The nonlinear dispersion relation of geodesic acoustic modes
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The energy input and frequency shift of geodesic acoustic modes (GAMs) due to turbulence in
tokamak edge plasmas are investigated in numerical two-fluid turbulence studies. Surprisingly, the
turbulent GAM dispersion relation is qualitatively equivalent to the linear GAM dispersion but can
have drastically enhanced group velocities. In up-down asymmetric geometry the energy input due
to turbulent transport may favor the excitation of GAMs with one particular sign of the radial phase
velocity relative to the magnetic drifts and may lead to pulsed GAM activity.
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Introduction.— Geodesic acoustic modes (GAMs),
oscillating plasma flows associated with radial gradients
of the electrostatic potential [1], are a ubiquitous phe-
nomenon in tokamak edge plasmas [2]. The interplay be-
tween GAMs and the quasi-two-dimensional turbulence,
which is typically generated by variations of the Rayleigh-
Taylor instability (heavier fluid above lighter one), is par-
ticularly interesting. By shearing the turbulence, GAMs
are able to modulate the turbulent transport and to re-
duce the saturation intensity of the turbulence [3].

Using numerical two-fluid turbulence studies with the
code NLET [4], we investigate both channels through
which GAMs interact with the turbulence, energy in-
put and frequency shift. In contrast to magnetohydro-
dynamics, the two-fluid description incorporates effects
such as the generation of electric fields from electron pres-
sure fluctuations and limited finite Larmor radius effects
(diamagnetic heat and momentum fluxes). Collisionless
effects are only included in a very reduced form as effec-
tive dissipation coefficients. From the radial structure of
global GAM eigenmodes [5] in nonlocal (non-Boussinesq)
computations we deduce a nonlinear, i.e., turbulence in-
duced, dispersion relation. Although the observed dis-
persion agrees qualitatively with the ones obtained from
linearized two-fluid equations [6, 7], the corresponding
group velocities tend to be surprisingly high. For real-
istic edge parameters, the global eigenmodes have a ra-
dial extent of several centimeters and could account for
the frequency plateaus in ASDEX Upgrade [8], which
deviate from the expected T'/? dependence of acoustic
frequencies. If the equilibrium magnetic field is up-down
asymmetric, we observe periodic bursts of turbulence and
GAM activity. They can be traced back to an energy
transfer from the turbulence to the flows which is odd
in the radial wave number and absent with symmetry.
This behavior resembles strikingly the experimentally ob-
served pulsation during the I phase in ASDEX Upgrade
[2] or the periodic turbulence suppression in NSTX [9].

Computational Setup.— We briefly summarize the
basic computational setup of the turbulence runs. The
ratio of the turbulence- to the background-gradient scale

lengths is A™! = L, /L, x p*, where L is a characteris-
tic turbulence scale length perpendicular to the magnetic
field, L,;! = 8, Inn, and the flux label r is the minor ra-
dius at the outboard midplane. (A ratio of A ~ 1 —50 is
typical for the edge region.) The computational domain
covers 490 sound gyro radii p, = (ym,(T. +T;))'/?/(eB)
radially and poloidally. m; is the ion mass, T ; the
electron and ion temperatures, e the elementary charge,
and B the magnetic field. The adiabatic exponent
is 5/3. Furthermore, we choose n; = L, /Ly, = 2.4,
Ne = L,/Lr, = 0, ¢, = 2L,/Ry = 0.05, ag = 0.5,
€, =0,7, =0, and dlng/dInr = 1 where aq is the ratio
of the drift frequency to the ballooning growth rate, -y,
represents magnetic pumping, €, the sound speed, and ¢
the safety factor (for definitions see [4]). Ry is the major
radius and By the magnetic field at the outboard mid-
plane. The electrons are isothermal and treated nona-
diabatically. Density and temperature are normalized
to their values in the middle of the radial computa-
tional domain, i.e., (ﬁ,Te/i) = An,T./i)/(no, Te)i0) and
T =1T,0/Te0 = 1. The background density and tempera-
ture profiles are linear, n, = A—0.25r and Tib = A—0.62r.
Thus, the local GAM frequency at zero radial wave num-
ber wgan,o(r) varies by roughly £0.3wganro(r = 0),
where r = 0 marks the middle of the radial domain. The
magnetic field is normalized to its value at the outboard
midplane. With the time units to = R.;/(v/2¢cs), where
cs = (v (T + T;)/m;)'/? is the sound speed, 1/R.f; =
(2(C(6) >>1/2/Ro, C(0) = (RoBolVr|/B)(b x VIn B) - 1,
and (...) = ¢...B7tdl/ § B~1dl is the fu-surface
average, wGAM,o( = 0) = 1. The quantity C(6) de-
scribes the curvature induced divergence of the E x B
drift, i.e., V-vg g = C(0)0,¢ with the potential fluctua-
tion ¢.

Nonlinear GAM dispersion.— Figure 1 shows the re-
sult of a nonlocal (A ~ 200) ion temperature gradient
(ITG) driven turbulence computation with circular flux
surfaces, which displays pronounced GAM activity. The
radial variation of the GAM frequency caused by nonlo-
cality is obvious in the corresponding E x B flow pro-
file [Fig. 1 a)]. Its temporal Fourier transform [Fig. 1
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FIG. 1. (color online) Results of a nonlocal NLET turbu-
lence study with slow parameter variation, A = 200. a) Flux-
surface averaged poloidal E x B velocity (vg,g). b) Temporal
Fourier transform (linear color scale, truncated at 60 % of
the intensity maximum) of a) with the local GAM frequency
indicated by the dashed line. c¢) Bandpass filtered flow pro-
file at w = wgam,o0(ro) = 1.03 with fits to curves of constant
phase according to Eq. (2) with 8 = 4 (dash-dotted), 8 = 2
(dashed), and 8 = 1 (dotted). Reference radius r¢ indicated
by horizontal dashed line.

b)] reveals that GAMs with frequency wgano(ro) (in-
dicated by the dashed line) radiate significantly out-
wards to r > ro but disappear for r < rg. The de-
viations from the local GAM frequency reach up to 30
%. The application of a narrow bandpass filter [Fig. 1
c)] shows that the flow profile consists of global GAM
eigenmodes. Such an eigenmode can be described by a
WKB wave packet with a local wave number k, obeying
waanm(r, k) = const. To relate the observed deviations
from wgan,o(ro) to the nonlinear GAM properties, we
choose the ansatz waanr (7, k) = waanro(r)(1+ alk.|?)
with a natural number § for the dispersion relation. The
resulting solution for |k, | is

o =[] )

where L, = (0r Inwganm,0)(ro). Depending on the sign
of a, |k,| has a solution only on one side of the flux
surface r = 7. |k-(r9)] = 0 implies the existence of a

reflection layer at 9. Using Eq. (1) and the condition
7 = wgam,0(ro)/kr for the phase velocity yields the curve
of constant phase

Hr) = — (— ! )é(r_rO)Hétho. (2)

1+ % alL, waam,o(ro)

The results of fits using Eq. (2) with different values
of 8 for the bandpass filtered flow profile are shown in
Fig. 1 ¢) with wganro(ro) = 1.03. The best fit is ob-
tained for B = 2. It yields o &~ 39p2, roughly a hundred
times the value observed in the absence of turbulence
(la| ~ p%/2 [6]). A comparison with the corresponding
local run in Fig. 2 a) confirms the obtained dispersion
relation. The above values for a can be used to esti-
mate the radial extent of a global eigenmode whose radial
structure is on the one hand given by an Airy function
[5]. On the other hand the turbulence excites GAMs
only in a limited range of radial wave numbers, whose
distribution is assumed to be a Gaussian of width oy
centered at k. = ko. Since the Airy function Ai(z) drops
only as z'/4, the wave number distribution represents
the dominant limitation of the mode width. The esti-
mate resulting from Eq. (1) is therefore or < 4aL,orko.
On a basis of many turbulence computations we choose
kops ~ 0.1 and oxps ~ 0.05. In tokamak edge plasmas
L,~ Ly ~0.01...0.1R. Thus, assuming a major radius
of R ~ 1m, we obtain mode widths of i < 0.1...1mm,
i.e., of the order of the gyroradius for a = p? /2. In con-
trast, for a = 39p% 6r < 0.8...8cm. The corresponding
group velocities are of the order of the ion magnetic drifts
and the diamagnetic drift, respectively. Therefore, the
width of nonlinear eigenmodes can be comparable to the
scale length of the frequency plateaus reported in [8].

Now, we develop an understanding of the turbulence
induced frequency shift. The turbulent source terms are
particularly transparent if we write the time evolution of
the GAM in terms of a state vector ¥ = (pgan, vaam)
as

VU = 6V, +00,,. (3)

This oscillator equation can readily be derived from the
two-fluid system in Ref. [4] using an appropriate normal-
ization. Here, 0¥y, = (vgam, —pcam) describes the lin-
ear time evolution of the GAM velocity and pressure com-
ponents vgan and pgans. The nonlinear source terms
O, = (Sr+ Sdia, S11) are the divergence of the Reynolds
stress s, the divergence of the up-down asymmetric com-
ponent of the turbulent transport sr, and the coupling of
the zero point of the GAM oscillation to the background
diamagnetic velocity sq4;,. The energy stored in the GAM
corresponds to the squared length of the state vector W.
Obviously, dW¥;;, is orthogonal to ¥ and is responsible
for the GAM oscillation. Components of §V,,; changing
the length of ¥ alter the GAM energy, the components
orthogonal to ¥ cause frequency shifts. By splitting the
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FIG. 2. (color online) a) Spectrum of the flux-surface aver-
aged poloidal E x B velocity |(vg,e)| (logarithmic color scale)
of a local NLET turbulence study otherwise equivalent to the
one shown in Fig. 1 (using the parameters at r = 0) and dis-
persion relations waan (7, kr) = weam,o(r)(1 + alk.|*) with
a = p2/2 (linear dispersion) and a = 39p2. b) Nonlinear
frequency shifts due to the couplings between turbulence and
GAMs for the Fourier mode w = 1.03 of Fig. 1 a): frequency
shift necessary for the radial mode structure in Fig. 1 c)
(dash-dotted), shift due to the up-down asymmetric compo-
nent of the turbulent transport (solid), the Reynolds stress
(dotted), and the diamagnetic velocity (dashed).

nonlinear terms for the Fourier mode with w = 1.03 [Fig.
1 ¢)] into energy inputs and frequency shifts we find that
the observed frequency shift is due to the coupling to the
up-down asymmetric component of the turbulent trans-
port sr alone, while the Reynolds stress and the dia-
magnetic velocity do not contribute [Fig. 2 b)]. The
increase of the GAM frequency (and the phase velocity)
due to the asymmetric transport requires the transport
to be in phase with pgap - A reduction of the resistivity
towards adiabaticity results in reduced GAM group ve-
locities, indicating a strong dependence of this effect on
the ballooning character of the turbulence.

Pulsed GAM activity.— We investigate the effect of
up-down asymmetry of the flux surfaces on the turbu-
lent energy input into the GAM in local edge-turbulence
computations using single-null geometry. We use the
same parameters as in the previous section. However,
since we are not interested in modifications of the GAM
frequency here, we assume adiabatic electrons. The
flux surface is constructed with the magnetic field of
five toroidal current loops representing the plasma cur-
rent and the currents in the shaping coils [7]. The
poloidal flux is ¥ = 3. A; = 0.999¥,,,, where 4; =
a;/2In((Ry + 7:)* + (Z + 2:)?) and Vg, is the poloidal
flux at the separatrix. The coefficients a;, z;, and r;
measure the current of conductor ¢, its position on the
(vertical) Z axis, and its radial position. The radius
of the magnetic axis is R,. For consistency, the coef-
ficients are chosen such that the forces on the plasma
current exerted by the four shaping coils add to zero, i.e.,
S ai/(r? 4+ 22)Y/2 = 0. We choose 79 = 29 = 0, ag = 1,
ry =0,z =m, ay = —m, 7’2:77’3:22:23:771/\/5,
as = ag = V2m, 14 = 0, z4 = —1, and a4 = 1 with
m = 2 for lower (z; — —z; for upper) X point config-

Q
-

A/

~ AP

radial position (ps)

(e

radial position (ps) ™~

radial position (ps)

0 200 400 600 800 1000
time (Refe/\2 )

FIG. 3. (color online) Flux-surface averaged poloidal E X
B flows (vg,¢) of NLET turbulence studies using the same
parameters as in Fig. 1 but with a single-null geometry. a)
Local run. Left: Ton magnetic inhomogeneity drift v4 directed
away from the X point. Right: vg directed towards the X
point. b) Nonlocal run with A ~ 200 and vg4 towards the
X point. Color coded: short-time rms of (vg,). Contours:
turbulence intensity. Within the shaded areas, the turbulence
intensity is above 70 % of its rms average. c) Like b) but with
opposite vg.

uration. The ion curvature and VB drifts are directed
in the positive Z direction. In local turbulence runs, the
system saturates in both configurations, upper and lower
X point, by exciting GAMs. However, a striking differ-
ence is the asymmetry of the nonlinear GAM drive with
respect to the sign of the phase velocity of the GAM,
which is obvious in the E x B flow profiles in Fig. 3
a). Only GAMs with radially outward phase velocity are
excited with the curvature drift directed away from the
X point, whereas the phase velocity is radially inward
with the curvature drift directed towards the X point.
The characteristic radial scale length of the GAMs is the
same in both cases. The corresponding (k,,w) spectra
reveal that the GAM activity is concentrated close to
the linear dispersion. Since the linear group velocity of
the GAM in single-null configuration is in the direction
of the ion curvature drift at a location opposite to the X
point [7], one can say that GAMs are excited such that
the phase velocity is in the direction of the group ve-
locity. Including the parameter variation (A & 200) the
GAM flow amplitude and the turbulence intensity be-



come correlated and pulsed at a frequency much smaller
than the GAM frequency [Fig. 3 b)]. Detailed analysis
of the poloidal flow shows that the characteristic radial
scale k. ; of the GAM in the initial phase (¢ < 100) is the
same as in the local studies. The phase velocity is neg-
ative. However, due to the frequency gradient the wave
fronts of the flows are being tilted in the r» — ¢ plane and
k, decreases. In response, the GAM-turbulence equilib-
rium readjusts itself towards transport levels even higher
than in computations with artificially suppressed zonal
flows. At k., = 0 the GAM and turbulence intensity
reach a maximum and then drop for &, > 0 as the GAM
is damped. After this burst, the described cycle repeats.
The pulse frequency obviously depends on the GAM fre-
quency gradient and on the initially growing wave num-
ber, ie., wp =~ 27/(kyips)Orwcam,o(r). A range of
wp &~ 0.01...0.5wgan seems to be readily realizable by
adjusting Orwgam,o(r) and assuming k, ;ps ~ 0.1. For
the opposite sign of the ion curvature drift, the GAM
wave number is restricted to k, > k,;. In this case, the
response of the turbulence intensity on the GAM wave
number turns out to be weak, and the pulsing is subdom-
inant.

On the basis of Eq. (3), we investigate the dependence
of the GAM-turbulence interaction on the sign of the
phase velocity. Since the Reynolds stress turned out not
to be important for the present parameters, we drop si.
Moreover, we approximate sgiq = (a:0-(p; + 5:T3)) =
a0 (p), where a; = 7/(1 +7), B = y7(1 + 77), and
the ion pressure p; = n + T}, because the temperature
in the diamagnetic source term does not change the re-
sult qualitatively. The source term due to the turbu-
lent transport I' can be written as sp = —8,(CT) with
C = C/(C?)Y/2, The transport itself is expressed as
I = Fl + FQ, where Fl ~ fl(ﬁ)(l — Tdcat)UGA]\/[ (fOI‘
the Galilei invariance of this term see Ref. [3]), and
Ty =~ I'9(0)(1 — 74:0¢)0rvcan [3, 10]. Here, 74. rep-
resents the turbulence decorrelation time, which sets the
time scale for the reaction of the turbulence to changes of
the shear flow. The poloidal structure of I'; is contained
in the function T';(#). Furthermore, 9, (p) ~ —d,(I') and
vaaM R —i(wagan,o/waan )Paam, where wgano is the
linear, wgan the (complex) nonlinear GAM frequency.
Note that R(wganm) = wgamo = 1 and R(weanm) >
Sweam) = w;. Inserting the expressions given above
into Eq. (3), the growth rate of pgans evaluates to

w; ~ % (—kr <Cf1> + kfozT <f1 + Tdcéf‘2>> + O(kf).

(4)
Only the term linear in k., which originates from sr,
can be responsible for the asymmetry of the phase veloc-
ity of the turbulent GAM excitation. In up-down sym-
metric magnetic geometries C(#) is up-down antisym-
metric [e.g., sin(f)/v/2 for circular flux surfaces]. Since
empirically I is approximately symmetric with respect
to the outboard midplane of the tokamak and positive,

4

(Cf’ﬁ = 0 and the related growth rate is zero. However,

in single-null geometry, C(f) becomes very small close to
the X point. Hence, (CI'1) # 0 and an asymmetry in the
phase velocity can arise in Eq. (4). With b x V1n B (the
direction of ion magnetic drifts) directed upwards — as is
convention in NLET — and upper (lower) single-null geom-
etry, C(6) is positive (negative) opposite to the X point.
Thus, (CI') becomes positive (negative), and the sign of
the asymmetric growth rate —(k,/2)(CI';) agrees with
the GAM properties observed in Fig. 3 a). Note that the
above calculation also yields a frequency shift due to the
asymmetric transport dwgay = k3<éf‘2> which is posi-
tive because both C(6) and T'y() are negative (positive)
above (below) the outboard midplane [10].

Summary and Conclusions.— Compared to linear
predictions, numerical ITG turbulence studies display
strongly enhanced GAM dispersion in case of nonadia-
batic electron response with a dependence on the parallel
resistivity. The interaction with the turbulence can raise
the group velocity of the GAM from the order of the cur-
vature drift velocity (~ 0.1 km/s, T~ 100 eV, B~ 1T,
R ~ 1 m) in the linear case [6, 7] to the order of the dia-
magnetic drift velocity (~ 1 km/s), which is the typical
scale of turbulent motions. A global nonlinear eigenmode
can be wide enough to form frequency plateaus as ob-
served in ASDEX Upgrade [8]. Up-down asymmetry of
the magnetic configuration results in an additional GAM
growth rate causing a preference for one particular sign
of the phase velocity. In NLET runs using single-null ge-
ometry with the ion curvature drift directed upwards and
upper (lower) X point this interaction favors the excita-
tion of GAMs with negative (positive) group and phase
velocities. Taking into account a radial frequency gra-
dient, the phase velocity preference results in a pulsed
activity of turbulence and GAMs for upper X point. In
contrast, for lower X point pulsing is subdominant and
the turbulence saturates into a quasisteady state with the
mean turbulence intensity being significantly lower than
for upper X point. The pulsed GAM activity reported
here may be related the pulsed GAM activity observed
recently in ASDEX Upgrade [2]. It might also be in-
volved in the explanation of the quiet periods in NSTX
[9]. Since the ion curvature drift was directed towards the
X point in all of the discharges analyzed in [9], it would be
interesting to investigate the changes related to an inver-
sion of the curvature drift in the experiment. The group
velocity determines the flux of the energy stored in the
GAM. Therefore, fast propagation might also play a role
in considerations about the efficiency of externally driven
GAMs as transport barriers not only because of broader
resonance regions. Taking into account the propagation
properties close to the separatrix discussed here and in
[6, 7] in addition to the high group velocities, one might
also speculate about trapping the GAM between two re-
flection layers. Thus, an enhanced GAM drive efficiency
might assist the L-H transition.
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