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Abstract

The pre-emptive stabilization of a neoclassical tearing mode, NTM, requires
the calculation of the tokamak magnetic equilibrium in real-time. A launcher
mirror is positioned to deposit electron cyclotron current drive on the rational
surface where the NTM should appear. A real-time Grad–Shafranov solver
using constraints from magnetic probe, flux loop and Motional Stark Effect
measurements has been developed to locate these rational surfaces and de-
liver this information to the mirror controller in real-time. A novel algorithm
significantly reduces the number of operations required in the first and sec-
ond step of the solver. Contour integrals are carried out to calculate the q
profile as a function of normalized radius and the rational surfaces are found
by spline interpolation. A cycle time of 0.6 ms for calculating two tokamak
equilibria in parallel using four current basis functions with magnetic con-
straints only and using six current basis functions with magnetic and MSE
constraints has been achieved. Using these tools, pre-emptive stabilization
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of a m/n = 3/2 NTM mode in ASDEX Upgrade could be demonstrated.

1. Introduction

Neoclassical tearing modes (NTMs) are a major limitation to high beta

tokamak operation in H-mode scenarios. The suppression of a NTM with

electron cyclotron current drive (ECCD) to improve tokamak performance

by raising the operational limits on poloidal beta, βp, has been demonstrated

in many tokamak experiments [1, 2, 3, 4, 5, 6]. Previously a ramp in the

toroidal magnetic field, a rigid plasma displacement or a scan of the launch-

ing antenna were used to place ECCD deposition at the rational q surface

of the NTM. A search and suppress algorithm, seeking to minimize the am-

plitude of the NTM measured by external magnetic probes, was developed

to demonstrate feedback controlled stabilization of the NTM [7]. The track-

ing of the normalized radius of the NTM can be realized by locating the

phase jump in temperature fluctuations at the NTM frequency measured by

the electron cyclotron emission diagnostic (ECE) [6, 8, 9]. Stabilization of a

NTM by the feedback controlled movement of a mirror on JT-60U [6] and

ASDEX Upgrade [10] has been demonstrated.

In this paper, pre-emptive stabilization of a NTM in ASDEX Upgrade

using the magnetic equilibrium from a real-time Grad–Shafranov solver to

feedback control a launching mirror will be presented. Real-time magnetic

equilibria are required for the microwave beam tracing code, TORBEAM [11],

to calculate the mirror angle necessary for depositing ECCD on the rational

surface where the NTM is located. Pre-emptive NTM stabilization has been

demonstrated on JT-60U [12] and DIII-D [13]. The safety factor profile,

q(r), is calculated from the flux surface contour integrals at ten values of

normalized poloidal flux. Rational surfaces can then be located as a function

of normalized radius by spline interpolation. The line integrated phase shift

of five chords of a DCN laser interferometer are processed using the flux

surfaces to provide an electron density profile by Abel inversion in real-time
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[14]. The normalized radii of the rational q surfaces, the electron density

profile and the poloidal flux matrix are sent over the real-time reflective

memory network to the node running the TORBEAM simulations. The

mirror angle for ECCD deposition, including microwave refraction caused by

caused by density and magnetic field inhomogeneity, is then calculated.

The feedback controlled movement of a mirror for stabilizing a single

NTM without the need for real-time magnetic equilibrium reconstruction and

microwave beam tracing using six channels of inline ECE has been demon-

strated in a proof of principle experiment [15, 16]. However, such a sys-

tem requires temperature fluctuations for locating the NTM and therefore

pre-emptive NTM stabilization is not possible. The proposed system with

real-time magnetic equilibrium reconstruction and microwave beam tracing

would also be able to stabilize multiple NTM modes without the installation

of an inline ECE system in the waveguide of each gyrotron.

In Section 2, the details of the procedure for calibrating the magnetic

probes and flux loops in ASDEX Upgrade is summarized. The real-time

Grad–Shafranov solver for calculating the magnetic equilibrium constrained

to fit 40 magnetic probes and 18 flux loop differences, is presented in Sec-

tion 3. The solver is based on an innovative algorithm using discrete sine

transforms and a tridiagonal solver that realizes an equilibrium poloidal flux

matrix on a 33 × 65 grid. The real-time calculation of the q profile by con-

tour integration and the poloidal beta, βp, and plasma inductance, li from

Shafranov integrals is discussed in Section 4. The extension of the real-time

Grad–Shafranov solver to include constraints on the current profile in the

plasma core from the Motional Stark Effect, MSE, diagnostic is discussed

in Section 5. In Section 6, the data acquisition system is presented and the

cycle time benchmarks for the real-time magnetic equilibrium calculations

are summarized. The application of the real-time Grad–Shafranov solver to

pre-emptive NTM stabilization experiments in ASDEX Upgrade is presented

in Section 7.

3



2. Vacuum field calibration

The reconstruction of magnetic equilibria in ASDEX Upgrade relies on

an accurate test of the parameters assumed for the position and orientation

of the magnetic probes and flux loops and their calibration factors. The

simplest test, carried out in the first shot of the day, is to ensure that the

integrators are delivering the expected response within an allowed error range

to the flow of currents in individual poloidal field coils. The calculation of the

magnetic field at a radius, r, and height, z, in response to a current loop of

radius a begins with the expression for the Green’s function for the poloidal

flux per steradian, ψ [17, 18, 19] :

ψ =
µoI

2π

√
(a+ r)2 + z2)

[
(1 − k2/2)K(k2) − E(k2)

]
(1)

where k2 = 4ar/((a + r)2 + z2)), K(k2) is the complete elliptic integral of

the first kind and E(k2) is the complete elliptic integral of the second kind

[20, 21]. The derivatives in the Z and R direction are the radial and vertical

magnetic field components [19] :

br = −1
r
∂ψ
∂Z

=
µoI

2πr

z

βα2

(
(a2 + r2 + z2)E(k2) − α2K(k2)

)
(2)

bz = 1
r
∂ψ
∂R

=
µoI

2πr

r

βα2

(
(a2 − r2 − z2)E(k2) + α2K(k2)

)
(3)

where α2 = (a-r)2+z2 and β2 = (a+r)2+z2.

A detailed optimization process is carried out once a year to ensure that

the assumed geometry and orientation of the magnetic probes, the position

of the poloidal field coils, the calibration factors of the poloidal field currents

and the calibration factors of magnetic probe and flux loop integrators are

self consistent. A current pulse in each poloidal field coil is produced with

a flat top of sufficient duration so that currents excited in the passive stabi-

lization loop no longer flow. All the other poloidal field coils are open circuit
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so that no current flow in them is possible. The separate excitation of the

toroidal field coil allows magnetic probe measurements due to misalignment

to be compensated. Such a procedure was executed to perform an accurate

calibration of the magnetic probes on the TCV tokamak [22]. The minimiza-

tion of the least squares difference of the predicted and measured signals was

reduced to a steepest descent problem. A self consistent set of calibration

factors for calculating magnetic equilibria on ASDEX Upgrade is obtained

[23]. In Fig. 1 is an overview of the poloidal field coils of ASDEX Upgrade.

The position and orientation of the magnetic probes on ASDEX Upgrade

are shown in Figs. 2 and 3 and the location of the pairs of flux loops that

measure the flux loop differences are shown in Fig. 4.

OH1

OH2 OH3
V1

V2

V3

CoI

PSL

Figure 1: The cross section of the ASDEX Upgrade tokamak showing the ohmic heating
coils (OH1, OH2 and OH3), vertical field coils (V1, V2,and V3) , vertical stabilization
control coils (CoI) and passive stabilization coils (PSL).

The matrix equation relating the current in the 11 poloidal field coils,
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Figure 2: An overview of the position and orientation of the magnetic probes in ASDEX
Upgrade. The flux surfaces of the magnetic equilibrium ( dotted lines ) and the separatrix
( solid line ) are shown.
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Figure 3: An overview of the position and orientation of the magnetic probes used for
monitoring vessel currents in ASDEX Upgrade. The magnetic probes measure the poloidal
field component inside (red) and outside (green) the vacuum vessel.

7



1.0 1.5 2.0 2.5

-1.0

-0.5

0.0

0.5

1.0

#28832 4 s

R(m)

Z
(m

)

Figure 4: An overview of the position and orientation of the flux difference loops in ASDEX
Upgrade.
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Ij, the measurements of magnetic probe or the flux loop differences for each

current, mij, can be expressed as :

mij = MijIj (4)

where Mij is the mutual inductance of the poloidal field coils and magnetic

probes or flux loop differences. The Mij can be derived from the known

position of the magnetic probe or flux loop and the coordinates of the poloidal

field coil using the Greens function for the magnetic field generated by a

current hoop as given in Eqns. 1, 2 and 3. Allowing for systematic calibration

factor errors one can introduce scalings g(i) for the probe measurements and

G(j) for the Rogowski coil current measurements :

g(i)m∗
ij = MijI

∗
jG(j) (5)

where m∗
ij and I∗j are the ideal best measurements of the magnetic probes and

currents. The currents in each poloidal field coil were also measured with an

accuracy of 0.1% with a Hitec STACC-HC zero flux system [24]. This allows

the Rogowski current measurements to be controlled for accuracy once a year

in dedicated test shots. The error in the nominal position of the poloidal field

coils as ∆Rj and ∆Zj and the variation in position and angle of the magnetic

probes as ∆Ri, ∆Zi and ∆θi are also possible variables for optimization. In

this case the ideal mutual inductance, M∗
ij, can be expressed as :

M∗
ij = Mij +

∂Mij

∂R
∆Ri +

∂Mij

∂a
∆Rj +

∂Mij

∂Z
(∆Zi + ∆Zj) +

∂Mij

∂θ
∆θi (6)

The first step of the optimization process is concerned solely with finding

the set of gains gi and Gj to minimize the root mean square error of the

difference between the predicted value and measured value of magnetic probes

and flux loops in response to the excitation of 11 different poloidal field coils.

In the second step, a steepest descent algorithm is used to optimize the
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positions of the flux loops. A factor of 4 reduction in the mean square error

could be achieved. A comparison of the differences in measured and predicted

values of 40 magnetic probes and 18 flux loops is shown for the case without

( Fig. 5 ) and with the optimization steps described ( Fig. 6 ). Allowing

variations in the poloidal field coil positions reduced the root mean square

error by a further 10%. Position shifts of the order up to 2 cm in the radial

and vertical direction were required to achieve this fit. Probe gains were

adjusted in the range from 0.97 to 1.03. In the final stage the radial position,

vertical position and angle of the 40 magnetic probes were allowed to vary

and this led to a further reduction in the root mean square error of 20% ( Fig.

7 ). These preliminary investigations were carried out with 100 iterations of

the optimization algorithm. In the final analysis with 600 iterations of the

optimization algorithm, a root mean square error of 0.7 mT could be achieved

for the difference between the measured and predicted values.

3. Real-time Grad–Shafranov solver

The magnetic equilibrium for a tokamak is described by the Grad–Shafranov

equation :
∂2ψ

∂R2
− 1

R

∂ψ

∂R
+
∂2ψ

∂Z2
= −µ0Rjφ(R,Z), (7)

jφ(R,Z) = R
∂p

∂R
+ µ0

F

R

∂F

∂R
(8)

where ψ is the poloidal flux per steradian, jφ is the current density, and

R, Z and φ are the cylindrical coordinates. The plasma pressure, p, and

poloidal plasma currents, F = Rbφ/µo , are functions of ψ. This problem is

commonly solved by a cyclic reduction algorithm [17, 25, 26, 27]. A magnetic

equilibrium for discharges with plasma current is reconstructed on a 33 x 65

grid using 40 magnetic probes and 18 flux loop difference signals. The right

hand side current density term is calculated by a weighted least squares fit

to the measurements which yields coefficients for the basis current density
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Figure 5: A histogram of the differences between the predicted and measured values of 40
magnetic probes and 18 flux loops without optimization.
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Figure 6: A histogram of the differences between the predicted and measured values of 40
magnetic probes and 18 flux loops with optimization of the flux loop position, measurement
gains and calibration factor of the poloidal field current measurements.
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Figure 7: A histogram of the differences between the predicted and measured values of 40
magnetic probes and 18 flux loops with optimization of the flux loop position, measurement
gains and calibration factor of the poloidal field current measurements, positions and angles
of the magnetic probes and positions of the poloidal field coils.
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profiles [25, 26, 28]. Three basis current density profiles were chosen in the

first round of development and found to adequately fit the experimental

magnetic probe and flux loop measurements [23]. A fast, magnetics-free flux

surface estimation and q-profile reconstruction algorithm for feedback control

of plasma profiles also has been developed but has not yet been applied to

NTM stabilization experiments [29].

A spectral-based algorithm to solve the Grad–Shafranov equation in an

unbounded domain has been developed. This algorithm adapted a method

commonly used to solve the Poisson equation in cylindrical coordinates. The

use of discrete sine transforms (DST) along the Z-axis and a tridiagonal

solver [30, 31, 32] is an alternative to the cyclic reduction algorithm to solve

the Grad–Shafranov equation [17].

3.1. Spectral method

A uniform mesh with constant spacing dR and dZ in the R and Z di-

rections is assumed. The grid points are labeled from 0 to NZ − 1 and 0 to

NR − 1 , where NZ is the number of grid points in the Z direction, and NR

is the number of points in the R direction. The five point difference equation

with index i in the R direction and index j in the Z direction is :

ψi+1,j − 2ψi,j + ψi−1,j

dR2
− 1

Ri

ψi+1,j − ψi−1,j

2dR
+
ψi,j+1 − 2ψi,j + ψi,j−1

dZ2
= −µoRiji,j

(9)

Introducing the discrete sine transform of ψ and j :

φi,k =
NZ−2∑
j=1

ψi,jsin

(
πjk

NZ − 1

)
(10)

Ji,k =
NZ−2∑
j=1

ji,jsin

(
πjk

NZ − 1

)
(11)
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leads to the tridiagonal matrix equations :

βiφi+1,k − αkφi,k + γiφi−1,k = −µ0RidR
2Ji,k (12)

where βi = 1 − dR/(2Ri), γi = 1 + dR/(2Ri), S = dR/dZ and

αk = 2 + 4S2sin2

(
πk

2(NZ − 1)

)
.

3.2. Tridiagonal solver

The tridiagonal matrix equation is solved with a tridiagonal solver using

an LU decomposition algorithm ( where the tridiagonal matrix is expressed

as the product of a lower triangular matrix and an upper triangular ma-

trix). These two bidiagonal matrices are subsequently used in the iterative

procedure to solve the tridiagonal equations. By using LU decomposition,

operations are reduced by a factor of 2 compared to the direct solver algo-

rithm [33].

3.3. Unbounded domain

The solver for the Grad–Shafranov equation in an unbounded domain is

composed of two fast solver steps [17]. The new algorithm introduces novel

ideas in the spectral method at each step to reduce the computing time

dramatically [34].

The first step of the solver uses zero as the condition for all grid boundaries

with a right hand side current distribution on the flux surfaces from the

previous iteration given by the weighted least squares fit to the magnetic

probe and flux loop measurements. In this step, it is only necessary to

compute ψ at points neighbouring the grid boundary and a reduced inverse

DST can be performed to calculate these values. The columns of ψ inside

the boundary edge are :

ψi,k =
2

NZ − 1

NZ−2∑
j=1

φi,jsin

(
πjk

NZ − 1

)
(13)
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where i = 1 and NR − 2, and the rows inside the boundary edge can be

calculated in a similar fashion with k = 1 and NZ − 2. All these four

edges can be computed using matrix–vector multiplication. This avoids the

unnecessary computations performed by a traditional inverse DST operation

applied to the entire grid. The gradients in ψ normal to the grid boundary,

(∂ψ/∂n)boundary, are the inputs required for the next solver step. These are

the shielding currents that are necessary to force the zero boundary condition

of the first solver step. They are used to calculate the Green’s functions for

ψ generated by a current hoop of radius, a, carrying current, I, for each grid

point with radial coordinate, R, and a vertical distance, Z, on the boundary.

The self-inductance of a current element on the boundary is given by :

ψ =
µoI

2π
∆l

(
1 + ln

∆l

16R

)(
∂ψ

∂n

)
boundary

(14)

where ∆l = dR for elements on the boundary along a radial axis or ∆l =

dZ for elements on the boundary along the Z-axis. The calculation of the

resulting ψ on the boundary is performed as a matrix multiplication with

pre-calculated coefficients times the vector of shielding currents.

The second step of the solver is carried out with boundary conditions from

the first solver step but without current source terms on the right hand side

of the Grad–Shafranov equation. Because only the first and last elements in

the vertical direction are nonzero, it is possible to use an optimized DST to

reduce the computation effort. The faster DST is carried out by evaluating

only the sum of the two non-zero terms :

Dij = −
ψi,1sin

(
πj

NZ−1

)
+ ψi,NZ−2sin

(
πj(NZ−2)
NZ−1

)
dZ2

= −ψi,1 − (−1)jψi,NZ−2

dZ2
sin

(
πj

NZ − 1

)
(15)

The DST of the boundary conditions at the inner and outer radial po-

sitions are added to the first and last columns. The tridiagonal solver is
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applied to this result and is added to the result from the first solver step.

The solution of the Grad–Shafranov equation is then calculated by an in-

verse DST. Under equivalent boundary conditions, an implementation based

on the cyclic reduction algorithm computes all elements on the grid in both

solver steps. The Grad–Shafranov solver algorithm described here achieves

a significant performance improvement in comparison to cyclic reduction by

emp4 × 4loying two optimized DST implementations. The first implemen-

tation exploits the ability to avoid unnecessary calculations. The second

implementation exploits the fact that the right hand side term is zero except

at the boundary. This reduces the number of operations needed to solve the

Grad–Shafranov equation.

The ψ generated by the external poloidal field coils and passive stabilizing

loop on the grid is also realized as a matrix–vector multiplication using factors

calculated with Eq. 1. The poloidal field coils and passive stabilizing loop

are simulated as a finite number of filaments, with each filament carrying an

applicable number of turns.

In experiments on the ASDEX Upgrade tokamak, the use of magnetic

perturbation coils used for ELM mitigation experiments [35] requires that the

probe measurements be corrected for contributions due to the DC excitation

of these coils. The mutual inductances between each of the 16 installed

perturbation coils and the magnetic probe measurements are recorded in

vacuum field calibration discharges. These corrections can be carried out in

real-time.

A parallelization of the solution of the Poisson equation using fast Fourier

transforms was proposed in a number of publications [36, 37, 38]. Recently,

an application using such a parallel algorithm for the solver of the Grad–

Shafranov equation has been successfully implemented. A cycle time of

0.076 ms on a 33 × 65 grid using a single core and 0.040 ms on 4 cores

of a 3.2 GHz Xeon W5580 CPU could be achieved [31, 39]. The solver pre-

sented here is a single thread solution only and the DST is performed as a
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matrix multiplication to allow flexible choice of the grid size. On a 33 × 65

grid, the solver requires 0.09 ms. The grid extends from 0.91 m to 2.27 m in

the radial direction and -1,36 m to 1.36 m in the vertical direction. Therefore

the grid points are separated by 4.25 cm in the radial direction and vertical

direction. An option for using a 49x97 grid has been tested. The grid point

separation in this case will be 2.84 cm in the radial and vertical direction.

The magnetic axis was located as the maxima of a second order poly-

nomial surface fit on a 4 × 4 grid in the vicinity of the maximum value of

ψ on the grid. The limiter value of ψ is the maximum value of the linearly

interpolated ψ value on a set of coordinates describing the limiter. The lo-

cation of the grid coordinates closest to the X-point is found by looking for

the row minimum and column maximum on the grid on a subset of the ψ

matrix where the X-point normally exists. The coordinates of the upper and

lower X-points are then calculated from the saddle point of a second order

polynomial surface fit to a 3 × 3 grid in the vicinity of this location.

Plasma shape control in rtEFIT is carried out by the isoflux algorithm.

In this scheme, the value of the current in the poloidal field coils is varied so

that the value of ψ at a number of control points is held constant [25]. In

this case, the differences in ψ at the control points, δψi, are related simply

to the necessary change in currents, δIj, in the control coils by the matrix

equation :

δψi = CijδIj (16)

where Cij is the mutual inductance of the poloidal field coils and the position

of the control point given by Eq. 1. This matrix equation is solved for the

right hand side with a least squares algorithm. In ASDEX Upgrade, the

currents required in 6 shaping coils for 4 control points have been success-

fully been implemented. Interpolation of the pre-calculated response of the

magnetic field generated by the poloidal field coils on the grid points of the

solver was necessary to solve Eq. 16 in real-time.
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4. Contour integrals

The safety factor, q(ψN), along the contour of constant normalized poloidal

flux, ψN , is [40] :

q(ψN) =
BoRo

2π

∮
C

1

R2bpol
ds (17)

where Bo is the toroidal magnetic field on the torus axis at position Ro, bpol

is the poloidal magnetic field and ψN is defined as [25] :

ψN =
ψ − ψaxis

ψboundary − ψaxis
(18)

where ψboundary and ψaxis are the values of poloidal magnetic flux at the

boundary and axis respectively.

The line elements of the contours of constant ψ are returned by a con-

touring subroutine. The br and bz components of the poloidal magnetic field

at the midpoints of the line elements forming the contour are evaluated by

four point interpolation of the gradients of ψ on the grid.

The first step of locating the normalized radius of the q surface at rational

surfaces with values of m/n = 4/3, 3/2 and 2/1 from the poloidal flux matrix

is the evaluation of contour integrals for q at ten values of normalized poloidal

flux. These contour integrals are carried out in five parallel instances of the

subroutine. The normalized radius of the chosen rational surface is then

found by spline interpolation of the normalized poloidal flux for the contour

integrals where the normalized radius, ρN , is defined as :

ρN =
√
ψN (19)

The contour integrals and the spline interpolation are performed in 0.30 ms.

The line integrated phase shift of five chords of a DCN laser interferometer

are processed using the flux surfaces and the lines of sight to calculate a set

of coefficients describing Abel inverted electron density profile in real-time
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[14]. From the flux matrix and the lines of sight of the ECE diagnostic, the

location of the normalized radius of each frequency of measurement is cal-

culated in real-time. The three values of normalized radius of the rational

surfaces, the set of coefficients representing the electron density profile, the

normalized radius of each ECE channel and the poloidal flux matrix are com-

municated in real-time for performing the TORBEAM microwave refraction

beam tracing and for feedback control of the NTM.

The Shafranov integrals, S1 and S2 are contour integrals on the last closed

flux surface [27, 40, 41, 42, 43, 44] :

S1 =
π

V B
2

pa

∫ ∫
Rb2pol((R−Ro)ēR + ZēZ).n̄ds

=
πs2

V (µoIp)2

∮
C
Rb2pol((R−Ro)ēR + ZēZ).n̄ds (20)

S2 =
π

V B
2

pa

∫ ∫
Rb2polRoēR.n̄ds

=
πs2

V (µoIp)2

∮
C
Rb2polRoēR.n̄ds (21)

where n̄ is the vector perpendicular to the line element of the contour, s, is

the distance around the contour, Bpa = (µoIp)/s is the mean poloidal field

around the contour and V is the plasma volume. The poloidal beta, βp, and

the plasma inductance, li, are calculated from these integrals:

li =
1

V B
2
pa

∫
b2poldV

=
2πs2

V (µoIp)2

∫
Rb2poldRdZ (22)

βp = 0.5S1 + (1 − 0.5(1 − Rc

Ro

))S2 − 0.5li (23)

where Rc is the radius of the magnetic axis.
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5. MSE constraints

A third loop executes a Grad–Shafranov solver that additionally fits ten

spatially localized measurements from the Motional Stark Effect diagnostic

[45]. The accuracy of the q profile is improved by the measurements of the

polarization angle, γm which is related to the viewing geometry [46]:

tan(γm) =
c1 ∗ br + c2 ∗ bφ + c3 ∗ bz + c4 ∗ Er/vBeam

c5 ∗ br + c6 ∗ bφ + c7 ∗ bz + c8 ∗ Er/vBeam+ c9 ∗ Ez/vBeam
(24)

where c, ..., c9 are a set of coefficients for each channel relating the local

components of electric field (Er and Ez), the radial, vertical and toroidal

components of magnetic field (br, bz and bφ) and diagnostic beam veloc-

ity, vbeam[28, 47, 48]. The components of the poloidal magnetic field at the

centre of the measurement volume are also evaluated by a matrix–vector mul-

tiplication using pre-calculated Green’s functions. The toroidal component

of the magnetic field, bφ, is calculated from the definition of FF
′

:

(Rbφ)2 = (RoBo)
2 + 2µ2

o

∫ ψ

ψboundary

FF
′
dψ (25)

where FF
′

are those terms of the current profile representing the poloidal

current. The integrals of the current basis functions representing the FF
′

term are tabulated so that the expression can be evaluated in real-time.

In the mid-plane, Ez can be neglected as the viewing angle of the MSE

from the horizontal plane is small [48]. The value of Er can be either mea-

sured by a second view of another MSE system of the same volume or calcu-

lated from the force balance equation using charge exchange recombination

spectroscopy measurements [46, 49] or reflectometry measurements [50]. On

ASDEX Upgrade, real-time measurements of Er are not yet available. The

only possibility to account for them would be to use Er radial profiles from

previous similar discharges. This assumes that NTM stabilization does not
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introduce changes in the radial profiles that need to be accounted for in Eq.

24. It is known that neglecting the term in electric field leads to differences

in the inferred value of the central safety factor, q(0) [48].

The expression for the terms of the response matrix for each MSE channel

is then :

(c1 − c5 tan(γm))(brp + brc) + (c3 − c7 tan(γm))(bzp + bzc) =

−(c2 − c6 tan(γm))bφ − (c4 − c9 tan(γm)) ∗ Er/vBeam (26)

The left hand side terms of the response matrix require the magnetic field

components, brc and bzc calculated for each MSE measurement volume and

for each current basis function. The brc and bzc are the components due

to currents in the poloidal field coils for each MSE measurement volume

and are transferred to the right hand side of the above equation. The ten

additional constraints on the response matrix typically allows the number

of fit coefficients to be raised from 4 to 6 [45]. A simulation of the MSE

diagnostic measurements was created to allow the application to be tested.

The expected tan(γm) for an equilibrium fitting the magnetic probes and

flux loops was calculated and subsequently used to calculate an equilibrium

using magnetics and the simulated MSE measurements. In Figs. 8 and 9,

the simulated and fitted right hand side of the response matrix for each MSE

measurement volume are plotted.

In the NTM stabilization experiments discussed below, MSE measure-

ments were not routinely available for the real-time magnetic equilibria cal-

culations. The MSE diagnostic neutral beam for the central electron density

of the discharge was sufficiently attenuated to make the central MSE chan-

nel measurements unreliable. Routine operation covering a wider electron

density range will necessitate increasing the diagnostic beam energy.
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6. Data acquisition system

A Supermicro X9DRL-3F motherboard, with two octal core Xeon E5-

2687 3.1 GHz CPU’s and LabVIEW RT 2011 RT SP1, is in routine operation

for the calculation of real-time magnetic equilibria. A 4× PCIe VMIC 5565

PIORC reflective memory card and a NI PCIe 8362 interface card connects

a PXI 1045 chassis for the data acquisition of 80 channels at a sample rate

of 10 kHz with 10 PXI 6143 cards. The reflective memory card transmits

the 33 × 65 poloidal flux matrix value to the control system with less than

1 ms delay. For diagnostics not connected to the reflective memory network,

a compressed flux matrix that fits into a UDP packet is available. The

compression performs a two dimensional discrete cosine transform (DCT)

and sends the 253 DCT coefficients to the remote real-time diagnostic for

decompression of the flux matrix by an inverse DCT. A third party PCI card

delivers 64 bit time stamps using a 100 MHz clock and generates the 10 MHz

TTL pulses for clock synchronization of the data acquisition boards in a

number of data acquisition systems. The clock synchronization and trigger

pulses are delivered to the data acquisition boards by an internal bus.

A cycle time of 0.4 ms using the real-time Grad–Shafranov solver with

40 magnetic probe and 18 flux loop differences as constraints and fitting 4

coefficients using 4 CPU cores was achieved. A cycle time of 0.6 ms using the

real-time Grad–Shafranov solver when fitting 6 coefficients with the addition

of a further 10 constraints from MSE measurements was achieved. In this

case, parallel solvers with and without MSE constraints are executed. This

allows the feedback control system the opportunity of immediately switch-

ing back to a flux matrix solution constrained only by magnetic probes and

flux loop differences in the event that the MSE measurements are no longer

possible. The operation of the MSE diagnostic depends on a particular neu-

tral injection beam source and measurements are not possible if the source

is not available at some time during the discharge. Simultaneously, a func-

tion parameterization algorithm is performed. The plasma current, its radial
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and vertical position and 95 other values of interest for plasma control are

calculated [51].

A schematic diagram of the software (JANET – Just ANother Equilib-

rium reconstruction for Tokamaks ) is shown in Fig. 10. With parallel solvers,

data acquisition and real-time communication to the control system, a cycle

time of 1.5 ms could be maintained. Minimum jitter of the cycle times was

achieved by assigning a dedicated CPU to the data acquisition loop. The

achieved cycle time is therefore satisfactory for the real-time processing re-

quirements of NTM stabilization experiments where the cycle time of the

discharge control system is 1.3 ms [52]. The TORBEAM calculations typi-

cally require 20 ms and the MSE measurements were available every 10 ms.

A cycle time of 2 ms for the solvers with real-time communication to the

control system every 4 ms was used in the NTM stabilization experiments

presented. It should be noted that these benchmarks are for a single cycle

iteration for the PDE solution. On DIII-D, it has been shown that when

comparing real-time magnetic equilibria from rtEFIT with well converged

solutions from offline EFIT calculations, that the small differences found

for relatively steady state conditions are not relevant for practical discharge

control [25].

7. NTM stabilization experiments

A NTM mode with m/n = 3/2 was present in a 1 MA discharge with

up to 12.5 MW NBI heating and 1.4 MW ECRH heating. The location in

normalized radius of this mode can be inferred from temperature fluctuation

measurements at the mode frequency of the NTM. The phase jump of the

fluctuation is related to the change in phase of the temperature fluctuation

around the NTM magnetic island [2, 5, 53]. These measurements combined

with the magnetic equilibrium indicate that the NTM is located at a normal-

ized radius of about 0.6. The basis current profiles for the Grad–Shafranov

solver are chosen so that the predicted normalized radius is sufficiently ac-

22



curate to perform NTM stabilization experiments. In Fig. 11, a contour

plot of ECE temperature as a function of normalized radius in the presence

of a NTM is shown. In Fig. 12, is the TORBEAM calculation for the two

gyrotrons used in these experiments, with the mirror launcher for the off-axis

gyrotron used for NTM stabilization tilted at a toroidal angle of -4.82◦ for

ECCD.

The feedback control of the mirror for NTM stabilization experiments is

based on the difference of the TORBEAM calculated normalized deposition

radius, ρECRH , and the calculated normalized radius of the m/n rational

surface from the real-time equilibrium, ρNTM . The change in position of the

mirror actuator, ∆xpol was calculated from the relation :

∆xpol =
∂xpol

∂ρECRH
∆ρ (27)

where ∆ρ = ρECRH − ρNTM . The value of
∂xpol

∂ρECRH
is calculated from three

parallel calculations of TORBEAM with small differences in xpol. The value

of ∆xpol is the input to a PI controller with proportional gain, Kp = 0.2, and

integral gain, Ki=6.0. The output of this controller is passed as a command

to the proprietary motor controller to drive the mirrors. The full loop has a

settling time of approximately 300 ms for large step inputs with overshoot

smaller than the measurement noise and zero steady state error. Simulations

of feedback control have been carried out to optimize the mirror controller

[54].

Shown in Fig. 13, is the level of agreement between the normalized radius

measured by temperature fluctuations at the NTM frequency and the pre-

dicted normalized radius of the m/n = 3/2 rational surface by the real-time

Grad–Shafranov solver. In this discharge, the mirror angle was scanned to

vary ECCD power deposition as a function of the normalized radius. From

the magnetic fluctuation amplitude of the m/n = 3/2 mode, the NTM is

present after 2.4 s while at 5.1 s a small dip corresponding to partial ECCD
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stabilization is indicated. From this dip it is inferred that the NTM is posi-

tioned at a normalized radius of 0.57, while the temperature fluctuations yield

a value of 0.58 and from the magnetic equilibrium a value of 0.60 is predicted.

If the current profile were sufficiently well determined by the Grad–Shafranov

solver, it would be expected that all three measurements would be in exact

agreement. It is known that owing to the lack of constraints in the plasma

centre, the internal current density profile and q profile inferred from exter-

nal magnetic measurements alone are not able to be accurately determined

[55]. In these experiments, a pre-programmed mirror angle offset is required

to perfectly align the ECCD and mode location from the Grad–Shafranov

solver. The inclusion of MSE measurements to more accurately determine

the current profile in the plasma centre in future experiments, should remove

the need for using a pre-programmed offset in mirror angle.

It also has been observed that the magnetic island may not be symmetric

around a flux surface [56]. This implies that the rational flux surface and the

optimal point of normalized radius for ECCD deposition in the centre of the

magnetic island may not be aligned. This would suggest that a small offset

may need to be introduced for pre-emptive stabilization experiments using

the normalized radius of the rational flux surface calculated by the Grad–

Shafranov solver. Modeling has shown that the deformation of the magnetic

island caused by the viscous drag of the sheared flow is consistent with elec-

tron temperature fluctuation measurements on DIII-D [57]. An additional

point for understanding the need for a pre-programmed offset could be related

to the uncertainty in the absolute value of the toroidal magnetic field. The

evaluation of modulated ECRH power experiments and the measured phase

and amplitude response of ECE channels shows that the measured deposition

radius is accurate to within ± 0.5% of the nominal toroidal field inferred from

a highly accurate toroidal field coil current measurement ( ± 0.1%). Such a

systematic error would lead to changes in the calculated normalized radius

of the ECCD deposition and the ECE channel location.
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In Fig. 14, the mirror is aimed by feedback control to place the ECCD

deposition at the normalized radius of the mode predicted by the real-time

Grad–Shafranov solver plus normalized radius offset. The mirror angle also

includes compensation for microwave beam refraction in the presence of elec-

tron density gradients calculated in real-time using the TORBEAM code.

The amplitude of the magnetic fluctuations at the NTM mode frequency are

reduced and the NTM is stabilized, even in the extended period of maximum

NBI heating. The NTM cannot be localized as the temperature fluctuation

amplitude of the NTM has been greatly reduced. Consequently, the nor-

malized radius of the NTM measured by temperature fluctuations displays

a large scatter. In this discharge only 700 kW of ECCD power was required

to stabilize the NTM. In similar discharges where the NTM was present, it

was found that the NTM could only be partially stabilized with double the

power. An ECRH power of 900 kW was used in pre-emptive NTM stabi-

lization experiments on DIII-D in discharges with 7 MW of neutral beam

heating power [13].

In Fig. 15, feedback control of the mirror is carried out until 3.1 s. Up

until this time, the NTM mode partially grows for a short time again as

indicated by an increase in the magnetic fluctuations at the NTM mode

frequency. The NTM mode is then suppressed once more before feedback

control is stopped. The NTM begins to grow again after the mirror is pur-

posefully moved away from the predicted stabilizing position. The growth

of the NTM during pre-emptive stabilization has been previously observed

and the cause of this phenomenon is thought to be associated with changes

in the magnetic equilibrium. Evidence for this can be inferred from the in-

crease in the plasma stored energy, Wmhd, up until the time that the mode

appeared. In this discharge the βp is slightly larger than in the previously

considered discharge. This indicates that the increase in Shafranov shift as-

sociated with the increased βp during NTM stabilization and the shift in the

radial location of the NTM is not satisfactorily delivered by the real-time
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equilibrium calculations. The location in normalized radius of the mode in-

ferred from the temperature fluctuations at this time also indicate that the

mode moved inwards, so that it is possible that the mode was destabilized

by ECCD deposition outside of the rational q surface. The most challeng-

ing unsolved task of pre-emptive stabilization will be coping with changes

in the magnetic equilibrium due to increases in the plasma pressure as the

result of NTM stabilization and the probable excitation of NTM modes at

other rational surfaces. It is concluded that it is absolutely necessary to in-

clude MSE constraints to reconstruct the magnetic equilibrium in the plasma

centre with sufficient accuracy for pre-emptive NTM stabilization to be suit-

able for routine operation. Nevertheless, pre-emptive stabilization has been

achieved using the real-time estimated rational flux surface plus an offset.

The data acquisition system was running with parallel solvers, with the sec-

ond solver including the calculated MSE constraints as an input. Therefore,

it also has been demonstrated that the data acquisition system would have

simultaneously delivered the normalized radius of the NTM with a magnetic

equilibrium reconstruction including MSE constraints.

The MHD signatures of these discharges are now compared. In Fig. 16,

where the mirror for ECCD deposition was scanned across the normalized

radius, in the period with 12.5 MW NBI heating power a 3/2 NTM mode

at 33 kHz can be identified and in the period with 10 MW NBI heating

power a 3/2 NTM mode at 25 kHz can be identified. In Fig. 17, for the

discharge where the mirror for ECCD deposition was feedback controlled for

pre-emptive stabilization, in the period with 12.5 MW NBI heating power a

3/2 NTM mode at 25 kHz and a 4/3 NTM mode at 45 kHz can be identified

and in the period with 10 MW NBI heating power only a 4/3 NTM mode at

38 kHz can be identified. It seems that the NTM mode was only partially

stabilized for the period with higher NBI power, while the NTM mode was

fully suppressed for the period with lower NBI power. In Fig. 18, the offline

magnetic equilibrium and real-time equilibrium are compared. The number
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and form of the current basis functions are not the same, so that perfect

agreement cannot be expected. In Fig. 19, for the discharge where the mirror

for ECCD deposition was feedback controlled up to 3.1 s, in the period with

12.5 MW NBI heating power a 3/2 NTM mode at 33 kHz can be identified

and as βp is reduced the mode frequency is reduced to 30 kHz. In the period

with 10 MW NBI heating power only a 3/2 NTM mode at 30 kHz can be

identified. This mode frequency reduced to 25 kHz as the mirror was moved

away from the normalized radius predicted for stabilization and the mode

amplitude grew.

8. Conclusion

A real-time Grad–Shafranov solver based on a discrete sine transforma-

tion of the difference equation rather than cyclic reduction has been realized.

The resulting tridiagonal equations are solved with a specially developed sub-

routine based on LU factorization. This tridiagonal solver reduces the num-

ber of operations with respect to the iterative direct solver by pre-calculating

the reciprocal of the diagonal elements. A reduced inverse DST is required

in the first solver step as only the relevant terms for those neighbours of

the grid boundary need be calculated. A simplified DST can be used for

the second solver step where only the first and last elements are non-zero.

In this way the full inverse DST of the first solver step is omitted and the

DST of the second solver step without current source terms can be calculated

with a smaller number of operations. Contour integrals on flux surfaces of

the poloidal flux matrix allows real-time evaluation of the normalized radius

of rational q surfaces, βp and li. The magnetic probe measurements are ac-

curately calibrated by an optimization process to find the values of probe

position and orientation, poloidal field coil position and integrator gains that

minimize the error between the calculated and measured probe responses to a

current pulse in each of the poloidal field coils. A cycle time of 0.6 ms for cal-

culating two tokamak equilibria in parallel using four current basis functions
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with magnetic probe measurements as constraints only and using six current

basis functions with magnetic probe and MSE measurements as constraints

has been achieved. For NTM stabilization experiments, with data acquisi-

tion and real-time communication, a cycle time of 2 ms was used. This cycle

time satisfies the real-time processing requirements for NTM stabilization

experiments on ASDEX Upgrade.

The real-time magnetic equilibrium reconstructions for NTM stabilization

experiments were constrained by the magnetic probe and flux loop difference

measurements only, as robust real-time MSE measurements were not avail-

able. Feedback control of a mirror launcher for pre-emptive NTM stabiliza-

tion experiments using real-time magnetic equilibria could be demonstrated.

A pre-programmed launcher mirror angle offset is required to perfectly align

the ECCD and NTM location in these experiments as the normalized ra-

dius predicted by the equilibrium lies slightly outside the measured location.

However, in a subsequent discharge the NTM was initially stabilized but then

grew for a short time during the period of ECCD deposition. This was due

to a change in the radial location of the mode that was not able to be re-

covered by equilibrium constraints using magnetic probe measurements only.

It is concluded that additional MSE constraints for equilibrium reconstruc-

tion are essential to more accurately determine the spatial location of the

rational q surface and make pre-emptive NTM stabilization a robust tool for

improving plasma performance.
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Figure 8: Time traces of the simulated right hand side of the response matrix for each
MSE measurement volume.
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Figure 9: Time traces of the fitted right hand side of the response matrix for each MSE
measurement volume.
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Figure 10: A diagram of the data acquisition application for calculating real-time magnetic
equilibria on ASDEX Upgrade. The vacuum field correction of the probe measurements
includes the contributions from the poloidal field coils and the magnetic perturbation coils.
Minimum jitter of the cycle times was achieved by assigning a dedicated CPU to the data
acquisition loop.
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Figure 11: Contour plot of ECE temperature as a function of normalized radius in the
presence of a NTM. In this discharge, the phase inversion of the temperature fluctuations
can be distinctly observed at a normalized radius of 0.5.
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Figure 12: Microwave beam tracing for the pre-emptive NTM stabilization experiment with
off-axis ECCD deposition ( blue ) using the offline magnetic equilibrium. The 20 ms cycle
time for the real-time version of TORBEAM is achieved by calculating the central ray only
and having three parallel processes to know the change in ECCD deposition as a function
of mirror launcher angle.
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Figure 13: Time evolution of normalized radius of the 3/2 mode ( rhoNTM(GS) ) predicted
from the real-time magnetic equilibrium compared to that measured by ECE temperature
fluctuations ( rhoNTM(ECE) ). From the magnetic fluctuation amplitude of the m/n =
3/2 mode, the NTM is present after 2.4 s while at 5.1 s a small dip corresponding to partial
ECCD stabilization is indicated.
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Figure 14: Pre-emptive stabilization of the 3/2 NTM mode. The mirror position is feed-
back controlled from the location of the normalized radius of the NTM calculated from the
real-time magnetic equilibrium. Real-time calculations of microwave beam refraction are
performed by the microwave beam tracing code, TORBEAM. The NTM cannot be localized
as the temperature fluctuation amplitude of the NTM has been greatly reduced. Conse-
quently, the normalized radius of the NTM measured by temperature fluctuations displays
a large scatter.
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Figure 15: At 3.1 s the mirror feedback control is ended. After the mirror is moved away
from the stabilizing position the NTM mode increases in amplitude. There is growth of
the NTM mode after 2.4 s and a subsequent reduction in mode amplitude during feedback
control. This indicates that pre-emptive stabilization from magnetic equilibria constrained
only by probe measurements is not yet robust enough for routine operation.
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Figure 16: The legend on the right hand side of the plot is the colour code of the n number
of the NTM. The m/n = 3/2 mode dominates this discharge with 10 MW NBI heating
from 2.6 s without pre-emptive NTM stabilization.

Figure 17: In this discharge with pre-emptive stabilization, a m/n = 3/2 and m/n = 4/3
mode are present in the phase up to 4 s with 12.5 MW NBI heating. The NTM is only
partially stabilized with ECCD power of 700 kW. In the remainder of the discharge with
10 MW NBI heating only a weak m/n = 4/3 NTM is present and the m/n = 3/2 NTM
was fully suppressed.
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Figure 18: A comparison of the offline ( red) and real-time magnetic equilibria ( blue )
for the discharge with pre-emptive stabilization. The number and form of the current basis
functions are not the same, so that perfect agreement cannot be expected.

Figure 19: At 3.1 s the mirror feedback control is ended. After the mirror is moved away
from the stabilizing position the NTM mode increases in amplitude. There is growth of
the NTM mode after 2.4 s and a subsequent reduction in mode amplitude during feedback
control. This indicates that pre-emptive stabilization from magnetic equilibria constrained
only by probe measurements is not yet robust enough for routine operation.
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