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1. Introduction

Erosion of plasma-facing components (PFCs) is a critical issue in future fusion reactors.

This is not only because the lifetime of PFCs can be severely restricted but also because

the eroded material can migrate in the scrape-off layer (SOL) plasma and form thick

co-deposited layers with the plasma and impurity particles [1]. If located in places

hard to access, such layers cannot be easily removed, which may lead to unacceptably

high inventories of tritium in the reactor vessel — after only a short period of plasma

operations [2]. In ITER, an additional concern is the formation of mixed material layers

whose thermo-mechanical properties may be inferior to those of pure PFC materials [3].

To guarantee successful operation of a reactor, it is therefore important to form an

adequate picture of various migration mechanisms and the underlying physics.

This article concentrates on the migration of impurities in tokamak-type fusion

reactors. We have investigated the effect of different plasma parameters, operational

regimes, wall material, and the impurity element on the global deposition patterns and

study how different these patterns are when the source of impurities is located in the

main chamber —mainly in the low-field side (outer) midplane — or in the outer divertor.

These two regions are at the focus of our studies since they are known to be strong

net-erosion zones in tokamaks [4–6]. In addition to obtaining an extensive experimental

database, we aim at interpreting the results such that the migration pathways of different

elements, e.g., in ITER could be predicted.

The simplest way to investigate migration processes is to use specific marker probes

as PFCs, expose them to plasma discharges during a pre-determined period, and measure

the erosion of the markers and the deposition of the eroded material on closely-lying

wall structures. While this method allows determining net erosion and deposition, the

results are often integrated over several plasma scenarios, thus making full modelling

of the experiment next to impossible. Moreover, in practice only a few toroidal and

poloidal locations of a tokamak can be covered using marker probes.

An alternative strategy is to introduce a tracer element into the tokamak from a

pre-defined location during identical, well-characterized discharges, and determine its

deposition profile on various PFCs immediately after the experiment [7]. The natural

abundance of the tracer should be small (<1-2 at.%), it should behave similarly to

the main impurity, and it should be easily detectable by standard surface analysis

techniques. Good candidates for tracers have proven to be 13C [7] and 15N [8] but also

Si (from SiD4) and W (from WF6) have been used in experiments, e.g., in TEXTOR,

having carbon PFCs [9].

This article gives first a brief summary of the tracer-injection experiments carried

out in different tokamaks, with the emphasis put on global results obtained in JET and

ASDEX Upgrade (AUG). In Chapter 3, two different cases — migration of impurities

originating from a main-chamber source (AUG) and from a divertor source (JET) —

are discussed and the pieces of physics needed to reproduce the experimental results are

discussed. Finally, Chapter 4 concludes the paper.
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Table 1. Main parameters of the different global injection experiments at JET

and AUG. Here, LSN=lower single null, USN=upper single null, DN=double null,

OD=outer divertor, OMP=outer midplane, CFC=carbon fibre composite.
Experiment Injection Type of Plasma Density Wall Injected

source discharges gas (×1019 m−3) material gas

JET 2001 Top, single valve Ohmic, LSN D 2.5 CFC 2.8 g (13C)
JET 2004 OD, multiple valves H-mode, LSN D 2.6 CFC 9.3 g (13C)
JET 2007 OMP, single valve H-mode, LSN D 3.6 CFC 2.0 g (13C)
JET 2009 OD, multiple valves H-mode, LSN D 4.9 CFC 7.1 g (13C)
AUG 2003 OMP, single valve H-mode, LSN H 8.5 C/W 0.69 g (13C)
AUG 2004 OMP, single valve H-mode, USN H 9.0 C/W 0.045 g (13C)
AUG 2005 OMP, single valve L-mode, LSN H 6.0 C/W 1.1 g (13C)
AUG 2007 OMP, single valve L-mode, LSN D 3.3 W 0.58 g (13C)
AUG 2011 OMP, single valve L-mode, DN H 5.8 W 1.0 g (13C) +

1.1 g (15N)

2. Review of global tracer-injection experiments in tokamaks

Tracer-injection experiments have been realized in many different tokamaks, including

JET [10,11], AUG [12–15], DIII-D [16–18], JT-60U [19], and TEXTOR [9,20,21] during

the past 20 years. AUG, with its tungsten PFCs [22], has provided an ITER- and

DEMO-relevant environment for the studies since 2007. The tracer element can be

injected into the AUG vessel from a single valve at the outer midplane or at the outer

divertor while at JET, injections have also been made from the top of the torus (single

valve) and from toroidally periodic configurations of gas valves in the divertor region.

Yet, all the JET data are from the era preceding the ITER like wall (ILW), i.e., from

a carbon machine and the same holds for experiments carried out at DIII-D. TEXTOR

and JT-60U, for their part, are interesting testbeds for elucidating the role of various

physical parameters such as the wall material [20] or enhanced re-erosion of the deposited

material [23] in the deposition profiles of the impurities.

2.1. Experimental database from JET and ASDEX Upgrade

In the global scale, four tracer-injection experiments have been realized at JET [10, 11]

and five at AUG [12, 13]. Their most important parameters are summarized in table 1.

Typically, the tracer 13C has been introduced into the vessel in the form of labelled

methane (13CH4) but in the case of the AUG 2011 experiment, both 13CH4 and
15N2 were

simultaneously injected into the torus. A large parameter space has been covered: The

location of the injection source, the type and magnetic configuration of the discharges,

the main plasma species and its density, and the amount of gas injected have all been

varied. In most cases the injection has been made from a single valve while multiple

valves were used in the JET 2004 and 2009 experiments. Having multiple injections will

be generally less perturbing for the plasma than a single one. The injection rate was

generally kept below 3×1021 s−1 since too strong a source would have an impact on the

plasma and influence the obtained deposition profiles.

After each experiment, a representative number of first-wall tiles was removed
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from the vessel and the tiles were analyzed using Secondary Ion Mass Spectrometry

(SIMS) [11, 12] or Nuclear Reaction Analysis (NRA) [8, 15]. The key results of these

analyses can be summarized as follows:

• The resulting deposition patterns are toroidally and poloidally asymmetric. This we

notice from the right part of figure 1(a) which shows the average surface densities

of 13C on the limiter structures of a Ion Cyclotron Resonance Heating (ICRH)

antenna (next to the injection valve) of AUG after the 2011 experiment [13]. These

observations set the need for full 3D treatment of impurity migration [24].

• The measured surface densities (in at/cm2) are the highest locally next to the

injection valves and typically decay by two orders of magnitude within a distance

of a few centimetres. The left part of figure 1(a) illustrates the situation on one

poloidal limiter tile of AUG, removed from the vicinity of the impurity source after

the 2011 experiment [13]. The edges of the limiter tile in the toroidal direction (at

0 and 200 mm) are recessed by about 15 mm from the central part (100 mm) but

this seems not to play a major role in the deposition of the impurities: Only next

to the injection valve (at 0 mm) the surface densities are above 1016 − 1017 at/cm2

(typical values for the main chamber PFCs after the 2011 experiment [13]).

• In the case of main-chamber sources (AUG, JET 2001, and JET 2007), particles

migrate towards the inboard side of the vessel and the same holds for a source at

the outer divertor (JET 2004, JET 2009) [11,13]. This is attributed to strong flows

in the SOL plasma [25].

• Depending on the experiment, 5–50% of the injected impurity atoms have been

observed in surface analyses [11–13]. These numbers have to be taken with caution

since they are based on analyses of tiles from a single poloidal cross section and

assuming deposition being toroidally symmetric — which does not hold close to the

source.

• Based on the JET results in 2009, approximately 30% of the impurities is directly

pumped out from the vessel by cryopumps [11]. Most likely this is an upper limit

due to the close proximity of the source (at the outer divertor) and the cryopumps.

In addition, samples extracted from tile gaps and remote areas have shown surface

densities comparable to those on the plasma-facing surfaces [13].

• Wall material plays a large role for the deposition of the impurities. If the wall

is changed from carbon to tungsten, deposition especially at the outer divertor

(net-erosion zone) drops by a factor of 10–100 [12]. Similar substrate effect has

been observed at TEXTOR [20]. However, if the tungsten PFCs have thick

co-deposited layers containing carbon, deuterium, beryllium, and/or boron, the

resulting deposition profiles start to resemble those obtained for a carbon wall. This

is illustrated in figure 1(b) which shows the deposition profiles of 13C at the divertor

of AUG after the 2005 (carbon wall, black curve), 2007 (tungsten wall, red curve),

and 2011 (tungsten PFCs with co-deposited layers, blue curve) experiments [12,13].
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Figure 1. (a) Deposition of 13C on different limiter structures next to the source of the

2011 injection experiment in AUG. (b) Deposition of 13C on PFCs at the divertor of

AUG after the 2005 (carbon PFCs), 2007 (clean tungsten PFCs), and 2011 (tungsten

PFCs with co-deposited layers) experiments. (c) Comparison between the deposition

of 13C and 15N in the divertor region of AUG in 2011.

• When using 15N as a tracer [8], the resulting deposition is almost constant

throughout the machine while the surface densities of 13C show more variations from

region to region, especially a local minimum in the private flux region as illustrated

in figure 1(c). The reason for the different deposition of these two elements is

attributed to surface chemistry and strong recycling of nitrogen [26].

2.2. Modelling of the JET and ASDEX Upgrade experiments

To identify the physical mechanisms that are responsible for producing the experimental

deposition profiles discussed above, different edge physics codes have been used to

analyze the injection experiments. A proper modelling chain is required such that the

output of one code is used as an input for the next one.

The first step is to model the plasma conditions and obtain 2D maps for various

parameters such as density, temperature, flow velocity, and electric field in different

parts of the vessel. For this, we use either the SOLPS [27] or EDGE2D [28] fluid

code. The injected impurity particles are then followed using one of the Monte Carlo

codes ERO [29], ASCOT [24], or DIVIMP [30]. Of these, ERO is a 3D code which can

be used in different geometries, from limiters to divertors, but simulation volumes are

usually spatially limited to keep simulation times manageable. DIVIMP, for its part,

is typically used in 2D mode, i.e., toroidal symmetry is assumed. The computational

grid of DIVIMP can cover the entire SOL but not the core plasma and only recently the

grid has been extended until the walls of the vessel. ASCOT can follow the migration

process in the entire tokamak in 3D and in an unrestricted computational domain, even

though factors like re-erosion are missing from the present version of ASCOT.

Of the codes presented above, we have used EDGE2D, ERO, and DIVIMP to model

the injection experiments at JET [10,11] while in the case of AUG experiments, SOLPS

have provided plasma solutions for treating the actual migration process with ERO,

ASCOT [24], and DIVIMP [31]
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3. Understanding the outcomes of the experiments

In this section, our goal is to understand the experimental results reported in section 2.1

with the help of the modelling tools introduced in section 2.2. The analysis is divided

into two parts depending on whether the migrating impurities originate from the outer

midplane or from the outer divertor of the tokamak vessel, both strong sources of

impurities. In both cases, we want to identify how material is migrating and where

it ends up in the torus. In addition, the effect of substrate material and its roughness

on the ultimate deposition patterns will be addressed.

3.1. Migration of material originating from a main-chamber source (ASDEX Upgrade)

To investigate the migration of impurities released into the plasma at the outer midplane,

we take the injection experiment carried out in AUG in 2011 [13] as our starting point.

According to table 1, high-density (ne = 5.8×1019 m−3) L-mode discharges in a hydrogen

plasma were used. The magnetic configuration showed a secondary separatrix at the

top of the vessel, resulting in an ITER-relevant, quasi DN plasma for the migrating

impurities. Altogether 9.2×1022 atoms with a 1:1 ratio for 13C and 15N were puffed into

the vessel during the flat-top phases of 11 plasma discharges, corresponding to some 1 g

of each injected isotope, from one valve at the outer midplane, in the toroidal sector

9 (out of 16) of AUG. The plasma current during the shots was 0.8 MA, the toroidal

magnetic field -2.5 T, with the grad-B drift of ions pointing towards the divertor, the

auxiliary heating power 1.8 MW by neutral beam injection (NBI) and 0.96 MW by

electron cyclotron resonance heating (ECRH), and the flat-top time approximately 4.8 s.

The most important experimental observations were strong, localized deposition on

limiter structures close to the injection source and large surface densities of the injected
13C at the top of the vessel and on the inner heat shield [13]. Almost 30–35% of the
13C tracers had been accumulated in the main chamber while only 2–3% in the divertor

region. Compared to the 2007 experiment, where low-density L-mode discharges in

deuterium were used, the deposition at the heat shield was 100–1000 times higher in the

2011 configuration as figure 2 illustrates. This can be connected to the different magnetic

configurations of the two experiments (LSN in 2007 [12], quasi DN in 2011 [13]). In DN

configurations, the plasma becomes almost stagnant at the high-field side while high

flow velocities have been measured in the same region for LSN configurations [32]. In

addition, the almost two times higher density in 2011 than in 2007 may have shifted the

deposition maximum towards the main chamber.

The modelling of the experiment was started by creating plasma solutions with

SOLPS. A pure hydrogen plasma was assumed and the upstream electron density at

the separatrix, ne,sep, and the power crossing the core-edge boundary, Pcore−edge, were

varied in the simulations. The resulting profiles for ne and Te were fitted to experimental

data from Thomson scattering (TS) and reciprocating probe measurements (MEM) at

the outer midplane. Outside the SOLPS simulation grid the density and temperature

profiles were assumed to decay exponentially as discussed in [33], with decay lengths
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Figure 2. (a) Magnetic configuration during the flat-top phase of one of the discharges

(#27385) of the AUG 2011 experiment. The tiles analyzed after the experiment have

been marked in red. (b) Deposition of 13C on the heat-shield region both after the

AUG 2011 and 2007 experiments.

based on measured data at the outer midplane. The best fits are shown in figures 3(a)

and (b); here ne,sep = 2.25×1019 m−3 and Pcore−edge = 2 MW (denoted by ”basecase” in

ERO and ASCOT simulations). In the divertor region, the simulated ne and Te profiles

deviated from the measured ones by a factor of two, which is a typical problem for fluid

codes, especially in high-density plasmas [34]. Furthermore, the simulations predicted

rather weak plasma flow in the main chamber (see figure 3(c)), which is in contradiction

with the existing experimental data on SOL flows [35]. Therefore, an experimentally

motivated profile with a Mach 0.5 flow towards the inner divertor and a stagnation point

between the X-point and the outer midplane was imposed on top of the SOLPS plasma

solution as shown in figure 3(c); below the stagnation point the flow is towards the

outer divertor. Even though the solution is not self-consistent anymore, the imposed

flow profile is more realistic to be included in the ERO and ASCOT simulations. The

applied profile does not take into account variations in the poloidal or radial directions

due to the lack of experimental data for the plasmas studied here. Some approaches

have been made to reproduce the observed strong SOL flows with SOLPS (see, e.g., [36])

but they have not yet been implemented in these studies.

The incoming 13CH4 and 15N2 molecules were traced by ERO until they were

dissociated and finally ionized in the SOL. The simulations were carried out in several

different SOLPS backgrounds and using the magnetic equilibrium from one of the

discharges (#27385, see figure 2(a)) of the AUG 2011 experiment. The simulation

volume, schematically shown in figure 4(a), had dimensions ∆R = 1.7 m and ∆z = 1.4 m

and assumed to be toroidally symmetric. The molecules were assumed to obey

Maxwellian energy distribution with a mean energy of 0.05 eV. The methane breakup
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secondary separatrix (3.6 cm) and the position of the limiter surface (5.9 cm) have been
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as a function of density.

was modelled according to the discussion in [37]. In the case of nitrogen, ERO was

upgraded by implementing the break-up chain of N2 into it [38–41] and assuming a

total kinetic energy of 2.0 eV for the decay products.

The radial profiles of the resulting ionization clouds are relatively homogeneous

with the main peak in the far SOL, a few centimeters away from the separatrix, and

rather similar for both 13C+ and 15N+ as one notices from figure 4(b); here the basecase

SOLPS plasma with the imposed flow has been used. When increasing the plasma

density, the ions are born closer to the wall. This is illustrated in figure 4(b) where the

average ionization distance from the separatrix as a function of density is shown. A

similar but much weaker effect was noticed when changing the power (from 1 MW to

3 MW).
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The ionization profiles were used as inputs for ASCOT. In addition, a realistic

3D wall geometry of the AUG torus was constructed [24] and the anomalous diffusion

coefficient of the impurities was scanned from 0.25 m2/s (basecase) to 1.0 m2/s. The

simulations were able to explain the highly localized deposition on the limiter structures

at the outer wall as well as the strong inventories of impurity atoms at the top of the

vessel. Figure 5(a)) shows the resulting 2D deposition pattern for the basecase plasma

(see figure 3) with the imposed flow profile. Notice that, excluding the outer midplane,

the deposition profiles are rather uniform toroidally, mainly because of strong magnetic

shear and the toroidally symmetric wall geometry of AUG [24]. The plasma flow seems

to be play a significant role in transporting impurities to different regions of the torus

as indicated by the deposition pattern following the direction of the magnetic field lines

in figure 5(a). According to figure 5(b), using the weak SOLPS flow (blue bars) from

figure 3(c) would result in almost 50% of the injected impurities being deposited at the

outer divertor while with the imposed flow (red bars) this fraction drops to less than

5% — resulting in good agreement with experimental results in this part of the torus

(yellow bars). A key factor seems to be that a sufficiently strong flow is established at

the low-field side to drive particles to the high-field side.

However, the ratio between deposition on the heat shield and on the inner divertor

is almost the opposite to what has been experimentally observed. This can be due to

the DN magnetic configuration as we discussed above. In fact, under DN conditions the

SOL plasma is split into two parts: One at the low-field side, the other one at the high-

field side. When using the imposed flow at the low-field side and the almost stagnant

SOLPS flow at the high-field side (a situation observed, e.g., at Alcator C-Mod [32]),

we observed more particles being deposited on the heat shield and fewer on the inner

divertor than in the basecase. The shape of the secondary separatrix (see figure 2(a))

may provide an explanation to this behavior: While the secondary separatrix is 3.6 cm

away from the primary one and 2.3 cm from the limiter surfaces at the low-field side

(recall figure 4(b)), it almost touches the inner wall at the high-field side. Now if the flow

becomes very weak at the high-field side, the particles are deposited already on the heat

shield before reaching the divertor region. The effect becomes ever more pronounced

as the plasma density increases (see figure 5(c)). The reason is that in denser plasmas

the ionization profile peaks closer to the outer wall and, due to a stronger coupling to

the plasma flow, the transport of the resulting particles is more strongly towards the

main-chamber walls — instead of the divertor surfaces. A similar situation results when

increasing radial diffusion of the impurities, as shown in figure 5(d).

However, over long time scales, surface compositions of PFCs will be modified as

a result of material being re-eroded and re-deposited in multiple steps. This will result

in walking of the particles along the PFCs into new locations [10]. Also re-erosion

during the start-up and termination phases of the discharges may alter the primary

deposition profiles. Stepwise migration of impurities has been observed to play a large

role, e.g., in DIVIMP [3] and WallDYN [42] modelling of the transport of beryllium

in the ILW configuration of JET. The present version of ASCOT does not include re-



Global migration of impurities in tokamaks 10

 

 

50 100 150 200 250 300 350

−150

−100

−50

0

50

100

150

Toroidal angle (deg) 

0.001 0.01 0.1

2 4 6 8 10 12 14 16

ID
OD

OW

Top

HS

Sector

P
o

lo
id

a
l 
a

n
g

le
 (

d
e

g
) 

Deposition (%) 

(a)

(b)

(c)

(d)

(e)

 

Divertor Main chamber
0

20

40

60

80

100

D
e

p
o

s
it
io

n
 [
%

]

 

 ASCOT

low n
e

low n
e

high n
e

high n
e

 Exp.

 

HS Top OW ID OD
0

10

20

30

40

50

D
e

p
o

s
it
io

n
 [
%

]

 

 

 0.25 
 0.5
 1.0 
 Exp.

0

10

20

30

40

50

60

 

 

C
N

D
e

p
o

s
it
io

n
 [
%

]

HS Top OW ID OD

 

 

Imposed 
SOLPS 

Exp. 

0

10

20

30

40

50

D
e

p
o

s
it
io

n
 [
%

]

HS Top OW ID OD

Figure 5. (a) ASCOT prediction for the 2D deposition profile of 13C impurities after

the AUG 2011 experiment when using the basecase SOLPS plasma with the imposed

flow. The black ellipse marks the source and the red dashed line the direction of the

magnetic field. (b) Effect of SOL flow profile on the deposition of 13C in different

regions of AUG. Blue bars correspond to using the weak SOLPS flow, red bars to

the imposed-flow case, and yellow bars to experimental data (percentages of the 13C

found). (c,d) Effect of (c) density and (d) anomalous diffusion coefficient (D⊥, in

m2/s) on the deposition of 13C in different regions of AUG together with experimental

results. (e) Comparison between the calculated deposition of 13C and 15N impurities

in AUG. Here, HS=heat shield, OW=outer wall, ID=inner divertor, and OD=outer

divertor.

erosion so future work could include combining the 3D features of ASCOT with the

surface dynamics described by WallDYN.

The discussion above has concentrated on plasma physics while the qualitatively

different measured deposition profiles of 13C and 15N require taking surface effects into

account. According to ASCOT simulations (see figure 5(e)), the deposition of these two

isotopes should be almost identical (blue and red bars) but experimentally 15N shows a

uniform deposition profile throughout the torus, even in the private flux region where

almost no 13C has been observed (figure 1(c)). This could be explained by the fact

that nitrogen concentrations on a W surface quickly saturate and any excess nitrogen is

degassed [26]. Nitrogen thus becomes a recycling isotope in the torus, contrary to the

case of carbon or beryllium.

3.2. Migration of material originating from a divertor source (JET)

To investigate the physical mechanisms related to transport of impurities born in the

divertor region, we concentrate on the experiment carried out at JET in 2009 [11].

Altogether, 3.3 × 1023 atoms or 7.1 g of 13C were injected into the SOL plasma

close to the outer strike point from 24 valves, located toroidally periodically next to

the corresponding tiles 5 (see figure 6(a)). The experiment consisted of 30 identical,

ELMy H-mode discharges with the LSN configuration in a deuterium plasma (density
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Figure 6. (a) Magnetic configuration of one of the discharges (#79838) of the JET

2009 experiment. Also the geometry of the divertor and the location of the puffing

valve are shown. (b) Toroidally averaged poloidal deposition profile of 13C (per injected
13C atoms) on the divertor tiles after the 2009 experiment.

ne = 5.0×1019 m−3). The operational scenario was representative of a typical discharge

during the 2008–2009 campaign. The plasma current was 2.5 MA, the toroidal magnetic

field 2.5 T, the auxiliary heating power 15 MW of NBI, and the injection took place

during 6 s of the flat-top phase.

Post mortem analyses [11] showed a strong toroidal deposition band near each

injection valve, with surface density fractions up to 1.5× 10−5 at/cm2 per injected 13C

atom [43]. In the outer parts of the divertor, these fractions varied between 5 × 10−8

and 5×10−6 while in the inner divertor the deposition profile was more homogeneous as

we see from figure 6(b). By assuming toroidally symmetric deposition, approximately

13% of the injected atoms had been accumulated in the outer divertor and less than 2%

in the inner divertor. The latter number is, however, still large compared to the 0.4%

deposition in the main chamber.

To simulate the deposition profile in figure 6(b), plasma solutions were created

using EDGE2D. The main input parameter was the power entering the grid boundary,

here approximately 10 MW, and the focus was on the steady-state, inter-ELM phase of

the discharges. Exponentially decaying profiles for density and temperature were used

outside the simulation grid. The best fits to the experimental profiles of ne, Te, ni, and

Ti at the outer midplane and at the outer divertor correspond to ne,sep = 2.67×1019 m−3.

The poloidal flow profile qualitatively agrees with the measurement data — over the top

of the vessel towards the inner divertor — but the Mach values in the main chamber

are too low: Around Mach 0.2 while experimentally they should be closer to Mach

0.5 [35]. This was not surprising since several factors, especially the E × B drift [34],

affecting the plasma flow are missing in the present version of EDGE2D. Therefore, the

simulations were re-run using an artificial momentum source at the outboard side of the

vessel, corresponding to Mach 0.5. Such an imposed flow results in redistribution of the

plasma flux in the main chamber and, as a result, in negligible effects (less than 50%)

on the density and temperature in the divertor region.
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The EDGE2D solutions with the imposed flow were then used in subsequent ERO

simulations for methane breakup and carbon migration. The simulation volume covered

the entire lower divertor of JET as illustrated in figure 7(a)). The particles that exited

the simulation volume were either re-introduced into the box or considered as lost. The

re-introduction was performed by following the particles in the main-chamber SOL and

core–edge boundary using DIVIMP. The underlying assumption was that the particles

re-entering the simulation box had been thermalized in collisions with the background

ions. The anomalous diffusion coefficient of carbon ions was set to D⊥ = 1.0 m2/s. This

value describes best the situation at JET while previous modelling on AUG has found

best agreement with the experimental results with D⊥ = 0.25 m2/s. The reflection and

sticking of the tracers was treated similarly to the case in [43], in particular the erosion

of the deposited layers was assumed to be enhanced by a factor of 5, as motivated in [23].

The simulations could qualitatively explain the strong deposition peak close to the

injection valve as well as the decreasing tendency of deposition when moving away from

the source along the outer-divertor PFCs. This can be seen in figure 7(b) where the

toroidally averaged deposition profiles for 13C are shown for different simulation cases.

The deviations between the experimental and simulated profiles — mainly the abrupt

drop in deposition in the border zone between the divertor tiles 7 and 8 — is attributed

to the wall contour used in ERO (violet curve in figure 7(a)) being slightly different

from the real wall (blue curve). Based on our simulations, even such subtle differences

can lead to largely different migration behaviour of the impurities.

ERO identified several mechanisms which transport particles from the outboard to

the inboard side of the vessel. These become evident from the three different inner-

divertor profiles in figure 7(b). In case A, transport through the main SOL and the

core is turned off, resulting in more than two orders of magnitude too low deposition

at the inner divertor and in the private flux region — although re-erosion and cross-

field drifts are included in the simulations. Case B represents the primary deposition

pattern including the transport term via the main chamber (both main SOL and core)

but excluding re-erosion. Finally, in case C, both transport and re-erosion are activated

resulting in many more particles in the private flux region than in case B.

From these profiles we can conclude that impurities are driven by SOL flows over

the top of the machine or through the core to the inner divertor. The qualitative picture

is therefore similar to the case of a main-chamber source discussed in section 3.1. As

a result of re-erosion, the impurities ending up at the inner divertor walk downwards

along the PFCs [10], finally across the separatrix into the private flux region. In contrast,

at the outboard side re-erosion has no noticeable effects on the deposition profiles of

impurities beacuse of particles walking away from the outer strike point and the source.

The importance of re-erosion in determining the final deposition profiles is evidenced

by the data extracted from TEXTOR experiments and related ERO modelling [9] as

well as from spectroscopic investigations during the ILW period of JET [3], as already

discussed in section 3.1. Re-erosion could be even stronger if ELMs or transients like

disruptions were included in the simulations [44]. In general, clarifying the role of
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transients requires more investigations in the future.

In principle, the particles could be dragged from the outer to the inner side of the

divertor via the private flux region by E×B driven plasma flows. However, this kind of

shortcut is not seen in our simulations: Hardly any particle enters the private plasma

region across the outer strike point. Experimentally, this is evidenced by a sharp drop

in the measured 13C surface densities inboard of the outer strike point.

3.3. Effect of surface material on the final deposition patterns

In addition to the discussion above, the material properties of PFCs have to be included

in the full explanation of the deposition patterns of the tracer elements. For example,

deposition on tungsten is 2–3 orders of magnitude smaller than that on carbon as we

noticed in section 2.1. This result, however, holds only for smooth surfaces with surface

roughness of Ra < 1 µm. As the roughness increases, deposition profiles on W and on C

start to resemble each other. This can be observed in figure 8(a) where the deposition of
13C on the relatively rough (Ra = 5−10 µm) tungsten and carbon surfaces at the outer

divertor of JET in 2009 is shown. The same conclusion has been drawn in TEXTOR [19].

In contrast, when the W surface has a clear co-deposited layer the roughness effect

practically disappears. This we notice from figure 8(b) where the deposition profiles of
13C on W-coated marker stripes with different surface roughness in the outer strike-point

region of AUG have been reproduced (AUG 2011 experiment). The marker stripes were

poloidally oriented, toroidally next to each other, and the thickness of their W coatings

was 1.5 − 2 µm. Before plasma exposure, their surface roughnesses were Ra = 5.5 µm

(rough), Ra = 1.5 µm (nominal), Ra = 0.8 µm (medium), and Ra = 0.4 µm (smooth).

Up to 1-µm thick boron-rich surface layers have led to smoothening of the surfaces, which

have made them almost equal for the incoming 13C particles. In addition, co-deposited
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layers generally enhance deposition (see figure 1(b)).

4. Conclusions

This article has concentrated on the global migration of impurities at JET and AUG.

To this end, tracer elements have been injected into the vessel during dedicated plasma

discharges since 2001. Surface analyses have shown that the deposition profiles are

generally not toroidally symmetric but a distinct 3D pattern is formed on protruding

surface features. Nonetheless, in certain locations of the torus, e.g., in the divertor in

the case of a main-chamber source, toroidal symmetry is still a reasonable assumption.

Several factors have been observed to affect the transport of particles, the most

important of them being flows in the SOL plasma, magnetic configuration and local

plasma conditions (such as ne and Te), proximity of the wall, and re-erosion. Generally,

the flows drive particles from the outboard towards the inboard side of the tokamak,

either through the top of the vessel or via the core plasma. Unfortunately, such flow

profiles have not been reproduced in the simulations but one has been forced to impose

them on top of background plasma solutions. Re-erosion, for its part, has been observed

to considerably modify the primary deposition profiles, as a result of stepwise migration

of impurities along the PFCs. The process is particularly important in the divertor

region but the JET ILW data indicate that re-erosion should also be taken into account

in the main chamber. All the deposition patterns are further modified by ELMs and

other transient effects; none of them have yet been included in these studies.

Deposition of the impurities is also affected by surface chemistry. This is evidenced

by the qualitatively different deposition profiles of nitrogen and carbon on PFCs.

Moreover, the rougher the surface is and the thicker co-deposited layers it contains,

the stronger is the deposition on it. Material is not only accumulated on plasma-

facing surfaces but shadowed areas, such as gaps between PFCs and remote parts of

the tokamak vessel, typically contain significant impurity inventories. These may be
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the final destinations for all the impurities being eroded from the plasma-facing surfaces

over long time scales as evidenced by our data from AUG [13].

As a conclusion, we can qualitatively explain the final deposition profiles of

migrating impurities but to predict transport of particles in real fusion reactors, the

simulation codes have to have a proper background plasma and transients, surface

chemistry, and re-erosion chains have to be all included in the simulation codes. The

models have also to be verified in an ITER-relevant environment, and for this the ILW

at JET provides a unique opportunity.
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