 6.7 (f).

Here, fluctuations are fully characterized by the coefficients Φa,b. They are chosen randomly

with a distribution such that the properties (6.56) are fulfilled. For the random generation, the

ansatz

Φa,b = Φ̃a,be
iαa,b (6.67a)
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6.4. Fluctuations in free space

is used. Here, Φ̃a,b are deterministic coefficients to be determined later on and

αa,b = α(x)
a + α

(y)
b (6.67b)

are random phases picked according to

α(i)
a = −α(i)

−a uniformly distributed in ∈ [0, 2π) for a ≥ 0,

with superscript (i) = (x), (y) (6.67c)

Ansatz (6.67) reproduces the stochastic properties (6.56). In fact, the average of the fluctuation in

terms of mode decomposition (6.63) reads

E
(
δn2(x, y)

)
=
∑
a,b

e
iπa y

y0 e
2πib x

x0 Φ̃a,bE
(
eiαa,b

)
. (6.68)

Here, the ansatz (6.67a) is used and the averaging only applies on the random numbers (6.67c).

The way the random numbers are constructed (6.67c) ensures that this expectation value vanishes,

in agreement with (6.56a).

Next, the mean value of the two-point correlation function (6.56b) is evaluated: This fixes the

deterministic coefficients Φ̃a,b. Substituting (6.63) into (6.56b) yields

E(δn2(x, y)δn2(x′, y′)) =
∑

a,b,a′,b′

Φ̃a,bΦ̃∗a′,b′e
iπ ay−a′y′

y0 e
2πi bx−b

′x′
x0

×E
(
ei(α

(x)
a −α

(x)
a′ )
)
E
(
ei(α

(y)
b
−α(y)

b′ )
)
. (6.69)

Since the coefficients α(x)
a and α(y)

b are chosen in a statistically independent way, the expectation

value can be split as in equation (6.69). As an example, the average E
(
ei(α

(x)
a −α

(x)
a′ )
)

running on

the x-component is discussed; the y-part can be treated analogously. Three cases are distinguished:

• a 6= a′ and a 6= −a′: The random numbers α(x)
a and α(x)

a′ are statistically independent, the

average yields

E
(
ei(α

(x)
a −α

(x)
a′ )
)

= E
(
eiα

(x)
a

)
E
(
e−iα

(x)
a′

)
= 0. (6.70a)
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6. Benchmarking: simplified models

• a = −a′: According to (6.67c), the random numbers fulfil α(x)
a = −α(x)

a′ . The average

reads

E
(
ei(α

(x)
a −α

(x)
a′ )
)

= E
(
e2iα(x)

a

)
= 0. (6.70b)

• a = a′: obviously, α(x)
a = α

(x)
a′ and the average is

E
(
ei(α

(x)
a −α

(x)
a )
)

= E (1) = 1. (6.70c)

In summary, we find

E
(
ei(α

(x)
a −α

(x)
a′ )
)

= δa,a′ , (6.71a)

where δa,a′ is Kronecker’s delta and, in analogy,

E
(
ei(α

(y)
b
−α(y)

b′ )
)

= δb,b′ . (6.71b)

These results are substituted in equation (6.69) with the result

E(δn2(x, y)δn2(x′, y′)) =
∑
a,b

∣∣∣Φ̃a,b

∣∣∣2 eiπa y−y′
y0 e

2πib x−x′
x0 , (6.72)

where on the right no random variables occur any longer. Mathematically, equation (6.72) is a

decomposition into a Fourier series of the two-point correlation function. Given the two-point

correlation function (6.56b), the Fourier coefficients
∣∣∣Φ̃a,b

∣∣∣2, upon accounting for the substitution

x̃ = x − x′ and ỹ = y− y′, read

∣∣∣Φ̃a,b

∣∣∣2 = ∆2

2x0y0

∫ x0/2

−x0/2
e
− x̃2

4∆x2−2πia x̃
x0 dx̃

∫ y0

−y0
e
− ỹ2

4∆y2−πib
ỹ
y0 dỹ. (6.73)

The integrals can be computed analytically if the integration boundaries are placed to infinity.

This is a good approximation with the assumption of a small fluctuation correlation length, i.e.

∆x� x0 and ∆y� y0, since it affects the tails of the Gaussian in the integral, with the result

104



6.4. Fluctuations in free space

that

∣∣∣Φ̃a,b

∣∣∣2 = 2π∆2 ∆x∆y
x0y0

e
−π2

[
4 ∆x2

x2
0
a2+ ∆y2

y2
0
b2
]
. (6.74)

This condition for the coefficients Φ̃a,b, yielding real and positive numbers for their norm squared,

can be fulfilled, justifying ansatz (6.67a) to reproduce the two-point correlation function (6.56b).

Equation (6.74) then determines the norm of the deterministic fluctuation coefficients. The

coefficient for one realization of fluctuations Φa,b is given by (6.67a), where the deterministic

number Φ̃a,b is multiplied with a random phase. Therefore, the phase of Φ̃ has no importance.

Without any restriction, the coefficients Φ̃ are chosen to be the real and positive square root of

(6.74):

Φ̃a,b =
√

2π∆x∆y
x0y0

∆e
−π2

[
2 ∆x2

x2
0
a2+ 1

2
∆y2

y2
0
b2
]
. (6.75)

The result of one run of the full wave solver is the electric field Ei(x, y). Here, i labels the run.

The averaged field energy density for K runs is computed as

E
(
|E(x, y)|2

)
= 1
K

K∑
k=1
|Ek(x, y)|2 . (6.76)

The corresponding statistical uncertainty is estimated by

σ|E|2(x, y) = 1
K

√√√√ K∑
k=1

(
|Ek(x, y)|2 − E

(
|E(x, y)|2

))2
. (6.77)

In this section, two test runs for different sets of parameters are presented. For the beam

frequency, f = 50 GHz is chosen. The initial beam width is w = 1.5 cm, the initial curvature

radius R = 20 cm. This yields a good focusing, compensating for the spreading of the beam due

to diffractive effects so that in the range of observation x[cm] ∈ [−10, 0], without fluctuations,

an approximately constant beam amplitude is obtained. The fluctuation correlation lengths are

∆x = ∆y = 0.25 cm. For the mode decomposition, 80 modes in x-direction and 19 modes in

y-direction are in use.
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6. Benchmarking: simplified models

Figure 6.6.: Beam launched at x = 0 and propagating to the left with and without the effect of
fluctuation. (a) deviation of the squared refractive index n2 due to the randomly
generated fluctuation with parameters ∆ = 0.05, ∆x = ∆y = 0.25 cm, (b) beam
intensity for fluctuations turned off, (c) beam intensity, when the fluctuations (a) are
taken into account.

In figure 6.6, as an example, the effect of fluctuations on the beam propagation is shown for the

turbulence realization presented in the first panel (a). In part (b) on the left, the beam for free

space without fluctuations is displayed, whereas on the right, the result of one single run of the

full wave solver is shown (c). The fluctuation is randomly generated as described before with the

parameter determining the strength of fluctuation ∆ = 0.05. It can be seen that the beam under

the influence of fluctuations has no longer the nice, Gaussian shape it has in free space. Around

x = −3.5 cm there is a relatively strong gradient of δn2 pointing downward, deflecting the main

contribution of the beam to the bottom. In addition, the beam propagates through the positive

density blob centered at x = −3.5 cm, y = −0.25 cm, acting like a lens focusing the beam. This

increases the beam intensity to a maximum value of around 1.75, exceeding the maximal intensity

of around 1 for the beam neglecting fluctuations, cf. figure 6.6, (b).

To allow a comparison with the wave kinetic code, 1380 runs of the full wave solver for different

realizations of the fluctuations have been performed and the average (6.76) has been computed

according to (6.76). For ∆ = 0.05, the result is shown in figure 6.7. The effect of the fluctuation

is seen best in the comparison (e) to the analytical free space solution without fluctuations which
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6.4. Fluctuations in free space

is well reproduced by the wave kinetic code in the absence of fluctuations. The difference shown

there vanishes on the antenna plane at x = 0, where the beam is launched and hence not yet

affected by any properties of the medium. Instead, after propagation through the fluctuating

region, the beam intensity is increased at its boundaries and decreased in the center, corresponding

to a spreading of the beam. The decrease is by about 20% of the maximum beam intensity. Most

important for the benchmarking is that the difference (f) between the wave kinetic code and the

full wave solver is only 3% of the maximum beam intensity. This is the order of magnitude of the

statistical uncertainty of both, full wave solver (b) and wave kinetic code (d), and one order of

magnitude smaller then the effect of fluctuations (e), indicating that the effect of fluctuations is

well-resolved and the results are correct. In figure 6.8 the same comparison is presented for a

higher level of fluctuations, ∆ = 0.1. The higher level of fluctuation increases its effect on the

beam. Still, the comparison of kinetic code and full wave solver gives satisfactory results.
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6. Benchmarking: simplified models

Figure 6.7.: Results for a beam in free space with fluctuation strength ∆ = 0.05, fluctuation
correlation lengths ∆x = ∆y = 0.25 cm, beam frequency f = 50 GHz, initial
beam width w = 1.5 cm and initial curvature radius R = 20 cm. It is shown: (a)
the averaged result of the full wave solver and (b) its statistical uncertainty, (c) the
results produced by WKBeam with (d) the corresponding statistical uncertainty, (e)
the difference between the wave kinetic code and the analytical result neglecting
fluctuations and (f) the difference between the wave kinetic code and the full wave
solver, an interference pattern aligned with the y-direction is observed, due to the
effect discussed after equation (6.66).
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6.4. Fluctuations in free space

Figure 6.8.: Results for a beam in free space with fluctuation strength ∆ = 0.1, fluctuation
correlation lengths ∆x = ∆y = 0.25 cm, beam frequency f = 50 GHz, initial
beam width w = 1.5 cm and initial curvature radius R = 20 cm. It is shown: (a)
the averaged result of the full wave solver and (b) its statistical uncertainty, (c) the
results produced by WKBeam with (d) the corresponding statistical uncertainty, (e)
the difference between the wave kinetic code and the analytical result neglecting
fluctuations and (f) the difference between the wave kinetic code and the full wave
solver, an interference pattern aligned with the y-direction is observed, due to the
effect discussed after equation (6.66).
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6.5. Convergence test

As announced in the introduction to this chapter, we shall discuss the impact of numerical

parameters on the result of the wave kinetic code, i.e. the number of rays and the number of bins,

defining their edge lengths. For this analysis, a beam with frequency f = 50 GHz, initial beam

width w = 1.5 cm and initial curvature radius R = 20 cm is launched and observed in an area

x[cm] ∈ [−10, 0] and y[cm] ∈ [−9,+9]. The beam propagates in free space. With the chosen

parameters, the beam has an approximately constant width over the whole observation range. We

define

ErrorL2 :=
∫ [
|E(x, y)|2 − |Eref(x, y)|2

]2
dxdy∫

|Eref(x, y)|4 dxdy
. (6.78)

and refer to this expression as error norm. It is one single number which expresses the global

accuracy of the solution of the wave kinetic code |E(x, y)|2 in comparison with the analytical

reference solution |Eref(x, y)|2, cf. (6.14). If and only if both are the same, the error norm

vanishes. An estimate of the error norm in terms of the statistical uncertainty reads

UncertaintyL2 :=
∫
σ2
E2(x, y)dxdy∫

|Eref(x, y)|4 dxdy
. (6.79)

Here, σE2 denotes the standard deviation of the Monte-Carlo estimator for E2 (4.53). In case

statistical uncertainty is the only source of inaccuracies, (6.78) and (6.79) are the same.

Performing a scan over the number of traced rays and the number of bins, we obtain the results

in figure 6.9. The number of bins is given by nb = nxny, where nx and ny denote the number of

subdivisions of the area under investigation in x-direction and y-direction, respectively. For the

test presented here, these subdivisions are chosen such that nx = ny.

It is seen that, in general, the more rays are traced the lower the statistical uncertainty is. This

result was predicted by section 4.3. The error shows the same behavior. Comparing error norm

and statistical uncertainty, it is conspicuous that for a large number of bins, they are the same. This

is because then the bins are small and the approximation made in (3.74), namely the assumption

that the wave field amplitude is constant over the whole bin, is a good approximation such that

the only inaccuracy is due to statistics. Instead, if only few bins are taken, at some point, more

specificly log10 nb ≈ 3.55, corresponding to 60 bins in each direction, the error norm explodes,
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Figure 6.9.: Top: Error norm. Bottom: statistical uncertainty. Both depending on the number of
traced rays n0 and the number of bins covering the observation area nb.

while the statistical uncertainty still decreases. This can be explained by the growing bin size

which is, at some point, just too rough to reproduce the fine structure of the beam. Instead,

inside each bin the contributions of a lot of rays are summed up, leading to a small statistical

uncertainty. Here, this is the case when ∆y = 0.3 cm, which starts to be comparable to the

beam width w = 1.5 cm. The precise formulation of a criteria for the automatic determination

of the maximum bin size allowed before the error explodes is left for future work. However,

as a guideline for this thesis, we say that the bin size should be considerably smaller then the

structures to resolve. For such parameters, this section has shown that the error is as large as

expected from the statistical uncertainty.
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The benchmarking in the previous chapter has showed that the wave kinetic code WKBeam yields

results that are in satisfactory agreement with the reference solutions. Therefore, we can now

exploit the code for real, physical tokamak situations. The equations involved in such situations

are more complicated than those describing the simplified models. Furthermore, the simple

geometry with the antenna plane well-aligned to Cartesian coordinate axis considered for the

benchmarks is no longer appropriate.

The geometry for physical situations is three dimensional, so for the applications in this chapter,

m = 3 is specified, with a Cartesian coordinate vector x = (x, y, z) and a Cartesian refractive

index vector N = (Nx, Ny, Nz).

This chapter is organized as follows: First, the geometry of the tokamak and the antenna plane

are presented as well as some useful coordinate transformations. Next, there is a discussion on the

lowest-order contribution of the dispersion tensor D0 for magnetized plasmas and a Hamiltonian

is constructed. This is followed by the model for fluctuations and absorption.
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Figure 7.1.: Left: Section of the "donut"-shaped tokamak. The Cartesian coordinate system
(x, y, z) has its origin on the axis of rotation. In each poloidal plane, a coordinate
system (R, ϕ, z) is localized. The R-axis points radially outwards, the ϕ-axis in
toroidal direction and the z-axis is the z-axis of the Cartesian coordinate system.
Right: Coordinates in one poloidal plane. The magnetic surfaces suggest the use of a
coordinate system (ρ, θ) in the poloidal plane. The point (R0, z0) is the position of
the magnetic axis.

7.1. Tokamak geometry

The wave kinetic equation is formulated in terms of Cartesian coordinates. However, the tokamak

has a special toroidal symmetry which suggests the use of a cylindrical coordinate system. So

both, the Cartesian as well as the cylindrical coordinate system, are in use and a coordinate

transformation is needed. To illustrate how coordinates are defined, the "donut"-shaped tokamak

with the attached coordinate systems is shown on the left in figure 7.1. A cut through the tokamak

tube containing the R- and z-axis is called poloidal plane, whereas the direction perpendicular

to it is referred to as toroidal direction. The toroidal symmetry of the tokamak involves every

equilibrium quantity including the background plasma profiles. For our purposes, these are the

electron density ne, the magnetic field B and the electron temperature Te. The magnetic field is

such that the field lines lie on closed surfaces called magnetic surfaces. The central magnetic

surface collapsing to a single line, is called magnetic axis. The cut of the magnetic surfaces and

the magnetic axis through the poloidal plane is shown on the right in figure 7.1. The surfaces

can be labeled e.g. with the magnetic flux Ψ flowing through them or alternatively with ρ =
√

Ψ.
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Hence, an alternative coordinate system in the poloidal plane (ρ, θ) is introduced, where ρ =
√

Ψ

and θ is the angle as shown in figure 7.1. Note that the flux in this thesis is normalized so that

ρ = Ψ = 0 on the magnetic axis and ρ = Ψ = 1 at the separatrix (last close flux surface). The

coordinate ρ it is also referred to as normalized minor radius coordinate, which is motivated by

the fact that it measures the distance from the magnetic axis under the simplifying approximations

of circular magnetic surfaces and a constant magnetic field. Given the fact that the electron

density and the temperature equilibrate fast on magnetic surfaces [37], it is appropriate to assume

that they are functions on ρ only. Instead, the magnetic field depends on (R, z). However, the

larger (toroidal) component of the magnetic field is in first approximation a function of R only,

and decreases as 1/R away from the z-axis.

Given the Cartesian coordinates (x, y, z), the components (R, z) of the cylindrical coordinate

system are given by the following relations obtained from geometry:

R

z

 =

√x2 + y2

z

 . (7.1)

Given a vector A in components (AR, Aϕ, Az), the transformation to Cartesian coordinates is a

simple rotation around the z-axis, i.e.


Ax

Ay

Az

 =


cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1



AR

Aϕ

Az

 . (7.2)

with the rotation angle

ϕ = arctan y
x . (7.3)

In later applications, e.g. section 7.5, the beam propagation usually is considered close to the

xz-plane, defined by ϕ = 0. Let us note that in this specific case, the unit vectors eR, eϕ and

ez of the cylindrical coordinate system correspond to ex, ey and ez in the Cartesian coordinate

system, respectively.
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7.2. Orientation of the antenna plane

The antenna plane is not necessarily aligned to the Cartesian coordinate system as presented in

section 3.5. Instead, for tokamak applications, the antenna is considered to be a plane containing

the point xa = (xa, ya, za) with an orientation specified by two angles ϑ and φ, called poloidal

and toroidal angles, respectively. The unit vector normal to the antenna plane in terms of Cartesian

coordinates, in ASDEX Upgrade convention, is

n =


nx

ny

nz

 =


− cosϑ cosφ

− cosϑ sinφ

− sinϑ

 . (7.4)

For the generation of initial ray conditions, a Cartesian coordinate system (ξ1, ξ2, ξ⊥) is attached

to the antenna plane. The direction perpendicular to the antenna plane is labeled with an index

"⊥" whereas the directions which span the plane are indexed with "1" and "2". The origin is set

at xa. Then, in terms of these coordinates, the geometry of section 3.5 is appropriate and the

corresponding Cartesian coordinates are obtained from the coordinate transformation


x

y

z

 = T (ϑ, φ)


ξ1

ξ2

ξ⊥

+


xa
ya
za

 . (7.5)

Here,

T (ϑ, φ) =


− sinϑ cosφ sinφ − cosϑ cosφ

sinϑ sinφ − cosφ − cosϑ sinφ

− cosϑ 0 − sinϑ

 (7.6)

is a rotation matrix and it is accounted for the shift (x0, y0, z0). In analogy, the refractive index

vector is rotated: 
Nx

Ny

Nz

 = T (ϑ, φ)


Na1

Na2

Na⊥

 . (7.7)
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For the tokamak ITER (under construction), another convention has been introduced [38]: It is

obtained by replacing the angles in T (ϑ, φ) by tilded versions, defined as

ϑ̃ = − arcsin (sinϑ cosφ) , (7.8a)

φ̃ = − arctan tanφ
cosϑ . (7.8b)

7.3. Coordinates aligned to the magnetic field

The plasma in a tokamak is anisotropic due to the presence of a magnetic field B. However, we

will see, cf. section 7.4.1, that the local properties of the plasma are invariant under changes of the

gyrophase φN , introduced later in this section in (7.10). This suggests to introduce a coordinate

system aligned to the magnetic field and to express the refractive index in the dispersion operator

symbol in terms of the components N⊥1 and N⊥2 perpendicular to the magnetic field and N‖

parallel to it. The basis vectors of the two coordinate systems in use are denoted with (ex, ey, ez)

and (e⊥1, e⊥2, e‖).

The transformation can be written in terms of a rotation QT (x), which is in matrix notation


N⊥1

N⊥2

N‖

 = QT


Nx

Ny

Nz

 , (7.9)

where QT is the transpose of Q, which, in turn, is defined as the rotation matrix transforming

from the field-aligned frame to the Cartesian frame. In addition, we introduce polar coordinates

(N⊥, φN ) in the plane perpendicular to the magnetic field:

N⊥1 = cos(φN )N⊥, (7.10a)

N⊥2 = sin(φN )N⊥. (7.10b)

As an example, upon accounting for the expression of Q derived in (7.19), if the magnetic field is

oriented in y-direction (approximately corresponding to the toroidal direction for standard beam
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parameters, cf. section 7.2) the coordinate transformations (7.9) and (7.10) amount to

Nx = sin(φN )N⊥, (7.11a)

Nz = − cos(φN )N⊥. (7.11b)

Hence φN = 0 corresponds to a refractive index pointing in negative z-direction.

As a next step, we shall compute the rotation matrix Q. This is possible based upon information

on the orientation of B only. Let us note that the coordinate transformation (7.9) is applicable to

any vector, including the magnetic field B itself:


Bx

By

Bz

 = Q


B⊥1

B⊥2

B‖

 . (7.12)

This expresses the Cartesian components of the magnetic field in terms of the field aligned

components. Of course, the magnetic field does not have any component perpendicular to itself,

so B⊥1 = B⊥2 = 0, and we obtain

B = |B|Qe‖. (7.13)

Here, the norm of the magnetic field is |B| and the direction is contained in the rotation matrix Q.

Equation (7.13) can be considered as a condition to be solved for Q. Dividing by |B| it reads

B

|B|
= Qe‖ = Q|last column . (7.14)

The most general ansatz for the rotation Q is the parametrization with the three Euler angles α, β

and γ as follows:

Q = R3(α)R2(β)R3(γ). (7.15)
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Here R3(ξ) denotes a rotation around the third axis, i.e. the z- or ‖-direction, by an angle ξ with

matrix representation

R3(ξ) =


cos ξ sin ξ 0

− sin ξ cos ξ 0

0 0 1

 (7.16a)

and R2(ξ) denotes a rotation around the second axis with matrix representation

R2(ξ) =


cos ξ 0 sin ξ

0 1 0

− sin ξ 0 cos ξ

 . (7.16b)

When these matrices are substituted into (7.14), we find

B

|B|
=


cosα sin β

− sinα sin β

cosβ

 , (7.17)

which is a condition for the angles α and β, with the solution

α = − arctan By
Bx

, (7.18a)

β = arcsin

√
B2

x +B2
y

|B|
. (7.18b)

It is worth noting that the vector (0, 0, B‖), which represents the magnetic field in the field-aligned

frame, is invariant under rotation around the third axis, R3(γ). Hence, (7.14) does not constrain

the angle γ. Therefore, this angle should be arbitrary. Indeed, it does not appear in condition

(7.17). Hence, without loss of generality, we set γ = 0, with the final result

Q = R3(α)R2(β) =


cosα cosβ sinα cosα sin β

− sinα cosβ cosα − sinα sin β

− sin β 0 cosβ

 . (7.19)
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7.4. Weyl symbol for electron-cyclotron waves

In this section, the Weyl symbol D(x,N) of the wave equation operator for electron-cyclotron

wave propagation in tokamak plasmas is discussed. For the framework of this thesis, it was

presented in section 3.2 that this operator is split into a part referred to as dispersion operator

D0(x,N), one part δDF (x,N) describing the fluctuations and a contribution δ2DA(x,N) which

describes the effect of absorption. For the case of waves in magnetized plasmas, the symbols

involved are matrices andD0(x,N) must be diagonalized as explained in section 3.3 to simplify to

a scalar problem. This section is split into several parts, where the above-mentioned contributions

are presented separately.

7.4.1. Cold-plasma dispersion

The eigenvalue of D0(x,N) corresponding to the mode under investigation is considered as

natural Hamiltonian in the ray tracing code. In this subsection, D0 for magnetized plasmas is

computed and a Hamiltonian is constructed.

For the propagation of electron-cyclotron waves it is customary to use the cold-plasma approxi-

mation forD0(x,N) [11], [12], [13]. This is appropriate as far as the beam is far from resonances.

Hot-plasma effects determine the resonant absorption of the wave, see section 7.4.6. A discussion

on this approximation can be found e.g. in [12]. The cold-plasma dielectric tensor is

εz =


S iD 0

−iD S 0

0 0 P

 . (7.20)

The index z indicates that this dielectric tensor is expressed in a frame where B is aligned to the z-

axis. The tensor in generic coordinates can be obtained by applying the coordinate transformation

expressed by the matrix Q (7.19). The coefficients S, D and P are functions of the (electron)
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plasma frequency ωp and the (electron) cyclotron frequency Ω as follows:

P = 1−
ω2
p

ω2 , (7.21a)

S = 1−
ω2
p

ω2 − Ω2 , (7.21b)

D = ωΩ
ω2 − Ω2

ω2
p

ω2 . (7.21c)

The electron plasma frequency is ωp =
√

nee2

ε0me
where ne is the electron number density, e is

the negative electron charge (e > 0), me the electron mass and ε0 the vacuum permitivity. The

cyclotron frequency in MKSA-units reads Ω = e|B|
me

, where |B| is the norm of the magnetic

field. Note that since ne and |B| are space-dependent, also ε is. The L-symbol d0(x,N) of the

dispersion operator is obtained by means of (2.23). Upon accounting for its structure, discussed

in equation (2.38), the Weyl symbol D0(x,N) is equivalent,

D0(x,N) = −N ⊗N +N2I3 − ε(x). (7.22)

The Hamiltonian for the ray tracing, in principle, is found by computing the eigenvalue λα of this

matrix for the mode α to be traced. This requires solving the cubic dispersion relation

det (D0(x,N)− λI3) = 0 (7.23)

and is not trivial. Anyway, it was seen in section 4.4 that it can be multiplied with any non-

vanishing function and still a correct solution can be obtained with a rescaling procedure. Given

the fact that the determinant of a matrix is just the product of the eigenvalues, the determinant of

(7.22) would be an appropriate choice for the Hamiltonian which is much simpler to compute

than the eigenvalue. Therefore, as a relatively easy starting point, the Hamiltonian

H ′(x,N) = detD0(x,N) (7.24)
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is considered. This determinant is computed as follows: First, the dispersion matrix is transformed

to the coordinate system aligned to the magnetic field, i.e.

D0,z = QTD0Q =
(
QTN

)
⊗
(
QTN

)
−N2I3 − εz. (7.25)

With the rotation Q a unitary matrix, the determinant is not affected by such transformations, i.e.

detD0,z = detD0. (7.26)

Inserting Q defined in (7.9) and the dielectric tensor (7.20) into (7.25), the dispersion matrix

reads

D0,z =


N2 −N2

⊥1 − S −N⊥1N⊥2 − iD −N⊥1N‖

−N⊥1N⊥2 + iD N2 −N2
⊥2 − S −N⊥2N‖

−N⊥1N‖ −N⊥2N‖ N2 −N2
‖ − P

 . (7.27)

It is worth noting that here no assumption is made on the orientation of N in the plane perpen-

dicular to the local magnetic field. If, in addition, one sets the gyrophase φN so that N⊥2 = 0

the tensor (7.27) reduces to the well-known from [12]. The determinant of the dispersion tensor

(7.27) is an appropriate choice for the Hamiltonian:

H ′(x,N) = SN4
⊥ −

[(
S −N2

‖

)
(S + P )−D2

]
N2
⊥

+ P

[(
S −N2

‖

)2
−D2

]
. (7.28)

The Hamiltonian presented in (7.28) is seen to be a polynomial of second order in N2
⊥. With the

parameters

A := S, (7.29a)

B := (S + P )N2
‖ − SP +D2 − S2, (7.29b)

C := S2P −D2P − 2SPN2
‖ + PN4

‖ (7.29c)
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dependent on x and N‖, equation (7.28) amounts to

H ′(x,N) = A(x)N4
⊥ + B(x,N‖)N2

⊥ + C(x,N‖). (7.30)

The construction of this Hamiltonian was relatively straight forward. However, as it stands, it is

not a good choice for the ray tracing code. First of all, in free space, the electron density vanishes

and the Hamiltonian (7.30) reduces to

H ′(x,N) =
(
N2 − 1

)2
, (7.31)

showing a second-order zero. Hence, whenever the Hamiltonian vanishes, also the derivatives

with respect to N , and hence the ray velocity defined in (C.1a), vanish.

The second problem is that the Hamiltonian presented in (7.28) is valid for all plasma modes. In

case they are degenerate, as for example in free space, there is no way to properly choose the

mode. Instead, a different behavior of the mode shows up once the plasma is reached. Therefore,

employing the Hamiltonian (7.28) would require a special treatment of the free space region

around the plasma.

In the following, a different Hamiltonian is presented which solves immediately both problems

mentioned before. It is constructed based on (7.28) as a starting point. In equation (7.30) the

structure of the Hamiltonian as a polynomial of second order in N2
⊥ is obvious. In general, it is

easy to compute the two roots of such a polynomial, which allows to write it in terms of a product

of two linear factors, i.e.

H ′(x,N) = S
(
N2
⊥ −N2

⊥(+1, x,N‖)
) (
N2
⊥ −N2

⊥(−1, x,N‖)
)
, (7.32)

where N2
⊥(σ, x,N) denotes the root labeled with σ = ±1 (corresponding to the single modes) of

the equation H ′(x,N) = 0 solved for N2
⊥

N2
⊥(σ, x,N) = − B2A + σ

√
B2

4A2 −
C
A
. (7.33)

The different modes which arise from the cold-plasma dispersion relation are discussed e.g.

in [12]. The mode labeled with σ = +1 in this thesis there is referred to as O-mode (ordinary
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mode), whereas σ = −1 is the X-mode (extraordinary mode). For propagation perpendicular to

the background magnetic field, these modes are characterised by an electric wave field pointing

in the direction of B and perpendicular to B, respectively. If, as a Hamiltonian appropriate for

the mode σ,

Hσ(x,N) = 2
(
N2
⊥ −N2

⊥(σ, x,N‖)
)

= 2N2
⊥ + 1
A

(
B − σ

√
B2 − 4AC

)
, (7.34)

is employed, it is exclusively valid for the mode σ. Thus, the mode can properly be chosen by

specifying the index σ. Also the slow propagation for degenerate modes is no longer present for

this Hamiltonian. If free space (ne = 0) is considered, the free space Hamiltonian

Hσ(x,N) = 2
(
N2 − 1

)
(7.35)

is recovered, cf. (6.3).

The Hamiltonian (7.34) is the one used in the ray tracing module of the wave kinetic code. The

remaining part of this section is dedicated to some issues of special interest for the implementation.

It can be seen in (7.35) that for free space parameters, the Hamiltonian does not depend on

σ. This is clear because there the modes are degenerated. Also (7.34) should not depend on σ

for free space. This is the case when the involved square root vanishes. The definition of the

parameters (7.29) and (7.21) are substituted into the square root and a lengthy but straight forward

computation shows

√
B2 − 4AC = |D|

√
4PN2

‖ + Ω2

ω2

(
N2
‖ − 1

)2
. (7.36)

For this simpler expression for the square root it is obvious that it vanishes for free space where

D = 0.

One numerically troublesome point could arise when S = 0. This happens in the plasma when

ω2 = ω2
p + Ω2, which is known as the upper hybrid resonance [12]. For the σ = −1 mode, such

a parameter leads to a blow up in the Hamiltonian (7.34). Instead, for the σ = +1 mode, a Taylor

expansion of the square root around A = 0 yields

H+1(x,N) = 2N2
⊥ + B
A

(
1− 1 + 2AC

B2 +O(A2)
)

= 2N2
⊥ + C
B

+O(A). (7.37)
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So, divergence cancels out. In any case, when numerical computations are involved and the Taylor

expansion is not performed, the Hamiltonian is composed by a term of order O(A) divided by A.

In the limit A → 0, this will cause numerical errors and must be avoided. Therefore, instead of

A−1, a regularized inverse

A−1
reg = A

A2 + ε2
(7.38)

is used. Here, ε is a small constant. This inverse of A does not blow up any longer for small A,

but it is bounded by the values ± 1
2ε . The error of this regularized inverse of A compared to the

correct value is given by

∣∣∣∣ 1
A
− A
A2 + ε2

∣∣∣∣ =
∣∣∣∣∣ ε2

A (A2 + ε2)

∣∣∣∣∣ ≤
∣∣∣∣∣ε2A
∣∣∣∣∣ . (7.39)

As can be seen, for large A this vanishes. For A close to zero the use of the regularized inverse

avoids terms in the Hamiltonian blowing up. In the limit ε→ 0, the non-regularized inverse is

found. Therefore, the regularized result should converge to the correct result in this limit. A

convergence study can be found in section 7.4.4.

7.4.2. Correction factor for the Hamiltonian

According to the theory developed in section 3.3, the Hamiltonian corresponding to the mode

with eigenvector eα of the dispersion operator is its eigenvalue

λα(x,N) = e†α(x,N)D0(x,N)eα(x,N). (7.40)

Instead, the Hamiltonian Hα(x,N) given by (7.34) is employed in the numerical solution. The

latter can be written as the eigenvalue multiplied by a non-vanishing function as in (4.54):

Hα(x,N) = ξ(x,N)λα(x,N). (7.41)

It is the aim of this section to compute this factor for the cold-plasma case. This is done in two

steps: First, the correction factor ξ1(x,N) relating λα(x,N) to the determinant H ′(x,N) is
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computed, i.e.

H ′(x,N) = ξ1(x,N)λα(x,N). (7.42)

To this goal, we note that the determinant of a matrix is the product of its eigenvalues λβ(x,N),

i.e.

H ′(x,N) = detD0(x,N) =
∏
β

λβ(x,N) = λα(x,N)
∏
β 6=α

λβ(x,N). (7.43)

On the other hand, the matrix of cofactors C(x,N) of the dispersion matrix can be expanded on

the basis of the eigenvectors:

C(x,N) =
∑
α

∏
β 6=α

λβ(x,N)

 eα(x,N)e†α(x,N). (7.44)

The trace of C(x,N) reads

Tr C(x,N) =
∑
µ

e†µ(x,N)C(x,N)eµ(x,N) =
∑
α

∏
β 6=α

λβ(x,N)

 . (7.45)

Since the eigenvalue λα(x,N) vanishes on phase space points (x,N) along the considered

trajectories, the last sum only has one contribution:

Tr C|λα=0 (x,N) =
∏
β 6=α

λβ(x,N). (7.46)

With this result, a comparison of (7.43) and (7.42) yields the factor

ξ1(x,N) = Tr C(x,N), (7.47)

where it is implied that (x,N) satisfies the dispersion relation λα(x,N) = 0 which will always

be the case.

Next, the factor ξ2(x,N) relating the determinant to the final Hamiltonian (7.34), i.e.

H(x,N) = ξ2(x,N)H ′(x,N), (7.48)
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is obtained by a comparison of H ′(x,N) in (7.32) and H(x,N) in (7.34): For the mode σ one

has

ξ2(x,N) = 2
S
(
N2
⊥ −N2

⊥(−σ, x,N‖)
) . (7.49)

Finally, the correction factor as a whole is given by

ξ(x,N) = ξ1(x,N)ξ2(x,N) = 2Tr T (x,N)
S
(
N2
⊥ −N2

⊥(−σ, x,N‖)
) . (7.50)

The explicit calculation is, again, straight forward but lengthy. Therefore, here only the results are

reported, computed with the help of the matrix of cofactors presented in [11]. The results are:

ξσ=+1 =

(
2
(

Ω2
ω2−2

)
N2
‖−

Ω
ω (D+ Ω

ω )
)2(

Ω
ω
N2
‖+D+

√
4PN2

‖+ Ω2
ω2

(
N2
‖−1

)2
)D − Ω2

ω2D

√
4PN2

‖ + Ω2

ω2

(
N2
‖ − 1

)2
− 2, (7.51a)

ξσ=−1 =
−
(

Ω
ωN

2
‖ +D +

√
4PN2

‖ + Ω2

ω2

(
N2
‖ − 1

)2
)2

D
S2 + Ω2

ω2D√
4PN2

‖ + Ω2

ω2

(
N2
‖ − 1

)2
− 2 (7.51b)

for the mode σ = +1 and σ = −1, respectively.

7.4.3. Derivatives of the Hamiltonian

In section 7.4.1, the Hamiltonian for the ray tracing in tokamak plasmas was derived. Actually,

not the Hamiltonian enters the Hamilton equations of motion (C.1), but its derivatives with respect

to x = (x, y, z) and N = (Nx, Ny, Nz). In this section, the computation of these derivatives is

sketched.

We start with the derivatives with respect to N . The Hamiltonian (7.34) is given in terms of the

components of the refractive index parallel and perpendicular to the magnetic field. Hence, chain
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rule is used:

∂NH = ∂H

∂N‖
∂NN‖ + ∂H

∂N⊥

(
∂N⊥
∂N⊥1

∂NN⊥1 + ∂N⊥
∂N⊥2

∂NN⊥2

)
= ∂H

∂N‖

(
Qe‖

)T
+ ∂H

∂N⊥

(
cos(φN ) (Qe⊥1)T + sin(φN ) (Qe⊥2)T

)
. (7.52)

Here, the rotation (7.9) is used to express (N⊥1,N⊥2,N‖) in terms of (Nx, Ny, Nz). Furthermore,

the transformation to polar coordinates (7.10) allows us to compute ∂N⊥
∂N⊥1

and ∂N⊥
∂N⊥2

.

Next, the derivatives of the Hamiltonian with respect to x are computed. The terms depending

on position are the parameters A, B, C via their dependency on electron density ne and magnetic

field B and N⊥ and N‖ via the rotation Q. Therefore, using chain rule again, the derivatives of

H with respect to the spatial coordinates x are obtained by

∂xH =∂H

∂A

(
∂A
∂R∂xR + ∂A

∂z ∂xz
)

+ ∂H

∂B

(
∂B
∂R∂xR + ∂B

∂z ∂xz
)

+∂H

∂C

(
∂C
∂R∂xR + ∂C

∂z ∂xz
)

+ ∂H

∂N⊥
∂xN⊥ + ∂H

∂N‖
∂xN‖. (7.53)

The transformation between the Cartesian coordinate system x = (x, y, z) and (R, z) (7.1) yields

the derivatives

∂xR =


x
R
y
R

0

 , ∂xz =


0

0

1

 . (7.54)

The derivatives of the parameters A, B and C are obtained immediately, if their dependence on

ne ≡ ne(R, z) and |B| ≡ |B| (R, z) is written out and chain rule is applied. Then, the terms

describing the dependence of the Hamiltonian on the parameters A, B and C in equation (7.53)

are known. Still, ∂xN⊥ and ∂xN‖ need to be computed. Since the space dependence appears via

the rotation matrix Q parametrized in (7.19) by the Euler angles (α, β), the chain rule is applied

again:

∂xNi = ∂Ni

∂α

∂α

∂x
+ ∂Ni

∂β

∂β

∂x
(7.55)
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with an index i =⊥, ‖. After inserting the parametrization (7.19) into the transformation (7.9),

the components N⊥ and N‖ are expressed in terms of the Euler angles α and β,

N‖ = Nx cosα sin β −Ny sinα sin β +Nz cosβ, (7.56a)

N⊥ =
[(

cos2 α cos2 β + sin2 α
)
N2

x +
(
sin2 α cos2 β + cos2 α

)
N2

y

+ sin2 βN2
z + 2 sinα cosα sin2 βNxNy

+ 2 (sinαNy − cosαNx) sin β cosβNz]1/2 , (7.56b)

yielding the derivatives ∂Ni
∂α and ∂Ni

∂β . The Euler angles have been derived in equations (7.18).

There, the magnetic field components (Bx, By, Bz), obtained from (BR, Bϕ, Bz) via the trans-

formation (7.2), enter. With these magnetic field components, the Euler angles read

α = − arctan Bϕ
BR
− arctan y

x , (7.57a)

β = arcsin

√
B2

R +B2
ϕ

|B|
. (7.57b)

Here, it was made use of additional theorems for trigonometric functions. The derivatives of the

Euler angles are hence

∂xα = −BR∂xBϕ −Bϕ∂xBR
B2

R +B2
ϕ

− x∂xy− y∂xx
R2 , (7.58a)

∂xβ = −
∂xBz − Bz

B2
R+B2

ϕ
(BR∂xBR +Bϕ∂xBϕ)√

B2
R +B2

ϕ + B2
z√

B2
R+B2

ϕ

. (7.58b)

The space dependence of the magnetic field B on (R, z) is known from input files, yielding the

spatial derivatives

∂xB = ∂B

∂R∂xR + ∂B

∂z ∂xz, (7.59)

where (7.54) provides ∂xR and ∂xz.
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7.4.4. Symmetries and tests of the Hamiltonian

The Hamiltonian (7.34) and its derivatives used in the Hamilton equations of motion (C.1)

involve relatively cumbersome expressions. This could easily cause bugs in the implementation.

Therefore, once the ray tracing is implemented, some tests need to be performed for debugging

purposes. Moreover, we shall study the convergence of the results in the limit of the regularization

parameter ε→ 0, cf. (7.38), as promised in section 7.4.1.

One test the ray tracing routine must pass consists in constructing quantities which should

be conserved along the Hamiltonian orbits and to check if, indeed, they are. As mentioned in

appendix C, the Hamiltonian itself is conserved and, hence, is one such quantity. Another is found

upon applying Noether theorem. It states that each symmetry of a system under investigation leads

to a conservation law. A symmetry present in the tokamak is the invariance under rotations around

the z-axis. The Hamiltonian does not depend on the toroidal angle ϕ and remains unchanged

under such rotations by a small angle δϕ, i.e.

δH = ∂H

∂ϕ
δϕ = 0. (7.60)

The change of the Hamiltonian in general can be expressed as

δH = ∂H

∂x δx + ∂H

∂y δy + ∂H

∂z δz + ∂H

∂Nx
δNx + ∂H

∂Ny
δNy + ∂H

∂Nz
δNz = 0, (7.61)

where a rotation around the z-axis leads z and Nz unchanged, i.e. δz = δNz = 0 and the shifts in

the xy-plane to first order O (δϕ) read

δx = −yδϕ, (7.62a)

δy = xδϕ, (7.62b)

δNx = −Nyδϕ, (7.62c)

δNy = Nxδϕ. (7.62d)

Substituted into (7.61), the variation of the Hamiltonian yields

δH =
(
−y∂H

∂x + x∂H
∂y −Ny

∂H

∂Nx
+Nx

∂H

∂Ny

)
δϕ = 0. (7.63)

130



7.4. Weyl symbol for electron-cyclotron waves

Since δϕ is arbitrary, the expression within the brackets must vanish. The partial derivatives of

the Hamiltonian are replaced using Hamilton’s equations of motion (C.1). The result reads

ydNx
dτ
− xdNy

dτ
−Ny

dx
dτ

+Nx
dy
dτ

= d
dτ

(yNx − xNy) = 0. (7.64)

We define

Nϕ := yNx − xNy (7.65)

referred to as toroidal refractive index component and note that it should be conserved along

Hamiltonian orbits.

We run the ray tracing routine for one specific set of initial conditions and obtain the evolution

of H and Nϕ along the ray which is shown in figure 7.2. The important point is the variation of

the Hamiltonian and the toroidal refractive index component along the ray through the plasma.

In this test the "time step" ∆τ is adapted automatically by the Runge-Kutta solver in order to

meet the prescribed error tolerance. It is seen that the conservation of the toroidal refractive index

component is within the order of 10−9. It improves, when a smaller integrator tolerance is chosen.

The Hamiltonian stays within a bound of order 10−4, but does not further improve significantly

with smaller tolerances. For analytical plasma profiles, we observe better convergence of the

error of the value of the Hamiltonian with the tolerance; therefore we attribute this behavior

to imprecisions in the numerical interpolation of the plasma profiles. For the case of Nϕ, on

the contrary, the results are better as the invariance under toroidal rotations is enforced by

construction in the interpolant. Indeed, since plasma profiles are given as functions on (R, z)

based on interpolation of tables in the input files, the background profiles are extended to the

tokamak volume by exploiting the symmetry of the torus so that the rotational invariance is

present independently of interpolation inaccuracies. Hence, the conservation of the toroidal

refractive index component in the code is restricted only to the Runge-Kutta solver. A further test

for the ray tracing consists in comparing ray trajectories of the wave kinetic code with trajectories

obtained from the well-tested [39] TORBEAM code [40]. For different initial parameters, such a

comparison is displayed in figure 7.3. The vacuum-plasma boundary is located at x = 215 cm.

There, the rays get deflected. One can see that the torbeam ray trajectory and the trajectory of the

new wave kinetic code are in good agreement.
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Figure 7.2.: Evolution of (a) the Hamiltonian H and (b) the toroidal refractive index component
along a ray launched at x = 238 cm. A scan of tolerances for the Runge-Kutta solver
is shown. The initial conditions are chosen such that the initial values of H and Nϕ

vanish. The plasma profiles of AUG #25485 are used, cf. appendix G. The jump at
about x = 218 cm corresponds to the plasma boundary.

Finally, the convergence of the trajectories in the limit ε→ 0 for the regularization parameter

(7.38) is investigated in figure 7.4. Frequency is decreased so that a region with S = 0 is crossed.

It is seen that there is not a clear difference between the ray trajectories for different values of ε.

Instead, the conservation of the Hamiltonian starting from the point were S = 0 is influenced

by this parameter and improves for smaller ε. However, the Hamiltonians for ε = 3 · 10−4

and ε = 1 · 10−3 are very close one to the other even beyond this point and show a satisfactory

conservation. More test runs with even smaller parameters up to ε = 1 ·10−7 have been performed

and are not distinguishable to the ε = 3 · 10−4 run, confirming convergence. Based on this result

we usually fix ε = 1 · 10−6.
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7.4. Weyl symbol for electron-cyclotron waves

Figure 7.3.: Comparison of TORBEAM rays with the trajectories of the wave kinetic code for
different initial ray coordinates and wave modes. The considered frequency is
f = 140 GHz. The initial propagation direction is the negative x-axis for all rays.
The initial position (x, y, z) and wave mode are: (a,b) x = 238 cm, y = 0 cm,
z = 10 cm, O-mode, (c,d) x = 238 cm, y = 10 cm, z = 10 cm, O-mode, (e,f)
x = 238 cm, y = 10 cm, z = 10 cm, X-mode. The plasma profiles are taken from
AUG #25485, cf. appendix G.
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Figure 7.4.: Influence of the regularization parameter ε. Ray is launched at x = 238 cm,
y = 10 cm, z = 10 cm, a frequency f = 85 GHz and O-mode propagation are
considered. (a,b) Projection of the ray trajectory in Rz- and Ry-plane, (c) conserva-
tion of Hamiltonian, (d) plasma parameter S. The plasma profiles are taken from
AUG #25485, cf. appendix G.
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7.4.5. Fluctuation model

This section is dedicated to the issue of fluctuations in tokamak plasmas. Their effect on the

microwave beam is described via the part δDF in the wave operator. In this work, it is assumed

that the fluctuation in the wave operator arises mainly due to electron density fluctuations, i.e.

DF (x) =
√
κ (I− ε(x)) δne(x)

ne(x) . (7.66)

Here, δne(x) describes the random deviation of the background electron density ne at point x.

This should not be confused with the refractive index fluctuation δn2 in section 6.4. Note that

the prefactor
√
κ in (7.66) is needed to compensate for the explicit factor δ = κ−1/2, as it was

the case in section 6.4 on fluctuations in free space. Substituted into the spectrum of fluctuations

(3.28), this reads

Giabj(x,N −N ′) = κ4

(2π)3 (I− ε(x))ia (I− ε(x))bj

× 1
ne

∫
e−iκ(N−N ′)·sE

(
δne

(
x+ s

2

)
δne

(
x− s

2

))
ds. (7.67)

Here, it is assumed that ε is slowly varying in x and, thus, is well-approximated with the Taylor

expansion around x to lowest order:

ε

(
x± s

2

)
≈ ε (x) . (7.68)

The Wigner transform of the (relative) electron density fluctuations is denoted by

Γ(x,N −N ′) =
∫
e−iκ(N−N ′)·sE

(
δne

(
x+ s

2

)
δne

(
x− s

2

))
ds. (7.69)

The mode decomposition is performed as described in section 3.3 and only one single mode is

taken into consideration. The scattering cross section (4.68) to be inserted into the scattering

operator (4.24) with rescaled Hamiltonian, cf. section 4.4, hence reads

σ(x,N,N ′) := κ4

(2π)2
1
n2
e

∣∣∣e†(x,N) (I− ε) e(x,N ′)
∣∣∣2 Γ(x,N −N ′)

× ξ(x,N)ξ(x,N ′)δ
(
H(x,N ′)

)
. (7.70)
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Note that the rescaling factors ξ to account for a Hamiltonian different from the natural choice are

included in this expression. In addition, e(x,N) ≡ eα(x,N) denotes the normalized eigenvector

of the wave mode α under consideration.

The code requires information on the electron density fluctuations in the plasma. This infor-

mation is provided in terms of the two-point correlation function E
(
δne

(
x+ s

2
)
δne

(
x− s

2
))

inserted into (7.69). In principle the information may be obtained from any source, i.e. exper-

imental measurements, turbulence simulations or models. As a simple starting point, for the

two-point correlation function we use the model

1
n2
e

E
(
δne

(
x+ s

2

)
δne

(
s− s

2

))
= ∆2F 2(x)e−

1
2 s·Ξ(x)s. (7.71)

Let us remark that r.h.s. of (7.71) expresses the two-point correlation of relative fluctuations.

In analogy to the model (6.56b) for fluctuations in free space, the parameter ∆ determines the

strength of fluctuations and the factor

F (x) ≡ F (ρ) = e
− (ρ−ρ0)2

∆ρ2
F , (7.72)

specifying the extension of the fluctuations, where the width in normalized minor radius units

is determined by ∆ρF and the center of fluctutations is at ρ = ρ0. In the applications described

below, the fluctuation layer is typically centered at the separatrix, i.e. ρ0 = 1. The short scale

dependency of the two-point correlation function (7.71) is present via the factor e−
1
2 s·Ξ(x)s. Here,

in a coordinate system aligned to the magnetic field, the matrix Ξ(x) contains on its diagonals

the two-point correlation lengths L⊥(x) and L‖(x) of the fluctuation in direction perpendicular

and parallel to the magnetic field, respectively, i.e.

Ξ(x) = diag
{

Ξ⊥(x),Ξ⊥(x),Ξ‖(x)
}

= diag
{
L−2
⊥ (x), L−2

⊥ (x), L−2
‖ (x)

}
. (7.73)

Given the fact that usually the electron density fluctuation correlation length is much larger parallel

to the magnetic field then perpendicular to it, it makes sense to distinguish those two directions.

Note that in principle the theory would also allow us to assume two different correlation lengths

in the poloidal plane. However, for this first model we restict ourselves to one single value.
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This model is motivated by the one used in [41] and adapted to the wave kinetic code. It allows

us to compute the fluctuation spectrum (7.69) analytically, employing equation (7.71):

Γ(x,∆N) = (2π)3/2 ∆2F 2(x)√
Ξ2
⊥(x)Ξ‖(x)

e
−κ

2
2

[
∆N2
⊥1+∆N2

⊥2
Ξ⊥(x) +

∆N2
‖

Ξ‖(x)

]
. (7.74)

Substituted into (4.68), the scattering cross section reads

σ(x,N,N ′) = κ4
√

2π
∆2F 2(x)√

Ξ⊥(x)2Ξ‖(x)

∣∣∣e†(x,N) (I− ε) e(x,N ′)
∣∣∣2

×ξ(x,N)ξ(x,N ′)e
−κ

2
2

[
∆N2
⊥1+∆N2

⊥2
Ξ⊥(x) +

∆N2
‖

Ξ‖(x)

]
δ
(
H(x,N ′)

)
. (7.75)

For the numerical scheme, the intensity Σ(x,N) for the Poisson process which produces scatter-

ing events is expressed in equation (4.25b). The Dirac’s δ-function and the Hamiltonian (7.34) in

the scattering cross section allow us to immediately perform the N ′⊥-integration, if as integration

variables the field aligned coordinates introduced in section 7.3 are used:

Σ(x,N) = κ4

4
√

2π
∆2F 2(x)√

Ξ⊥(x)2Ξ‖(x)

∫ ∣∣∣e†(x,N) (I− ε) e(x,N ′)
∣∣∣2 ξ(x,N)ξ(x,N ′)×

× e
−κ

2
2

[
∆N2
⊥1+∆N2

⊥2
Ξ⊥(x) +

∆N2
‖

Ξ‖(x)

]∣∣∣∣∣∣∣
N ′⊥=N⊥(N ′‖)

dN ′‖dφ
′
N . (7.76)

Here, N⊥(N ′‖) denotes the refractive index (7.33) which fulfils the dispersion relation. The

remaining two-dimensional integral cannot be calculated analytically. Therefore, it would be

quite time consuming to compute it after each integration step in the code. For the Poisson

process, therefore, an upper limit Σmax of the total scattering cross section Σ is used, as it is

suggested in section 4.2. Let us recall that this strategy requires an evaluation of the exact value of

Σ only if a Poisson event happens, which saves computational time. The needed upper limit is the

product of a rough approximation Σguess for Σ, obtained from (7.76), evaluated under simplifying

assumptions and approximations, and a user parameter g, i.e.

Σmax(x,N) = Σguess(x,N)g. (7.77)
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The reader should be aware of the fact that the simplifying assumptions in Σguess are not always

well-justified. However, we are rather interested in a reasonable guess for the order of magnitude

of Σ then in the exact number, ensuring the important condition Σmax ≥ Σ by a proper choice

of the parameter g. To this aim, O-mode propagation purely perpendicular to the magnetic field

is considered. Then, the polarization is taken so that e(x,N ′) = e‖, and the projection of the

fluctuation matrix DF to the eigenvectors simplifies to

e†(x,N) (I− ε) e(x,N ′) ≈ 1− P. (7.78)

We have assumed further that fluctuations change the propagation direction only by a small

amount, yielding N ≈ N ′. One also has ξ(x,N) ≈ ξ(x,N ′), so that

Σguess(x,N) =κ3

4
∆2F 2(x)

Ξ⊥(x) (1− P (x))2 ξ2(x,N)
∫
e
−κ2N2

⊥
1−cos ∆φN

Ξ⊥(x) d∆φN . (7.79)

Here, the N ′‖-integration has been performed analytically and the perpendicular refractive index

components are written in terms of polar coordinates. In the exponential, cos ∆φN is Taylor

expanded to second order, making it possible to perform the last remaining integration, with the

result

Σguess(x,N) =
√

2πκ2

4
∆2F 2(x)√
Ξ⊥(x)N⊥

ξ2(x,N) (1− P (x))2 . (7.80)

If as an example the exact value of Σ and the value of the guess Σguess are compared along a

single ray trajectory, it turns out that they are typically in good agreement up to errors of a few per

cent. We usually fix the parameter g = 2, which ensures that, indeed, Σmax is an upper bound.

7.4.6. Absorption model

The last part of the dispersion symbol which needs to be discussed is the absorption part δ2DA.

A model for absorption is derived in the frame of hot-plasma theory where the plasma particles

are not assumed to move coherently at the same speed, but also their thermal velocity distribution

is properly accounted for. Solving this hot-plasma dispersion relation, naturally an anti-Hermitian

part emerges in the dielectric tensor, leading to absorption. Thermal effects are depicted in a

kinetic theory where the plasma particles are characterized not only by their position x, but also
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by their velocity v. This is properly described in the Vlasov equation. A good overview on

the hot-plasma dispersion relation can be found in [42]. A full review on how to compute the

absorption coefficient (3.46) is presented in [4]. For the code, an already existing absorption

routine [43] is implemented. This point is not further addressed in the frame of this thesis.

7.5. Results

The remaining part of this chapter is dedicated to the results obtained from the WKBeam code

under realistic tokamak conditions. First, the equations are studied under an approximation

in order to compare the effect of fluctuations with previous works. Next, the code is run with

various parameters for ASDEX Upgrade (AUG) and ITER plasma profiles. As a final result, the

effect of fluctuations on absorption profiles, cf. section 7.5.2, and beams in reflectometry runs,

section 7.5.3, are discussed.

7.5.1. Comparison with previous works

Due to the complexity of the problem, only few publications address the issue of beam propagation

in tokamak plasmas including electron density fluctuations. In this section, we refer to a recent

paper by Tsironis et al. [6], where a rough estimate based on a heuristic model of electron density

blobs demonstrates the importance of the effect of fluctuations. A weak electron density (ωp � ω)

is considered. The field propagation is described in terms of a diffusion equation for the electric

field energy distribution F (α, l), i.e.

∂lF (α, l) = ∂

∂α

(
DTsironis
α

∂F (α, l)
∂α

)
. (7.81)

Here α denotes the propagation angle from the x-axis, i.e.

tanα = vy
vx

(7.82)

with the velocity (vx, vy) and l the length the rays have traveled through the fluctuating medium.

Constant background plasma parameters and O-mode propagation purely perpendicular to the
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magnetic field are assumed. The diffusion coefficient derived by Tsironis et al. is

DTsironis
α =

√
2π3

32
ω4
p

ω4
δn2

e

n2
e

1
Lb
, (7.83)

where δne is the electron density deviation in the center of a blob, ne is the background electron

density and Lb is the typical blob size. This analytic result is shown below to be included in our

theory, as a special limiting case.

For comparison reasons, in this section, a diffusion equation is derived starting from the wave

kinetic equation. The same conditions as in [6] are considered: Propagation of the O-mode purely

perpendicular to the magnetic field B = |B| ez with a constant background density ne. The

appropriate eigenvalue of the dispersion tensor (7.27) for this case reads

H(N) = N2
⊥ − P = N2

⊥ − 1 +
ω2
p

ω2 , (7.84)

considered as Hamiltonian in this section. In the sense of section 4.4, this yields the trivial

correction factor ξ(x,N) ≡ 1. The assumption of propagation purely perpendicular to B reduces

the dimensionality of the problem to m = 2, so the position is described by x = (x, y) ∈ R2 and

the refractive index by N = (Nx, Ny) ∈ R2.

We start with the wave kinetic equation formulated for the Wigner function with removed

singularity, i.e. equation (3.68). An implicit condition in this equation is dispersion relation

(3.38), which fixes in terms of polar coordinates

Nx = N⊥ cosφN , (7.85a)

Ny = N⊥ sinφN , (7.85b)

the N⊥-component of the refractive index:

N⊥ = N ′⊥ =

√
1−

ω2
p

ω2 . (7.86)

Hence, dimensionality of the refractive index is further reduced by one and the remaining

component φN of the polar coordinates fully characterizes the refractive index. Disregarding
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absorption, the wave kinetic equation (3.68) then reads

{H(N), w̃(x, φN )} =
∫ [

σ̃(x, φ′N , φN )w̃(x, φ′N )− σ̃(x, φN , φ′N )w̃(x, φN )
]

dφ′N . (7.87)

Here w̃ is the Wigner function with removed singularity as defined in (3.65) and σ̃(x, φN , φ′N )

is the simplified scattering cross section in terms of φN and φ′N appropriate for the simplified

two-dimensional propagation where also singularities are removed. It is obtained from the general

scattering cross section presented in section 7.4.5, i.e. (7.75), adapted to the purposes of this

section: An infinite parallel correlation length ensures that the rays stay inside the poloidal

plane and do not get deflected with non-vanishing components parallel to the magnetic field.

Furthermore, it is evaluated at values N⊥ = N ′⊥ which satisfy dispersion relation (7.86), i.e. in

general

σ̃(x, φN , φ′N ) =
∫
σ(x,N,N ′)dN ′‖

∣∣∣∣
N⊥=N ′⊥=

√
1−

ω2
p

ω2

. (7.88)

With (7.75) inserted, this reads

σ̃(x, φN , φ′N ) = 1
2

[
(I− P ) δne

ne

]2 κ3

Ξ⊥
e
−
κ2N2
⊥

Ξ⊥
(1−cos(φN−φ′N ))

, (7.89)

where δne is the maximum of the electron density fluctuations. Here, the projection of the

fluctuation part of the dispersion tensor (7.66) for O-mode propagation perpendicular to B

e†(x,N) (I− ε) e(x,N ′) ≈ 1− P (7.90)

is used as in (7.78), where P is defined in (7.21a). Furthermore, if κ2N2
⊥/Ξ⊥ � 1, which is the

case for the considered parameters, cf. figure 7.5, only terms |1− cos (φN − φ′N )| � 1 yield a

non-negligible exponential in the scattering cross section (7.89), so that the Taylor approximation

1− cos(φN − φ′N ) ≈ 1
2(φN − φ′N )2 (7.91)
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is appropriate. This is the assumption of small angle scattering. If also the approximation of

small electron density N⊥ ≈ 1 is used, cf. (7.86), the scattering cross section (7.89) simplifies to

σ̃(x, φN , φ′N ) = 1
2
ω4
p

ω4
δn2

e

n2
e

κ3

Ξ⊥
e
− κ2

2Ξ⊥
(φN−φ′N)2

. (7.92)

With this scattering cross section, which has been obtained under the same condition as in [6],

we shall derive a diffusion equation, to be compared to (7.81). For this aim, in the general

transport equation, i.e. the wave kinetic equation (7.87), a Taylor expansion for w̃(x, φ′N ) around

φ′N = φN is performed up to the second order, i.e.

w̃(x, φ′N ) = w̃(x, φN )+∂w̃(x, φN )
∂φN

(φ′N − φN )

+1
2
∂2w̃(x, φN )

∂φ2
N

(φ′N − φN )2 +O
(
(φ′N − φN )3

)
. (7.93)

Physically, again, this is a small scattering angle approximation. Note that the small scattering

angle limit applied in (7.91), where scattering angles should be small compared to unity, is valid

for AUG and ITER parameters. However, for the Taylor expansion (7.93), unity might not be

the right scale to compare. In fact we have no precise error control for the Taylor approximation

and, thus, are not able to provide a precise condition on the scattering angles such that the error

becomes negligible. For a rough estimate let us assume that the typical variational scale of w̃ is

φw̃, in the sense of ∣∣∣∣∣dkw̃(x, φN )
dφkN

∣∣∣∣∣ ≈
∣∣∣∣∣ w̃(x, φN )

φkw̃

∣∣∣∣∣ . (7.94)

Then the Taylor series makes sense as an asymptotic series when jumps ∆φN = φ′N − φN are

small compared to this scale, i.e. |φ′N − φN | � φw̃. A proof of convergence is presented on the

level of the associated stochastical process later on in this section. However, the AUG and ITER

parameters used for figure 7.5 lead to
∣∣∣φ′N−φNφw̃

∣∣∣ ≈ 0.9 and
∣∣∣φ′N−φNφw̃

∣∣∣ ≈ 0.01, respectively, indi-

cating that the expansion (7.93) might be inaccurate for ASDEX Upgrade. Here, the variational

scale of w̃ is approximated by the initial width of the distribution, i.e. φw̃ ≈ ∆φinit.
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Anyway, neglecting terms of order O
(
(φ′N − φN )3), the Taylor expansion (7.93) inserted into

(7.92) yields the evolution equation

{H(N), w̃(x, φN )} = 1
2

∫
σ̃(x, φN , φ′N )

(
φ′N − φN

)2 dφ′N
∂2w̃(x, φN )

∂φ2
N

. (7.95)

Here, due to σ̃(x, φN , φ′N ) = σ̃(x, φ′N , φN ), cf. the explicit expression (7.92), zeroth order terms

of the Taylor approximation cancel out and first-order terms vanish under the integral. Hence,

the last equation only involves derivatives of the Wigner function of second order on the r.h.s.

and has the same structure as (7.81), which is a diffusion equation. We refer to this equation as

"diffusive limit", because it is obtained from the general equation under a limit of small scattering

angles, characteristic of diffusive effects. The scattering cross section σ̃ (7.92) substituted into

the integral in (7.95) can be computed analytically, with the result

{H(N), w̃(x, φN )} = ∂

∂φN

(√
2π
4

ω4
p

ω4
δn2

e

n2
e

1
L⊥

∂w̃(x, φN )
∂φN

)
. (7.96)

The diffusion coefficient obtained from this diffusive equation is

DφN =
√

2π
4

ω4
p

ω4
δn2

e

n2
e

1
L⊥

. (7.97)

We identify the two-point correlation length L⊥ with the typical blob size Lb in the Tsironis

model. This is physically motivated by the fact that both are a scale for the fluctuation. In

addition, the propagation angle α, defined in (7.82), coincides with the angle of the refractive

index φN , introduced in (7.85): This is implied in Hamilton’s equation of motion (C.1a) for the

two-dimensional geometry, where H(x,N) ≡ H(x,N⊥) does not depend on φN , so that the

refractive index points in direction of propagation. This makes the diffusion coefficient derived

in [6], namely (7.83), and the diffusion coefficient we have found here, (7.97), comparable.

One finds that they are equivalent up to a prefactor which depends on the adopted model for

blobs. Given the fact that we find the same dependence on blob size Lb, electron density ne and

electron density fluctuation level δne means that the simple physical ideas in the Tsironis paper

are reproduced by the more complete scattering theory used in the framework of this thesis if the

same physical assumptions are employed.
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The validity of the above-discussed assumption of a diffusion limit, however, is not granted a

priori and must be verified for the physical problem under consideration. Hence, the remaining

part of this section is dedicated to the question of whether the diffusion limit is appropriate.

Numerical schemes for the solution of the transport equation and the diffusion equation are

compared. In the numerics section 4.2, a scattering scheme for the unapproximated wave kinetic

equation was presented: Given the scattering cross section (7.92), the number of scattering events

is generated by a Poisson distribution with intensity (4.25b)

Σ =
∫
σ̃(x, φN , φ′N )dφ′N ≈

√
2π
2 κ2ω

4
p

ω4
δn2

e

n2
e

L⊥, (7.98)

where, again, the assumption of small angle scattering is made and the integration over an interval

of 2π around φN is replaced by an integration on R, taking into account also the tails of the

exponential in σ̃(x, φN , φ′N ), cf. (7.92), which, however, are negligible.

In case the propagation distance l is large so that Σl� 1, the mean number of scattering events

reads

〈nS〉 = Σl (7.99)

with a small relative statistical uncertainty, thanks to the general properties of Poisson distributions.

For each scattering kick, the variance of the φN distribution of the electric field squared w̃(x, φN )

is increased by (7.92)

VS = κ−2L−2
⊥ . (7.100)

In total, the variance increases by

V = ΣVSl =
√

2π
2

ω4
p

ω4
δn2

e

n2
e

1
L⊥

. (7.101)

For the diffusion equation, a numerical solution scheme is presented in [24]: After steps with

step size ∆l through the fluctuating medium, a Gaussian kick with variance

∆VD = 2DφN∆l (7.102)
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Figure 7.5.: Results of the numerical scattering scheme and the diffusive scheme. Initial spectrum
is Gaussian shaped with width ∆φinit = 2 · 10−2. Plasma frequency is ωp = 50 GHz,
beam frequency ω = 150 GHz, approximately valid for the tokamaks AUG and ITER.
For the fluctuations, in physical units typical values for (a) AUG: δne/ne = 0.1,
L⊥ = 0.4 cm, l = 3 cm and (b) ITER: δne/ne = 0.1, L⊥ = 2 cm, l = 10 cm are
chosen, cf. section 7.5.2. Here l is identified with the width of the turbulence layer
crossed by the beam.

is applied. After the propagation distance l this amounts in an increase of the variance of

V = 2DφN l =
√

2π
2

ω4
p

ω4
δn2

e

n2
e

1
L⊥

. (7.103)

It is seen that, indeed, the variances (7.101) and (7.103) are the same. Hence, the diffusion limit

is appropriate in case Σl� 1. On top of that the assumption of small angle scattering was made,

i.e. the limit κL⊥ � 1 is considered. (It is worth recalling that all lengths are normalized to the

common reference scale length L.

Numerical schemes for both, the general equation and the diffusion limit, are implemented. The

results are shown in figure 7.5. Typical numbers for the edge fluctuations in (a) AUG and (b)

ITER are chosen, yielding Σl ≈ 0.4 < 1 and κL ⊥≈ 12.6 � 1 for AUG and Σl ≈ 2.1 and

κL⊥ = 63� 1 for ITER. In the figure, indeed, it can be seen that for ASDEX Upgrade (a), there

is a significant difference between the solution obtained simulating the general transport theory

which shows broad tails, discussed in the next section, and the diffusive limit, overestimating

the effect of fluctuations. Instead for typical ITER parameters (b), which is also the considered

situation in [6], still a difference can be made out, but the diffusive solution constitutes a good
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approximation. The difference for AUG and ITER is due to the larger propagation distance l

(simulating a broader fluctuation layer) and the larger value of L⊥ in ITER, which makes Σl� 1

a reasonable assumption for ITER, but not for ASDEX Upgrade.

7.5.2. Absorption profiles

As mentioned in the first chapter, an important application of electron-cyclotron waves in tokamak

plasmas is for heating and current drive. The latter, in particular, has been proposed as a tool to

control magneto-hydrodynamic instabilities in fusion-grade plasmas. For this aim, it is important

to deposit the beam power in a well-specified region. Particle and energy transport on magnetic

surfaces, not affected by magnetic forces, is large. Instead, it is highly suppressed by Lorentz

force in the direction perpendicular to the magnetic surfaces. Therefore, energy deposited at any

point x ∈ Mρ on a magnetic surface Mρ labeled by the normalized minor radius coordinate ρ,

cf. coordinates introduced in figure 7.1, will equilibrate fast on the set Mρ. Thus, people are

interested rather in the magnetic surface Mρ where the energy gets absorbed than in the point x

itself. The physical wave energy flux is

Fphys(r) = c

4πF (x), x = r/L, (7.104)

where F (x) is the normalized flux defined in equation (3.80). It is worth noting that, in our

convention, F has the dimensions of a squared electric field. The transport of the wave energy

density then reads

∇ · Fphys = c

4πL∇x · F = − c

4πLγE , (7.105)

where equation (3.82) has been accounted for. At last, inserting the definition of κ, (2.17), yields

∇ · Fphys = − ω

4π (γ/κ) E . (7.106)

In magnetically confined plasmas the absorption coefficient is usually negligible away from

resonances, but it is large where the beam frequency matches one of the plasma resonances; for

electron-cyclotron waves, those are the Larmor frequency of the electrons (Doppler-shifted if

N‖ 6= 0) and higher harmonics. For resonant absorption, the condition of weak dissipation, cf.
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section 3.2, is not strictly satisfied. Since a semiclassical solution of the wave equation with strong

absorption is still an open problem, a workaround is usually adopted: The physical absorption

coefficient is used directly in the weakly dissipative theory. This formally corresponds to the

rescaling

γ → κγ, (7.107)

where γ is computed as described in section 7.4.6. At last, we have the transport equation

∇ · Fphys = − ω

4πγE . (7.108)

The power injected by the beam through a magnetic surface Mρ is by definition

P (ρ) =
∫
Mρ

Fphys · dS. (7.109)

The quantity in which we are interested is the power ∆P deposited between two magnetic

surfaces Mρ and Mρ+∆ρ with ∆ρ sufficiently small. One defines the power deposition profile (or

alternatively absorption profile) as the derivative

dP (ρ)
dρ

≈ ∆P
∆ρ = 1

∆ρ

[∫
Mρ+∆ρ

Fphys · dS −
∫
Mρ

Fphys · dS
]
, (7.110)

where we have assumed that the beam propagates from the outer surface inwards. Then, labeling

the volume between the flux surfaces Mρ and Mρ+∆ρ with ∆Vρ, one has

dP (ρ)
dρ

≈ − 1
∆ρ

∫
∆Vρ
∇ · FphysdV = ω

4π∆ρ

∫
∆Vρ

γEdV = ωL3

4π∆ρ 〈2γ〉Ωρ , (7.111)

where dV = L3dx, and Ωρ is the volume in normalized phase space given by

Ωρ := {(x,N) : x = r/L, r ∈ ∆Vρ} . (7.112)

The WKBeam code is able to provide the information required on the r.h.s., more specifically

the expectation value 〈2γ〉Ωρ . In order to extract it from the rays, for the binning code, a one-

dimensional grid of bins (5.16) is used with T1(x,N) ≡ ρ as resolved coordinate. The bin areas
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then are

Ων =
{

(x,N) ∈ R6 : ν∆ρ+ ρmin ≤ ρ < (ν + 1)∆ρ+ ρmin
}

(7.113)

with ∆ρ the edge length of the bins, ρmin the lower boundary of the grid of bins and ν an integer

label. As a weight, A(x,N) = 2γ(x,N) would be the appropriate quantity. However, we note

that in practice, the expectation value of this observable can be computed more easily in terms of

equation (5.15).

The absorption profile (7.111) basically provides the information on which magnetic surface the

power is deposited and how narrow the absorption region is. However, it is more convenient to

normalize the derivative:

dP
dV

(ρ) =
dP
dρ (ρ)
dV
dρ (ρ)

, (7.114)

where V ≡ V (ρ) is the volume enclosed by the magnetic surface ρ. In practice, this volume is

computed in terms of an integral in the cylindrical tokamak coordinates introduced in figure 7.1,

namely

V (ρ) =
∫
{ρ(R,z)≤ρ}

R dRdzdϕ = 2π
∫
{ρ′≤ρ}

R(ρ′, θ)
∣∣∣∣∂(R, z)
∂(ρ′, θ)

∣∣∣∣ dρ′dθ. (7.115)

Here, the rotational invariance of the tokamak allows us to immediately compute the ϕ-integration

and a substitution to the coordinates (ρ, θ) in the poloidal plane is performed. In the code, the

Jacobian determinant
∣∣∣∂(R,z)
∂(ρ,θ)

∣∣∣ is known from the magnetic field interpolation, so that the derivative

dV
dρ

(ρ) = 2π
∫ 2π

0
R(ρ, θ)

∣∣∣∣∂(R, z)
∂(ρ, θ)

∣∣∣∣ dθ, (7.116)

which is present in (7.114), can be computed numerically as a one-dimensional integral. Function

(7.114) is considered the final result of WKBeam for heating and current drive applications.

Physically, dP
dV (ρ) gives a statement on the volume density of the absorbed power around a given

magnetic surface ρ.

We shall note here that for the determination of absorption profiles, the normalization used for

the electric field in appendix D, namely a central value of A = 1, is not reasonable. Instead, the
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quantity which can be controlled experimentally is the total input beam power, which can be

computed in terms of the flux propagating through the antenna plane, i.e. in physical units

Pa = cL2

4π

∫
4Na⊥w(x = 0, y, N)dydN (7.117)

with Hamiltonian (7.35) for free space and Na⊥ the refractive index component perpendicular to

the antenna plane. The Wigner function (D.11) with the dimensionality m = 3 is substituted into

integral (7.117) and the total beam power is obtained as

Pa = cL2

4π P |A|
2 , (7.118)

where we have defined the dimensionless constant involving an integral to be computed numeri-

cally

P := 4
(2π
κ

)m [(
D2

1 + S2
1

) (
D2

2 + S2
2

)]−1/2

×
∫ √

1−N2
ae
−κ D1

D2
1+S2

1
(N1−N1,0)2−κ D2

D2
2+S2

2
(N2−N2,0)2

d2Ny. (7.119)

Here, Na = (Na1, Na2) denotes the refractive index aligned to the antenna plane and Na,0 =

(Na1,0, Na2,0) the central value for this refractive index. For the convention on the beam parame-

ters D and S (not to be confused with the cold-plasma parameters defined in section 7.4.1), the

reader may refer to appendix D. Furthermore, in this appendix, the amplitude A was dropped.

Now, instead, it is needed and explicitly written out again in the Wigner function.

Equation (7.118) can be solved for the prefactor |A|2 for the Wigner function, with the result

|A|2 = 4π
cL2

Pa
P
. (7.120)

This determines |A|2 given the input power Pa of the beam. On the level of dimensions, we have

[
|A|2

]
= [power] · [time]

[length]3
= [energy]

[length]3
, (7.121)

i.e. the dimension of an energy density, which is, in cgs-units, correct for an electric field squared.
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Figure 7.6.: Left: Projection of the beam on a poloidal plane on top of the magnetic surfaces of
AUG. The surface where the maximum absorption takes place is drawn in red. Right:
Absorption profiles obtained from torbeam and from WKBeam for the same beam
parameters. The errorbars indicate the statistical uncertainty of the Monte-Carlo
estimator. The plasma profiles of AUG #25485, cf. appendix G, are used, as beam
the following parameters are chosen: X-mode, frequency f = 140 GHz, initial beam
width w = 3.5 cm, initial curvature radius R = 100 cm, beam center launched at
(x, y, z) = (236 cm, 0, 32 cm) with a poloidal antenna orientation of 5◦ and no tilt
in toroidal direction (AUG angle convention, cf. section 7.2). For the ray tracing,
50000 rays are considered.

In this section, as input power Pa = 1 MW is considered. Thanks to the linearity of the

problem, a different input power will just rescale the computed absorbed power. Hence, the

results presented here may be understood as the absorbed power per 1 MW of input power.

In the following, let us discuss the outcome of the code, i.e. the power deposition profile

(7.114). In case no fluctuations are present, the same function can also be determined using the

TORBEAM code. Hence, as a benchmark, both results may be compared. For one set of beam

parameters, such a comparison is shown in figure 7.6. It can be seen in the figure that there is

a good agreement between the TORBEAM and the WKBeam solution. The solution obtained

from the Monte-Carlo estimator in the wave kinetic code is the result of a random process and

therefore subject to statistical uncertainties. To obtain a better resolution, more rays could be

used, lengthening the runtime of the code, which for typical runs shown in this section is around

1.5 h on 16 cores.

In addition to diffractive effects, already described by TORBEAM, the new WKBeam code

is able to take into account the effect of fluctuations. As parameters in the model presented in
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section 7.4.5, the maximum relative strength of the electron density fluctuations δne/ne, the

width of the fluctuation layer ∆ρF and the parallel and perpendicular correlation lengths L‖ and

L⊥ can be chosen. In the following, the fluctuation parameters are varied for a beam in ASDEX

Upgrade shot #25485 (cf. appendix G) and the effects on the absorption profiles are discussed.

The parallel correlation length is set to L‖ = 1 m for all simulations. This is a reasonable number

and, being much larger then the typical scale of the beam, in practice describes the limit of an

infinite parallel correlation length. Therefore, varying this value does not affect the solution. For

the other parameters, we consider realistic values as width of the fluctuation layer ∆ρF = 0.025,

just covering the region of steep rise, called pedestal, in the electron density profile. A typical

value for the fluctuation level is δne/ne = 0.1. For the perpendicular fluctuation correlation

length, L⊥ ≈ 10ρS with ρS the ion gyroradius is usually considered [6]. For ASDEX Upgrade,

this is L⊥ = 0.4 cm.

The basic physical effects when varying these numbers can be understood in the simple physical

limit of purely perpendicular propagation of the rays, presented in section 7.5.1. The expression

for the total scattering cross section Σ (7.98) integrated along a ray trajectory gives us the mean

number of scattering events 〈nS〉 for this ray, whereas the width of the differential scattering

cross section σ (7.92) provides the typical order of magnitude of the deflection angle ∆φN in

case a scattering event happens, i.e.

〈nS〉 =
√

2π
2 κ2

∫
ray

ω4
p(x(τ))
ω4

δn2
e

n2
e

(x(τ))L⊥(x(τ))dτ, (7.122a)

∆φN ≈ (κN⊥L⊥)−1 . (7.122b)

In order to investigate the effect of the fluctuation parameters ∆ρF , δne/ne and L⊥, in figure 7.7

two of them are held constant at the reference value introduced above, whereas the remaining

parameter is changed. All absorption profiles in this figure with fluctuation turned on show a

reduced absorption peak as compared to the no-fluctuation solution at the maximum position

of ρ = 0.4. The fluctuations are seen to lead to the formation of extended tails in the power

deposition profile, except for the run with L⊥ = 2 cm in panel (c) of the figure. There, no tails

are visible, but a broadened absorption peak is present. As also intuition would suggest, the

portion of energy getting transported to the tails increases with the width of the fluctuation layer

∆ρF and with the electron density fluctuation level δne/ne, confirmed in panels (a) and (b) of the
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Figure 7.7.: Absorption profiles for ASDEX Upgrade shot #25485 (cf. appendix G) with the
beam parameters of figure 7.6. For the fluctuation, various parameters of (a) the
width of the fluctuation layer ∆ρF , (b) the maximum strength of electron density
fluctuation δne/ne, (c) the perpendicular correlation length L⊥ are shown.

figure, respectively. In the limit of perpendicular propagation this can easily be understood, the

mean number of scattering events being proportional to (δne/ne)2 and to the propagation length
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∆τ , deflecting a higher fraction of the rays for larger values of the electron density fluctuations

and for broader fluctuation layers. Instead, changing the perpendicular correlation length L⊥, cf.

panel (c) of the figure, changes not only the fraction of energy found in the central peak and in

the tails, but it also crucially influences the shape of the absorption profile. This effect, as well as

the shape of the absorption profiles for L⊥ = 0.4 cm, cf. figure 7.7 (a) and (b), is more easily

discussed by means of the spectra of the beam just before reaching the fluctuation layer and just

after propagating through the fluctuation layer, shown in figure 7.8. These spectra are computed

using as a weight for the binning A ≡ 1 and binning areas

ΩφN
k =

{
(x,N) ∈ R6 :ρmin < ρ(x,N) < ρmax,

0 < φN (x,N)− φmin,k
N < ∆φN

}
(7.123a)

to resolve φN in a magnetic surface shell specified by the boundaries ρmin and ρmax and the

subdivision into bins

φmin,k
N = φmin

N + k∆φN , (7.123b)

that resolves the angular spectrum of the wave field, with the angel φN defined in (7.10). Here, k

labels the bins and ∆φN is the corresponding bin resolution. In order to compute the spectrum just

before the beam has reached the fluctuation layer centered at ρ = 1, the boundaries ρmin = 1.03

and ρmax = 1.05 are chosen. Instead, the spectrum just inside is obtained with ρmin = 0.95 and

ρmax = 0.97.

In panel (b) of figure 7.8, uniquely the contribution of scattered rays to the spectrum just

after propagation through the fluctuation layer is shown. The fact that smaller values of L⊥

lead to a broader distribution of the propagation angle φN , predicted by (7.122b), is confirmed.

A Gaussian fit in this figure provides the widths ∆φfluctuation
N = 0.22, 0.11, 0.035 for L⊥ =

0.2 cm, 0.4 cm, 2 cm, respectively. Instead, the spectrum with no fluctuations present has a

width of ∆φN = 0.022, measured by means of a Gaussian fit in figure 7.8 (c). Obviously,

∆φfluctuation
N � ∆φN for the parameters L⊥ = 0.2 cm, 0.4 cm. In the composed spectrum after

propagation through fluctuation, panel (c) of the figure, this leads to a background intensity

caused by the scattered rays which is much broader than the sharp contribution of unscattered
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Figure 7.8.: Spectra of the beams in AUG. (a) the spectrum just before the beam reaches the fluctu-
ation layer for ρ ∈ [1.03, 1.05), (b) the contribution of scattered rays to the spectrum
just after the beam has propagated through the fluctuation layer for ρ ∈ [0.95, 0.97)
and (c) the spectrum of the beam after propagation through the fluctuation. The
beam parameters are chosen as in figure 7.6 and for fluctuation ∆ρF = 0.025 and
δne/ne = 0.1 are used.

rays, providing a tail structure in the spectrum. Instead, for L⊥ = 2 cm, the standard deviation

of scattered rays ∆φfluctuation
N = 0.035 is of the same order as the width of the distribution of the

unscattered rays ∆φN = 0.022. Therefore, the spectrum after propagation through the fluctuation

layer does not show broad tails, but it rather is still Gaussian shaped with an increased standard

deviation.
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However, the maximum value of the spectrum at φN = −1.48 is affected more by larger

values of L⊥. This is explained by the mean number of scattering events, estimated in terms

of the integral of the total scattering cross section Σ along the central ray, yielding 〈nS〉 =

0.13, 0.26, 1.31 for the run shown in figure 7.8 with L⊥ = 0.2 cm, 0.4 cm, 2 cm, respectively.

This is in agreement with the dependence 〈nS〉 ∝ L⊥, predicted for the simple physical limit of

perpendicular propagation, cf. (7.122a). The actual number of scattering events for the single

rays being Poisson distributed, the probability of getting scattered at least once is

Pscattered(〈nS〉) = 1− e−〈nS〉, (7.124)

leading to Pscattered = 12%, 23%, 73% for L⊥ = 0.2 cm, 0.4 cm, 2 cm, respectively. This

shows that in the L⊥ = 0.2 cm, 0.4 cm runs only a minority of the rays gets scattered, leading to

the broad tails, but not carrying away from the center too much energy, whereas 73% of the rays

are affected by scattering for L⊥ = 2 cm, broadening the spectrum and hence crucially affecting

the shape of the power absorption profile. As mentioned in section 7.5.1, the limit of rays being

scattered several times is called diffusive regime, in contrast to the advection regime for which

only few rays are scattered.

Broad tails in the spectrum just after the fluctuation layer physically are interpreted in terms

of a contribution of energy propagating in a direction far from the central direction, leading to

broad tails of the beam itself after some propagation distance. This effect is directly translated

into broad tails in the absorption profile for L⊥ = 0.2 cm, 0.4 cm as well, see 7.7 (c), whereas

the broadened peak in the spectrum for L⊥ = 2 cm makes the corresponding absorption profile

become broad.

The absorption profile computed for realistic parameters in ASDEX Upgrade, ∆ρF = 0.025,

δne/ne = 0.1, L⊥ = 0.4 cm, is not far from the profile with fluctuations turned off, see

for example figure 7.7 (a), and could still be in agreement with simultaneous measurements

of absorption profiles. It is interesting to see what the simulation predicts for the absorption

profiles in ITER, where, given the fact that the tokamak is not already built, no measurements

exist, but precisely aimed and collimated electron-cyclotron beams are supposed to be used for

the stabilization of magneto-hydrodynamic instabilities (such as neoclassical tearing modes),

requiring sharp absorption profiles [44]. As for ASDEX Upgrade, the pedestal region is covered
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Figure 7.9.: Absorption profiles for ITER equilibrium, cf. appendix G, with the follow-
ing beam parameters: O-mode, frequency f = 170 GHz, initial beam width
w = 5.047 cm, initial curvature radius R = 318.6 cm, beam center launched at
(x, y, z) = (699.871 cm, 0, 441.441 cm) with a poloidal antenna orientation of 47◦

and a toroidal antenna orientation of 20◦ (ITER angle convention, cf. section 7.2).
For the ray tracing, 50000 rays are considered.

with ∆ρF = 0.025 and δne/ne = 0.1 is a reasonable number for the electron density fluctuation

level. Due to the increased temperature, the gyroradius in ITER is larger. This makes the choice

of L⊥ = 10ρS ≈ 2 cm appropriate [41]. The results are shown in figure 7.9, where a scan on

the width ∆ρF is presented. It can be seen that for the reference value of ∆ρF = 0.025, the

absorption profile is dramatically broadened and the effect of fluctuation is more pronounced as

in AUG with the same parameters, see figure 7.7 (c). This is due to a rescaling of the tokamak:

In ITER, the minor radius will be rITER = 201 cm, whereas in AUG it is rAUG = 65 cm.

Therefore, a width of the fluctuation layer of ∆ρF = 0.025 corresponds to a physical thickness of

∆F ≈ 2rITER∆ρF ≈ 10 cm in ITER whereas it is only ∆F ≈ 3 cm in ASDEX Upgrade, leading

to a larger number of rays getting scattered. The mean number of scattering events evaluated on

the central ray yields 〈nS〉 = 11.6, so that most rays get scattered even several times. Another

important effect of rescaling is due to propagation after the fluctuation layer: The further the beam

propagates until it gets absorbed, the more its width is enlarged by a broad spectrum of the beam.

For the AUG run, the distance of the central ray from the ρ = 1 surface where fluctuations are

centered to the absorption region at ρ = 0.4 is found to be ∆l ≈ 50 cm, whereas for ITER, even

if absorption takes place around ρ = 0.87, the distance with ∆l ≈ 100 cm is twice as large. For

test purposes, the absorption region can be shifted towards the fluctuation layer. This is achieved
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Figure 7.10.: Absorption profiles for ITER equilibrium, cf. appendix G, the beam parameters
copied from figure 7.9 and fluctuation parameters ∆ρF = 0.025, δne/ne = 0.1,
L⊥ = 2 cm. The magnetic field strength is multiplied with the factor f to shift the
absorption region for test purposes.

by multiplying the magnetic field in the tokamak with some factor close to one, modifying the

position R of the cyclotron resonance, cf. section 7.1. For the ITER run, this is presented in

figure 7.10. Whereas absorption around ρ = 0.87 shows the dramatic broadening effect. When

the absorption lacation is shifted outwards, the effect decreases. Absorption at ρ = 0.98 is almost

not affected by fluctuations.

In summary this section has shown the importance of a proper estimation of the effect of

fluctuations in the tokamak ITER, where absorption profiles get crucially affected by scattering.

7.5.3. Reflectometry applications

A second interesting application for the WKBeam code is the simulation of reflectometry beams.

As it was presented in the benchmarks section 6.3 of a linear layer, using WKBeam, meaningful

results can be produced even near the cut-off layer, if the spatial average over a domain which is

large enough is considered. Reflectometry runs usually stay away from resonances and, hence,

do not involve absorption, justifying the use of the cold-plasma approximation for the dielectric

operator. This assumption simplifies wave equation (2.20) to a partial differential equation which,

in principle, can be solved by a partial differential equation solver. However, considering the

fully three dimensional geometry of the tokamak and high frequency waves, this is numerically

expensive and the wave kinetic code is still more efficient if a solution in the semiclassical limit is
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Figure 7.11.: Reflectometry run for ITER equilibrium, cf. appendix G. Projections of the electric
field amplitude of the beam in arbitrary units on the Rz-plane (a), (c) and on the
Ry-plane (b), (d). The projections are obtained as square roots of the field energy
density integrated on y and z, respectively. No fluctuations are considered for
(a), (b), whereas the fluctuation parameters ∆ρF = 0.025, δne/ne = 0.1, L⊥ =
2 cm, L‖ = 100 cm are chosen for (c), (d). The beam parameters are: O-mode,
frequency f = 70 GHz, initial beam width w = 2.412 cm, initial curvature radius
R = 1000000 cm, beam center launched at (x, y, z) = (849.78 cm,−5 cm, 62 cm)
with a toroidal antenna orientation of 5◦ and no tilt in poloidal direction (ITER
angle convention, cf. section 7.2). For the ray tracing, 20000 rays are considered.

sufficient. We tune the beam such that it is most sensitive to fluctuations. In (7.122b), an estimate

for the order of magnitude of the deflection angle ∆φN in case of scattering of a ray is given and

it can be seen that ∆φN ∝ N−1
⊥ . Hence, the largest change of angle is achieved by beams which

just reach their cut-off layer N⊥ = 0 in the fluctuation region, even leading to isotropic scattering

in the perpendicular plane.

As an example, a reflectometry run is shown in figure 7.11. For this run, the turning point

of the central ray is located at ρ ≈ 0.994, lying near the center of the fluctuation layer. The

projections of the beam onto both the Rz-plane (a,c) and the Ry-plane (b,d) are shown with and

without fluctuations. The magnetic field being oriented basically in y-direction, the beam is only

affected a little by the long scale parallel fluctuations, cf. panels (b) and (d) of the figure. Instead,

the projection on the poloidal plane shows a broadened reflected contribution of the beam in
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Figure 7.12.: Spectra of a reflected beam for ITER equilibrium, cf. appendix G, in the shell
ρ ∈ [1.03, 1.05). The beam parameters and fluctuation parameters are the same as
in figure 7.11.

panel (c) on top of the incoming beam launched from R ≈ 850 cm. The corresponding reflected

contribution in the non-fluctuating plasma (a) is narrower and points a little upwards.

Mainly the same physical results are observed in a more quantitative way considering the

spectrum of the beam when propagating towards the cutoff and backward, cf. figure 7.12. The

spectra shown in this figure are obtained from binning with weight A ≡ 1. In order to resolve the

spectrum in N‖, the bins are

ΩN‖,±
k =

{
(x,N) ∈ R6 :ρmin < ρ(x,N) < ρmax, ±φN (x,N) ∈ [0, π),

0 < N‖(x,N)−Nmin,k
‖ < ∆N‖

}
. (7.125a)

With the definition of φN (7.10) and the magnetic field mainly in y-direction, the superscript

"+" selects the rays propagating outward (in positive R-direction) and "-" the ones entering the

plasma, i.e. in negative R-direction, as confirmed in the spectra 7.11 (c,d).
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7. Results for tokamak plasmas

The bin boundaries are ρmin = 1.03 and ρmax = 1.05 to select a magnetic surface shell outside

the fluctuation layer and the subdivision in N‖-direction is

Nmin,k
‖ = Nmin

‖ + k∆N‖. (7.125b)

In analogy, the spectrum in φN is constructed: A bin

ΩφN
k =

{
(x,N) ∈ R6 :ρmin < ρ(x,N) < ρmax,

0 < φN (x,N)− φmin,k
N < ∆φN

}
, (7.126a)

subdivided in φN -direction according to the grid

φmin,k
N = φmin

N + k∆φN , (7.126b)

is used. The spectra in the parallel refractive index component N‖ and the angle of the refractive

index in the poloidal plane φN are not affected by fluctuations for the incoming beam, confirmed

by panels (a) and (c) of figure 7.12. Furthermore, given the fact that the parallel fluctuation

correlation length is large, again, the parallel refractive index component of the reflected beam

(b) is not influenced by fluctuations. Instead, the spectrum of the propagation angle φN for the

reflected beam becomes broader if fluctuations are turned on, cf. panel (d).
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8
Conclusions and outlook

In the framework of this thesis, a new simulation code for high frequency waves in fluctuating

media has been developed. Based on Wigner-Weyl symbol calculus, a phase space description

of the beam, formulated in terms of the Wigner function of the wave field, was obtained. Such

description allows us to deal with projection singularities (caustics) which are present e.g. in

the standard ray tracing method. The evolution of the Wigner function is described by the wave

kinetic equation, derived in the semiclassical limit. This approach retains the diffraction effects,

while neglecting higher order wave effects in the semiclassical expansion. It was shown how

even short scale fluctuations can be taken into account in the description in a mathematically

consistent way. The unfolding of caustics allows us to produce accurate results even near turning

points, albeit neglecting in the semiclassical limit fine structured interference effects. In addition,

the phase space description makes a natural derivation of spectra possible.

With tokamak applications in mind, in particular the effect of electron density fluctuations on

electron-cyclotron waves was studied for the tokamaks ASDEX Upgrade and ITER with the aim
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8. Conclusions and outlook

of addressing the possible broadening of the power deposition profile induced by turbulence in

electron-cyclotron current drive experiments. Therefore, the realistic tokamak geometry as well

as realistic plasma profiles have been used and fluctuations are described by an analytic model.

A new code, WKBeam, has been developed on the basis of a Monte-Carlo scheme adaptedd

to the solution of the relevant boundary value problem for the wave kinetic equation. The code

has been written in python, a modern and widely available high-level language, with cython

modules for performance and mpi4py for the parallelization. Extensive benchmarks of the new

code have been carried out. A comparison shows a good agreement between the new code and the

reference solutions employed for benchmark and, for a non-fluctuating tokamak plasma, with the

well-tested code TORBEAM. In presence of fluctuations instead, the concerns of previous works

that larger machines will be affected more by fluctuations due to larger propagation distances was

confirmed. In addition, an important influence of the fluctuation correlation length on the results

was found. Previous works considering diffusive approximations which are invalid in case this

correlation length is small, cf. ASDEX Upgrade parameters, could not study this effect which,

however, makes a dramatic difference between ASDEX Upgrade and ITER results depending on

the turbulence parameters. In the thesis also a reflectometry run is shown, including the effect of

fluctuations. Such runs might be interesting for diagnostics applications.

With a view to the work we have left over for future, additional benchmarks should be performed:

Even if benchmarks with simplified models show a good agreement, there might be simple errors

in the expressions specific to tokamak applications, which could be found by direct comparison

to other codes. Moreover, regarding the importance of the effect for ITER, an independent

confirmation of correctness would be welcome. The full wave solver used for the simplified

fluctuation case might be generalized to a simple, analytical tokamak geometry, which would

allow such benchmarks. In addition, a more refined model for fluctuations could be employed [45].
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A
Technical derivations for symbols and

Weyl symbols

A.1. Relation between left symbols and Weyl symbols

We shall establish a relation between L-symbols and Weyl symbols. Following [8], the kernel

a(x, x′) of an operatorA can be expressed in terms of the corresponding L-symbol a(x,N) using

the quantization rule (2.31), i.e.

a(x, x′) =
(
κ

2π

)m ∫
eiκ(x−x′)·Na(x,N)dN. (A.1)

Starting from this kernel, the Weyl symbol map (2.33) provides the Weyl symbol:

A(x,N) =
(
κ

2π

)m ∫
eiκs·(N

′−N)a

(
x+ s

2 , N
′
)

dsdN ′. (A.2)
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A. Technical derivations for symbols and Weyl symbols

Both, s and N ′ appear in the exponential as well as in the arguments of the symbol a. Therefore,

the integrals are not trivial to compute. Given the fact that symbols are assumed to be smooth

functions, a Taylor expansion around x is appropriate. With a multi-index α, this yields

A(x,N) =
(
κ

2π

)m ∫
eiκs·(N

′−N)
∞∑
|α|=0

sα

2 ∂
α
x

α! a
(
x,N ′

)
dsdN ′. (A.3)

Formally, the powers of s can be replaced with i
κ∂N acting on the exponential, because, every

time such a differentiation is applied, a prefactor of−iκs is produced. Then, the Taylor expansion

(A.3) reads

A(x,N) =
(
κ

2π

)m ∫
eiκs·(N

′−N)
∞∑
|α|=0

(
i

2κ

)|α|←−
∂αN
−→
∂αx

α! a
(
x,N ′

)
dsdN ′. (A.4)

Here, the arrows on the partial differential operators indicate the direction in which they act.

The sum in the last equation has the form of the Taylor series of an exponential with partial

differentiation operators as an argument. Therefore, formally, we write

A(x,N) =
(
κ

2π

)m ∫
eiκs·(N

′−N)e
i

2κ
←−
∂N ·
−→
∂xa

(
x,N ′

)
dsdN ′ (A.5)

and remember that the partial differential operators in the exponential make sense when the

exponential is Taylor expanded. Now, the s-integration can be performed analytically. The result

yields a δ(N ′ −N) which also immediately allows the computation of the N ′-integration:

A(x,N) = e
i

2κ
−→
∂N ·
−→
∂xa (x,N) . (A.6)

Equation (A.6) provides the relation (2.37) between L-symbols and Weyl symbols given in the

body of this thesis. The inverse transformation

a(x,N) = e−
i

2κ
−→
∂N ·
−→
∂xA (x,N) (A.7)

also holds true.
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A.2. Product formula for Weyl symbols

A.2. Product formula for Weyl symbols

The aim of this section is to provide a formula which, given the Weyl symbols A(x,N) and

B(x,N) of two pseudo-differential operators A and B, respectively, gives the Weyl symbol

C(x,N) of the composition operator

C = A ◦B. (A.8)

First, the relation is established for L-symbols instead of Weyl symbols. Then, with the relations

between symbols and Weyl symbols (A.6) and (A.7), it is translated in terms of Weyl symbols.

The kernel of the operator product C is given by

c(x, y) =
∫
a(x, x′)b(x′, y)dx′, (A.9)

with a(x, x′) and b(x′, y) the kernels of A and B, respectively. The symbol map (2.29) is used in

order to express the symbol c(x,N) in terms of the corresponding kernel c(x, y), i.e.

c(x,N) =
∫
e−iκN ·sa(x, x′)b(x′, x− s)dx′ds. (A.10)

In addition, the kernels a(x, x′) and b(x′, y) are given in terms of the L-symbols by equation

(2.31):

a(x, x′) =
∫
eiκ(x−x′)·N ′a(x,N ′)dN ′, (A.11a)

b(x′, x− s) =
∫
eiκ(x′−x+s)·N ′′b(x′, N ′′)dN ′′. (A.11b)

The kernels (A.11) substituted into (A.10) yields

c(x,N) =
(
κ

2π

)2m ∫
eiκ[s·(N ′′−N)+(x−x′)·(N ′−N ′′)]a(x,N ′)b(x′, N ′′)dN ′dN ′′dx′ds.

(A.12)

Integration on s and then on N ′′ can be performed immediately. The result is

c(x,N) =
(
κ

2π

)m ∫
eiκ[(x−x′)·(N ′−N)]a(x,N ′)b(x′, N)dN ′dx′. (A.13)
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A. Technical derivations for symbols and Weyl symbols

If the x′-dependence is removed from b, the x′-integration can be performed. As done in

section A.1, b(x′, N) is Taylor expanded around x. The result reads

c(x,N) =
(
κ

2π

)m ∫
eiκ[(x−x′)·(N ′−N)]a(x,N ′)

∞∑
|α|=0

(
− i
κ

)|α|←−
∂αN
−→
∂αx

α! b(x,N)dN ′dx′.

(A.14)

Again, x− x′ is replaced with the derivative − i
κ∂N acting on the exponential. The integral on x′

and next on N ′ then can be performed and as a result, we obtain

c(x,N) = a(x,N)
∞∑
|α|=0

(
− i
κ

)|α|←−
∂αN
−→
∂αx

α! b(x,N) (A.15)

The Taylor series of an exponential is identified, hence

c(x,N) = a(x,N)e−
i
κ

←−
∂N ·
−→
∂xb(x,N). (A.16)

When Weyl symbols are involved, the corresponding L-symbols are expressed using formulas

(A.6) and (A.7). Those transformations plugged into (A.16) yields

C(x,N) = e
i

2κ
−→
∂N ·
−→
∂x

[(
e−

i
2κ
−→
∂N ·
−→
∂xA (x,N)

)
e−

i
κ

←−
∂N ·
−→
∂x

(
e−

i
2κ
−→
∂N ·
−→
∂xB (x,N)

)]
(A.17)

The exponential in front of the squared brackets is written out in terms of a Taylor series and

Leibnitz rule is applied. In the sum, then, the terms of exponentials are identified and the result is

C(x,N) = A (x,N) e−
i

2κ
←−
∂N ·
←−
∂xe

i
2κ

(←−
∂N+

−→
∂N
)
·
(←−
∂x+
−→
∂x
)
e−

i
κ

←−
∂N ·
−→
∂xe−

i
2κ
−→
∂N ·
−→
∂xB (x,N) . (A.18)

Given the fact that the partial differential operators in the exponentials commute, they can be put

in one exponential. Then, equation (A.18) simplifies to

C(x,N) = A (x,N) e
i

2κ

[←−
∂x·
−→
∂N−

←−
∂N ·
−→
∂x
]
B (x,N) . (A.19)
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A.2. Product formula for Weyl symbols

This is the product rule for Weyl symbols, cf. equation (2.40) in the body of this work. It is also

referred to as the Moyal-Weyl product denoted with a "?":

C(x,N) = A(x,N) ? B(x,N). (A.20)

Particularly, the first two orders in the Moyal-Weyl product give

C(x,N) = A(x,N)B(x,N)− i

2κ {A,B} (x,N) +O(κ−2) (A.21)

thus, recovering the Poisson brackets.
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B
Differentiation of distributions

In the framework of this thesis, it is dealt with generalized functions such as Dirac’s δ. In

section 3.4, this has been worked out. To be mathematically precise such objects are not functions,

but they must be considered as distributions. Only in this sense, they as well as their derivatives

are properly defined. In this appendix, the basics of distribution calculus are recalled. More

details on this topic can be found in [46].

A distribution f , in general, takes a function φ and reduces it to a single number f(φ):

f : φ 7→ f(φ). (B.1)

A typical example with special interest for this work is Dirac’s δ-distribution:

δ : φ 7→ φ(0). (B.2)

It reduces the test function φ to its value evaluated at point 0.
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B. Differentiation of distributions

Considering a function f̃ , a distribution f is given in terms of the integral representation

f : φ 7→ f(φ) =
∫
φ(x)f̃(x)dx. (B.3)

The function f̃ then is referred to as generating function of the distribution f . Such a representa-

tion can be found for any regular distribution.

The δ-distribution is not regular and no integral representation in the sense of (B.3) exists.

Anyway, a function δ̃ε(x) can be given which is used in the integral (B.3) instead of the generating

function, so that this integral depends on ε and converges to the δ-distribution in the limit ε→ 0.

We consider e.g.

δ̃ε(x) = 2√
2πε

e−
1
2
x2
ε2 . (B.4)

This function itself is divergent for ε→ 0. If the limit is considered after integration, the result

converges to the expected result for the δ-distribution:

∫
φ(x)δ̃ε(x)dx→ φ(0) (B.5)

for ε→ 0.

Nevertheless, in this thesis, also for the distributions f without generating function, we write

∫
φ(x)f(x)dx = f(φ). (B.6)

Here, the integral notation on the l.h.s. should not be interpreted as an integral in ordinary sense.

It rather is a formal way of writing, which means that the distribution f is applied on the test

function φ, yielding f(φ). The notation is inspired by the integral representation (B.3). If and

only if the distribution under investigation has a generating function f̃(x), the integral may be

considered as an integral in the proper sense.

For this work, also the derivative of the δ-distribution is needed. Hence, the definition of

derivatives of distributions is briefly reviewed here. It is motivated by distributions which can be

written in terms of generating functions. The derivative f ′ of distribution f is obtained by using

the derivative of the generating function f̃ ′(x) instead of f̃(x) in the integral representation (B.3):
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This is for the distribution applied on test function φ

f ′(φ) =
∫
φ(x)f̃ ′(x)dx. (B.7)

Here, the prime denotes derivatives. Integration by parts for φ(x), which vanish at the integration

boundaries, yields

f ′(φ) = −
∫
φ′(x)f̃(x)dx = −f(φ′). (B.8)

Higher-order derivatives are defined analogously. This result is generalized to distributions

without generating function like for example Dirac’s δ, i.e.

δ′(φ) = −δ(φ′) = −φ′(0), (B.9)

even if no interpretation in terms of the integral representation is possible.
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C
Hamilton’s equations of motion and

Poisson brackets

Hamilton’s equations of motion play an important role in this work, as they present a sort of

"wave trajectory" as described with reference to geometrical optics, section 2.3, and also the

numerical scheme, chapter 4. In this appendix, phase space is introduced and more details are

given about Hamilton’s equations of motion, the evolution of phase space quantities and the

connection to the Hamilton-Jacobi equation.

In the framework of high frequency wave propagation, the position-refractive index space is

referred to as phase space (x,N). A smooth function H(x,N) is considered as Hamiltonian and

Hamilton’s equations of motion in canonical form are given by

dx
dτ

= ∂NH(x,N), (C.1a)

dN
dτ

= −∂xH(x,N). (C.1b)
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C. Hamilton’s equations of motion and Poisson brackets

Figure C.1.: Neighbouring Hamiltonian orbits shifted by ∆x ≡ ∆x(τ) and ∆N ≡ ∆N(τ) at
time τ .

Here, the parameter τ plays the role of time. Hamilton’s equations of motion are ordinary

differential equations and therefore relatively straight forward to integrate, given initial conditions.

Given a solution (x(τ), N(τ)) of (C.1), called orbit in phase space, its projection onto the

configuration space {x = x(τ)} defines a curve called ray in the framework of geometrical optics,

cf. section 2.3.

It can be shown [47] that neighbouring Hamiltonian orbits as shown in figure C.1 conserve

the enclosed volume ∆V = ∆x∆N . This is called Liouville’s theorem. Crossing orbits would

lead to ∆V = 0 at the crossing point. This would be against volume conservation. Therefore,

Hamiltonian orbits do not cross in a finite ∆τ .

As a special case, Hamiltonians independent of x, i.e. H(x,N) ≡ H(N), conserve the refractive

index, i.e. N ≡ const. As a consequence, also the derivative ∂NH(N) is conserved. Hence,

straight rays trajectories are obtained. As an example, the Hamiltonian for free space (6.3) has

such a structure.

For the purpose of this work, cf. chapter 3, Poisson brackets {H,A} need to be defined, with

A(τ, x,N) any phase space function depending possibly on τ . Specifically, Poisson brackets

describe the change of A along a Hamiltonian orbit (x(τ), N(τ)), namely,

dA
dτ

(τ, x(τ), N(τ)) = ∂A

∂τ
(τ, x(τ), N(τ)) + ∂xA (τ, x(τ), N(τ)) dx

dτ

+ ∂NA (τ, x(τ), N(τ)) dN
dτ

, (C.2)
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and using Hamilton’s equations (C.1) one finds

dA
dτ

(τ, x(τ), N(τ)) = ∂A

∂τ
A (τ, x(τ), N(τ)) + ∂xA (τ, x(τ), N(τ)) ∂NH (x(τ), N(τ))

− ∂NA (τ, x(τ), N(τ)) ∂xH (x(τ), N(τ))

(C.3)

The Poisson brackets, defined by

{H,A} := ∂NH∂xA− ∂xH∂NA, (C.4)

appear naturally in equation (C.3):

dA
dτ

(τ, x(τ), N(τ)) = ∂A

∂τ
(τ, x(τ), N(τ)) + {H,A} (τ, x(τ), N(τ)) . (C.5)

Equation (C.5) simplifies to

dA
dτ

(x(τ), N(τ)) = {H,A} (x(τ), N(τ)) , (C.6)

when A ≡ A (x(τ), N(τ)) is not explicitly dependent on τ .

Poisson brackets (C.4) have the following properties [47]:

• They are anti-symmetric when arguments are exchanged,

{A,B} = −{B,A} . (C.7a)

• Leibnitz rule applies when one argument is the product of two functions,

{AB,C} = A {B,C}+ {A,C}B, (C.7b)

• The Jacobi identity holds true,

{A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0. (C.7c)
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C. Hamilton’s equations of motion and Poisson brackets

Figure C.2.: Two dimensional configuration space x = (x, y) ∈ R2 extended with N ∈ R2 to
phase space. Shown in red is the Hypersurface defined by N = ∇xS(x).

In particular, it follows from anti-symmetry (C.7a) that {H,H} vanishes identically and hence,

due to (C.6), the Hamiltonian itself is conserved along Hamilton orbits.

An important point for the ray tracing method as presented in section 2.3 is the relation between

Hamilton’s equations of motion (C.1) and the Hamilton-Jacobi equation. This relationship allows

to move from a Hamilton-Jacobi type of equation (2.50a) derived from electromagnetic wave

theory to a ray tracing strategy using Hamilton’s equations of motion. The reader might find more

details in the standard textbook [47]. The geometrical interpretation of the relationship is given in

the following. Hamilton-Jacobi equation is

H (x,∇xS(x)) = 0, (C.8)

which, in general, is a non-linear partial differential equation for the function S ≡ S(x). The

solution S of this equation defines a hypersurface in phase space (x,N = ∇xS(x)) as shown in

figure C.2. Here, to each configuration space point x, one single value of N ≡ N(x) is attached.

A vector linking two points on this solution hypersurface is given by

vx(x)

vN (x)

 = 1
ε

 x+ vx(x)ε

∇xS(x+ vx(x)ε)

−
 x

∇xS(x)

→
 vx

(DS(x)vx)

 . (C.9)

Here, the first components vx describe the projection onto configuration space whereas the

last components vN give the shift in refractive index direction. The Cartesian unit vectors are

denoted with ei. Einstein’s convention is used and the limit ε→ 0 is considered. Furthermore,

DS = (∂xi∂xjS(x))ij denotes the Hessian of S. The first line does not contain any information,

leaving the velocity projection on configuration space vx arbitrary. Instead, the second line

176



determines the velocity projection on refractive index vector space vN in terms of vx. Formulating

equation (C.9), a general tangent vector was considered. This shows that vectors tangent to the

solution hypersurface have the velocity projection on refractive index vector space vN defined by

the second line of (C.9), whereas the projection on configuration space vx is arbitrary.

On the other hand, taking the gradient of Hamilton-Jacobi equation (C.8) yields

[∂xH(x,N) +DS(x)∂NH(x,N)]N=∇xS(x) = 0. (C.10)

We choose

vx = ∂NH(x,N(x)) (C.11)

in (C.9) and substitute equation (C.10) into the r.h.s. of the second line. As a result we find that

the vector vx
vN

 =

 ∂NH (x,N(x))

−∂xH (x,N(x))

 (C.12)

is compatible with (C.9) and hence tangent to the solution hypersurface of Hamilton-Jacobi

equation. This proves that Hamiltonian orbits, given by Hamilton’s equations of motion (C.1),

are lying in the surface defined by the solution of the Hamilton-Jacobi equation. Vice versa, the

solution hypersurface can be constructed as a congruence of Hamiltonian orbits. This is the basis

of the ray tracing technique outlined in section 2.3.
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D
Gaussian beam profiles

In this appendix, the Wigner function of a beam with given Gaussian profile is computed. It

is needed as a boundary condition in the code, cf. section 5.1.1. The electric field around the

antenna plane x = 0 is

E(x, y) = Aeiκy·Ny,0+iκxNx,0+ i
2κy·Sy− 1

2κy·Φy (D.1)

with a central amplitude A. For simplicity, A = 1 is considered here as well as in the benchmark

tests in chapter 6. When physical results are discussed, section 7.5.2, this normalization might

not be appropriate. Then, correct values are obtained when the Wigner function is multiplied with

|A|2. This is clear from the construction of the Wigner function (D.2).

As presented in figure 3.2, for an m-dimensional space we consider x ∈ R and y ∈ Rm−1.

For physical electric fields, the dimensionality must be set to m = 3. The dimensionality

is not specified here anyway because for some tests it might also be interesting to consider

two-dimensional geometries. One input parameter is the central value for the refractive index
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D. Gaussian beam profiles

(Nx,0, Ny,0) where Nx,0 ∈ R and Ny,0 ∈ Rm−1. It is supposed to fulfil the dispersion relation

on the antenna plane. The symmetric matrix Φ in (D.1) describes the beam width on the antenna

plane and the symmetric matrix S gives the curvature of the phase front of the beam, namely

focusing or defocusing. A more detailed discussion on the physical meaning of Φ and S is given

at the end of this appendix. With the Wigner transformation (2.61), the Wigner function reads

w(x = 0, y, Nx, Ny) =
∫
e−iκ(Nxsx+Ny·sy)E

(
sx
2 , y + sy

2

)
E∗
(
−sx

2 , y−
sy
2

)
dsxdsy.

(D.2)

We substitute the electric field (D.1) in this Wigner transform and perform the sx-integration.

This leads to a δ-function for the perpendicular refractive index component:

w(x = 0, y, Nx, Ny) = 2πe−κy·Φy
∫
eiκ(Ny,0−Ny)·sy+iκy·Ssy− 1

4κsy·Φsyδ(Nx −Nx,0)dsy.

(D.3)

As the matrix Φ is symmetric, it can be diagonalized with an orthogonal matrix U ,

Φ = UTDU, (D.4)

where D is the corresponding diagonal matrix with the eigenvalues Di of Φ on its diagonal. If in

(D.3), the integration variable is substituted,

sy → s̃y := Usy (D.5)

and the tilde is dropped, integral (D.3) yields

w(x = 0, y, Nx, Ny) = e−κy·Φy
∫
eiκ(Ny,0−Ny)·UT sy+iκy·SUT sy− 1

4κsy·Dsyδ(Nx −Nx,0)dsy.

(D.6)

The abbreviation

νT := κ
[
(Ny,0 −Ny)T + yTS

]
UT (D.7)
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is introduced in order to simplify equation (D.6):

w(x = 0, y, Nx, Ny) = 2πe−κy·Φy
∫
eiν·sy−

1
4κsy·Dsyδ(Nx −Nx,0)dsy

= 2πe−κy·Φyδ(Nx −Nx,0)
m−1∏
k=1

∫
eiνksk−

1
4κDks

2
kdsk. (D.8)

Here, the vector sy = (s1, . . . , sm−1) is written out in terms of its components. Next, the integral

under the product symbol must be evaluated. This requires standard complex analysis and the

result is

∫
eiνksk−

1
4κDks

2
kdsk = 2

√
π

κDk
e
−

ν2
k

κDk . (D.9)

The result is substituted in (D.8) and the Wigner function reads

w(x = 0, y, Nx, Ny) = 2mπ(m+1)/2

κ(m−1)/2
√

det Φ
e−κy·Φye

−
∑m−1

=1
ν2
k

κDk δ(Nx −Nx,0). (D.10)

Upon accounting for definition (D.7) and that det
(
Φ−1) = (det Φ)−1, the final result is

w(x = 0, y, Nx, Ny) = 2mπ(m+1)/2

κ(m−1)/2
√

det Φ
e−κy·Φy−κ[(Ny,0−Ny)+Sy]·Φ−1[(Ny,0−Ny)+Sy]δ(Nx −Nx,0).

(D.11)

In equation (3.65), a regularized Wigner function is presented. This is obtained when the

singularity is split up. Hence we define

w̃(x = 0, y, Ny) := 2mπ(m+1)/2

κ(m−1)/2
√

det Φ
e−κy·Φy−κ[(Ny,0−Ny)+Sy]·Φ−1[(Ny,0−Ny)+Sy]

∣∣∣∣∂H(x,N)
∂Nx

∣∣∣∣ ,
(D.12)

which is in agreement with (3.65).

For physical applications, it is assumed that the matrices Φ and S are diagonal in the same

reference frame. This means that the principal coordinate systems for both, beam width as well

as curvature, are the same on the antenna plane. In general, they could be rotated one with

respect to the other and, introducing as a parameter the rotational angle, one could describe this

effect. However, for the purpose of this thesis, such effects are not further investigated. Then,
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D. Gaussian beam profiles

Figure D.1.: Effect of different curvature radii on the beam. Geometrical optics rays launched on
the antenna plane (red) are shown. In blue, the curvature radii are displayed. Left:
positive curvature radius R > 0 is considered. Right: the curvature radius R < 0 is
assumed to be negative.

considering the electric field (D.1), it is clear that the eigenvalues Dk of Φ are related to the beam

width on the antenna plane wk. Furthermore, the eigenvalues Sk of S are related to the initial

curvature radius Rk of the wave front:

Dk = 2
κw2

k

, (D.13a)

Sk = − 1
Rk

. (D.13b)

Considering Wigner function (D.11), it can be seen that the refractive index yielding the largest

contribution for a given point y is

Ny = Ny,0 + Sy. (D.14)

As a convention, in this work, the curvature radius is considered positive, if the center of curvature

is lying in direction of beam propagation (on the left in figure D.1, focused beam), whereas it

is considered negative, if it is beyond the antenna plane as shown on the right in figure D.1,

defocused beam. This is consistent with the sign in definition (D.13b).
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E
User guide for WKBeam

In the following two sections, small user guides for the ray tracing and the binning part of

WKBeam are presented. Note that in general, the code is implemented considering physical

coordinates, which are not normalized by any typical length scale L, unlike the theoretical

description presented throughout this thesis.

E.1. Ray tracing code

The ray tracing part of WKBeam requires as input an ascii text file with the following syntax:

Every content appearing in a line after a "#"-character is ignored and the command

[VARIABLENAME] = [VALUE] ,

sets the variable [VARIABLENAME] to the value [VALUE]. Leading blanks are ignored. Table E.1

presents all possible parameters with a brief explanation of the meaning.
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E. User guide for WKBeam

The code is run with the command

mpirun -np [NMBR CORES] python ray_trace.py [INPUT],

where [NMBR CORES] specifies the requested number of cores and [INPUT] gives a link to the

file containing the input parameters. The file "ray_trace.py" is the main file of the code.

As a further input for tokamak applications, the code is looking for input files in the folder

specified among the input parameters: "topfile" should provide the magnetic field and the

files "ne.dat" and "Te.dat" contain information on the electron density profile and the electron

temperature profile, respectively. The format of these files is compatible with the TORBEAM

code [40].

The WKBeam ray tracing code produces as an output one binary file per master core, denoted

by [output_filename]_file[C].hdf5, where [output_filename] is defined as input parameter and

[C] is a number specific to the core writing the file. The file format is the standard hdf5-format.

The entries maintained in this file are listed in table E.2.

Table E.1.: Input parameters for the ray tracing code, their datatype and a brief description.

variable name datatype description

zeroelectrondensity boolean if set, a simplified model or free space is used

linearlayer boolean if set, use linear layer as simplified model

valley boolean if set, use lens-like medium as simplified model

analmodel boolean if set and zeroelectrondensity is not set, use ana-

lytical model for the plasma profiles

neanal float central electron density for analytical model

deltarhopedestal float pedestal width for the analytical plasma model

input_dir string path to the input files for the plasma profiles

output_dir string path, where the output files are written

output_filename string name of the output file, "_fileC.hdf5" is added,

where "C=0,1,2,..." labels the core writing the

file
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E.1. Ray tracing code

variable name datatype description

takecentralrayfirst boolean if set, the first ray in the output file "C=0" is the

central, non-scattered ray

storeNxNyNz boolean if set, the refractive index components in Carte-

sian components are stored

storeNparallelphiN boolean if set, the refractive index components in coordi-

nates aligned to the magnetic field are stored

storeGroupVelocity boolean if set, the group velocity is stored

storeCorrectionFactor boolean if set, the correction factor ξ is stored

storePsi boolean if set, the flux ψ ≡ ψ(x, y, z) through the mag-

netic surface the point (x, y, z) is lying on is

stored

ControlOutput boolean if set, information on the progress is displayed

rmaj float major radius of the tokamak

rmin float minor radius of the tokamak

twodim boolean if set, a two-dimensional beam in (x, z) coordi-

nates is assumed; otherwise, a three-dimensional

beam is considered

freq float beam frequency in GHz

sigma float wave mode, "+1" for O-mode, "-1" for X-mode

beamwidth1, 2 float beamwidth in both directions

curvatureradius1, 2 float curvature radius in both directions

rayStartX, Y, Z float Cartesian coordinates of the beam center on the

antenna

antennatordeg float toroidal angle of the antenna plane in degree

antennapoldeg float poloidal angle of the antenna plane in degree

anglespecification string if set to "ITER", ITER angle convention is used,

if set to "AUG", AUG angle convention is used

centraleta1, 2 float central value for the refractive index

npt integer number of points per ray

timestep float standard timestep ∆τ between two ray points
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E. User guide for WKBeam

variable name datatype description

epsilonRegS float regularization parameter for S inversion

integratormax nmbrsteps integer maximal number of subdivisions for one integra-

tion step

integratorreltol float maximal integrator tolerance (relative)

integratorabstol float maximal integrator tolerance (absolute)

nmbrRays integer number of rays to trace

nmbrMetrHast

BoundaryInit

integer number of preliminary generated random num-

bers for MC-Hastings algorithm to ensure con-

vergence

absorption boolean if set, absorption is turned on

absorptionModule integer if absorption is turned on, absorption routine is

chosen: 0: Westerhof, 1: Farina routine

absorptionLayerX float if absorption is turned on in simplified model,

absorption layer is considered for X < this pa-

rameter

absorptionStartEarlier

ThenCentralRay

float put 0 if absorption shall be computed along the

whole ray, otherwise: abs. is computed starting

∆τ earlier then it was recognized on the central

ray, with ∆τ this parameter

absorptionConsiderAs

NonZeroTreshhold

float treshold for absorption coefficient, absorption

above this value is considered non-negligible,

used to determine when absorption on central

ray starts

absorptionSmaller

TimestepsFactor

float when absorption is computed, choose timesteps

smaller by this factor

absorptionWfct Treshhold float treshold, when ray tracing is stopped due to neg-

ligible ray power, relative to the initial value

reflektometrie boolean if set, reflectometry case is considered
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E.1. Ray tracing code

variable name datatype description

reflektometrierho

Treshhold

float if reflectometry case is considered, the ray trac-

ing is stopped when the ray leaves the shell with

this value for ρ

scattering boolean if set, scattering of the rays is taken into account

scatteringAmplitude float fluctuation strength for simplified model scatter-

ing

scatteringLengthscaleX, Z float correlation lengths for simplified model scatter-

ing

scatteringXmin, max float boundaries for x when scattering is turned on

scatteringLengthPerp float perpendicular correlation length in tokamak fluc-

tuation model

scatteringLengthParallel float parallel correlation length in tokamak fluctuation

model

scatteringDelta float width of the fluctuation layer in normalized mi-

nor radius units

scatteringrhocentral float center of fluctuation layer in normalized minor

radius units

scatteringDeltaneOverne float
√
〈δn2

e/n
2
e〉 at the center of the fluctuation layer

scatteringMaxProb

GuessFactor

float factor to enlarge guess for the scattering proba-

bility so that an upper limit is obtained

scatteringintegration

boundaryfactor

float factor the guess for the boundaries of the rele-

vant range for the numerical integration of the

scattering cross section is multiplied with

nmbrinitialisation

MetropolisHastings

Scattering

integer number of initialisations for MC-Hastings algo-

rithm to ensure convergence
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Table E.2.: Entries in the output file of the ray tracing code, their datatype and a brief description.

Entries which are put in brackets may not be present for a special choice of parameters.

name of entry datatype description

Traces[a,b,c] float b = 3:

value of fraction F for ray a at timestep c,

b = 0, 1, 2, c > 0:

value for x, y, z for ray a at timestep c

(TracesNparallelphiN[a,b,c]) float b = 0, 1, 2, c > 0:

value for Nx, Ny, Nz for ray a at timestep

c

(TracesNparallelphiN[a,b,c]) float b = 0, 1, c > 0:

value for N‖, φN for ray a at timestep c

(TracesGroupVelocity[a,b,c]) float b = 0, c > 0:

value for the group velocity ∂NH(x,N)

for ray a at timestep c

(TracesCorrectionFactor[a,b,c]) float b = 0, c > 0:

correction factor ξ for ray a at timestep c

(TracesPsi[a,c]) float c > 0:

value of the magnetic flux ψ = ψ(x, y, z)

for ray a at timestep c

TracesTime[a,c] float c > 0:

value of time parameter τc along ray a after

timestep c

Mode float +1: O-mode propagation,

-1: X-mode propagation

FreqGHz float beam frequency in GHz

antennapolangle float poloidal antenna angle in radian

antennatorangle float toroidal antenna angle in radian

nmbrRays integer number of rays contained in this file
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E.2. Binning code

name of entry datatype description

rayStartX, Y, Z float central beam point on the antenna plane in

(x, y, z) coordinates

beamwidth1, 2 float beamwidth on the antenna plane

curvatureradius1, 2 float curvature radius on the antenna plane

centraleta1, 2 float central value of the refractive index on the

antenna plane

fileindex integer label 0, 1, 2, ... identifying the master-core

which has written the file

inputfile string copy of the input file with all included com-

ments

E.2. Binning code

The data produced by the ray tracing code needs to be post-processed with the aid of the binning

code. This can be called once the output from ray tracing is available, with the command

python call_binning.py [INPUT].

Again, [INPUT] links to an input file, with a syntax identical to the ray tracing code, cf. section E.1.

Possible entries with a short description are presented in table E.3. The output of the binning

code essentially is a table containing the values of the Monte-Carlo estimator (4.50) for the

binning areas Ωα labeled with an up to four dimensional multi-index α. Together with additional

information, this is stored in a hdf5-file, with entries summarized in table E.4.

Table E.3.: Input parameters for the ray tracing code, their datatype and a brief description.

variable name datatype description

input_directory string path to the input files written by the ray tracing

code
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variable name datatype description

inputfilename list of

strings

labels of one or several runs of the ray tracing

code the input files for which are obtained by

adding "_file[C].hdf5", where [C]=0,1,...,N-1,

with N the number of files for one specific case

nmbrFiles integer number of files N for one specific case

outputdirectory string path to the directory where the output files are

written

outputfilename list of

strings

if defined, the output files for the specific cases

are named with those filenames plus ".hdf5", oth-

erwise the standard output file names "[inputfile-

name]_binned.hdf5" are used

WhatToResolve list of

strings

µ strings (up to four) labeling what quantity is

resolved in the order of this list, possible entries

are: "X", "Y", "Z", "Nx", "Ny", "Nz", "Nparal-

lel", "phiN", "Psi", "rho", "R"

min (max) list of

floats

minimum (maximum) boundaries for the consid-

ered grid in the up to four dimensions defined in

[WhatToResolve]

nmbr list of

integers

number of bins in the considered grid for all

dimensions

InputPower float if not defined: normalization is such that the

central electric field on the antenna plane is 1,

otherwise: specifies the total beam power

storeWfct boolean if set, the integral weighted with 1 is stored

storeVelocityField boolean if set, the integral weighted with the group veloc-

ity is stored

VelocityComponents

ToStore

list of

strings

which velocity components to store, possible

entries are: "Nx", "Ny", "Nz"

storeAbsorption boolean if set, the integral weighted with the absorption

coefficient is computed
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E.2. Binning code

variable name datatype description

computeAmplitude boolean if set, the integrals are computed taking into ac-

count scattered as well as unscattered rays

computeAmplitude

Unscattered

boolean if set, the integrals are computed taking into ac-

count only unscattered rays

computeScatteringEffect boolean if set, the difference between also scattered and

purely unscattered integrals is computed

computeScattered

Contribution

boolean if set, the contribution of scattered rays in ampli-

tude is computed

correctionfactor boolean if set, the correction factor ξ is properly taken

into account, otherwise it is set to ξ ≡ 1

Table E.4.: Entries in the output file of the binning code, their datatype and a brief description.

Entries which are put in brackets may not be present for a special choice of parameters.

name of entry datatype description

(BinnedTraces[a,b]) array of b = 0:

floats value for binning with weight 1, bin la-

belled with a µ-dimensional multi-index a

(see dimensionality of [WhatToResolve])

b = 1:

corresponding statistical uncertainty

(VelocityField[a,c,b]) array of

floats

analogous to [BinnedTraces], where as a

weight the refractive index component indi-

cated in the c-th entry of [VelocityCompo-

nentsToStore] is used

(Absorption[a,b]) array of

floats

analogous to [BinnedTraces], where as a

weight the absorption coefficient is used

(BinnedTracesUnscattered[a,b]) array of

floats

see [BinnedTraces], only unscattered rays

are taken into account
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name of entry datatype description

(VelocityFieldUnscattered[a,b]) array of

floats

see [VelocityField], only unscattered rays

are taken into account

(AbsorptionUnscattered[a,b]) array of

floats

see [Absorption], only unscattered rays are

taken into account

(BinnedTraces

ScatteringEffect[a,b])

array of

floats

difference of [BinnedTraces] and [Binned-

TracesUnscattered], statistical uncertainty

is computed taking into account that the

unscattered rays are the same in both cases

(VelocityField

ScatteringEffect[a,b])

array of

floats

difference of [VelocityField] and [Veloci-

tyFieldUnscattered], statistical uncertainty

is computed taking into account that the

unscattered rays are the same in both cases

(Absorption

ScatteringEffect[a,b])

array of

floats

difference of [Absorption] and [Absorp-

tionUnscattered], statistical uncertainty is

computed taking into account that the un-

scattered rays are the same in both cases

(BinnedTracesScattered

Contribution[a,b])

array of

floats

contribution of scattered rays in [Binned-

Traces]

(VelocityFieldScattered

Contribution[a,c,b])

array of

floats

contribution of scattered rays in [Velocity-

Field]

(AbsorptionScattered

Contribution[a,b])

array of

floats

contribution of scattered rays in [Absorp-

tion]

(Xmin) float lower boundary of the grid covered by bins

in x-direction if resolved, analogue entries

may be found for Y, Z, Nx, Ny, Nz, Npar-

allel, phiN, Psi, rho, R

(Xmax) float upper boundary of the grid covered by bins

ins x-direction if resolved, see [Xmin] for

more information
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name of entry datatype description

(nmbrX) integer number of bins in x-direction if resolved,

see [Xmin] for more information

nmbrRays integer number of scattered and unscattered rays

taken into account

nmbrRaysUnscattered integer number of unscattered rays taken into ac-

count

nmbrRaysScattered integer number of scattered rays taken into account

Mode float +1: O-mode propagation rays were used,

-1: X-mode propagation rays were used

FreqGHz float beam frequency in GHz

antennapolangle float poloidal angle of the antenna plane

antennatorangle float toroidal angle of the antenna plane

rayStartX, Y, Z float central beam launching x, y, z position in

cm

beamwidth1, 2 float beam width on the antenna plane in the two

orthogonal principal axis in cm

curvatureradius1, 2 float curvature radius on the antenna plane in

the principal axis system in cm

centraleta1, 2 float central value of the perpendicular refrac-

tive index in the beam center on the an-

tenna plane
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F
Metropolis-Hastings algorithm

Metropolis-Hastings algorithm can be employed to generate random numbers following any, even

complicated probability distribution. In this thesis, at different points it is used, cf. the generation

of initial conditions, section 5.1.1, and the scattering scheme, section 5.1.2. The reader may find

a description in the textbook [48], summarized in this appendix.

Say that we are looking for a random number zi+1 with probability distribution p(zi+1) needs to

be generated. Let zi be a guess for a number distributed with p(zi) as a probability density, also

referred to as stationary probability in the framework of Metropolis-Hastings algorithm. Then

zi+1 may be drawn with the following strategy:

i. Choose a candidate z: Let the so-called proposal distribution q(z|zi) be the conditional

probability density function of z given zi.

ii. Define the acceptance probability

a(z, zi) := min
{

1, p(z)q(zi|z)
p(zi)q(z|zi)

}
. (F.1)
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F. Metropolis-Hastings algorithm

This may be computed even if the probability distributions involved are not normalized.

The candidate z is accepted, i.e. zi+1 = z, with probability a(z, zi). If it is not accepted,

the previous value is copied, i.e. zi+1 = zi. In order to decide whether or not to accept the

candidate z, an event with probability a(z, zi) must be simulated. This is most easily done

by generating a uniformly distributed number f within the interval [0, 1) and accept the

candidate if the condition

f < a(z, zi) (F.2)

is fulfilled.

The new value zi+1 obtained from this algorithm is distributed according to the stationary

probability distribution p(zi+1).

Note that for the purpose of this thesis, as initial value z0, the most likely value z : p(z) =

sup p(z) is chosen and the probability distribution of zi+1 converges to the stationary probability

after performing steps (i) and (ii) several times, where convergence is improved the closer the

proposal probability distribution q(z|zi) is to p(z). Let us point out that in this thesis, the special

case of a non-conditioned proposal distribution, independent of the previous value zi is considered,

i.e. q(z|zi) = q(z).
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G
Plasma profiles

In this appndix, plasma profiles considered in this thesis, namely for the tests of the Hamiltonian,

cf. section 7.4.4, and the results, presented in section 7.5, are presented. These equilibria are

AUG #25485 in figure G.1 and a simulated ITER equilibrium in figure G.2. It is difficult to

profide the entire information on the magnetic field on paper, given the fact that it is a function

on the two coordinates R and z. Hence, z is treated as a parameter when the toroidal magnetic

field component is shown. The fact that this parameter has only a small impact on the toroidal

field component Bt (cf. figures G.1 (c) and G.2 (c)) confirms that the magnetic field is basically a

function on R.
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G. Plasma profiles

Figure G.1.: Equilibrium of ASDEX Upgrade #25485. (a) electron density profile, (b) temperatur
profile and (c) toroidal component of the magnetic field.
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Figure G.2.: Simulated ITER equilibrium. (a) electron density profile, (b) temperature profile and
(c) toroidal component of the magnetic field.
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