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Abstract

Cell migration plays an essential role under many physiological and

patho-physiological conditions. It is of major importance during em-

bryonic development and wound healing. In contrast, it also generates

negative effects during inflammation processes, the transmigration of

tumors or the formation of metastases. Thus, a reliable quantification

and characterization of cell paths could give insight into the dynamics

of these processes. Typically stochastic models are applied where pa-

rameters are extracted by fitting models to the so-called mean square

displacement of the observed cell group. We show that this approach

has several disadvantages and problems. Therefore, we propose a sim-

ple procedure directly relying on the positions of the cell’s trajectory

and the covariance matrix of the positions. It is shown that the co-

variance is identical with the spatial aging correlation function for

the supposed linear Gaussian models of Brownian motion with drift

and fractional Brownian motion. The technique is applied and illus-

trated with simulated data showing a reliable parameter estimation

from single cell paths.
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1 Introduction

Active motion is one of the primary characteristics of living systems. The
observation of individual paths of whole cells or of sub-cellular components
as channels in living cells has revealed a variety of complex properties beyond
a simple diffusive behavior (see e.g. [1]). Spatial heterogeneities of the en-
vironment or strong temporal correlations are possible origins of anomalous
sub- and super-diffusion behavior of these objects.

Generalized Langevin equations including memory kernels [5], fractional
Fokker-Planck equations [7] or so-called continuous time random walk (CTRW)
processes with power-law waiting times or step lengths are applied to model
these observations.

However, the estimation of parameters for these stochastic processes ap-
plied to biological systems is still under debate: Typically, the mean squared
displacement (msd) describing the temporal development of the mean squared
distance of a group of objects from a common starting point is applied to fit
experimental data and theoretical modeling results. However, this approach
suffers from several disadvantages and problems: Frequently, only a small
number of experimental paths is available causing strong uncertainties into
the calculations of themsd. In addition, the application of ensemble- (EA) or
time-averaging (TA) can lead to different results, known as (weak-)ergodicity
breaking [3]. Averages are defined as:

msdEA(t) =
1

N

N∑

k=1

[xk(t)− xk(0)]
2, (1)

msdTA(t) =
1

T − t

T−t∫

0

dt′[x(t+ t′)− x(t′)]2, (2)

for positions of the trajectories {xk} with k = 1...N (N as the number of tra-
jectories), and T the temporal length of the path. Problems are directly seen
even in the simplest case of simulated random walk trajectories as illustrated
in Fig. 1. Especially, time-averaged msd values display strong scatterings.
These would lead to an artificial heterogeneity of diffusion coefficients if one
would try to fit individual msd data to the theoretical random walk msd of
2 D t where D denotes the diffusion coefficient and t the time. In addition,
the application of (arbitrary) cutoffs – as often done in literature – is doubt-
ful and reliable estimates of errors especially for the time-averaged quantities
are missing. Finally, even simple ensemble averaging causes correlations that
have to be included into a consistent data analysis.
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Figure 1: The msd was calculated for simulated random walk trajectories
according to Eq. 2 (D = 1µm2/min, ∆t = 1min, N = 20, L = 100). A.
Curves show the scattering of individual time-averaged msd values compared
to the theoretical behavior 2 D t of the ensemble averaged msd. B. In
addition, the figure shows that the combined time- and ensemble-averaged
msd also deviates from the theoretical behavior for larger times.

2 Technique

2.1 Brownian random motion

As the application of fits to the msd suffers from several problems, it is
instructive to focus directly on the original data positions obtained from
simulations or experiments. The random walk model with drift provides a
simple starting point. Positions xi at time ti = i ∆t are given by

xi+1 = xi +
√
2D ∆t ξi+1 + vd ∆t , (3)

where ξi denote uncorrelated Gaussian random variables with zero mean and
unit variance, D is the diffusion coefficient, vd denotes the drift velocity and
∆t the sampling time interval. Expanding the discrete form of Eq. 3 for all
positions i = 0...L leads to a compact matrix notation of the process:












x1 − x0

x2 − x0

x3 − x0

...
xL − x0












=
√
2D∆t


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
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

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


1
1 1 0
1 1 1
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...
...

. . .

1 1 1 . . . 1
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
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.

(4)
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The matrix term on the right side describes the stochastic process and
clearly indicates the correlation of points along a trajectory. The second
term includes the linear drift which may also have a more complicated time-
dependent form.

The last term proportional to σx was added to describe spatial uncer-
tainties of the measurement of positions or to include additional fluctuations
not included in the model such as biological noise [1]. Again, ηi represent
uncorrelated Gaussian variables with zero mean and unit variance.

To further proceed, it is necessary to calculate expectation values of po-
sitions. These expectation values are evaluated over all realizations of ξ and
η

〈...〉 =
∞∫

−∞

L∏

i=1

dξi dηi ... p(ξi) p(ηi) , (5)

where the variables ξi and ηi are distributed according to

p(ξi) =
1

(2π)L/2
exp

{

−1

2

L∑

i=1

ξ2i

}

, p(ηi) =
1

(2π)L/2
exp

{

−1

2

L∑

i=1

η2i

}

.

(6)
In the following we set the initial point to x0 = 0 without loss of generality.
Calculation of averages based on Eqs. 4 – 6 delivers the mean position 〈x(ti)〉
at time ti

〈xi〉 = vd ∆t i (7)

and the covariance of positions

〈[xi − vd ti] [xj − vd tj]〉 = 2 D ∆t min(i, j) + δi,j σ
2

x . (8)

Thereby T TT = min(i, j) with T as defined in Eq. 4 has been used. It is
noteworthy that the first term of this result agrees with the well known aging
correlation function 2D min(ti, tj) of the random walk process. As mean and
variances of xi are given, a maximum entropy treatment (see e.g. [2] pages
450f) directly delivers the likelihood for the data {xi}:

p({xi}|vd, D, I) =
1

√

(2π)L det C
exp






−1

2

L∑

i,j

(xi − vdti) [C−1]i,j (xj − vdtj)







(9)
with Ci,j = 2 D ∆t min(i, j) + δi,j σ2

x for the random walk process. This
agreement should hold in general for linear Gaussian processes. In addition,
Eq. 9 shows that the calculation of the msd is not necessary to perform
a parameter estimation for these linear Gaussian processes. Whereas vd
enters in the numerator of the likelihood, the diffusion coefficient and the
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position uncertainty enters the denominator within the covariance structure.
With σx = 0 the inverse covariance can be calculated analytically showing a
simple tri-diagonal behavior connecting neighboring data positions. Finally,
this approach is applicable for single trajectories allowing biologists to find
differences even between individual cells.

2.2 Fractional Brownian motion

Analogously, dynamics of fractional Brownian motion [6, 10] can be formu-
lated as a discrete matrix equation. In contrast to Brownian motion, the
process is driven by correlated Gaussian random variables ζi with the follow-
ing property:

〈ζiζj〉 =
σ2

2

{

|j − i− 1|2H − 2|j − i|2H + |j − i+ 1|2H
}

, (10)

with variance σ2 and the so-called Hurst coefficient H (0 < H < 1). Ex-
pectation values have now to be calculated with respect to the correlations
defined in Eq. 10. After some algebra of the discrete formalism with the cor-
related random variables (setting the drift term equal to zero) one obtains
the following covariance

〈x(ti)x(tj)〉 =
σ2

2

{

|ti|2H + |tj|2H − |ti − tj|2H
}

, (11)

which is identical with the aging correlation function of fractional Brownian
motion. Depending on the value of the Hurst coefficient H, the msd of these
processes

〈x(ti)2〉 = σ2 t2Hi (12)

shows sub-diffusive or super-diffusive behavior for H < 1/2 and H > 1/2,
respectively. In the following, simulations of paths from fractional Brownian
motion will be used to test our formalism with systems including temporal
power-law correlations.

3 Application

At first, we simulate paths of Brownian random motion according to Eq. 3 to
test the performance of the proposed procedure. As the number of parame-
ters in our models is small, we have performed all integrals by simple lattice
integration. We assumed flat priors for all parameters under consideration.
Mean and variances of parameters were calculated from the resulting poste-
rior. Fig. 2 shows the dependency of the estimated parameters 〈D〉 and 〈vd〉
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Figure 2: Parameters and uncertainties as a function of the length L of
the trajectory. Simulations were performed for a random walk model with
diffusion coefficient D = 1 and drift velocity vd = 0.5.
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including their uncertainties as a function of the length of the trajectory. Un-
certainties are reduced with increasing path length L. The estimated param-
eters are in agreement with the parameters used in simulation indicated as
dashed lines. This figure shows that the analysis leads to reasonable param-
eter estimates for a single trajectory. Even shorter trajectories with L ∼ 30
deliver parameters within the range of the applied simulation parameter.

Fig. 3 shows the variability of estimating 〈D〉 and 〈vd〉 for 20 indepen-
dently simulated random walk trajectories. Most estimated parameter values
are in agreement with the simulation parameter within one standard devi-
ation. Using a product of the likelihoods as given in Eq. 9 of independent
paths would allow to calculate the expectation values for the diffusion and
drift coefficient of the observed group.

In a second step, we apply the formalism to fractional Brownian motion.
Simulations of trajectories were performed with Hosking’s algorithm [4]. As
a result Fig. 4 shows the posterior p(H|{di}) as a function of the Hurst
coefficient H for simulated trajectories with a different number of data points
L. For both cases of sub- and super-diffusion the posterior localizes around
the theoretical values of H = 0.3 and H = 0.7 with an increasing number of
data points. This indicates that the proposed formalism can also be applied
to processes with power-law correlations.

4 Conclusions and outlook

We have proposed and applied a simple procedure to extract parameters of
stochastic processes given a single experimental or simulated path of this
process. The procedure relies on including the so-called spatial aging corre-
lation function as the covariance matrix within the likelihood function. The
technique performs well if the covariance matrix is known for the assumed
stochastic process and seems to be valid in general for linear Gaussian pro-
cesses. In addition, it avoids problems ofmsd application and directly uses all
simulated or experimentally measured data points. The technique is explic-
itly applied to experimental results of rolling leukocytes in the contribution
of Moskopp et al. [8] within these proceedings.

If the covariance matrix is not known theoretically one can try to extract
it directly from the data. This poses several problems and can even lead to
doubtful parameter estimations. Preuss and Dieterich [9] discuss these is-
sues within these proceedings and apply a renormalization of the covariance
matrix and its inverse by a Bayesian approach including the uncertainties of
the data covariance matrix. As shown by simulations of Brownian and frac-
tional Brownian motion this approach rescues parameter estimation where
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Figure 3: Parameters and uncertainties for 20 independently simulated paths.
Simulation was performed with diffusion coefficient D = 1 and drift velocity
vd = 0.5. Trajectories consist of L = 100 data points.
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Figure 4: Posteriors of fractional Brownian motion: The simulation of paths
was performed for sub-diffusion with H = 0.3 (left side) and for super-
diffusion with H = 0.7 (right side). Each posterior corresponds to a sim-
ulated trajectory with L data points. The posterior converges towards the
theoretical values of H indicated by dashed vertical lines with an increasing
number of data points L.
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the naive usage of raw covariance would lead to wrong results.
The current approach is limited to linear Gaussian processes. However,

one could also try to apply it to more complicated models as the fractional
Langevin [5] or the non-Gaussian fractional diffusion equation [7] where aging
correlation functions are known. Finally Bayesian model selection could help
to select the best aging correlation function out of several candidates. This
is of major importance for experimental analyses where the underlying aging
correlation typically is unknown in advance.

In summary, the suggested technique offers a reliable way to perform
Bayesian parameter estimation for stochastic models directly from single tra-
jectories. This is of special interest to biologists and enables to distinguish
between individual cell tracks.
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