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Multiscale simulation involving slow transport and fast turbulent timescales is one amongst

the key computational challenges identified by PRACE for Magnetic Confinement Plasmas.

Whereas parallelization efficiency is the main challenge global gyrokinetic simulations have

to face, difficulty of the multiscale approach is more related to code complexity than to peak

performance and high scalability. Instead of implementing a multiscale application as a com-

plex monolithic code, one can consider it as a set of single scale submodels coupled together.

Such approach improves ease of development and maintenance for each of the simpler sub-

model, but it requires some generic coupling methods. These methods should be fast, in order

to limit the overhead on simulation time. They also should be portable and easily deployable,

to enable distributed execution when a submodel may benefit being run remotely. This situation

typically occurs when a submodel has been optimized for a specific hardware (GPU or other

accelerators), when it requires a bigger HPC system or when it needs to access a local database.

The MAPPER project 1 aims to deploy a computational science environment for distributed

multiscale computing. It provides tools, software and services to help scientists in the design

and execution of multiscale applications on European e-Infrastructure. From a formal point of

view, MAPPER relies on the modelization of a multiscale phenomena into a set of submodels,

each of which covers a single scale within the global phenomenon [1]. Such a single scale can

refer to a spatio-temporal domain or to a different physic model. From a practical point of view,

MAPPER targets two types of distributed multiscale applications: loosely-coupled (acyclic,

data exchange usually done with files) and tightly-coupled (cyclic, data exchange through a

coupling library). It provides a software stack built on three layers. At high level, web-based

tools provide a user-friendly graphical platform for adding new submodels, building a coupled

application and controlling its distributed execution. At intermediate level, middlewares manage

reservation and deployement of applications on distributed computing ressources (grid, HPC).

At low level, coupling librairies allow communication of data and submodels scheduling.

1http://www.mapper-project.eu/
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Figure 1: Tightly-coupled application workflow Figure 2: Kernel structure

This work is focused on the usage of MAPPER’s coupling library to build and run a dis-

tributed tightly-coupled application from a set of legacy codes. The chosen application simu-

lates the time evolution of some plasma profiles. It is composed of three submodels: profiles are

evolved by a 1-D transport equations solver, 2-D geometry is given by a fixed-boundary equi-

librium code and turbulent transport coefficients are coming from a 3-D flux tube code. These

submodels have been implemented within the EDFA Integrated Tokamak Modelling Task Force

(ITM 2), as standalone programs or simple routines, either sequentially or in parallel. Following

ITM guidelines, each code is usung a generic datastructure made of a set of Consistent Physics

Object (CPO [2]), in particular: an equilibrium CPO (2D axi-symmetric tokamak equilibrium),

a coreprof CPO (1D profiles in the core plasma) and a coretransp CPO (generic transport coef-

ficients for the core transport equations). Using a common datastructure gives a direct way of

coupling codes and makes different implementations of the same submodel interchangeable. If

specific parameters are needed, they are given in a separate XML file. Figure 1 shows how each

submodel (rectangular boxes) interact with each others and what CPO (arrows) are exchanged.

Data transfer is done by the MUSCLE2 [1] coupling library.

The Multiscale Coupling Library and Environment (MUSCLE2) has been developed within

MAPPER as a fully configurable and portable coupling platform, adapted to parallel legacy

codes and distributed execution. A coupled simulation is composed of three elements: the MUS-

CLE2 engine (developed in Java), submodels implementation (called kernels) and a configura-

tion file which describes the coupling. On the contrary to previous versions, it is not necessary

to develop a kernel in Java, as the API is now also provided in C/C++ and Fortran. This API

is simple (only five functions are used for a basic usage) and easy to understand, especially for

developers used to MPI. MUSCLE_init and MUSCLE_finalize are used respectively to con-

nect the kernel to MUSCLE’s engine and to disconnect it. MUSCLE_get_property is used to

2www.efda-itm.eu/
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read simulation parameters, which can be local to the kernel or global. Then, MUSCLE_recv and

MUSCLE_send are used respectively to receive (blocking) and send data along different input

and output ports. Communication handles basic interoperable types and raw byte streams, used

for instance to send complex Java or C++ objects which have been serialized. We are building a

submodel on two levels: the I/O wrapper convert native objects into interoperable data, and the

kernel itself which implements the time loop and communications using MUSCLE’s API. Fig-

ure 2 shows such nested structure of the code, allowing to modify both the physics routine and

the I/O wrapper implementation without affecting any the kernel and the rest of the simulation.

Once all kernels have been implemented, each one is compiled as a separate executable.

Interaction between kernels is then described through a configuration file, written as a small

Ruby script. It contains three parts: first the declaration of kernels with their name, type (Core,

Native, MPI) and executable’s path in the case of Native or MPI kernels, then the declaration of

parameters, and finally the description of ports with their coupling as out–in pairs. The coupled

simulation is executed by calling muscle2 (the bootstrap command) with the configuration

file as argument. MUSCLE2 starts all executables which are running concurrently: scheduling

is simply ensured by the dataflow. As a direct consequence, kernels can run automatically in

parallel on a multicore processor if dataflow dependencies afford it. By default, all kernels are

running locally on the master MUSCLE2 instance, but it is also possible to associate a subset

of the kernels with other instances which can be on a remote host. In such case, only IP address

and port of the master has to be passed as argument of other instances. Remote data exchange

is done transparently through TCP communications. In case muscle’s instances are running on

computes which can not be accessed from outside world (firewall, local network), the Muscle

Transfer Overlay deamon (MTO) can forward (from a frontal node) traffic from muscle.

The simulation presented here is a proof of concept. It couples a 1D transport solver coming

from the European Transport Solver [3] (TRANSP kernel), a simple circular equilibrium code

(EQUIL kernel), and the flux tube gyrofluid turbulence code GEM [4] (TURB kernel). Initial pro-

files and external sources (constant) are given by the INIT kernel. All codes are written in For-

tran 90, and GEM is parallelized with MPI. As Fortran does not provide a built-in serialization

procedure to convert Fortran derived types CPO into byte arrays, we are using in this example

an out-of-core approach through files. Chosen test case corresponds to an ITER-sized circular

tokamak, with flat density profile and steep enough temperature profiles in order to grow insta-

bilities. Temperatures are solved for electrons and one ion specie. Transport solver’s time step is

τ = 0.01 and GEM is called at each iteration, evolving 8 flux tubes on 16 cores each. Figures 3

shows the time evolution of the electrons temperature profile under the effects of transport coef-
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Figure 3: Te profile
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Figure 4: Transport coefficient for Te

Figure 5: Kernels overhead Figure 6: Transfer cost

ficients given in figure 4. On ITM’s cluster (Gateway), such simulation requires a total of 10.7

hours on 128 cores for 100 iterations. Figure 5 shows the time spent in different parts of the ker-

nels at each iteration. As expected, the deserialization overhead is not negligeable and should be

replaced with an in-memory version for production runs. Overall efficiency (time spent purely

on physics routines divided by simulation wallclock time) in that case is 97.9%. Remote test

includes a site in Germany (Hydra at IPP, in LAN with the Gateway) and in Poland (ZEUS at

Cyfronet, Krakow). For distributed simulation, only TURB kernel is executed remotely. Com-

munication overhead shown in figure 6 is the difference between blocking time in TURB receive

and the sum of runtime for distant kernels, thus it includes incoming (160KB+2.5MB) and out-

going (96KB) data transfers. On most aspects, overheads remain low compared to the improved

adaptability, reusability and maintainability allowed by such approach.
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