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Abstract

In many discharges at ASDEX Upgrade fast particle losses can be observed due to Alfvénic gap modes, Reversed Shear Alfvén
Eigenmodes or core-localized Beta Alfvén Eigenmodes. For the first time, simulations of experimental conditions in the ASDEX

Upgrade fusion device are performed for different plasma equilibria (particularly for different, also non-monotonic q profiles).
The numerical tool is the extended version of the HAGIS code [1, 2], which also computes the particle motion in the vacuum
region between vessel wall in addition to the internal plasma volume. For this work, a consistent fast particle distribution
function was implemented to represent the strongly anisotropic fast particle population as generated by ICRH minority heating.
Furthermore, HAGIS was extended to use more realistic eigenfunctions, calculated by the gyrokinetic eigenvalue solver LIGKA

[3]. The main aim of these simulations is to allow fast ion loss measurements to be interpreted with a theoretical basis. Fast
particle losses are modeled and directly compared with experimental measurements [4]. The phase space distribution and
the mode-correlation signature of the fast particle losses allows them to be characterized as prompt, resonant or diffusive
(non-resonant). The experimental findings are reproduced numerically. It is found that a large number of diffuse losses occur
in the lower energy range (at around 1/3 of the birth energy) particularly in multiple mode scenarios (with different mode
frequencies), due to a phase space overlap of resonances leading to a so-called domino [5] transport process. In inverted q
profile equilibria, the combination of radially extended global modes and large particle orbits leads to losses with energies
down to 1/10th of the birth energy.

1 Introduction

Fast particles are present in magnetic fusion devices due to external plasma heating and eventually due to fusion born α-
particles. It is necessary that these super-thermal particles are well confined while they transfer their energy to the background
plasma. Fast particle populations can interact with global electromagnetic waves, leading to the growth of MHD-like and
kinetic instabilities – e.g. Toroidicity-induced Eigenmodes (TAE) [6, 7], Reversed Shear Alfvén Eigenmodes (RSAE) [8, 9] or
Beta-induced Alfvén Eigenmodes (BAE) [10, 11]. This in turn redistributes the fast ions, enhances fast ion losses and affects
the confinement. As a consequence, fusion power and fuel is reduced and the machine wall may suffer damage.

ASDEX Upgrade (AUG)[12, 13] and other machines of similar size (e.g. DIII-D [14]), have the advantage to directly measure
the fast ion losses due to core-localized MHD activity, since the particle orbits are relatively large compared to the machine
size. The fast ion loss detector (FILD) at ASDEX Upgrade provides energy and pitch angle resolved measurements of fast ion
losses [4, 13].

To find out about the loss mechanisms, loss features such as phase space pattern and ejection frequency are analyzed. Both can
help to learn about whether or not the losses are caused by mode-particle (double) resonance (resonant losses), phase space
stochastization (diffusive losses) [15] or none of both. Therefore, the losses are categorized: all particles that are unconfined
solely due to their large orbit width – caused by a high birth energy – or a birth position radially far outside, are called prompt
losses. Their ejection frequency is not related to any of the mode frequencies, and the losses are therefore inherently incoher-
ent. Losses that are caused due to wave-particle interaction can be both, either coherent losses, or incoherent as well. They are
coherent, if they show a correlation with one of the mode frequencies or the beat frequency of different modes, but incoherent
if they are ejected e.g. due to phase space stochastization. To learn about the role of the modes in the ejection mechanisms,
the losses are further studied with respect to the number and type of modes present in the plasma and the q profile (as this
determines particle orbit widths and also mode growth). Eventually, this work aims to reproduce quantitatively the pitch and
energy distribution and qualitatively the decomposition into coherent and incoherent losses of the of the measured fast ion
losses [4] at the different times in the AUG discharge #23824. From the code point of view, the study can be regarded as a
code validation against the experiment, which is possible in small machines with large particle orbits (due to ICRH) such as
ASDEX Upgrade, where a large number of losses appears at the first wall and the FILD.
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This paper is organized as follows: sec. 2 presents the experimental settings the numerical simulations are based on, as well
as experimental loss observation. In sec. 3, the HAGIS code is shortly introduced, especially the importance of the vacuum
extension [2] is demonstrated. Next (sec. 4), the resonant and loss areas in phase space are given for the scenario that is
studied. In sec. 5, the advance towards more realistic simulations is documented, followed by the presentation of the final
results.

2 Experimental Observation

The ICRH minority-heated AUG discharge #23824 is especially suitable for the investigation of fast particle-wave interaction
and losses, as it is characterized by an inverted q profile after the current ramp-up phase, which relaxes to a monotonic profile
as q decreases (see fig. 1). As particle confinement depends largely on the q profile due to the proportionality between orbit
width and q value, the inverted q profile with its higher absolute q values in the core is expected to impact the amount of
losses and also the wave-particle interaction.
The simulations are based on two different MHD equilibria – at t = 1.16 s and t = 1.51 s. The total plasma current is constant
between both time points (I = 800 kA), only the current density penetrates inwards. Consequentially the inverted q profile at
the earlier time point changes to a monotonic q profile at the later time point.

3 The Hagis Code

The numerical investigations presented in this work are performed with the HAGIS code [1, 16], a nonlinear, driftkinetic,
perturbative Particle-in-Cell code (current release 12.05). HAGIS models the interaction between a distribution of energetic
(fast) particles and a set of Alfvén eigenmodes. It calculates the linear growth rates as well as the nonlinear behavior of the
mode amplitudes and the fast ion distribution function that are determined by kinetic wave-particle nonlinearities. It is fully
updated to work with MHD equilibria given by the recent HELENA [17] version.
The plasma equilibrium and in particular the q profile is determined by Alfvén spectroscopy of the RSAEs: magnetic pick-up
coil data and soft X-ray emission measurements [18] are used to determine the q profile minimum value and location. The
plasma equilibrium for HAGIS is based on the CLISTE code [19], then transformed via HELENA to straight field line coordinates
and to Boozer coordinates via HAGIS.
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Figure 1: q profile of AUG discharge # 23824 at different times, obtained from
CLISTE calculation constraint by Alfvén spectroscopy measurements as
described in detail in ref. [20]. The black solid line shows the q profile
at t = 1.16 s, whereas the blue dashed line refers to t = 1.51 s: the
q profiles differ in the shape (the earlier one is inverted, the later one
monotonic), but also in the absolute values (the inverted q profile has
higher absolute q values). Note: q < 0 due to AUG’s helicity of the
magnetic field.

Figure 2: Hagis equilibrium (flux surfaces in
black) with vacuum region (red),
representative banana orbit (blue)
and FILD position (black square).
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Recently, HAGIS has been extended to the vacuum region (see fig. 2), making it possible to track particles that re-enter the
plasma [2], and to investigate losses including finite Larmor radius effects. To allow for the second point within the frame of
a drift kinetic ansatz, a tube around a particle’s guiding center is assumed, whenever it approaches the wall. Where this tube
intersects the wall, the particle is lost. For scenarios with many lower energetic losses, as they appear e.g. in all inverted q
profile simulations presented in this work, the use of the vacuum extension is crucial. Fig. 3 visualizes the difference in the
losses’ energy spectra obtained with (black curve) and without (red curve) the vacuum extension – if simulating without it, the
lower energetic losses are massively overestimated. The overestimation results from to the fact, that particles are considered
lost, as soon as they cross the separatrix. However, particles with very small gyroradii (i.e. low perpendicular energies), often
re-enter the plasma and are not lost. The overestimation of lost markers if simulating without the vacuum extension is over
130% in the given example. ICRH-generated fast particles are characterized by relatively low pitches λ= v‖/v, thus, they have
low perpendicular energies only if their total energy is in a lower range. These particles have small gyroradii, and therefore a
higher probability to re-enter the plasma. Further, the distance between the separatrix and the first wall is important, which
depends on the given equilibrium in the particular fusion device. The vacuum extension allows particles to travel through the
vacuum and checks if the particle hits the machine specific first wall through assuming a ‘tube’ around its guiding center with
the radius of the gyroradius. Simulations including the vacuum region are therefore computationally more expensive (roughly
between 120% and 300% compared to the simulations without the extended version).

Figure 3: Energy spectra of losses simulated in the inverted q profile with the eigenmodes given by LIGKA using HAGIS with its vacuum
extension (black curve) and without (red). The amplitudes for these simulations were fixed at δB/B = 5.1 · 10−3. The losses
shown appeared in a time interval starting after approximately 10 RSAE wave periods (t ∈ [0.2,1.5] ·10−3 s) to avoid the prompt
losses.

(a) at t = 1.16 s – inverted q profile (b) at t = 1.51 s – monotonic q profile

Figure 4: Resonance plots produced by the extended version of HAGIS for the equilibria of AUG discharge #23824 at two different time
points with different q profiles. The vertical axis gives the radial position of the particle’s bounce point (where pitch λ = 0),
the horizontal axis the energy. Pink indicates resonant areas, with respect to the main MHD modes as diagnosed experimentally
(n = 5 TAE of 120 kHz, n = 4 RSAE of 55 kHz at t = 1.16 s and n = 5 TAE of 160 kHz, n = 4 BAE of 70 kHz at t = 1.51 s).
Particles in the blue regions are lost. The loss region of the right picture is plotted superimposed in the left image to point out the
difference.
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4 Resonances and Loss Regions

The ICRH minority-heating produces mainly trapped particles with their bounce points within the heating region that is at
constant major radius above and below the magnetic axis (see fig. 5b). Trapped particles with a bounce frequency ωb and
toroidal precession frequency ωtp interact with MHD modes of a certain frequency ω, if the resonance condition, ω− nωtp −
pωb ≈ 0 is fulfilled, where n is the toroidal mode harmonics and p the particles’ bounce harmonics [21]. Plotting the left side
of the resonance condition as a contour plot over the particle energy E and the z coordinate of the particle’s bounce point over
the magnetic axis gives the resonance plot [22] shown in fig. 4. Since at the bounce point, the pitch is λ≡ v‖/v = 0, the second
dimension in energy space is kept fixed. The normalized z coordinate can be translated to the radial coordinate s, the square
root of the normalized poloidal flux: s = (ψpol/ψpol,edge)1/2. The darker blue areas give the loss regions: in the respective phase
space particles are unconfined.
The loss region is much broader in the earlier case, with the inverted q profile. The reason for the decrease of the loss region
is the decreasing q in the plasma center region, leading to a decrease of orbit width (due to width ∝ q) and therefore better
particle confinement.

5 Fast Particle Losses in Numerical Simulations vs. Experimental Measurements

5.1 Experimental Loss Measurements

For the AUG discharge #23824, the experiment gives a loss signal over time as depicted in figure 4 of ref. [4]. The upper
part shows the spectrogram of that data, which allows to identify the mode frequencies of the Alfvén Eigenmodes. One can
distinguish a large signal with a vast majority of incoherent losses at earlier time points, whereas after t = 1.4 s the signal is
very low, consisting of coherent losses only. A Fourier analysis revealed two types of losses: coherent losses, i.e. losses ejected
at a frequency correlated with the MHD mode frequency on and incoherent losses, that do not show such a correlation.

5.2 Realistic Simulation Conditions

The fast particle population is simulated as protons (concerning mass and charge), according to how it is created by ICRH

minority heating in a deuterium plasma [4]. The volume averaged fast particle beta is set to βfp ≈ 0.05%. This can be esti-
mated from the construction of the MHD equilibrium and different kinetic plasma profile measurements. However, the volume
averaged βfp does not alone determine the radial gradient of the distribution function, which governs the mode drive. For the
most realistic modeling in the following sections, the βfp value given above is reduced to βfp = 0.02% to obtain mode ampli-
tude saturation levels comparable to the experimental values. However, the larger βfp value leads to a faster mode growing
and slightly overestimated amplitude saturation levels. Since we are not interested in the total amount of losses but rather
in their energy and pitch distribution as well as their nonlinear behavior (which is the same for both βfp), in the indicated
simulations, the larger βfp is chosen to save computational costs. With either beta value, the nonlinear regime is steady-state
without frequency chirping, since there is no damping involved.

To be able to simulate the interaction of these ICRH-generated fast ions with Alfvénic waves, the distribution function in HAGIS

was adapted (see also ref. [23]): especially the anisotropy in the pitch λ and orbit topology is taken into account: ICRH-
generated fast ions are characterized by low pitches and are mainly trapped (banana orbits). The major challenges are the
following: first, and different from NBI-heated plasmas, the fast ion distribution function in ICRH-heated plasmas is almost
unknown experimentally (especially for this discharge). Second, the strong anisotropies of the distribution function are in
coordinates that are not constants of the motion (pitch λ and poloidal angle ϑ – coordinates of velocity and real space that
change along the particle orbit), making it difficult to evolve such a distribution function in HAGIS. Therefore, in the new
implementation, the weighting is not performed in λ and θ anymore, but in coordinates that are constants of the motion. The
quantity Λ fulfills this condition: it is connected to the pitch λ, but in contrast to that, is not subject to changes along the orbit:

Λ :=
µ Bmag

Etot
=

Bmag

B

�

1−λ2
�

, (1)

where Bmag is the magnetic field at the magnetic axis, introduced as normalization, B is the magnetic field at the respective
position B(s,θ) and λ= λ(s,θ) the pitch at this position. Due to the necessity of transforming λ coordinate into the constant of
the motion Λ, one obtains one velocity space coordinate dependent on the spacial coordinates: Λ(s,θ) = Bmag/B(s,θ)(1−λ2).
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The distribution in Λ is determined by marker loading in poloidal angle (θ) and pitch (λ) space. Unless otherwise noted,
markers start at pitches and poloidal angles of

λ ∈ [0± 0.2] and θ ∈ [±90o ± 17.2o]. (2)

A poloidal cut of the two initial cones, where the ICRH-generated fast particles are loaded is shown in fig. 5b. A reasonable Λ
weighting function is the modified Gaussian

f (Λ) = exp {((Λ−Λ0)/∆Λ
0.2)2}, (3)

where Λ0 and ∆Λ result from λ0 and ∆λ as well as from the (unperturbed) magnetic field B(s,θ) (according to Fig. 1) and
are thus position-dependent.
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Figure 5: Regions where markers are loaded (green) in the different phase space directions and the distribution function for the unperturbed
part f0 (“weighting”, blue, only in (a)).

The chosen Λ weighting results in a relatively broad Λ-distribution, which is realistic when considering also pitch angle
scattering, but too broad to represent the instantaneous effect of the ICRH heating source. Therefore, the pattern of the losses
appearing at the very beginning (prompt losses) is broader than what would be realistic. To investigate this pattern, additional
simulations are carried out with marker loading in

λ ∈ [0± 0.05] and θ ∈ [±90o ± 5o]. (4)

In radial position space, markers were loaded within s2 ≤ 0.7 (unless otherwise noted). The weighting function is implemented
as constant for s < s0 and drops down according to a Fermi-like potential law for s ≥ s0, with s0 = 0.3 (unless otherwise noted),
as shown in fig. 5a:

f (s) =

(

const. for s < s0
(1− (s− s0)2)a for s ≥ s0, (5)

Concerning the energy distribution f (E), a slowing-down function is used,

f (E) =
1

E3/2 + E3/2
c

erfc
�

E − E0

∆E

�

, (6)

with Ec = 19.34 keV, ∆E = 149.9 keV and E0 = 1.0 MeV, although a slowing-down function is not considered the most
adequate distribution function for ICRH generated fast particles. However, since it is almost unknown experimentally for this
discharge, the TORIC-SSFPQL code [24] was consulted. The data in the highest energy range calculates by TORIC-SSFPQL (red
line in fig. 6), which corresponds to the medium and most relevant energy range in the presented investigations, can justify
the use of a slowing-down function in the HAGIS simulations (green line in fig. 6).
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Figure 6: Energy distribution function in HAGIS (green) and as given by the TORIC-SSFPQL code (red, which focuses on the lower energy
range and reaches only up to 430 keV). The red dashed lines give the slowing-down fit to the TORIC-SSFPQL data.

Still, f is independent in each dimension, f = fs(s) fE(E) fΛ(Λ). A comparison with the distribution function as calculated by
the TORIC-SSFPQL code confirms this as a valid approximation for the treatment in Λ. Further, it is comparable to previous
approaches, as reported in ref. [25]. However, concerning radial-energy space, further improvements towards more realistic
distribution functions, which are non-separable in the two dimensions ( f (s,E)), are currently under investigation. An analytical
model is given in ref. [26], and will be implemented into HAGIS, once its parameters are optimized numerically (by TORIC-
SSFPQL) and validated by the comparison with experimental findings. A sensitivity investigation (presented in the following)
confirms robustness of non-prompt losses against changes in the presently used distribution function:
A first scan is performed with three different radial distributions of decreasing steepness while the radial extent broadens –
the parameter s0 in the weighting function Fig. 5 takes the values 0.15, 0.25, 0.35 (for all three, it is a = 5) and the marker
loading reaches out until s2 = 0.6, 0.7 and 0.8 respectively. The second scan is carried out for three poloidal loadings according
to ∆θ = ±17.2o,∆λ = ±0.2 and ∆θ = ±11.5o,∆λ = ±0.2 as well as ∆θ = ±2.5o,∆λ = ±0.05. In fig. 7, the boundaries of
the loss pattern are shown, as obtained for the scan in the radial distribution function. One can see, that the prompt losses (a)
are relatively sensitive to the distribution function. However, they cannot be determined quantitatively within the used model
anyhow. The reason lies inherently in the code model, which does not calculate the slowing-down process of the (unperturbed)
fast particle distribution function. Since the simulated time is short compared to the slowing-down time, a stationary situation
is considered, where heating and collisional dissipation balances each other. The non-prompt losses (b) in contrast, are quite
robust against minor changes in the radial and poloidal distribution function. A similar result is obtained for the poloidal scan
(see fig. 8).

(a) Prompt losses (t < 10−4) (b) Resonant/diffusive losses

Figure 7: Losses at first wall in pitch angle-energy (λo-E) space for three double-mode simulations in the inverted q profile (modes as
explained below and shown in fig. 9a, βfp=0.05%). The simulations differ in the radial distribution function: the color code gives
the prompt (a) and later (b) losses for the intermediate distribution function, the gray lines give the boundary of the pattern,
when using the steeper radial distribution function; the white line gives the respective result for the flatter distribution function.

Having adapted the simulation conditions towards more realistic fast particle distribution functions, the input perturbation
data is improved (see also ref. [23]). Based on the resulting MHD equilibrium (originating from CLISTE calculations [19, 27]),
the radial structure and frequency of the perturbation is calculated numerically with the linear gyrokinetic eigenvalue solver
LIGKA [3]. HAGIS is extended to read the real as well as the imaginary part of the electromagnetic perturbation. In general, the
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magnetic (Ψ̃ = (∇A)) as well as the electric (Φ̃) part can be taken into account separately. However, if the damping is small,
as in this case, it can be assumed that Ψ̃∝ Φ̃.
During AUG discharge # 23824, two dominating modes are seen in the experiment [4, 20] at t = 1.16 s around the radial
positions s ≈ 0.3 and s ≈ 0.5 with frequencies of 120 kHz (n= 4) and 55 kHz (n= 4) respectively. At the later time point, the
frequencies have evolved upwards, resulting in 160 kHz (n= 5) and 70 kHz (n= 4). The higher frequency mode is identified
as TAE, the lower as RSAE (=AC) at t = 1.16 s but as BAE at t = 1.51 s [20].

(a) Prompt losses (t < 10−4) (b) Resonant/diffusive losses

Figure 8: Losses at first wall in pitch angle-Energy (λo-E) space for two double-mode simulations in the inverted q profile (modes as
explained later and shown in fig. 9a, βfp=0.05%). The simulations differ in the Λ distribution function: the color code gives
the prompt (a) and later (b) losses for the ∆θ = ±17.2o,∆λ = ±0.2 marker loading, the white lines give the boundary of the
pattern, when using ∆θ =±11.5o,∆λ=±0.2 loading, the gray lines for ∆θ =±2.5o,∆λ=±0.05.

The following two sections are dedicated to the simulation of fast particle redistribution and losses under realistic simulation
conditions with the vacuum extended version of HAGIS. Therefore, the original eigenmodes given by LIGKA are used with all
their poloidal harmonics (unless otherwise noted), with a radial structure as depicted in fig. 9a for the MHD equilibrium of AUG

discharge #23824 at t = 1.16 s (inverted q profile) and in fig. 9b for the time point t = 1.51 s (monotonic q profile). In the
following, the two equilibria will be referred to as “scenario1.16” and “scenario1.51” respectively. The ICRH-like distribution
function is used, and the fast particle beta value was chosen as βfp=0.02%, a quite realistic value, that leads to mode amplitudes
comparable to those measured experimentally [4], or slightly higher (δB/B ∈ [5 · 10−3,2 · 10−2]).

5.3 Internal Transport Study in Two Different q profile Equilibria

The mode amplitude evolution in both equilibria are shown in fig. 10: in scenario1.16, one can see clearly the double-resonance
effect as described in ref. [28] leading a superimposed oscillation (insert), and also to the TAE (blue curve) exceeding the
initially much faster growing RSAE (pink curve) in the late nonlinear phase. The examination below (fig. 11a for scenario1.16)
confirms that both modes reach the stochasticity threshold. In scenario1.51, the TAE (green curve) grows much faster than
the low frequency mode (in this case a BAE, red curve), but both grow slower and saturate at a lower amplitude compared
to scenario1.16. The TAE’s stochasticity threshold is reduced by the stochastization due to the BAE. Since the simulated time
scale in this case is only one order of magnitude below the slowing-down time, the effect of energy dissipation becomes slightly
visible with the TAE amplitude decreasing at the end of the simulation. Beyond this time point, the present model is not valid
any more. One would have to extend it for a fast particle source term and take damping mechanisms into account.
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(a) at t = 1.16 s: 55 kHz RSAE (gray) and 120 kHz TAE (b) at t = 1.51 s: 70 kHz BAE (gray) and 160 kHz TAE

Figure 9: The radial structure including poloidal harmonics with m= 4...10 (a) and m= 4..11 (b) (from black to blue/violet) of the n= 4
TAE and the m = 4, n = 4 RSAE of (a)/BAE (b) (gray) as calculated by LIGKA for the AUG discharge #23824 equilibrium at two
different time points. The given perturbation amplitude refers to the real (solid lines) and the imaginary (dashed lines) part of
the electric perturbation potential Φ̃. The values are normalized, such that unity corresponds to the initial value of δB/B = 10−7.

To understand the mode-particle interaction in the different stages of the mode evolution, it is helpful to look at the processes
in phase space. In fig. 11b, redistribution in E-s space is shown during the mode’s resonant phase for scenario1.51. In this
phase, the redistribution in phase space takes place along the resonance lines, from higher energies and lower radial positions
to lower energies further outside. As the modes in scenario1.51 stay longer in the resonant phase, the redistribution pattern is
better visible in this case, but can be seen in scenario1.16 as well.

Figure 10: Amplitude evolution in two double-mode simulations with different MHD equilibria of the AUG discharge #23824 (βfp=0.02%):
pink and blue: n = 4 RSAE (55 kHz) and n = 4 TAE (120 kHz) (radial structure see fig. 9a), simulated in the equilibrium at
t = 1.16 s, red and green: n = 4 BAE (70 kHz) and n = 5 TAE (160 kHz) (see fig. 9b) in the equilibrium at t = 1.51 s. The
marker are loaded according to the ICRH-like distribution function described in sec. 5.2.

When the modes, or at least one of both, reach the stochastization level, a massive radial gradient depletion takes place over
the whole energy space. No resonance pattern is visible any more, as visualized in fig. 11a (for scenario1.16). This happens
in both scenarios, however much later in scenario1.51 around t ≈ 1.5 · 10−2 s whereas at t ≈ 1.5 · 10−3 s in scenario1.16. In
both cases, at lower energies (E ∈ [50,200] keV), the resonance regions are still slightly visible in the redistribution pattern.
However, only in scenario1.16 does the redistribution (along the p = 0, 1 resonance lines of both modes) cross the loss
boundary. The redistribution takes place independently on the energy, but once the radial gradient is depleted in the energy
region of E ∈ [400,600] keV, the redistribution is radially broadened at lower energies. In sec. 5.4.2, it will be shown that this
broad radial redistribution is caused by the outer poloidal harmonics of the TAE.

5.4 Fast Particle Losses in Two Different q profile Equilibria

The redistribution plots already indicate fewer losses in scenario1.51, due to the smaller loss area, and the weaker redistribu-
tion especially in the lower energy range. In fact, scenario1.16 gives much more losses – prompt (i.e. appearing before any
influence of the mode) as well as losses in the later phase of the simulation (compare fig. 12a and b). In scenario1.51, there
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are no losses with an energy below 300 keV at all. This is in accordance with the redistribution pattern of this case, giving no
redistribution across the loss boundary for E < 300 keV, due to the smaller loss region. The prompt losses appear in both cases
in the higher energy range. They reach down to 600 keV (scenario1.16) and 750 keV (scenario1.51).
As the resonant phase is not distinguishable very clearly in scenario1.16, it is difficult to find resonant losses at very distinct
energies. However, the losses in this phase have energies that match with the resonant phase space redistribution across the
loss boundary, although not as clearly as in scenario1.51 (see fig. 11b). In scenario1.16, the resonances are at energies of
E ∈ [450,700] keV and ∈ [750,950] keV. In scenario1.51, the distinct energies result in losses around 400 keV, 550 keV, 700
keV and 850 keV (see fig. 12b).

(a) scenario1.16, t2 = 1.5 · 10−2 s. (b) scenario1.51, t1 = 2.3 · 10−3 s.

Figure 11: Redistribution (in terms of fast particle pressure Eδ f ) in energy and radial space at two different stages in the simulation.
Red indicates particle accumulation, blue means particles move away. In b, the pink lines give the resonance lines for trapped
particles, the blue areas the loss region (both according to fig. 4b). The horizontal lines denote the modes’ radial positions. One
can see clearly the redistribution caused by the wave-particle resonance along the resonance lines in the mode regions.

(a) scenario1.16 (b) scenario1.51

Figure 12: Temporal evolution of losses appearance at the first wall in energy space for the two different scenarios. The white areas indicate
the prompt losses as carried out in an extra simulation with a thinner Λ distribution function Fig. 4, as explained before. The
gray lines give the mode amplitude evolution as shown in detail in fig. 10.

When stochastization sets in, a higher amount of energetic losses appears, due to the broad redistribution across the loss
boundary over a large energy range. In scenario1.16, the losses reach down to low energies. The cause is a phase space
channeling effect within the redistribution (according to the domino effect proposed theoretically in [5]), as discussed above
(fig. 11a): first, energies E ∈ [300,600] keV are redistributed until the radial gradient in this energy area has flattened and the
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redistribution continues in E ∈ [200,400] keV. In the loss spectrum over time (fig. 12), the successive transport across the loss
boundary can be recognized as losses. Due to the many poloidal harmonics resulting in a very broad radial structure of the
TAE (as will be shown in sec. 5.4.2), even a very low energy resonance is able to transport particles across the loss boundary,
that in turn appear as a thin loss peak at E ∈ [100,150] keV, once the TAE has reached the stochastization level.

5.4.1 Influence of the q Profile

In scenario1.51, where the loss region is smaller, the TAE is not broad enough, to redistribute particles with E < 350 keV
across the loss boundary. Although one reason for this is the lower amplitude levels reached in scenario1.51 (compared to
scenario1.16), the main reason for the missing of the lowest energetic losses (around ≈ 180 keV) and the small amount in the
whole range of E ∈ [300,600] keV is found in the different equilibrium, i.e. the smaller loss region and the larger distance
between the resonance lines. This is proved by simulating the same TAE and RSAE eigenmode structures of scenario1.16 in
both equilibria with a fixed mode amplitude of δB/B = 5.1 · 10−3 (an experimentally realistic value): as shown in fig. 13,
even with the same mode amplitude, structure, mode number n and frequency, the monotonic q profile case leads to far fewer
losses. No losses at all are observed in E ∈ [300,600] keV. The complete inhibition of the very low energy peak around 180
keV however, is caused by a combination of the monotonic q profile equilibrium and the corresponding eigenmode.
The drop in the height of the very low energy peak not only results from the smaller loss area in the monotonic q profile1,
but also from a different redistribution mechanism: due to the less dense resonances in phase space around E ∈ [100;600]
keV, the redistribution in the monotonic q profile is less efficient but spreads wider towards higher energies. In combination
with the different loss boundaries, this leads to the missing of losses in the energy range of E ∈ [300,600] keV. The higher the
energy is, the smaller is the effect of the equilibrium on the loss spectrum. This is quite logical, since high energy particles are
on large orbits, and therefore require only a small perturbation to be expelled.

Figure 13: Energy spectra of losses as numerically calculated within scenario1.16 (black curve), within scenario1.51 (green curve) and as
simulated within the monotonic q profile equilibrium, using the eigenmodes given by LIGKA for the inverted q profile equilibrium
(fig. 9a) (red curve). The amplitudes for these simulations were fixed at δB/B = 5.1 ·10−3. The losses shown appeared in a time
interval starting after c.a. 10 RSAE wave periods (t ∈ [0.2,1.5] · 10−3 s).

5.4.2 Influence of the Poloidal Harmonics

Next, the effect resulting from the many poloidal harmonics of the TAE is investigated. By calculating the eigenmodes with the
LIGKA solver, the poloidal harmonics are known and can be used within the HAGIS simulation. Comparing two simulations –
one with the poloidal harmonics m = 4 and m = 5 only, the other one with all harmonics (from m = 4 to m = 10) as shown
in fig. 9a (lower) – shows a similar qualitative mode amplitude evolution with similar mode saturation levels. However, the
TAE growth rate is lower if simulating with all poloidal harmonics, as the energy has to be distributed over more poloidal
harmonics. In the saturation phase, this effect is compensated by the wider radial range, i.e. the mode with all poloidal
harmonics is able to tap energy from the radial gradient also radially further outside.

1 Note that the resonances for the scenario resulting in the red curve differ from what is shown in fig. 4b, because as mode frequencies, the values from
the modes in the inverted q profile equilibrium were used.
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(a) Redistribution in phase space (t = 3.6 · 10−3 s) (b) Losses over time

Figure 14: Redistribution (a, blue means particles move away, red means they accumulate) in energy and radial position space and losses
at the first wall (b) of a simulation in the inverted q profile (βfp=0.05%), with modes given by LIGKA (see fig. 9a), but the TAE
is simulated with only its first two poloidal harmonics. The blue line in a gives the loss boundary (as explained in fig. 4a), the
gray curves in b the mode amplitude evolution.

This effect is well visible in the redistribution: only if all poloidal harmonics are present, the TAE redistributes particles at very
low energies (around E ≈ 100 keV) and far outside radial positions (s > 0.8), as becomes clear when comparing fig. 11a with
fig. 14a. This redistribution results in the observed low energy losses of E < 200 keV, that are not observed in the simulation
with only two poloidal harmonics (compare fig. 12a and fig. 14b).
In summary, it is clear now, that the losses with E < 200 keV result from the combination of the broad TAE with many
harmonics and the large loss region appearing in the inverted q profile equilibrium. However, it was shown above (see fig.
13), that significantly less of these losses appear when simulating the same modes at the same amplitudes in the monotonic q
profile, due to the smaller loss region. Concerning the losses in the lower energy range between around 300 keV up to c.a. 600
keV, it was found that these are due to the dense resonance lines meeting the loss boundary in the inverted q profile scenario,
quite independent of the mode structure. In the monotonic q profile, these losses do therefore not occur.

5.4.3 Double Mode Effect

As the mode amplitudes in the nonlinear saturation are known now from simulations with consistent mode evolution, HAGIS

is run with these mode amplitudes kept fixed. This offers the possibility to investigate the losses caused by each of the modes
alone vs. the losses caused by double-mode interaction, but without the additional effect that different amplitudes are reached
in single-mode simulations compared to double-mode simulations. Fig. 15 shows the energy spectra of the losses appearing in
such double-mode simulation (black curve), as well as those obtained, when simulating both modes individually (blue for the
TAE and pink for the RSAE). Note that the loss spectra curves obtained in the single-mode simulations are shown multiplied
by a factor of 10. For each of the three spectra, the same time interval is chosen, starting after approximately 10 wave RSAE
periods, to avoid the effect of prompt losses. All mode amplitudes are fixed at δB/B = 5.1 · 10−3, which is a reasonable value,
when comparing to experimentally measured amplitudes. Further, it is of the order of the minimum saturation level reached
in the previous simulations with consistent mode evolution. It is not surprising that the more core-localized RSAE causes
significantly fewer losses than the TAE, which is broad and located at a higher radial position. However, for both single-mode
simulations, the losses’ energy spectra exhibits clearly the different resonances: losses appear at energies, where resonance
lines meet the loss boundary (with fig. 4a the bounce harmonic numbers p can be identified). But the most interesting fact is
found, when looking at the double-mode simulation’s losses: they do by far exceed the sum of the losses of the single-mode
simulations, although the amplitude levels are the same. The redistribution in phase space is consistent with the appearance
of losses in the double-mode simulation versus the single-mode simulations. As well as the losses, also the redistribution in
the double-mode simulation exceeds by far those of the single-mode cases. Thus, the large number of losses in multi-mode
situations is not only caused by the higher mode amplitudes that are possibly reached then (as was shown in ref. [28]).
The same reason that leads to higher mode amplitude levels – the lowering of the stochasticity threshold – also causes more
losses, because the redistribution is enhanced by the stochastization. If the loss boundary is large, as in the inverted q profile
equilibrium, this redistribution leads to a large number of losses.
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Figure 15: Energy spectra of losses in three different
simulations with fixed mode amplitudes at δB/B = 5.1 · 10−3 for
a time interval starting after approximately 10 RSAE wave periods
(t ∈ [2.0,1.2] · 10−3 s): the pink and the blue curves give the loss
spectrum of the RSAE and TAE single-mode simulation, stretched by a
factor of 10. The black curve gives the losses appearing if simulating
both modes (fig. 9a) together.

Figure 16: Redistribution in energy and radial position
space caused by the TAE (color code) and the RSAE (boundary lines) in
the fixed amplitude simulation (at δB/B = 5.1·10−3). Red indicates par-
ticle accumulation (higher Eδ f ), blue that particles move away (lower
Eδ f ). The dark line gives the loss boundary of the inverted q profile
equilibrium.

In the double-mode scenario, stochastization is enhanced due to the dense coverage of phase space with both resonance lines
and perturbation structure. In fig. 16, this effect can be observed clearly: the RSAE transports energetic particles into phase
space areas from where they are further redistributed by the TAE. Since this effect also occurs vice versa, both modes mutually
refill the phase space areas with particles, where the other mode redistributes them away from.

5.4.4 Comparison of the Loss Ejection Signature

The first striking statement of ref. [4] is the difference in the total amount of losses between the earlier time points, t < 1.4 s,
when a large number of losses appears in the whole energy range, and later times, t > 1.4 s, when there are only few losses in
the high energy channel [4] and almost none in the low energy channel [29]. Focusing on the two time points t = 1.16 s and
t = 1.51 s within the experimentally measured loss signal reveals (figure 4 of ref. [4]): at t = 1.16 s, an equally high amount
of losses is found in the low and the high energy channel, whereas at t = 1.51 s, no low energy losses appear – except for a
general noise level, and fewer (≈ 18%) in the high energy range. This result is well reproduced by the numerical simulations,
where scenario1.16 gives a large number of losses in the lower and in the higher energy range, with quite comparable levels,
relative to each other. In scenario1.51, no losses appear below 300 keV and a few for higher energies (E ¦ 300 keV), mostly
within E ∈ [550;750] keV. The drop of losses in the higher energy range between scenario1.16 and scenario1.51 is in the
range of around 10% in the simulation. However, to compare the losses quantitatively with the ones measured at the FILD is
only possible in the lower energy channel, since in the higher energy channel, prompt losses are superimposed. These prompt
losses cannot be quantified within the model, as explained in sec. 5.2.

Next, the nature of losses – incoherent or coherent is discussed. In the experiment, incoherent diffusive losses are observed
[4], identified by a typical quadratic scaling with the mode amplitude (∝ (δB/B)2) [15]. It is an important result of the
presented realistic simulations, that this quadratic scaling is now found also numerically (fig. 17b). Further, the quadratic
scaling is another evidence for the diffusive character of the losses in the lower energy range of scenario1.16. The simulations
for t = 1.51 s (see fig. 12b) give losses only in the high energy range. There are both prompt, i.e. incoherent losses and non-
prompt losses, which show clearly an energy spectrum correlated to the resonance energies at the loss boundary. However,
there is also a small amount of non-prompt incoherent losses (diffusive). Thus, the few incoherent losses seen also in the FILD

signal can be both prompt or diffusive. But taking into account, that the mode amplitudes were slightly overestimated in the
simulation, it can be concluded that there are only very few losses with diffusive origin in the experiment.
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(a) Losses’ signature for the energy range of E ∈ [90,350] keV. Light blue: underlying incoherent losses.

(b) Time integrated losses with E ∈ [90,350] keV over TAE amplitude (green) and quadratic fit (red).

Figure 17: Losses at the first wall in scenario1.16.

In the experiment, the ratio of coherent to incoherent losses at t = 1.16 s is about 1:5 in the low and roughly 1:2.5 in the
high energy channel. A possible overestimation of incoherent losses due to the smearing effects (caused by a small deuterium
fast ion population, magnetic field ripple, etc.) has to be taken into account. In the simulation, coherent (resonant) losses
are found as well, especially in the medium to higher energy range. They can be clearly identified via a Fourier analysis of
the ejection signature, which revealed the main peak at the mode’s beat frequency. The maximum ratio of incoherent (caused
by phase space stochastization, combined with the large loss region of the inverted q profile) to coherent (resonant) losses
appears in the low energy range and is about 1:1 (as illustrated by fig. 17a). Thus, it is lower than the experimental finding,
but might be increased when taking into account more than two modes. In the higher energy range, a quantitative analysis is
not possible due to the prompt losses (as mentioned above). Though, a rough estimate is, that a large fraction of the losses in
this energy range is prompt: since no prompt losses occur in the low energy range, one can calculate a scaling factor between
the experimental loss amplitude and the simulated one. With this factor, the simulated losses in the high energy range can be
compared to the measured ones. The difference gives the prompt losses, that are missing in the simulation. In the case of the
most realistic simulation, this allows one to estimate, that between around 5% and 50% of the measured incoherent losses in
the high energy channel would be prompt. However, this can be only a rough estimate, due to the uncertainties that enter the
comparison. Besides the limitations of the model (discussion see ref. [23]), these are the width of the energy channels, the
FILD noise level, and the fact, that the scaling between experiment and simulation can depend on the energy, since the losses
at different energies are caused by different loss mechanisms. If one considers smearing effects at the FILD, that overestimate
the incoherent losses, the amount of prompt losses within the incoherent losses are expected to be higher.

5.4.5 Comparison of the Phase Space Pattern

In the next step, the energy-pitch angle characteristics of the numerical losses is compared with the experimental measure-
ment. Using the synthetic FILD diagnostics as described in ref. [2], it is found that experimental (colored red in fig. 18, from
ref. [4]) and numerical loss pattern (green and blue line for the boundary of the prompt and the non-prompt loss pattern)
match very well in phase space. The numerical results indicate, that the higher energy (or gyroradius-) incoherent losses are
prompt losses, whereas the lower energy (or gyroradius-) incoherent losses are caused by phase space stochastization due to
the presence of multiple modes. The highest energies (gyro radii) detected at the FILD do not appear in the simulation, as the
maximum energy simulated was Emax = 1.2 MeV (indicated by the gray line in fig. 18).
To allow for a direct comparison to the FILD measurement, the numerical values in fig. 18 have been drift-corrected. This
means that both energy (gyro radius) and pitch of each lost particle has to be shifted to account for a deviation caused by
the experimental method of the FILD: since the particle continues drifting within the detector, the measured gyro radius and
the pitch angle are overestimated. Ref. [2], p. 115-117 gives a more detailed explanation and calculated the deviation for
comparable cases to ≈ 6% in the gyro radius and ≈ 9o in pitch angle.
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6 Conclusions and Outlook

In this work, multi-mode Alfvénic fast particle transport was modeled with the vacuum-extended HAGIS code [2]. One aim
of the investigation was to compare numerical fast particle losses with experimental measurements of the ICRH-heated ASDEX

Upgrade discharge #23824 [4] and to gain a deeper understanding of the transport processes. This was achieved through
the investigation of the internal redistribution in combination with existing resonances, as well as phase space and frequency
analysis of the losses. The simulations have been carried out within a realistic model in various respects: on the energetic
particle side, a more general, consistent ICRH-like distribution function was implemented. It accounts for the strong anisotropy
of the ICRH-generated fast particle population. However, it is still assumed to be separable in its coordinates. This is a constraint
concerning a realistic representation that is hoped to be overcome soon, especially for the radial and energy coordinates: the
analytical model from ref. [26], adjusted to realistic conditions with the help of the TORIC-SSFPQL code is planned to be
implemented into HAGIS. For the results presented in this work, crucial changes were ruled out via a sensitivity scan on the
distribution function.

Figure 18: Loss pattern (colored red) in phase space (gyroradius ρ over pitch angle λo) as measured at the FILD in AUG discharge #23824
at time t ∈ [1.14,1.16] s from ref. [29]. Further, the loss pattern as resulting from the simulation of an ICRH-generated fast
particle distribution function in the MHD equilibrium of AUG #23824 at t = 1.16 s with the corresponding perturbation given
by LIGKA (see fig. 9a) is shown. For the distribution function see sec. 5.2, esp. Fig. 3,Fig. 2. The blue line gives the boundary
of the non-prompt losses at the first wall – where the majority appears in the respective lower ρ part within the boundary. The
green line depicts the boundary of the prompt losses’ appearance at the first wall (simulated with the distribution function of Fig.
3,Fig. 4). Since the simulation range in the energy was restricted to E ≤ 1.2 MeV, there is an area in ρ-λo space that has not
been simulated: it is indicated by the gray line. The numerical values have been drift-corrected as explained in ref. [2].

On the perturbation side, HAGIS has been extended to read kinetic perturbation data from the eigenvalue solver LIGKA [3].
The simulated losses’ phase space pattern was found to coincide very well with the experimental one. Especially in multi-
mode scenarios with different mode frequencies, stochastic redistribution sets in over a broad energy range, leading to lower
energetic diffusive (incoherent) losses. The quadratical scaling of the amount of losses with the mode amplitude, which is
predicted by theory [15] and seen in the experiment could be reproduced in realistic numerical simulations. Resonant losses
appear from the late linear phase on, mainly in the intermediate to higher energy range, showing good coherence with the
mode frequencies and especially their beat frequencies. The higher energetic part of experimentally measured incoherent
losses has been identified as mainly prompt losses. The simulations using eigenmode structure given by LIGKA revealed that
the lowest energetic losses result from a combination of two interconnected facts: first, the many poloidal harmonics of
the Toroidicity-induced Alfvén eigenmode, which are caused by the gap alignment in the continuum of an inverted q profile
equilibrium. Second, due to particle drift orbits that are radially extended on the size of the machine’s small radius. In scenarios
like this, especially in the presence of multiple modes with different frequencies, i.e. with resonances, that are complementary
in phase space, a domino [5] effect can occur: particles in the high energy range leave the plasma as prompt losses, followed
by resonant and diffusive losses in the lower energy region. At the same time, the redistribution caused by the core-localized
mode refills the particles, that have been transported radially outwards by the outer mode. When the outer mode reaches
the stochasticity threshold, low energy losses appear (down to 1/3 of the birth energy), and if many poloidal harmonics are
present, they transport even very low energetic particles (down to 1/10 of the birth energy) across the loss boundary. This
phase space channeling effect, caused by the presence of multiple modes, is clearly a nonlinear phenomenon, although the
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regime is still weakly nonlinear. Losses are enhanced by orders of magnitude. This result stresses the importance of the mode
structure and thus infers a possible control of energetic particle transport via gap-dealignment by q profile and density shaping.
Another important result is the crucial role of the linearly subdominant mode for the nonlinear energetic particle transport.
To follow up this finding, further studies are planned in the near future, investigating the nonlinear behaviour of a “sea” of
linearly stable or weakly unstable modes. Such scenario is one of those considered most realistic for ITER.
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