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Abstract

Alpha-particle losses due to the resonant magnetic field perturbations (RMPs) created by the

coil system for Edge Localized Mode mitigation in ITER are studied numerically. If shielding of

RMPs by the plasma is not taken into account, passing α-particles are the main loss channel which,

together with the trapped particle contribution leads to a loss of more than 5 % of fusion alpha

particle power. Shielding of RMPs practically eliminates this channel so that the overall losses are

reduced to about 1 %.
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I. INTRODUCTION

Resonant magnetic field perturbations (RMPs) produced with a special coil set can be

successfully used for mitigation of Edge Localized Modes (ELM’S) in tokamaks what has

been demonstrated experimentally on DIII-D1 and JET2. They are considered as an ELM

mitigation tool in ITER3. If such RMPs are considered ignoring the effects of the plasma

(“vacuum” RMPs), they can cause ergodization of the magnetic field in a significant part of

the plasma volume, which should result in a noticeable reduction of the energy confinement

time4. Such strong ergodization should also have a negative effect on the confinement of

fast passing particles, in particular, of fusion α-particles. However, the reduction of energy

confinement time predicted from the vacuum RMP model is not observed experimentally4.

One of the most likely reasons is that the perturbations are strongly shielded by plasma

response currents at resonant rational magnetic surfaces5. Predictions of such shielding by

linear kinetic5 and drift MHD6 models agree by order of magnitude. As a result of the

shielding, the island width which follows from the vacuum model for the perturbation field

is reduced up to two orders of magnitude. This reduction comes from the strong drop of the

radial component of the perturbation field in a narrow region around the resonant surface

where this component has a minimum. Due to their cross-field drift, passing α-particles

do not stay on magnetic surface, and, therefore, for resonant orbits, they may experience

noticeably higher values of the radial magnetic field than its value at the rational magnetic

surface. Therefore, the topology of such orbits is more sensitive to RMPs than the topology

of field lines.

In the following, orbit topology and particle losses are studied for the 15 MA ITER QDT

= 10 scenario with perturbation coil system7–9 with the help of the magnetic field model

used in Ref. 5. This model has been used earlier for the estimation of RMP effects on

the magnetic configuration in the presence of a plasma typical for experiments on ELM

mitigation in DIII-D. In this model, the realistic axisymmetric equilibrium magnetic field

for the 2D tokamak geometry and the realistic 3D vacuum RMP field is coupled with the 1D

linear kinetic model of RMP shielding in screw pinch geometry. The resulting 3D shielded

perturbation field is added to the 2D equilibrium field and the total field is used for the

computation of the orbits. This model is described in Section II. In Section III the topology

of field lines and passing α-particle orbits for the vacuum RMP model and for shielded
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RMP model is studied with help of Poincaré mapping. In Section IV passing and trapped

α-particle losses are computed. Results are summarized in Section V.

II. MAGNETIC FIELD MODEL

The magnetic field is given as a superposition of the unperturbed field and the perturbation

field, B = B0 + B̃ where the unperturbed (axisymmetric) magnetic field is given by

B0 = ∇A0ϕ ×∇ϕ+B0ϕ∇ϕ. (1)

Here, B0ϕ is the co-variant toroidal magnetic field component (constant in the low pressure

approximation) and A0ϕ = −ψpol is the co-variant toroidal component of the vector potential

which are the standard output of tokamak equilibrium codes.

In absence of a plasma, the perturbation field B̃ is fully determined by the currents in the

perturbation coil system via the Biot-Savart law. In the present study, the modelling is done

for the coil system and coil currents taken from Refs. 7,8. Such coil system for ITER consists

of 9 toroidal sectors containing 3 coils each (see Fig. 1) denoted as upper (u), equatorial

(e) and lower (l). The particular mode considered here is characterized by the following

currents in these coils,

I(c)s = IA sin
(
nm(s∆ϕ−∆ϕ(c))

)
, (2)

where s = 1, . . . , 9 is the sector number, (c) = (u), (e), (l) is the coil type, the amplitude of

the current is IA = 90 kA, the sector period is ∆ϕ = 40o, and phase shifts for various coil

types are ∆ϕ(u) = 54o, ∆ϕ(e) = 0o and ∆ϕ(l) = −64o. For the perturbation mode nm = 4

the toroidal spectrum of the current essentially consists of the modes with n = 4 + 9k and

n = 5+9k where k is an integer. Other modes with much smaller amplitudes are also present

in the spectrum because the discrete symmetry of the sectors is violated by the different

current feeds of the lower coil in sector 2. Although this violation is small, periodicity of

the coils with period number 9 has not been assumed in the present computations.
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A. Vacuum perturbation field

For a fast numerical evaluation, the perturbation field B̃ computed with the Biot-Savart law

is represented in cylindrical coordinates (R,ϕ, Z) through vector-potential components,

B̃ = ∇ÃR ×∇R +∇ÃZ ×∇Z +∇Āϕ ×∇ϕ+ B̄ϕ∇ϕ, (3)

where Āϕ and B̄ϕ are independent of the toroidal angle ϕ and the components ÃR and ÃZ

have zero toroidal average. These components are expanded in Fourier series over ϕ, and the

coefficients of this series are used in the form of 2D spline interpolation of the pre-computed

data on the (R,Z) grid. Such a representation is divergence-free up to computer accuracy

and, in addition, is helpful for the analysis of the perturbation field in flux coordinates.

In symmetry flux coordinates (ψtor, ϑ, ϕ) being the toroidal flux, poloidal and toroidal angles,

respectively, which are constructed numerically from the equilibrium field data, the non-

axisymmetric part of the perturbation field takes the form

B̃ = ∇Ãψtor ×∇ψtor +∇Ãϑ ×∇ϑ, (4)

The component Ãψtor does not modify the magnetic field topology because this small term

can be iteratively absorbed into the flux coordinates. In turn, the component Ãϑ determines

both the topology of the total field and the resonant response currents. Representing the

components of the perturbed vector potential in the form of a Fourier series,

Ãϑ = 2 Re
∞∑
n=1

∞∑
m=−∞

Aϑ;m,n (ψtor) eimϑ+inϕ, (5)

the Fourier amplitudes Aϑ;m,n and Aψtor;m,n in the absence of plasma response currents are

computed by numerical integration of ÃR and ÃZ along the unperturbed field lines5.

B. Account of shielding

To account of plasma response currents, the Fourier amplitudes are expressed through the

amplitudes in vacuum and the “formfactors” Tm,n as follows,

A
(plas)
ϑ;m,n(ψtor) = A

(vac)
ϑ;m,n(ψtor)Tm,n(ψtor). (6)

For the estimation of the formfactors in the presence of plasma response, the model of an

inhomogeneous periodic plasma cylinder with rotational transform (screw pinch) is used. In
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this estimate, the formfactors for various Fourier modes are set to the respective formfactors

in the screw pinch tokamak model,

Tm,n(ψtor) = B(plas)
r;m,n (r)/B(vac)

r;m,n(r), (7)

where r =
√

2ψtor/Baxis is the effective radius and Baxis is a reference magnetic field. The

Fourier amplitudes of the magnetic field components in the cylinder, Br;m,n, are computed

numerically using the linear kinetic model introduced in Ref. 10 and recently upgraded in

Ref. 11. Within this model, Maxwell’s equations,

∇× Ẽ =
iω

c
B̃, ∇× B̃ = −iω

c
Ẽ +

4π

c
j̃, (8)

are solved for a cylindrical plasma surrounded by an ideally conducting wall at r = rW .

Perturbations are excited by the “antenna” at r = rA < rW . The position of the antenna

has no effect on Tm,n as long as the plasma density and the equilibrium plasma current at

the antenna are negligibly small. The same is true for the wall position if the wall is distant

enough from the plasma, (
rp
rW

)2(|m|−1)

� 1, (9)

where rp is radius of the separatrix. For quasi-static perturbations, the conductivity of the

wall is negligibly small and formally one has to place the ideally conducting wall at infinity.

However, poloidal modes m which are resonant in the plasma are large for the coil spectra of

interest here, such that condition (9) is well satisfied even with rather moderate rW values.

The plasma response current density in (8) is computed from

j̃ =
∑
e,i

e

∫
d3pvf̃ , (10)

where the perturbed distribution function f̃ satisfies the linearized kinetic equation

∂f̃

∂t
+ v · ∇f̃ + e

(
−∇Φ0 +

1

c
v ×B0

)
· ∂f̃
∂p
− L̂C f̃ = −e

(
Ẽ +

1

c
v × B̃

)
· ∂f0
∂p

. (11)

Here f0 is an equilibrium distribution function consistent with plasma and equilibrium mag-

netic field parameter profiles, taking toroidal plasma rotation into account and assuming

that poloidal rotation velocity is zero, Φ0 is the equilibrium electrostatic potential and L̂C

models Coulomb collisions. In more detail, the equilibrium is specified by the radial profiles

of density ne, electron temperature Te, ion temperature Ti, toroidal rotation velocity Vz,
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safety factor q, and by the on-axis magnetic field value B0(0). The parallel plasma current,

j‖ = |e|ne
(
V‖,i − V‖,e

)
, and the components of the equilibrium magnetic field Bθ

0 and Bz
0

follow then from q(r) and B0(0) via Ampére’s law. The perpendicular electron and ion fluid

velocities V⊥e,i = V∗e,i + VE, with V∗e,i the diamagnetic velocities and VE the electric

drift velocity, are determined by the ideal MHD force balance ignoring inertia. Then the

poloidal and toroidal projections of the total fluid velocity, meV⊥e + miV⊥i, together with

the definition of the parallel current density provide an equation set for the electric field and

the parallel fluid velocity components. These parameters fully determine the equilibrium

distribution function in form of a shifted Maxwellian with radial dependence.

A schematic model showing the origin of the shielding can be obtained for a single static

perturbation field harmonic, B̃ ∝ exp (imϑϑ+ ikzz), ignoring the perturbed electrostatic

potential and using a gyrokinetic equation with Krook collision term,

Vg · ∇f + νc(f − f0) = 0, (12)

where the velocity space variables are the total energy w and the perpendicular adiabatic

invariant J⊥. In a common transport ansatz, the zero order distribution function is a local

Maxwellian,

f0 =
n(r)

(2πmT (r))3/2
exp

(
−w − eΦ0(r)

T (r)

)
. (13)

Ignoring the magnetic drift in the guiding center velocity,

Vg = v‖
B

B
+ VE, (14)

linearization of (12) with respect to B̃ leads to

i
(
k‖v‖ + ωE − iνc

)
f̃ = −v‖

B̃r

B0

∂f0
∂r

,
∂f0
∂r

=

(
A1 + A2

w − eΦ0

T

)
f0 (15)

where k‖ = B0 · k/B0, ωE = VE · k, k = mϑ∇ϑ+ kz∇z, and the thermodynamic forces are

A1 =
1

n

∂n

∂r
+
e

T

∂Φ0

∂r
− 3

2T

∂T

∂r
, A2 =

1

T

∂T

∂r
. (16)

Substituting the solution to (15) into (10), the parallel perturbation current is obtained as

j̃‖ = σBB̃
r =

∑
e,i

enTB̃r

mB0(νc + iωE)

2Z√
π

∞∫
−∞

duu2

u− Z
e−u

2 (
A1 + A2 + A2u

2
)
, (17)
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with Z = (iνc − ωE)k−1‖ (2T/m)−1/2. This current is peaked at the resonant surface where

k‖ = 0 and Z →∞,

j̃‖ = −
∑
e,i

eB̃r

mB0(νc + iωE)

(
∂nT

∂r
+ en

∂Φ0

∂r

)
= −

∑
e,i

e2nB̃rV⊥
mc(νc + iωE)

, (18)

i.e., the current is driven by the magnetic Lorentz force arising from the perturbation field

and the moving fluid, a result which is also seen in MHD theory.12 Here and below subscript

⊥ refers to the perpendicular component of the vector within the flux surface. Due to the

mass ratio, the electron current is much larger then the ion current, especially in the hot

core where ωE may be higher than the electron collision frequency. Away from the resonant

surface where Z becomes small due to increasing k‖, the current is decreasing

j̃‖ ≈
eB̃r(iνc − ωE)

B0k2‖

(
∂n

∂r
+
en

T

∂Φ0

∂r

)
(19)

The width of the current layer where Z ≥ 1 is rather small. E.g., for ωE > νc this width is

∆r ∼ ck⊥q

B0kz

√
m

T

∂Φ0

∂r

(
∂q

∂r

)−1
∼ ρqR

r
(20)

where ρ is the Larmor radius and R is the major radius of the torus. The current in this

layer shields the perturbation field, and the main shielding results from the electrons because

the total current of a given species contained in the layer between the resonant surface and

the coil scales inversely with the square root of mass. This immediately follows from the

estimate of the current amplitude (18) and its width (20).

Generally, the current density (10) is an integral functional of the perturbation field

and, due to finite Larmor radius (FLR) effect, it remains to be such even in cylindrical

geometry where Fourier analysis over poloidal and toroidal angles transforms the integral

nonlocality over these angles into an algebraic dependence. In Ref. 10 a particular FLR

expansion has been introduced which preserves the Galilean covariance of the resonant

part of current density (part responsible for the shielding effect) such that the integral

plasma conductivity operator is approximated by a differential operator. This allows to

reduce Maxwell equations to a set of coupled ordinary differential equations. Using Galilean

covariance, Maxwell equations are solved in some moving (toroidally rotating) reference

frame where the perturbation frequency ω is finite. Originally, this model had been realized

for the lowest order expansion only10. In Ref. 11, more practical modified higher order
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expansions have been developed and implemented numerically. In addition, the Krook

collision operator used in Refs. 5,10 for the estimation of Coulomb collision effects on the

shielding has been replaced with a simple Fokker-Planck type collision operator, namely an

Ornstein-Uhlenbeck operator13. This operator conserves particles locally and, as a result,

does not violate Galilean covariance of the current in contrast to the Krook operator used

for estimates in Refs. 5,10 where this covariance has been held only in the collisionless

case. It should be mentioned that poloidal mode coupling pertinent to the realistic 2D

toroidal geometry is ignored in the cylindrical model used here. This coupling provides

corrections which are relatively small in the core plasma being of the main interest for

α-particle confinement.

For numerical computations, plasma parameters and equilibrium magnetic field for the 15

MA ITER QDT = 10 scenario9 are used. Profiles of these parameters as functions of the

normalized poloidal flux s = ψpol/ψ
a
pol being the poloidal flux normalized by its value at the

separatrix, are shown in Fig. 2. The resulting formfactors in Fig. 3 show strong shielding of

the perturbation field in the plasma.

III. FIELD LINES AND DRIFT ORBITS OF PASSING α-PARTICLES

The results of field line tracing with and without the account of RMP shielding by the

plasma are presented in Fig. 4 where Poincaré plots at the ϕ = 0 section are shown in flux

variables (s, ϑ). It can be seen that large magnetic islands in the core plasma and a strong

ergodization in the outer two thirds of the plasma volume are almost eliminated if RMP

shielding by the plasma is taken into account. The reduction of the island widths in the core

is up to 100 times because the values of the formfactors at the respective resonant surfaces

are down to 10−4 there, see Fig. 3, and the island width scales as the square root of the

perturbation field amplitude. At the same time, it can be seen from Fig. 3 that such strong

drops in the formfactors occur in rather narrow vicinities of the resonant flux surfaces. The

typical radial scale of such a vicinity is comparable to the Larmor radius of thermal ions.

Since the deviation of α-particles from the magnetic surfaces is much larger than this scale,

one can expect that the effect of RMPs on α-particle orbits is much stronger than the effect

on magnetic field lines. In addition, Larmor gyration of α-particles also reduces the effect of

plasma shielding of the RMP field for the orbits. This relatively small effect, however, is not
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considered below where the α-particle motion is modelled in the usual drift approximation.

Drift orbits of passing α-particles can be presented as the lines of force of the effective

magnetic field B∗ (see Ref. 14) where

B∗ = ∇×A∗, A∗ = A +
mαcv‖
eαB

B ≡ A +
v‖
ωcα

B. (21)

Here, eα, mα and ωcα are α-particle charge, mass and cyclotron frequency, respectively.

Parallel velocity v‖ in (21) must be expressed in terms of invariants of motion being the

total energy w and perpendicular invariant J⊥ = p2⊥(2mαωcα)−1 as follows

v‖ = σ

√
2

mα

(w − ωcαJ⊥ − eαΦ0), (22)

where σ = ±1 is the velocity sign. For the analysis of orbit topology, Poincaré mapping

of the effective magnetic field (21) has been performed for strongly passing particles with

J⊥ = 0 ignoring the electrostatic potential Φ0 which is important for bulk plasma particles

but provides a negligible correction for high energy α-particles. In this case, v‖ = ±v0 where

v0 is the velocity of 3.5 MeV α-particle. For simplicity, the perturbation field has been taken

into account only for the first term in the right hand side of (21). The neglected small term

could be important for trapped particles since it describes toroidal field ripple due to the

perturbation field. However, it provides just a minor correction for passing particles, and

this approximation does not lead to non-Hamiltonian features of the orbits.

The results of Poincaré mapping are shown in Fig. 5. In all cases there is a visible difference

between Poincaré plots for co- and counter-passing particles which is pre-determined by the

difference in the unperturbed orbits which is induced by the radial drift in the toroidal field

(see lower plots in Fig. 5). Such a difference has been demonstrated earlier in Ref. 15 for the

vacuum perturbation field of TEXTOR-DED. As expected, the effect of shielding on particle

orbits is weaker than on field lines. Relatively large drift islands corresponding to low order

resonances can be observed for counter-passing orbits in the presence of the shielding by

the plasma. Nevertheless, this shielding is sufficient to limit the size of the region occupied

by ergodic orbits significantly. Moreover, islands are practically absent for the co-passing

orbits.

To study the reduction of the shielding effect for the orbits it is useful to introduce sym-

metry flux coordinates ψ∗tor and ϑ∗ associated with the effective magnetic field B∗0. In these

coordinates, the spectrum of the perturbation field produced by a single harmonic (m,n)
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in usual flux coordinates (which produces a single magnetic island chain) is determined by

Fourier expansion over ϑ∗ of the poloidal vector potential component Aϑ,mn(ψtor) exp(imϑ)

with substitution ψtor = ψ∗tor + ∆ψ(ψ∗tor, ϑ
∗) and ϑ∗ ≈ ϑ. Here we ignored the difference

between ϑ∗ and ϑ which is the same order correction with the banana width correction

∆ψ because of the stronger variation of the perturbation field with ψtor near the resonance.

Thus, besides the increase of the amplitude of the main harmonic (m,n) discussed above and

illustrated in Fig. 6 there appear also sideband harmonics due to the coupling of the periodic

function ∆ψ with the exponent through the dependence of Aϑ,mn(ψtor) on the argument.

The largest sidebands correspond to m ± 1. In Poincaré plots of passing orbits with the

single perturbation harmonic m = 6, n = −4 (upper plots in Fig. 7) one can see both, the

island chain due to the main harmonic and due to the sideband m + 1 = 7 whose resonant

surface is located outside the main resonance surface. The other nearest sideband m−1 = 5

located inside is practically absent because of shielding. Note that the main island chain for

the counter passing orbit is visibly smaller than for co-passing since deviation of this orbit to

the outer side of the main resonant surface where the perturbation field is strong is smaller

(see Fig. 6). A similar behavior is seen also for the mode m = 5, n = −4 (middle plots in

Fig. 7). It is remarkable that for superposition of these two modes (lower plots in Fig. 7) the

island chain m = 6, n = −4 nearly vanishes for the co-passing orbit and is amplified for the

counter-passing because in the first case the main resonant harmonic for the m = 6, n = −4

perturbation mode is nearly cancelled by the sideband m + 1 for the m = 5, n = −4 mode

while in the second case the sign of the sideband is opposite, and this harmonic is amplified.

This feature results in very different topology of co- and counter-passing orbits in the core

plasma for the full coil spectrum (middle plots of Fig. 5).

IV. PARTICLE AND ENERGY LOSSES

For the quantitative evaluation of α-particle losses, particles are split into three classes as

follows. Note that the maximum value of the magnetic field seen by the passing particle

during a poloidal turn is increasing when it travels outwards. Therefore, the part of the

particles which are passing in the usual sense will be trapped on their way out. Introduc-

ing the normalized perpendicular invariant, η = J⊥eαB
(sep)
max (mαcw)−1, where B

(sep)
max is the

maximum value of the magnetic field at the unperturbed separatrix, “passing” particles are
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re-defined as those which can reach the separatrix without trapping, i.e. as particles with

η < 1. Particles with η > B
(sep)
max /B

(brt)
max which are trapped on their birth surface, where B

(brt)
max

is the maximum value of the magnetic field at this surface are called below “trapped”, and

particles with 1 < η < B
(sep)
max /B

(brt)
max which are trapped on the way to the separatrix are

called “transient”.

A. Passing particles

The standard procedure for the evaluation of α-particle losses for realistic 3D magnetic

fields16 assumes numerical tracing of drift orbits for a relatively large ensemble of particles

representative for all α-particles in the device. These particles must be followed for a time

comparable with the α-particle slowing down time by electrons which is of the order of one

second in ITER (see Fig. 8). Naturally, this results in rather large CPU time requirements.

To speed up the computations of passing particle losses, in the present study an interpolated

cell mapping procedure17–19 has been applied which had been successfully used earlier for

the modelling of run-away electron confinement17, 3D MHD transport modelling of the

plasma edge18, and long mean free path transport modelling in stellarators19. Within this

procedure, α-particles are traced by their footprints on Poincaré cuts which are the poloidal

cuts ϕ = const cutting the torus in each field period. Cylindrical coordinates (R,Z) of the

particles on the cut are subsequently mapped through a period as follows,

Rnew = R (Rold, Zold) , Znew = Z (Rold, Zold) , (23)

where the mapping functions R (R,Z) and Z (R,Z) are used in the form of interpolation of

their values pre-computed on the rectangular grid of starting values (R,Z) by direct orbit in-

tegration over a field period. In addition to these functions also the single return time to the

Poincaré cut, τb(R,Z), and the normalized slowing down rate rs(R,Z) = τb/τs are interpo-

lated (here τs = τs(R,Z) is the α-particle slowing down time by electrons) and are summed

up during the mappings. These sums determine the life time of the test particle,
∑
τb, and

the fraction of the initial particle energy carried away by the particle, exp (−2
∑
rs). Since

in the presence of RMP shielding by the plasma the magnetic field has a rather steep behav-

ior with respect to the flux surface label near the resonant flux surfaces, in the present work

5-th order 2D Lagrange polynomials are used for interpolation, in contrast to Refs. 17–19
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where bi-cubic splines have been used. This reduces the memory requirement by a factor

16 as compared to bi-cubic splines for the cost of some not very significant slowing down

of the computations. Such a procedure allows to follow 105 orbits for several million full

turns around the torus what is sufficient to cover a few slowing down times. Therefore, the

ergodic region at the edge can be resolved in sufficient detail. In order to cover the whole

passing particle population separate mappings have been performed for a set of η values.

In Fig. 9 are shown as functions of time after birth the lost fraction of particles born with

trapping parameter η at the flux surface with label s, p
(p)
L = p

(p)
L (η, s) and relevant fraction

of fusion energy p
(e)
L = p

(e)
L (η, s) lost together with these particles. Plots correspond to

two different flux surfaces and strongly counter-passing particles (η = 0). These fractions

have the meaning of loss probability averaged over the volume between two neighboring flux

surfaces with the weight equal to the Jacobian of the momentum space variables J ∝ B|v‖|−1.

Difference between p
(p)
L and p

(e)
L which develops for times t comparable or larger than slowing

down time is due to the energy transfer to bulk plasma electrons before particle loss. This

difference is rather small for the vacuum perturbation field where particles are lost promptly

almost with their initial energy, but it is large for the shielded field where particles diffuse

to the wall for a long time sufficient for thermalisation of the major part of their energy. In

Fig. 10 the dynamics of losses is shown for particles with η = 0 with positive and negative

parallel velocity. For several time moments, the fractions of particles p
(p)
L = p

(p)
L (η, s) and

energy p
(e)
L = p

(e)
L (η, s) lost to the wall are plotted as functions of the starting value of

the surface label s. For reference, also losses of “field lines” i.e. of the orbits in infinitely

strong magnetic field are presented. It can be seen that losses in vacuum (left panel) are

rather prompt everywhere: quantities p
(p)
L and p

(e)
L are close to each other, i.e. practically

all α-particles born at s > 0.6 are lost to the wall almost with their initial energy. Note

that dips on the pL profiles correspond to the residual islands in the ergodic layer where

a small part of the alphas is confined (compare to Figs. 4 and 5). In the plasma, the loss

region is significantly reduced by shielding. This reduction is strongest for “field lines” and

is different for co- and counter-passing particles.
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B. Trapped particles

Trapped particle losses have been computed using the usual method16, i.e. particles have

been started on several unperturbed flux surfaces evenly distributed over the volume between

two neighboring surfaces and with isotropic momentum space distribution in the trapped

particle domain and followed during 100 ms. These losses have been estimated only for the

vacuum perturbation case. In Fig. 11 is shown the dynamics of particle loss probability

averaged over trapped particle domain,

〈p(p)L 〉tr =
1

ηmax − ηmin

ηmax∫
ηmin

dη p
(p)
L (η, s), (24)

where ηmin = B
(sep)
max

(
B

(brt)
max

)−1
, ηmax = B

(sep)
max

(
B

(brt)
min

)−1
, with B

(brt)
min being the minimum

magnetic field value at the birth surface. This losses are also prompt, i.e. main losses occur

within first 10 ms where the slowing down is not significant (therefore 〈p(e)L 〉tr has been set to

〈p(p)L 〉tr for trapped particles in the following). At the same time, the loss probability in the

core plasma is significantly smaller than the equivalent probability for passing particles in

vacuum. In Fig. 12 the distribution of p
(p)
L (η, s) is presented. For convenience, the trapping

parameter κ = (η − ηmin) (ηmax − ηmin)−1 is used instead of η. It can be seen that losses

are localized mainly near the usual trapped-passing boundary, κ = 0, where the overlapping

of drift-orbit resonances (resonances between poloidal bounce frequency ωb and toroidal

rotation frequency ωt) takes place leading to stochastic ripple diffusion20. These losses have

the same nature as the losses of fast particles due to the toroidal field ripple. Since they

are not sensitive to the magnetic field topology, shielding effects are not expected to reduce

these losses significantly.

C. Total losses

Total losses are determined by both, loss probability and spatial α-particle source distribu-

tion which is shown in Fig. 8 by distribution over the flux surface label s of the fusion power

in α-particles computed for 50% d-t mixture as

dPα
ds

= 2πndnt〈σv〉d−tE0

π∫
−π

dϑ
√
g. (25)
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Here,
√
g is metric determinant of coordinates (s, ϑ, ϕ), nd, nt, 〈σv〉d−t and E0 are deuterium

and tritium densities, transport cross section of d-t reaction (see, e.g., Ref. 21) and initial

α-particle energy, respectively. Profiles of ion density and temperature entering (25) are the

same as in the previous computations of this paper (see Fig. 2). The total power loss is

given as

Ploss =
∑
classes

1∫
0

ds
dPα
ds

p̄
(e)
L,class. (26)

The quantity p̄
(e)
L,class for passing particles is given by

p̄
(e)
L,pass =

1

4

 π∫
−π

dϑ
√
g

−1∑
σ

1∫
0

dη p
(e)
L

π∫
−π

dϑ
√
g

B

B
(sep)
max

(
1− η B

B
(sep)
max

)−1/2
. (27)

were the summation is over velocity sign σ, for trapped particles by

p̄
(e)
L,trap = 〈p(e)L 〉tr

 π∫
−π

dϑ
√
g

−1 π∫
−π

dϑ
√
g

(
1− η B

B
(sep)
max

)1/2

, (28)

and for transient particles by Eq. (27) with replacement of integration interval over η by the

corresponding domain [1, B
(sep)
max /B

(brt)
max ]. Transient particles constitute a rather small group

at the edge. No computations have been performed for this group, but for an upper estimate

of their losses, the quantity p
(e)
L has been extrapolated from the passing domain (dependence

of this quantity on η is rather weak). The average probabilities p̄
(e)
L,class are shown in Fig. 13.

Note the strong reduction by shielding of the passing particle contribution which is the main

loss channel in vacuum. Finally, the results of integration of different contributions to the

power loss in (26), both the absolute values and the values normalized by the total fusion

power in α-particles which is equal to Pα = 91 MW are summarized in Table. I.

V. SUMMARY AND DISCUSSION

In this study, α-particle losses caused by ELM mitigation coil system in ITER have been

estimated for the vacuum RMP model and for the model taking RMP shielding by the

plasma into account. As one could expect, shielding of RMPs strongly reduces the width

of the region at the outer side of the plasma volume occupied by ergodic passing α-particle

orbits. This reduction, however, is smaller than such a reduction for magnetic field lines

14



and it is different for co- and counter-passing orbits. Nevertheless, it is sufficient to prevent

noticeable losses predicted by the vacuum RMP model. Indeed, as follows from Table I, the

main channel of losses in the vacuum approximation for the perturbation field is the loss

of passing particles which cause 4.7 % loss of α-particle fusion power. Together with the

trapped particle contribution, α-particle fusion power loss exceeds 5 % with particles being

lost without significant slowing down by electrons. If the shielding of RMPs is taken into

account, the passing particle channel of losses is practically eliminated.

It should be noted that external magnetic field perturbations can also be amplified by the

plasma. E.g., this happens if perturbation spectrum couples to marginally stable perturba-

tions which produce kinklike distortions of the plasma22. In particular, an amplification of

the perturbation field at the plasma edge has been suggested as a most probable explanation

for the increased (compared to the vacuum perturbation field) divertor strike point splitting

observed in DIII-D23. At the same time, amplification or even sustainment at the vacuum

level of the RMPs in the core plasma is evidently not the case in the regimes of practical

interest, because such RMPs would significantly degrade the parameters of the core plasma

making the question of α-particle confinement a secondary issue.
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G. Arnoux, Y. Baranov, M. Bécoulet, et al., Phys. Rev. Lett. 98, 265004 (2007).

3 M. Becoulet, E. Nardon, G. Huysmans, W. Zwingmann, P. Thomas, M. Lipa, R. Moyer,

15



T. Evans, V. Chuyanov, Y. Gribov, et al., Nucl. Fusion 48, 024003 (2008).

4 I. Joseph, T. Evans, A. Runov, M. Fenstermacher, M. Groth, S. Kasilov, C. Lasnier, R. Moyer,

G. Porter, M. Schaffer, et al., Nucl. Fusion 48, 045009 (2008).

5 M. F. Heyn, I. B. Ivanov, S. V. Kasilov, W. Kernbichler, I. Joseph, R. A. Moyer, and A. M.

Runov, Nuclear Fusion 48, 024005 (2008).

6 A. Cole and R. Fitzpatrick, Phys. Plasmas 13, 032503 (2006).

7 M. Schaffer et al. (2010), private communication.

8 A. Loarte et al., in Fusion Energy 2010 (Proc. 23rd Int. Conf. Dae-

jeon, 2010) (IAEA, Vienna, 2010), CD-ROM file ITR 1-4. http://www-

pub.iaea.org/mtcd/meetings/PDFplus/2010/cn180/cn180 papers/itr 1-4.pdf.

9 T. Casper et al., in Fusion Energy 2010 (Proc. 23rd Int. Conf. Daejeon, 2010)

(IAEA, Vienna, 2010), CD-ROM file ITR/P1-19, accepted Nucl. Fusion http://www-

naweb.iaea.org/napc/physics/FEC/FEC2010/html/index.htm.

10 M. F. Heyn, I. B. Ivanov, S. V. Kasilov, and W. Kernbichler, Nuclear Fusion 46, S159 (2006).

11 I. B. Ivanov, M. F. Heyn, S. V. Kasilov, and W. Kernbichler, Phys. Plasmas 18, 022501 (2011).
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Figures

FIG. 1: Perturbation coil geometry.

FIG. 2: Equilibrium plasma parameter profiles.
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FIG. 3: Formfactors |Tm,n| vs the normalized poloidal flux s for n = −4 (left) and n = −5 (right).

Poloidal wave numbers m label respective curves.

FIG. 4: Poincaré plots of the magnetic field for vacuum RMP model (left) and with the account

of RMP shielding by the plasma (right). Red line shows the safety factor q(s).
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FIG. 5: Poincaré plots of co-passing (left panel) and counter-passing (right panel) α-particle orbits

for vacuum RMP model (top), with the account of RMP shielding by the plasma (middle) and in

absence of RMPs (bottom).
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FIG. 6: Unperturbed resonant orbits for co-passing (v0, red) and counter-passing (−v0, magenta)

α-particles and the unperturbed resonant flux surface (blue) for n = −4, m = 6 resonance. Green

curve shows the respective formfactor |T6,−4|.
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FIG. 7: Poincaré plots of co-passing (left panel) and counter-passing (right panel) α-particle orbits

for a shielded n = −4, m = 6 RMP harmonic (top), n = −4, m = 5 harmonic (middle) and

superposition of these harmonics (bottom).
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FIG. 8: α-particle fusion power distribution over normalized poloidal flux and α-particle slowing

down time by electrons for the parameters of Fig. 2.

FIG. 9: Particle p
(p)
L (solid) and energy p

(e)
L (dashed) loss probabilities for strongly counter-passing

particles (η = 0) as functions time after particle birth for particles born at s = 0.85 flux surface (left)

and s = 0.9 flux surface (right). Blue - vacuum perturbation model, red - shielded perturbation

model.
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FIG. 10: Dynamics of strongly passing (η = 0) particle p
(p)
L (solid) loss probability and energy

p
(e)
L (dashed) loss probability for vacuum perturbation (left) and for shielded perturbation (right).

Upper panel - field lines, middle panel - co-passing, lower panel - counter-passing. Note the

difference in normalized poloidal flux, s, range between vacuum and plasma cases.
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FIG. 11: Dynamics of trapped particle loss probability 〈p(p)L 〉tr for vacuum perturbation field.

FIG. 12: Distribution of trapped particle loss probability p
(p)
L for vacuum perturbation field.
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FIG. 13: Flux surface and momentum space averaged loss probabilities p̄
(e)
L,class for various particle

classes in vacuum and for passing particles in plasma. For transient particles the upper estimate

is plotted (vacuum case).
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Tables

TABLE I: Energy losses.

passing, vac. passing, plas. trapped, vac transient, vac.

MW 4.25 0.08 0.51 0.74

% 4.66 0.09 0.56 0.82
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