
Continuous linear time-frequency transforms in the analysis of fusion

plasma transients

G. I. Pokol1, L. Horvath1, N. Lazanyi1,2, G. Papp1,3, G. Por1, V. Igochine2, ASDEX Upgrade team2

1 Institute of Nuclear Techniques, Budapest University of Technology and Economics,

Association EURATOM, Budapest, Hungary
2 MPI fur Plasmaphysik, Euratom-Association, Garching, Germany

3 Department of Applied Physics, Nuclear Engineering, Chalmers University of Technology

and Euratom-VR Association, Gothenburg, Sweden

Introduction There is a long history of the use of continuous linear time-frequency trans-

forms in the analysis of transients detected in fusion plasma devices [1]. Despite the fact that nu-

merous alternative methods of time-frequency analysis were proposed during the years, Fourier

transform based solutions are still the standard method to approach transient wave-like phe-

nomena. The reason for this continued popularity is that these linear time-frequency transforms

do not produce any disturbing interference patterns between the time-frequency atoms, which

are eigenfunctions of linear and quasi-linear theories [2]. This paper concentrates on continuous

transforms that are time-shift invariant, thus ideal for the analysis of transient signals.

The two well-known types of continuous linear time-frequency transforms, namely the short-

time Fourier transform (STFT) and the continuous wavelet transform with analytical wavelets

(CWT), differ basically in their invariance properties, which determines their optimal field of

use. Uncertainty estimation of transform values and derived quantities, like energy density dis-

tributions and phases, is also addressed shortly. Finally, the paper presents some advanced meth-

ods based on the time-frequency transforms that have been implemented in the recently devel-

oped NTI Wavelet Tools package [3] with practical fusion plasma applications. A mode number

determination routine is a main feature that is based on fitting mode phases [4]. Time-frequency

coherence and transfer functions are introduced briefly, and time-frequency bicoherence is dis-

cussed concentrating on consequences of the invariance properties of the transforms used.

Continuous linear time-frequency transforms and their uncertainty Continuous linear

time-frequency transforms can be derived from a more general family produced by smoothing

the Wigner-Ville distributions of the signals [5]. Their linearity makes them unique in the sense

that no non-linear interference patterns are produced between components of composite signals.

Two examples are the STFT and the CWT differing only in their invariance properties: the

STFT is frequency-invariant, while CWT is scale invariant – both are time-invariant, too. They

are well-suited for studying transient signals, and their invariance properties determine their

specific field of use: If it is need to resolve fluctuations with frequencies extending throughout

many orders of magnitude, CWT should be used with logarithmic frequency axis. On the other

hand, STFT is most often used to study fluctuations in a limited frequency range because of its
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easier interpretation.

Figure 1: Illustration of the error

propagation on the absolute value of

the Fourier transform.

Uncertainty of transform values is of central impor-

tance if one wants to correctly interpret the results. For

the real and imaginary parts of STFT and CWT this can

be performed in a way similar to the uncertainty estima-

tion of Fourier transform [3]. Care must be taken, how-

ever, when the uncertainty of the energy density distri-

butions (or amplitudes) and phases are considered. These

are non-linear functions of the real and imaginary parts of

the transforms and for low expected value and large un-

certainty the linearity condition behind the Gaussian er-

ror propagation breaks down as illustrated in the bottom

plot of Fig. 1. Green curve is the absolute value as func-

tion of the real part while the imaginary part is kept fix.

The real part has a distribution with variance increasing

towards the bottom shown by the dark blue curve. The

distribution of the amplitude calculated by Gauss error

propagation is shown by red dashed curves, and the real

one calculated by transformation of the distribution func-

tion by light blue curves. Black dashed line indicates the

linear fit used by the Gauss error propagation formula.

Deviation of the red dashed line from the light blue on

indicates breakdown of Gaussian error propagation and a

significant deviation form Gaussian distribution.

In report [3] a threshold in the ratio of terms of series expansion of the transformed distri-

bution function for the applicability of Gaussian error propagation is proposed. Amplitude and

phase estimation of STFT was used e.g. to reconstruct the changing core mode properties from

electron cyclotron measurements at the ASDEX Upgrade tokamak [6].

Applications in transient analysis The results of linear continuous time frequency trans-

forms can be used to derive physical quantities of transient modes, however, one should be care-

ful to preserve the invariance properties of the transforms throughout the analysis. This means

that the necessary averaging shall be carried out by convolution smoothing by a frequency-

invariant kernel for STFT and a scaled kernel for CWT.

Using this averaging procedure a number of advanced signal processing methods were devel-

oped, including mode number fitting [4, 7], wavelet coherence and wavelet minimum coherence

[8], time-frequency transfer function and STFT bicoherence. In the present paper, I am concen-

trating on the STFT bicoherence but pointing out general considerations whenever applicable.

There are many considerations general to all the above mentioned methods: all of them in-

volve application of operations defined for stationary signals for short-time averages of the
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transforms. However, bicoherence is unique in the sense that it compares two different frequen-

cies typically of the same signal.

b( f1, f2, t) =
|B( f1, f2, t)|

E
[
|ST FT ( f1, t)ST FT ( f2, t)|2

]1/2
E
[
|ST FT ( f1 + f2, t)|2

]1/2
. (1)

The definition of Eq. (1) consists of essentially two parts, the absolute value of the averaged

bispectrum B( f1, f2, t) = E[ST FT ( f1, t)ST FT ( f2, t)ST FT ∗( f1 + f2, t)] in the numerator and

the normalizing factor in the denominator both containing products of the STFT of the signal.

The normalizing factor ensures that the bicoherence values are always between 1 and 0, but the

more important part is the numerator which is to detect phase coupling between two frequencies

and their sum [9]. Similarly to the wavelet coherence, key factor for interpretation is the number

of quasi-independent averages of the complex bispectrum values. Attempts have been made to

design a time-frequency bicoherence method based on CWT with frequency-invariant averaging

kernel [10]. However, this makes interpretation very cumbersome, as for low frequencies the

number of quasi-independent averages tends to zero, producing an artifact of high bicoherence.

The scale invariant filtering used in wavelet coherence [8] cannot be used here, as it would blur

the time localization in a complicated way. The solution is to use STFT as a basis of time-

frequency bicoherence, as it is already frequency-invariant.

Figure 2: STFT bicoherence of sawtooth precursor oscillations:

top plot shows the smoothed spectrogram, while bottom plots

show STFT bicoherence at two time points.

STFT bicoherence is shown in

Fig. 2 for the sawtooth precursor

which has been studied in paper

[7] with ordinary bicoherence. In

the present analysis frequency-

invariant averaging of 30 con-

secutive quasi-independent bis-

pectrum values was performed,

which produced a smooth evo-

lution of the bicoherence val-

ues. Time-varying bicoherence is

a function of three variables (fre-

quency 1, frequency 2 and time),

so Fig. 2 shows only two time

points. At the first time instance,

the dominant (n,m) = (1,1) kink

mode is already strongly present

at 13 kHz, and shows high bico-

herence with its second harmonic

at 26 kHz. This harmonic also has
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high coherence with the basic frequency. At the second time instance the low frequency saw-

tooth precursor (LFSP) studied in paper [7] starts to gain energy at 9 kHz, and has high bico-

herence with the dominant mode. Closer to the sawtooth crash bicoherence shows high values

in extended regions, however here the signal components change rapidly within the averaged

time interval which invalidates our results. It is important to keep in mind that if the signal

components are not quasi-stationary within the averaged time interval in the sense that a few

short-lived bursts dominate, then the averaging has practically no effect and the bicoherence ap-

proaches 1. The smoothed spectrogram plot of Fig. 2 allows easy recognition of such problems.

The artifact below 2 kHz is a result of STFT not being able resolve low frequencies with period

time in the order of window size; this region should be simply excluded from the interpretation.

Interpretation of time-frequency coherence of two signals is completely analogous in that sense.

Conclusions Continuous linear time-frequency transforms (STFT and CWT) offer a basis

to design powerful tools for analyzing transient signals. Care must be taken, however, to pre-

serve the invariance properties of the transforms throughout the processing chain and in the end

evaluate the results in view of the size of the total smoothing introduced. Even advanced meth-

ods, like bicoherence, could be adopted for these transforms, however, the necessary smoothing

limits its applicability in case of rapidly changing transient signals.
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